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A presentation for the baseleaf preserving
mapping class group of the punctured solenoid

SYLVAIN BONNOT

ROBERT C PENNER

DRAGOMIR ŠARIĆ

We give a presentation for the baseleaf preserving mapping class group MCG.H/
of the punctured solenoid H . The generators for our presentation were introduced
previously, and several relations among them were derived. In addition, we show that
MCG.H/ has no non-trivial central elements. Our main tool is a new complex of
triangulations of the disk upon which MCG.H/ acts.

57M99; 20F65

1 Introduction

This note continues the investigation (begun in Penner–Šarić [14]) of the baseleaf
preserving mapping class group MCG.H/ for the punctured solenoid H . Our main
result is a presentation for MCG.H/. The punctured solenoid H is an inverse limit of
the system of all finite unbranched covers of a finite punctured surface of negative Euler
characteristic, and its baseleaf preserving mapping class group MCG.H/ consists of
all homotopy classes of appropriate self-maps of H which preserve a distinguished
leaf. (See Section 2 or [14] for more details.)

Sullivan [15] introduced the universal hyperbolic solenoid (as the inverse limit of
finite unbranched covers of a compact base surface) and the commensurator group of
the fundamental group of the base surface as the natural mapping class group of the
universal hyperbolic solenoid. Our definitions from [14] of the punctured solenoid H
and its baseleaf preserving mapping class group are analogous to [15] in the presence
of the punctures on the base surface.

We recall that the Ehrenpreis conjecture states that any two compact Riemann surfaces
have almost conformal finite unbranched covers of the same genus. Sullivan observed
(Nag–Sullivan [9]) that the Ehrenpreis conjecture is equivalent to the statement that
the mapping class group of the universal hyperbolic solenoid has dense orbits in the
Teichmüller space of the universal hyperbolic solenoid. One can state an analogous
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conjecture (to the Ehrenpreis conjecture) for the punctured surfaces. Namely, given any
� > 0 and given any two negative Euler characteristic finite punctured surfaces there
exist their finite unbranched covers that are � close to being conformal, ie .1C �/–
quasiconformal. This is equivalent to the statement that the (baseleaf preserving)
mapping class group MCG.H/ has dense orbits in the Teichmüller space T .H/ of the
punctured solenoid H . This motivates the study of MCG.H/.

Another motivation (for the study of MCG.H/) is that the baseleaf preserving map-
ping class group MCG.H/ is a large subgroup of the studied commensurator group
Comm.F2/ of the free group F2 on two generators (for the definition, see Section 2).
Namely, if we identify F2 with the once punctured torus group G , then MCG.H/ is
the subgroup of Comm.G/ which preserves peripheral elements, ie, preserves parabolic
elements.

The universal hyperbolic solenoid H is a topological space locally homeomorphic to
the product of a 2–disk and a Cantor set with one topological end. The path components
of the punctured solenoid H , called leaves, are homeomorphic to the unit disk D and
the baseleaf is a fixed distinguished leaf. Since MCG.H/ preserves the baseleaf, which
is dense in H , it is enough to analyse the action of MCG.H/ on the baseleaf (which
is conformally equivalent to the unit disk D). It was shown in [14] that MCG.H/ is
isomorphic to the subgroup of quasisymmetric maps of S1 which conjugate finite
index subgroups of PSL2.Z/ onto possibly different finite index subgroups of PSL2.Z/

(see Odden [11] and Penner–Šarić [14]). We use this identification through the paper
without further mentioning.

Given an ideal triangulation of the unit disk D (ie, the baseleaf) which is invariant
under a finite index subgroup K of PSL2.Z/ and a specified edge of the triangulation,
there are two adjacent triangles which together form a “neighboring” quadrilateral.
We may replace the specified edge of this quadrilateral by its other diagonal, and
performing this modification for each edge in the K–orbit of the specified edge, we
define the K–equivariant Whitehead move. The resulting ideal triangulation is also
invariant under K . A Whitehead homeomorphism of S1 is obtained by mapping
the ideal triangulation of the unit disk D invariant under a finite index subgroup K

of PSL2.Z/ onto its image under a Whitehead move. It is shown in [14] that the
Whitehead homeomorphisms together with PSL2.Z/ generate the baseleaf preserving
mapping class group MCG.H/ (see Section 2 or [14] for more details). In [14], four
relations among Whitehead homeomorphisms are identified and three of them arise in
our presentation (see Theorem 1.2(c)).

We first introduce the triangulation complex X for the punctured solenoid H . The
vertices of X are TLC tesselations, ie ideal triangulations of D invariant under some
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finite index subgroup of PSL2.Z/. The basepoint �� of the triangulation complex X
is the Farey tesselation �� WDF . Two vertices of X are joined by an edge if they differ
by a Whitehead move.

There are several types of two-cells in X : two edges of a triangulation may have
disjoint neighboring quadrilaterals, in which case there is a two-cell corresponding to
commutativity of their associated Whitehead moves; the two edges may have neighbor-
ing quadrilaterals which share a triangle, in which case there is a two-cell corresponding
to the pentagon relation; or a single Whitehead move equivariant for a finite index
subgroup K < PSL2.Z/ may be written as the finite composition of Whitehead moves
equivariant for a subgroup of K of finite index. (The two-cells are described more
precisely in Section 3).

Theorem 1.1 The triangulation complex X is connected and simply connected.

The action of MCG.H/ on the triangulation complex X is evidently cellular. Further-
more (see [14]), there is only one orbit of vertices in X , and the isotropy group of
a vertex � , ie, its stabilizer �.�/, is a conjugate of PSL2.Z/. In fact, the stabilizer
�.��/ of the basepoint �� is PSL2.Z/. Together with further analysis of the isotropy
group �.E/ of an unoriented edge E , standard techniques (Brown [2]) allow us to
derive a presentation of MCG.H/. To simplify this presentation, we actually choose
a larger set of generators for MCG.H/, namely, we take as generators all Whitehead
moves starting from the basepoint of X . (This is a smaller set of generators than in
[14] but larger than necessary.) We denote by EC the set of edges of X which contain
the basepoint and are not inverted by an element of MCG.H/, and by E� the set of
edges which contain the basepoint and are inverted by an element of MCG.H/. It
is necessary to fix one Whitehead homeomorphism gE for each edge E 2 EC in a
consistent way. (See Section 4 regarding this choice.) Let E˙ D EC t E� denote the
set of unoriented edges, and let �C.E/ denote the subgroup of �.E/ which does not
invert the edge E 2 E� . Our main theorem is as follows.

Theorem 1.2 The (baseleaf preserving) mapping class group MCG.H/ is generated
by the isotropy subgroup PSL2.Z/ of the basepoint �� 2 X , the isotropy subgroups
�.E/ for E 2 E˙ , and by the elements gE for E 2 EC . The following relations on
these generators give a complete presentation of MCG.H/:

(a) The inclusions of �.E/ into PSL2.Z/, for E 2 EC , are given by �.E/DK0 ,
where the terminal endpoint of E is a TLC tesselation invariant under a finite
index subgroup K0 < PSL2.Z/.
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(b) The inclusions of �C.E/ into PSL2.Z/, for E 2 E� , are given by �.E/DK0 ,
where the terminal endpoint of E is a TLC tesselation invariant under a finite
index subgroup K0 < PSL2.Z/.

(c) The relations introduced by the boundary edge-paths of two-cells in F given by
the equations (4–1), (4–2), (4–3), (4–4), (4–5), (4–6) and (4–7) in Section 4.

(d) The redundancy relations: for any two edges E and E0 in E˙ and for any
 2 PSL2.Z/ such that  .E/DE0 , we get the relation

gE0 ı  0 D  ıgE ;

where  0 is the unique element of PSL2.Z/ that satisfies  0.e0/ D e0
1

with
e0

1
D g�1

E0 . .e0// and e0 D .�1; 1/ is the oriented geodesic in D with the initial
point �1 2 S1 and the terminal point 1 2 S1 which is the standard distinguished
oriented edge of F .

It is well-known that the mapping class group of a Riemann surface of finite type has
trivial center provided the genus is at least three, and we obtain the analogous result
for MCG.H/.

Theorem 1.3 The baseleaf preserving mapping class group MCG.H/ of the punctured
solenoid H has trivial center.

Define Y D X=MCG.H/ and let N be the subgroup of MCG.H/ generated by all
elements which fix a point in X . By a standard result of Armstrong [1], we get the
following Theorem.

Theorem 1.4 The topological fundamental group of Y D X=MCG.H/ is given by

�1.Y/DMCG.H/=N :

Acknowledgements We are grateful to John Milnor for useful comments.We also
thank the referee whose careful reading has led to many improvements in our paper.

2 Preliminaries

Fix a finite punctured surface S (the base surface) with negative Euler characteristic
and empty boundary, and consider the system of all finite unbranched covers of S .
There is a partial ordering on the covers as follows. If one cover �1 can be factored as
the composition of two covers �1 D � ı�2 , where �; �2 are also finite unbranched
covers, then �1 � �2 . The system of covers is inverse directed, and there is thus an
inverse limit.
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Definition 2.1 The punctured solenoid H is the inverse limit of the system of finite
unbranched covers of a punctured surface without boundary and with negative Euler
characteristic.

The inverse limit does not depend on the base surface as long as it is of negative Euler
characteristic (see Odden [11] and Penner–Šarić [14]). The punctured solenoid H is
locally homeomorphic to a disk times a Cantor set. Each path component is called a
leaf , and each leaf is homeomorphic to the unit disk. The punctured solenoid H has
uncountably many leaves, each of which is dense in H . If we require in the above
definition of H that each punctured surfaces and each covering map is pointed, we obtain
a distinguished point, called the basepoint of H . The leaf containing the basepoint is
called the baseleaf . The punctured solenoid H is a non-compact topological space
with one end, which is homeomorphic to a horoball times a Cantor set modulo the
continuous action of a countable group. For more details see [14].

Definition 2.2 The baseleaf preserving mapping class group MCG.H/ of the punc-
tured solenoid H is the group of isotopy classes all self-homeomorphisms of H which
preserve the baseleaf, which are leafwise quasiconformal and which vary continuously
for the transverse variation in the Teichmüller metric on quasiconformal maps on the
global leaves.

Remark Let f be a quasiconformal map of the unit disk D. The Beltrami dilatation

of f is an essentially bounded measurable function on D given by �.f / WD
x@f
@f

. The
Teichmüller metric on the space of quasiconformal maps of D is given by the essential
supremum norm on the corresponding vector space of Beltrami dilatations. Note that
the Teichmüller metric is a pseudometric.

Remark The mapping class group of a compact surface is defined as the group of
homeomorphisms of the surface modulo the normal subgroup of the homeomorphisms
homotopic to the identity. It is a standard fact that any homeomorphism of a compact
surface is homotopic to a quasiconformal map using for example the barycentric
extension (see Douady–Earle [3]). In the case of Riemann surfaces of infinite geometric
type, an arbitrary homeomorphism is not homotopic to a quasiconformal map. In this
case, the definition of the mapping class group starts with the quasiconformal maps. In
the case of the punctured solenoid H , each leaf is conformal to the unit disk which is
a geometrically infinite Riemann surface. Therefore, it is convenient to start with the
quasiconformal maps. Further, the Teichmüller metric on quasiconformal maps is an
appropriate way to make sense of the continuity for the transverse variation.
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The restriction of an element of MCG.H/ to the baseleaf gives a quasiconformal
homeomorphism of the unit disk D (upon fixing an identification of the baseleaf
with D) up to isotopy. Thus, an element of MCG.H/ determines a well-defined
quasisymmetric homeomorphism of S1 , and we shall thus identify MCG.H/ with an
appropriate group of quasisymmetric maps. (See Theorem 2.8.)

Definition 2.3 The commensurator group Comm.G/ of a group G consists of equiva-
lence classes of isomorphisms of finite index subgroups of G , where two isomorphisms
are equivalent if they agree on a finite index subgroup in the intersection of their
domains.

In the literature, the commensurator group Comm.G/ is also called the virtual auto-
morphism group of G . It appears under this name in Odden [11], Nag–Sullivan [9]
and Penner–Šarić [14].

We will need the following result, which appears as [14, Theorem 7.2] and which is
itself an adaptation of the main theorem in the article [11] by Odden.

Theorem 2.4 (Penner–Šarić [14]) The baseleaf preserving mapping class group
MCG.H/ is isomorphic to a proper subgroup of the commensurator group Comm.F2/

of the free group F2 on two generators. Namely, MCG.H/ is isomorphic to the
subgroup of Comm.F2/ consisting of all elements which preserve the peripheral
elements under some fixed identification F2 � G , where G < PSL2.Z/ is a group
uniformizing the once-punctured torus.

In fact, it is convenient in the definition of the punctured solenoid H to fix the base
surface to be the Modular once-punctured torus D=G , where G < PSL2.Z/. Given
an isomorphism of two finite index subgroups K;H of G which preserves peripheral
elements, there exists a unique quasisymmetric map of S1 which conjugates K onto
H . (To see this, note that the fact that there is a peripheral preserving isomorphism  

between K and H implies that the surfaces D=K and D=H have the same signature by
the classification of the finite punctured surfaces. Thus there exists a homeomorphism
h between the surfaces D=H and D=K which lifts to a homeomorphism of D which
conjugates H onto K . We denote by h� the induced isomorphism between H and
K . By composing  with the induced isomorphism h� we obtain an isomorphism
of K which preserves the peripheral elements. By the Baer–Dehn–Nielsen theorem
in the version for the punctured surfaces, there exists a homeomorphism g of D=K
which induces h� ı . Thus  is induced zh�1 ı zg with possibly post-composing by
an element of H , where zg; zh are lifts to D of g; h respectively.) Thus, by the previous
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theorem, we may consider MCG.H/ as a group of quasisymmetric maps of S1 which
conjugate one finite index subgroup of PSL2.Z/ onto another.

We recall that the decorated Teichmüller space zT .H/ of the punctured solenoid H
consists of all hyperbolic metrics on H together with an assignment of horoballs at the
“punctures” (see [14] for more details). Each horoball is identified with a single point
in the light cone of the Minkowskii three space corresponding to the leaf “containing”
the puncture. By taking the bending locus of the boundary of the convex hull of the
points in the light cone for each leaf, we assign a leafwise geodesic lamination on
H . Then zT .H/ is partitioned into sets according to the bending leafwise geodesic
lamination of the convex hull construction [14] (see Epstein–Penner [4] and Penner
[12; 13] for convex hull construction). When the bending locus is a triangulation on
each leaf, then it is locally constant in the transverse direction, and the action of the
baseleaf preserving mapping class group MCG.H/ is transitive on this subspace of
zT .H/ (see [14] for details). The above makes it convenient to consider the action of
MCG.H/ on the ideal triangulations of the baseleaf (ie, the unit disk D) arising by
restrictions (to the baseleaf) of the triangulations of H .

Definition 2.5 A transversely locally constant (TLC) tesselation � of the unit disk D
is a lift to D of an ideal triangulation of some punctured surface D=K of finite type,
ie, an ideal triangulation of D invariant under a finite index subgroup K of PSL2.Z/,
where the ideal points of the tesselation agree with xQ� S1 .

A particularly important example of a TLC tesselation is the Farey tesselation �� WDF
(see Figure 1 or, for example, [13] or [14]), which is invariant under the group PSL2.Z/.

Let K be a finite index subgroup of PSL2.Z/ and let � be a K–invariant TLC tes-
selation of D. A characteristic map for � is a homeomorphism h W S1! S1 such
that h.��/D � (see [13, Theorem 6.3 and 6.4]). The map hD h.�; e/ is completely
determined by specifying an oriented edge e 2 � , namely, the standard oriented edge
e0 D .�1; 1/ in �� is mapped onto e , the triangle to the left or right of e0 in �� is
mapped to the triangle to the left or right, respectively, of e in � , and so on. Note
that any two characteristic maps for � differ by pre-composition with an element of
PSL2.Z/.

Theorem 2.6 (Penner–Šarić [14, Lemma 7.5]) The characteristic map hD h.�; e/

for a K–invariant TLC tesselation � conjugates a finite index subgroup H of PSL2.Z/

onto K .

Note that a characteristic map necessarily conjugates peripherals into peripherals
because it is a homeomorphisms of S1 , and so a characteristic map for a TLC tesselation
lies in MCG.H/.
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�1 1

i

�0

I1

I0

Figure 1: The Farey tesselation F I I0 D .�1; 1/I I1 D .1; i/ .

Let � be a K–invariant TLC tesselation of D with a distinguished oriented edge e ;
we allow for the possibility that � is invariant under a larger subgroup of PSL2.Z/.
Fix an edge f 2 � . We form a new K–invariant TLC tesselation � 0 by replacing each
 .f /, for  2K , by  .f 0/, where f 0 is the diagonal of the unique ideal quadrilateral
in .D� �/[ff g different from f . We say that � 0 is obtained from � by performing
a Whitehead move along Kff g (see Figure 2). If e … Kff g then we let e be the
distinguished oriented edge in � 0 as well; if e D  .f / for some  2K , then we let
e0 D  .f 0/ be the distinguished oriented edge for � 0 , where e0 is given the orientation
such that the tangent vectors to e and e0 at their intersection point comprise a positively
oriented basis for the oriented disk D.

Definition 2.7 Let � be a K–invariant TLC tesselation of D with a distinguished
oriented edge e . The Whitehead homeomorphism for � and e is

k.�; e/D h.� 0; e0/ ı h.�; e/�1;

where .� 0; e0/ arises from .�; e/ under the Whitehead move and h.� 0; e0/; h.�; e/ are
the characteristic maps.

We will also use the notation k.�;K; e/ whenever we need to put emphasis on the
group K . A Whitehead homeomorphism lies in MCG.H/ since it is the composition
of two elements of the group MCG.H/ by Theorem 2.6.
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 .f /

c

f

 .f 0/

c

f 0

Figure 2: Whitehead move along Kff g .

Theorem 2.8 (Penner–Šarić [14]) The baseleaf preserving mapping class group
MCG.H/ of the punctured solenoid H is generated by PSL2.Z/ and by Whitehead
homeomorphisms for all TLC tesselations. In addition, MCG.H/ acts transitively on
the set of all TLC tesselations of the unit disk D.

3 The triangulation complex

We introduce a two-complex X associated to TLC tesselations of D. This complex
X is an adaptation to our situation of the two-skeleton of the complex dual to the cell
decomposition of the decorated Teichmüller space introduced by Penner [12] and Harer
[5]. On the other hand, X is analogous to the complex of cut systems of Hatcher and
Thurston [7] in that MCG.H/ acts transitively on its vertices.

We begin the definition of X by giving its vertices. A vertex of the triangulation
complex X is a TLC tesselation of the unit disk D. The basepoint of X is the Farey
tesselation �� . A characteristic map between any two TLC tesselations is an element
of MCG.H/ [14, Lemma 7.5], and so MCG.H/ acts transitively on vertices of X .

We next introduce edges of X with one endpoint at the basepoint �� . An unordered
pair of vertices f�; ��g determines an edge in X if � can be obtained from �� by
a single Whitehead move, ie, � is obtained from �� by replacing an orbit Kff g of
an edge f in �� by the orbit Kff 0g, where K is torsion-free and of finite index in

Algebraic & Geometric Topology, Volume 7 (2007)



1180 Sylvain Bonnot, Robert C Penner and Dragomir Šarić

PSL2.Z/, and f 0 is the diagonal of the quadrilateral in .D� ��/[ff g different from
f .

More generally and by definition, an unordered pair of vertices f�1; �2g determines an
edge of X if f�1; �2g is the image by an element of MCG.H/ of an edge f��; �g defined
above. In particular, this implies that if a TLC tesselation �2 is obtained by performing
a K–invariant Whitehead move on a TLC tesselation �1 then f�1; �2g is an edge in
X . To see this, take a characteristic map h for �1 (ie, h is a homeomorphism of S1

such that h.��/D �1 ) and consider f��; h�1.�2/g. By definition, we know that our two
tesselations �1 and �2 differ only in the K orbit of the diagonals of an ideal rectangle.
Now, the characteristic map h conjugates a finite index subgroup H of PSL2.Z/

onto K [14, Lemma 7.5], so h�1.�1/D �� and h�1.�2/ differ only in that they have
different diagonals on an H -orbit of a rectangle. It follows that f��; h�1.�2/g is an
edge corresponding to an H -invariant Whitehead move, ie, f�1; �2gDh.f��; h

�1.�2/g/

is an edge in X .

However, there are edges which appear away from the basepoint �� that do not cor-
respond to Whitehead moves. It is enough to take h 2MCG.H/ which conjugates a
maximal torsion free finite index subgroup K of PSL2.Z/ onto another finite index
subgroup and a Whitehead move on �� for a torsion free group K1 < PSL2.Z/ such
that ŒK1 WK� > 1. If E D f��; �g is the edge corresponding to the above Whitehead
move, then the edge h.E/D fh.��/; h.�/g does not correspond to a Whitehead move.
These edges can be described as corresponding to a generalized Whitehead move
invariant under a conjugate hK1h�1 – PSL2.Z/ by a characteristic map of a finite
index subgroup K1 of PSL2.Z/. However, hK1h�1 \K1 is of finite index in K1 .
Note that the set of edges in X is invariant under the action of MCG.H/ by construction.
This completes the definition of the one-skeleton of X .

We introduce two-cells of X by first defining those that have one vertex at the basepoint
�� . Let K be a torsion-free finite index subgroup of PSL2.Z/. There are three types
of two-cells.

Pentagon Suppose that K is of index at least 9, ie, ��=K is a triangulation of
D=K which has at least three complementary ideal triangles. Any three adjacent
complementary triangles form a pentagon on D=K whose boundary sides are possibly
identified in pairs. Let e1 and e2 be two representatives in �� of the diagonals of a
pentagon on D=K which share an ideal point. The sequence of five Whitehead home-
omorphisms k.��;K; e1/, k.�1;K; e2/, k.�2;K; e

0
1
/, k.�3;K; e

0
2
/ and k.�4;K; e

00
1
/

defines a closed edge-path in X based at �� , where e0
1

is the new edge corresponding to
e1 under the Whitehead move for �� along Kfe1g, e0

2
is the new edge corresponding

to e2 under the Whitehead move for �1 D h.K; e1/.��/ along Kfe2g, e00
1

is the new
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edge corresponding to e0
1

under the Whitehead move for �2 D k.�1;K; e2/.�1/ along
Kfe0

1
g and e00

2
is the new edge (which is equal to e1 ) corresponding to e0

2
under the

Whitehead move for �3 D k.�2;K; e
0
2
/.�2/ along Kfe0

2
g (see the related illustration).

We add a two-cell in X whose boundary is this closed edge-path of length five starting
and ending at the basepoint �� and call this two-cell a pentagon at the basepoint �� .

�4 e00
1

e00
2

��

e2

e1

�1

e2

e0
1

�3

e0
2

e00
1

�2

e1

e0
2

Figure 3: Pentagon

Square Let K be a torsion-free finite index subgroup of PSL2.Z/ such that the
triangulation ��=K of D=K has two edges which do not lie in the boundary of a
common complementary triangle. Let e1 and e2 be two lifts to �� of the two non-
adjacent edges. Consider the closed edge-path of length four given by Whitehead
homeomorphisms k.��;K; e1/, k.�1;K; e2/, k.�2;K; e

0
1
/ and k.�3;K; e

0
2
/, where

e0
1

corresponds to e1 under the Whitehead move on �� along Kfe1g and e0
2

corresponds
to e2 under the Whitehead move on �1 along Kfe2g. We add a two-cell to X with
boundary equal to the above edge-path of length four and call it a square cell at the
basepoint �� .

Coset Suppose e 2 �� and let H be a finite index subgroup of K . The orbit Kfeg is
canonically decomposed into finitely many orbits H fe1g;H fe2g; : : : ;H feng, where
e1D e; e2; : : : ; en 2Kfeg and nD ŒK WH �. Let f be the other diagonal in the unique
ideal quadrilateral in .D���/[feg and let f1; f2; : : : ; fn 2Kff g be the altered edges
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e1 e2 e1 e0
2

�� �3

�1 �2

e0
1

e2 e0
1

e0
2

Figure 4: Square

corresponding to e1; e2; : : : ; en . Consider a finite edge-path based at �� consisting of
the Whitehead homeomorphisms

k.��;K; e1/D h.K; e/; k.�1;H; f2/; k.�2;H; f3/; : : : ; k.�n�1;H; fn/

corresponding to the tesselations

��;�1 D h.K; e/.��/; �2 D k.�1;H; f2/.�1/; : : : ; �n�1 D k.�n�2;H; fn�1/.�n�2/

�n D k.�n�1;H; fn/.�n�1/D ��:

We add a two-cell to X whose boundary is this edge-path and call it the coset cell at
the basepoint. Note that a different ordering of f1; : : : ; fn gives a different edge-path
and hence a different coset cell. In fact, there are n! corresponding coset cells when
ŒK WH �D n. The edge f��; �1g is called a long edge, and all other edges are called
short edges corresponding to this coset cell.

Note that all two-cells introduced above have their boundaries given by compositions of
Whitehead moves invariant under subgroups of PSL2.Z/ as opposed to more general
edges in X where moves are only conjugate to Whitehead moves invariant under
subgroups of PSL2.Z/.

To complete the definition of X , an arbitrary two-cell in X is the image under MCG.H/
of a two-cell at the basepoint. If h 2MCG.H/ and P is a two-cell based at �� , then
we say that h.P / is based at � WD h.��/. Note that closed edge-paths based at �� are
mapped to closed edge-paths, and hence the boundaries of two-cells are well defined.
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The boundary of a pentagon or a square two-cell based at a tesselation � ¤ �� each of
whose edges is a Whitehead move invariant with respect to a fixed finite index subgroup
K of PSL2.Z/ (or equivalently, whose vertices are TLC tesselations invariant under K )
is likewise the boundary of a two-cell. Furthermore, the boundary of a coset two-cell
starting at � ¤ �� whose initial vertex is invariant under K and whose other vertices
are invariant under a subgroup K1 <K of finite index is the image of the boundary of
a coset two-cell based at �� by simply noting that a characteristic map which sends ��
onto � conjugates H1 <H onto K1 <K where H < PSL2.Z/.

By construction, the set of two-cells in X is invariant under MCG.H/, and MCG.H/
consequently acts cellularly on the two-complex X .

We claim that a pentagon or a square two-cell P based at � ¤ �� with one vertex
at the basepoint �� has all edges given by Whitehead moves invariant under a fixed
finite index subgroup K of PSL2.Z/. Since any characteristic map h of �� onto the
base vertex � of the two-cell P conjugates a finite index subgroup H < PSL2.Z/

onto a finite index subgroup K < PSL2.Z/ (under which � is invariant), it follows
that a two-cell (pentagon or square) P 0 invariant under H and based at �� is mapped
by h onto the above two-cell P based at � whose vertices are invariant under K .
Moreover, a coset two-cell P which is based at � ¤ �� whose initial vertex is �� does
not necessarily have edges arising from Whitehead moves invariant under K1 <K .
Let P 0 be a coset cell based at �� such that h.P 0/D P . In fact, if the image under h

of the long edge of P 0 is not incident on �� , then it is represented by a generalized
Whitehead move (invariant under a conjugate by h of a subgroup of PSL2.Z/ which
is not itself a group of Möbius transformations).

Theorem 1.1 The triangulation complex X is connected and simply connected.

Proof We first prove that X is connected by showing that any vertex � can be
connected to the basepoint �� by a finite edge-path. Let K be a finite index subgroup
of PSL2.Z/ under which � is invariant. Thus, �=K and ��=K are two tesselations
of a punctured surface D=K . By results of Penner [12, Proposition 7.1] (or Harer [5,
Theorem 1.1] or Hatcher [6, Main corollary]), there is a sequence of Whitehead moves
on D=K which transforms ��=K into �=K . The lifts of the Whitehead moves on
D=K to D are TLC Whitehead moves on D and they provide an edge-path from �� to
� in X . This establishes that X is connected.

It remains to show that X is simply connected. In the literature, the triangulation
complex of a finite punctured surface is often referred to as the arc complex. We recall
a result of Harer [5, Theorem 1.3] or Penner [12, Theorem 5.5] for triangulations of
punctured surfaces: the set of top-dimensional simplices of the triangulation complex
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of a finite punctured surface consists of ideal triangulations, the codimension-one
simplices are ideal triangulations with one ideal geodesic erased, the codimension-two
simplices are ideal triangulations with two ideal geodesics erased, etc. The main fact is
that the triangulation complex of the finite surface minus simplices which are given
by decompositions of the surface, where at least one complementary component is
not topologically a disc is homeomorphic to the decorated Teichmüller space of the
punctured surface. In particular, the triangulation complex for a punctured surface is
contractible.

Consider a closed edge-path ˛ in the triangulation complex X for the punctured
solenoid. It is possible that an edge E in the path ˛ is given by a generalized Whitehead
move, ie, the two tesselations at the endpoints of E are invariant under hKh�1 , where
K is a finite index subgroup of PSL2.Z/ and h2MCG.H/. Since h2MCG.H/, there
exists H1;H2<PSL2.Z/ of finite index such that H2DhH1h�1 . Thus, H1\KDWK1

is of finite index in K , and we consider a coset two-cell corresponding to the groups
K1<K with long edge h�1.E/. The edge h�1.E/ is homotopic modulo its endpoints
to the path of short edges in the coset two-cell, where each vertex is invariant under
K1 . The image under h is a coset two-cell with long edge corresponding to hKh�1

and short edges corresponding to hK1h�1 < PSL2.Z/. Thus, we can replace the long
edge invariant under hKh�1 , which is not a subgroup of PSL2.Z/, by the homotopic
edge-path invariant under hK1h�1 <H2 < PSL2.Z/. We may therefore replace ˛ by
an edge-path ˛0 each of whose edges corresponds to a Whitehead move invariant under
a finite index subgroup of PSL2.Z/ using only coset two-cells.

Let K1;K2; : : : ;Kn be finite index subgroups of PSL2.Z/ which correspond to invari-
ant Whitehead moves defining the edges of ˛0 . Using coset two-cells corresponding to
each Ki , we first homotope the above edge-path ˛0 into a closed edge-path ˛00 where
each edge corresponds to an invariant Whitehead move with respect to a single finite
index subgroup K WD K1 \K2 \ � � � \Kn . The new edge-path ˛00 invariant under
K in the triangulation complex X of the punctured solenoid can be represented by
a closed path  in the above triangulation complex of a finite surface D=K . (Recall
that X is an extension of the dual of the triangulation complex of finite surface D=K .)
The path  starts and ends in the top-dimensional simplex which corresponds to the
triangulation of D=K obtained by projecting the TLC tesselation of D defining the
basepoint of ˛00 onto D=K . Furthermore,  crosses transversely codimension-one
simplices of the triangulation complex of D=K corresponding to each edge in ˛00 , and
it enters each top-dimensional simplex which corresponds to a vertex of ˛00 in the
given order.

Since the triangulation complex for punctured surface D=K is simply connected ([5,
Theorem 1.3] or [12], as cited above), there exists a homotopy of  into the trivial path
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which transversely crosses codimension-two cells. The number of times the homotopy
crosses codimension-two cells is finite, and it is possible to choose a homotopy which
does not intersect simplices of codimension greater than two. For each intersection point
of the homotopy with a codimension-two simplex, there is a corresponding two-cell
in X because two-cells corresponding to ideal triangulations of the surface with two
edges erased lift to ideal triangulations of D with orbits of two edges erased such that
each complementary region is finite sided. This exactly correspond to two-cells (either
pentagon or square) in X . Thus, the homotopy for  gives a homotopy between ˛00

and the trivial path in X , and X is therefore simply connected.

In the spirit of Ivanov’s work [8], we may ask the following question.

Question Is the group of automorphisms Aut.X / of the triangulation complex X
isomorphic to the (extended) baseleaf preserving baseleaf preserving mapping class
group?

4 Presentation of MCG.H/

Applying a general theorem of Brown [2, Theorem 1] to the action of MCG.H/ on X ,
we give a presentation for the baseleaf preserving mapping class group MCG.H/ of
the punctured solenoid H .

Brown’s Theorem [2, Theorem 1] Let G be an arbitrary group acting on a connected
non-empty CW–complex X . Brown’s theorem requires a certain number of choices,
given as follows (see Brown [2] for details). We will review these choices in greater
details during the discussion preceding our Theorem 1.2.

(a) Choose an orientation P (which is by definition a set P of oriented edges that
are preserved with their orientations by G );

(b) Choose a tree of representatives T , and let V be its set of vertices;

(c) Choose a set EC of representatives for P mod G , such that each edge e 2EC

has its initial vertex o.e/ 2 V and such that each 1–cell of T (with its chosen
orientation) is in EC . Choose a set E� of representatives mod G for the edges
of X which are inverted under the action, again with o.e/ 2 V for each e 2E� ,
and let †� be the corresponding set of 1–cells of X ;

(d) For each e 2EC let w D w.e/ be the unique element of V which is equivalent
mod G to the end point t.e/, and choose an element ge 2 G such that t.e/D

gew .
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(e) Choose a set F of representatives mod G for the 2–cells of X , and choose an
attaching map for each � 2 F ;

(f) For each � 2 F , choose a word r� that represents the relation associated to the
boundary of the cell � .

Theorem 1 (Brown [2]) Suppose X is simply-connected. Then G is generated by
the isotropy subgroups G� .� 2 V /, the isotropy subgroups G� .� 2 †

�/, and the
elements ge .e 2EC/, subject to the following relations.

(i) ge D 1 if e is an edge of T .

(ii) g�1
e ie.g/ge D ce.g/ for any e 2 EC and g 2 Ge , where ie is the inclusion

Ge ! Go.e/ and ce W Ge ! Gw.e/ is as in (d) above. [Thus both sides of the
’relation’ are words in the given generators of G.]

(iii) ie.g/ D je.g/ for any e 2 E� and g 2 Ge , where ie W Ge ! Go.e/ and
je WGe!G� are inclusions, � being the 1-cell underlying e .

(iv) r� D 1 (or, equivalently, yg� D g� / for any � 2 F .

From [14, Lemma 7.3] we know that PSL2.Z/ is the isotropy group of the basepoint
�� 2 X . From [14, Theorem 7.6], we know that MCG.H/ acts transitively on the
vertices of X , and that an arbitrary vertex � 2 X has isotropy group h PSL2.Z/h

�1 ,
where the characteristic map h W �� 7! � lies in MCG.H/, and that h PSL2.Z/h

�1

contains a finite index subgroup of PSL2.Z/.

Consider the isotropy group of an edge in X . Since each vertex is mapped to the
basepoint �� , it is enough to consider edges with an endpoint at �� . The isotropy group
of any other edge is the conjugate of the isotropy group of such an edge.

Let ED f��; �g be an arbitrary edge of X with one endpoint at the basepoint �� of X .
There are two possibilities: either the isotropy group �.E/ of E contains elements
which reverse the orientation of E (ie, interchanges �� and � ), or each element of
�.E/ fixes each endpoint of E .

Let � be obtained by a Whitehead move on �� invariant under a torsion-free finite index
subgroup K of PSL2.Z/, and let us choose a characteristic map g W �� 7! � , where
g 2MCG.H/. Denote by K0 the maximal extension of K in PSL2.Z/ which fixes � .
Then K0 is a subgroup of the normalizer of K in PSL2.Z/. If h 2 �.E/ preserves
the orientation of E as above, then h fixes both �� and � . By [14, Lemma 7.3], h 2

PSL2.Z/ and similarly h2g PSL2.Z/g
�1 , and so h2PSL2.Z/\g PSL2.Z/g

�1DK0 .
It follows that the subgroup �C.E/ of the isotropy group �.E/ of an edge E which
consists of elements which do not reverse orientation on E is equal to K0 < PSL2.Z/.
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If k 2 �.E/ reverses orientation of E D f��; �g, ie, k.��/D � and k.�/D �� , then
k2 2 K0 D �C.E/. In particular, k2 is a lift of a self-map of the Riemann surface
D=K . By Odden [10, Proposition 1.3.6], k is a lift of a self-map of a Riemann surface
which finitely covers D=K . We show that k is actually a lift of a self-map of D=K
itself.

Lemma 4.1 Let � be the image of �� under a K -invariant Whitehead move, let
EDf��; �g be the corresponding edge and let k 2�.E/��C.E/. Then k conjugates
K onto itself.

Proof The proof proceeds in several steps.

Simplification of the homeomorphism k Since k preserves the union of the two
tesselations �; �� , it therefore sends a pair of intersecting edges to a pair of intersecting
edges. Fix such an intersecting pair e 2 �� and f 2 � , and consider the corresponding
Whitehead move. Since k.e/ 2Kff g, there exists  2K such that .k ı  /.e/D f .
It is enough to prove the lemma for k ı  and we continue to denote it by k .

Orientation of edges Let us choose an orientation of e and assign an orientation to
f such that k W e 7! f is orientation-preserving. Assign an orientation to each edge
in the orbits of e and f under K as follows. Let e0 D  0.e/ for some  0 2K . Let
˛ be a differentiable arc connecting e to e0 which transversely crosses the minimal
number of edges of �� . Give the orientation to the curve ˛ such that the tangent vector
to ˛ and the tangent vector to e at their point of intersection form a positively oriented
basis for the tangent space of D at the intersection point, and assign an orientation
on e0 such that the tangent vector to ˛ and the tangent vector to e0 at the intersection
point ˛\ e0 form a positively oriented basis to the tangent space. We may assign an
orientation to any f 0 D  0.f / in a similar fashion.

k preserves the orientation We noted above that k maps the orbit Kfeg onto Kff g

without specifying an orientation, and we noted that we may assume that k.e/D f

preserving orientation. It is a standard fact that kW S1! S1 extends to a differentiable
self-map zk of D which sends complementary triangles of �� onto complementary
triangles of � [13]. If ˛ is a differentiable path between e and e0 as above, then
zk.˛/ is a differentiable path between f and f 00 WD k.e0/ which satisfies the required
properties. Note that it is not necessarily true that f 0 D  0.f / and f 00 are equal.
However, the inductive definition of the characteristic map k immediately implies that
kW e0 7! f 00 is orientation-preserving.

K is orientation-preserving Note that  2 K are covering transformations for
the surface D=K . We show that  W e 7! e0 WD  .e/ is orientation-preserving, and a
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similar statement for f follows immediately. Denote by �K W D! D=K the universal
covering map. Let ˛0 be a differentiable curve on D=K representing the covering
transformation  which is transverse to �K .e/ and crosses the minimal number of
edges of ��=K . We denote by ˛ a part of the lift of ˛0 to D which connects e and e0 ,
so  .e\˛/D e0\˛ . Since  preserves the orientation of ˛ , it follows that  W e 7! e0

is orientation-preserving.

k conjugates K onto itself Recall that k conjugates a finite index subgroup H of
PSL2.Z/ onto K . Since K preserves the orientation of the orbits Kfeg and Kff g in
the sense of the previous paragraph and k maps Kfeg onto Kff g, it follows that k

conjugates the action of K on the orbit Kfeg onto the action of K on the orbit Kff g.
Since H and K have the same index in PSL2.Z/ it follows that H DK .

In the above proof we normalized k such that it maps e to f . We do not assume this
normalization any more. However, we showed that k necessarily maps Kfeg onto
Kff g and that it conjugates K onto itself. Thus, k descends to a self-map xk of D=K
sending the tesselation ��=K onto the tesselation �=K and vice versa. Let xe 2 ��=K
and xf 2 �=K be the corresponding edges on D=K of the orbit Kfeg � �� and its
corresponding orbit Kff g 2 � � �� under the Whitehead move defining the edge E .

It follows from the proof above that xe is necessarily mapped onto xf by xk , whence
xk2.xe/Dxe and xk2. xf /D xf with the orientations of xe and xf reversed. This implies that
xk4.xe/D xe with an orientation of xe preserved. Since in addition xk4.��=K/D ��=K ,
we conclude that xk4 D id . This implies that k (after possibly pre-composing by an
element of K and for simplicity renaming the composition again by k ) maps e onto f
sending �� onto � , and vice versa. Since k2 2 �.E/ maps e onto itself by reversing
its orientation, we conclude that k2 2K0 is an involution with fixed point on e . Thus,

�.E/D hK0; ki

where K0<PSL2.Z/, and k 2MCG.H/ with k2 2K0�K and k4D id . In particular,
k2 is an elliptic involution whose fixed point lies on e and K0¤K if k2 is non trivial.
Note that any Whitehead move on the once punctured torus can be obtained as a
homeomorphism of the torus which interchanges the two tesselations, and hence the
corresponding edge is inverted. In the following example we show that edges admit
orientation reversing isotropy also for higher genus.

Example 4.2 We give in Figure 1 just one illustrative example of a surface D=K with
a distinguished quadrilateral Q, together with a self-homeomorphism performing a
Whitehead move on the quadrilateral. In this figure, the homeomorphism h is a rotation
by �=2 along the horizontal axis. The dots represent the punctures of the surface.
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Now the square of this homeomorphism reverses the orientation of the distinguished
diagonal E in the quadrilateral Q.

+ +

Figure 5: The map h whose square inverts the diagonal E .

We also note that there are infinitely many edges E 2 X with �.E/��C.E/D ∅.
This follows from the fact that there are infinitely many Whitehead moves on finite
surfaces (whose Euler characteristics are increasing without bound) such that there is
no homeomorphism of the surface which maps the starting tesselation onto the ending
tesselation and by Lemma 4.1.

Consider a two-cell of X with one vertex at the basepoint �� . Recall that for pentagon
and square two-cells, each vertex is invariant under a finite index subgroup K of
PSL2.Z/, and edges correspond to Whitehead moves invariant under this group K .
For coset two-cells, either the long edge has �� as endpoint, in which case all edges are
Whitehead moves invariant under K , or the long edge does not have �� as endpoint,
in which case the long edge is given by a generalized Whitehead move.

We may now apply Brown’s theorem [2, Theorem 1] to obtain a presentation of the
baseleaf preserving mapping class group MCG.H/ since it acts cellularly on the
connected and simply connected triangulation complex X with a single vertex orbit.
In fact, we shall introduce a somewhat larger set of generators than necessary for the
application of Brown’s theorem in order to obtain a simpler presentation.

It is a standard fact (which follows from Tietze’s Theorem for instance) that for a
given presentation, if one adds extra generators, then an equivalent presentation arises
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by expressing the new generators in terms of the old as new relations. One can in
effect replace any occurrence of a subsequence of old generators in the old relations by
new generators, in order to presumably simplify the presentation. We shall ultimately
give the presentation of an abstract group G , which is equivalent in this sense to the
presentation of the group in Brown’s Theorem.

Description of the set of edges EC Notice that the set of edges of X that are not
inverted by the action of MCG.H/ can be oriented consistently for the action of
MCG.H/. We fix one such orientation on each such edge.

Let EC be the set of edges which are not inverted by the action of MCG.H/ that have
initial point �� . If ED .��; �/2EC then � is invariant under a finite index subgroup K

of PSL2.Z/. By Lemma 4.1 and the subsequent discussion, there is no homeomorphism
f W D=K!D=K such that f .��=K/D �=K and f .�=K/D ��=K . The elements of
EC therefore are obtained by taking all finite index torsion-free subgroups of PSL2.Z/

and performing all possible Whitehead moves on �� invariant under the chosen groups,
where the Farey tesselation �� and the image tesselation satisfy the additional property
of not being mapped onto each other by a single map conjugating the group onto itself.
The images of �� under the Whitehead moves are the terminal vertices of edges in EC .
For any such ED .��; �/2 EC , we fix the characteristic map gE 2MCG.H/ such that
gE.��/D � and the standard distinguished oriented edge e0D .�1; 1/ of �� is mapped
to either itself if the Whitehead move is not along an orbit of e0 , or it is mapped onto
f0 D .�i; i/ if the Whitehead move is along an orbit of e0 . The characteristic map
is uniquely determined by these conditions, and we fix this choice gE . (Notice that
EC is larger than necessary, since it is enough to take only the edges corresponding to
representatives of conjugacy classes in PSL2.Z/ of finite index subgroups. However,
this larger set simplifies the presentation, and not much is lost because both sets are
infinite.)

Description of the set of edges E� Let E� denote the set of inverted edges with
initial point �� . By Lemma 4.1, an edge E D .��; �/ is inverted if there exists
k W S1! S1 such that k.��/D � , k.�/D �� and kHk�1 DH , where � is invariant
under a torsion-free finite index subgroup H of PSL2.Z/. The isotropy group �.E/
of the cell underlying E 2 E� is the subgroup of MCG.H/ generated by H 0 and
k , where H 0 >H is the maximal subgroup of PSL2.Z/ under which � is invariant,
where k2 2 PSL2.Z/ and where k4 D id . Fix some choice gE of characteristic map
associated to E and take k D gE . (Again, we take E� larger then necessary for ease
in writing down the relations.)

Description of the set F Denote by F the set of two-cells of X based at �� . This
condition implies that for each coset two-cell in F the initial point of the long edge
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is �� and each edge of the cell is consequently obtained by a geometric Whitehead
move, ie, one invariant under a subgroup of PSL2.Z/ as opposed to a conjugate of a
subgroup of PSL2.Z/. This property also holds for pentagon and square cells in F .
The set F is obtained by taking all torsion-free finite index subgroups of PSL2.Z/ and
taking all possible pentagon, square and coset edge-paths in X corresponding to the
chosen groups.

Note that a single choice of group for coset two-cells gives countably many coset cells
because there are countably many finite index subgroups and each finite index subgroup
yields finitely many coset cells. In the case of a square or a pentagon cell, a choice
of a finite index group determines finitely many cells because there are finitely many
edge orbits in �� under the group. (Again, we could have taken only representatives of
orbits of two-cells based at �� together with subsets of E˙ , but for simplicity later, we
have expanded these sets.)

Remark about the choice of generators Let us assume for a moment that we had
instead chosen for E˙ and F only representatives of classes under the action of
MCG.H/. We describe the assignment of a composition of elements in MCG.H/
(depending upon the above choices) to any closed boundary edge-path of a two-cell in
F in order to give a relation corresponding to the two-cell as in Brown’s theorem [2].
Given an oriented edge E D .��; �/ starting at �� , we assign to it a chosen element of
g 2MCG.H/ such that � D g.��/. If E 2 EC then set g WD gE . If E … EC is not
inverted by MCG.H/ then g WD  ıgE0 , where E0D .��; �

0/ 2 EC , and  2 PSL2.Z/

satisfies  .E0/DE ;  is well-defined up to pre-composition by an element of �.E0/.
The two Whitehead moves from �� to � and � 0 determine distinguished oriented edges
e and e0 of � and � 0 , and we choose unique  2 PSL2.Z/ mapping e0 to e . Our choice
of  ı gE is in this case unique. If E 2 E� , then set g WD gE 2 �.E/��

C.E/. If
E … E� is inverted by the action of MCG.H/ then g WD  ıgE0 , where E0 2 E� and
 2 PSL2.Z/ with  .� 0/D � and  .e0/D e . The edge E therefore ends at g.��/, but
it seems complicated to explicitly determine E0 and  .

Continuing to assume that we had chosen for E˙ and F only representatives of classes
under the action of MCG.H/, consider a closed path ˛ of edges in X based at �� . Let
.E1;E2; : : : ;En/ be the sequential edges of ˛ . Denote by g1 the unique element of
MCG.H/ chosen for the edge E1 D .��; �1/ starting at �� as above, so g1.��/D �1 .
The edge E2 D .�1; �2/ is therefore of the form g1.E

0
2
/ for an edge E0

2
D .��; �

0
2
/

based at �� . Denote by g2 the unique element of MCG.H/ associated to E0
2

as above,
so g1 ıg2.��/D �2 . This implies that E3 D .�2; �3/ is given by g1 ıg2.E

0
3
/, where

E0
3

starts at �� . Take g3 2MCG.H/ associated to the edge E0
3

, and continue in this
manner until we exhaust all edges of ˛ . This yields a composition g1 ıg2 ı � � � ıgn in
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terms of generators such that g1 ıg2 ı � � � ıgn.��/D �� . Thus, there is  2 PSL2.Z/

such that g1 ıg2 ı � � � ıgn D  , and this is the relation associated with a closed edge
path ˛ based at �� . It seems complicated to determine the maps gi from the given
description or to decide which elements  2 PSL2.Z/ arise. However, the choice of
gi simplifies if we allow all edges with initial point �� , and this will require additional
relations as discussed before.

From this point on, we go back to our choice of E˙ to consist of all edges with initial
point �� and of F to consists of all two-cells based at �� .

Relations corresponding to pentagons We describe the relations associated to bound-
aries of two-cells in F . Let us start with a pentagon two-cell P based at �� whose
boundary edges are fE1 D .��; �1/;E2 D .�1; �2/; : : : ;E5 D .�4; ��/g. The pentagon
two-cell P is given by changing an orbit of two adjacent edges e1; e2 of �� under
a torsion-free finite index subgroup K of PSL2.Z/ of index at least 9. Assume first
that the distinguished oriented edge e0 D .�1; 1/ of �� is not an element of the orbit
Kfe1; e2g and apply the algorithm of Brown to get the edge-path relation, but using
our extended set of generators to simplify it. We denote by gi the element of MCG.H/
which corresponds to the edge Ei . The first edge E1 gives g1 WDgE1

, so g1.e0/D e0 .
We find g2 WD  ı gE00

2
, where E00

2
is a representative of the orbit of .��;g�1

1
.�2//

and  .E00
2
/ D .��;g

�1
1
.�2// is chosen from PSL2.Z/ in a unique way as above (ie,

 .e0/D e0 ). However, since EC consists of all edges starting at �� we immediately
obtain that g2 WD gE0

2
, where E0

2
WD .��;g

�1
1
.�2//. We likewise obtain gi WD gE0

i
,

for i D 3; 4; 5, where E0
3
WD .��; .g1 ıg2/

�1.�3//, E0
4
WD .��; .g1 ıg2 ıg3/

�1.�4//,
and E0

5
WD .��; .g1 ıg2 ıg3 ıg4/

�1.��//. Under our assumption that e0 …Kfe1; e2g,
we find gi.e0/D e0 for i D 1; 2; : : : ; 5. The relation associated to P is therefore

(4–1) g1 ıg2 ı � � � ıg5 D id:

On the other hand, now assume e02Kfe1g and without loss of generality we can assume
that e1 D e0 . We choose gi as above and note that g1W .��; e0/ 7! .�1; e

0
0
/, where

e0
0
D .�i; i/ is the image of e0 D .�1; 1/ under the Whitehead move corresponding to

E1 D .��; �1/, g1 ı g2W .��; e0/ 7! .�2; e
0
0
/, g1 ı g2 ı g3W .��; e0/ 7! .�3; e

00
0
/ where

e00
0

is the image of e0
0

under the Whitehead move corresponding to E3 , g1 ı g2 ı

g3 ıg4W .��; e0/ 7! .�4; e
00
0
/ and g1 ıg2 ı � � � ıg5W .��; e0/ 7! .��; xe2/ where xe2 is the

oriented edge e2 with orientation given such that the terminal point of e0 is the initial
point of xe2 . Denote by e0;xe2

2 PSL2.Z/ the unique element which maps e0 onto xe2

with the given orientations. Thus, e0;xe2
is the composition of the primitive parabolic

element with fixed point at the terminal point of e0 which maps e0 onto e2 and the
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involution which reverses e2 . We obtain the following relation

(4–2) g1 ıg2 ı � � � ıg5 D e0;xe2
:

When e2 D e0 the relation is similarly

(4–3) g1 ıg2 ı � � � ıg5 D e0;xe1
:

Relations corresponding to squares Let P be a square cell in F . Assume that P

is obtained by Whitehead moves along the nonadjacent orbits Kfe1g and Kfe2g of
edges e1; e2 in �� , where K is a torsion-free finite index subgroup of PSL2.Z/. If
e0 …Kfe1; e2g then

(4–4) g1 ı � � � ıg4 D id;

where gi are chosen as above. If ei D e0 then we obtain a relation

(4–5) g1 ı � � � ıg4 D se0
;

where se0
2 PSL2.Z/ is the involution which reverses e0 . The proofs of both relations

for the square cell P depend upon keeping track of where e0 is mapped, and it is
sufficiently similar to the pentagon two-cell that we do not repeat it.

Relations corresponding to cosets Let P 2F be a coset two-cell for the edge e 2 ��
and for the groups K1 <K < PSL2.Z/. If e ¤ e0 then we obtain a relation

(4–6) g1 ı � � � ıgn D id;

where nD ŒK WK1� and gi are uniquely chosen as above. Note that a single choice
of K1 < K gives a decomposition of the orbit Kfeg into n disjoint coset orbits
K1fe1g;K1fe2g; : : : ;K1feng, where ei 2Kfeg. This gives n! possible permutations
on K1fe1g;K1fe2g; : : : ;K1feng which in turn produce n! coset two-cells with the long
edge given by the Whitehead move on Kfeg. Note that g1DgE where ED .��; �/ and
� is the image of the Whitehead move along Kfeg. The other gi , for i D 2; 3; : : : ; n,
are given by the translation to �� of the short edges. If eD e0 then we obtain a relation

(4–7) g1 ı � � � ıgn D se0
;

where se0
2 PSL2.Z/ is the involution which reverses e0 (see the paragraph about

Square relations).

The desired group G is by definition the free product of PSL2.Z/, �.E/D �C.E/
for E 2 EC , �.E/ for E 2 E� and a free group generated by gE for E 2 EC . The
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baseleaf preserving mapping class group MCG.H/ is the quotient of G by a set of
relations as follows.

Theorem 1.2 The baseleaf preserving mapping class group MCG.H/ is generated by
the isotropy subgroup PSL2.Z/ of the basepoint �� 2 X , the isotropy subgroups �.E/
for E 2 E˙ , and by the elements gE for E 2 EC . The following relations on these
generators give a complete presentation of MCG.H/.

(a) The inclusions of �.E/ into PSL2.Z/, for E 2 EC , are given by �.E/DK0 ,
where the terminal endpoint of E is invariant under the finite index subgroup
K0 < PSL2.Z/;

(b) The inclusions of �C.E/ into PSL2.Z/, for E 2 E� , are given by �.E/DK0 ,
where the terminal endpoint of E is invariant under the finite index subgroup
K0 < PSL2.Z/;

(c) The relations introduced by the boundary edge-paths of two-cells in F given by
the equations (4–1), (4–2), (4–3), (4–4), (4–5), (4–6) and (4–7);

(d) The redundancy relations: for any two edges E and E0 in E˙ and for any
 2 PSL2.Z/ such that  .E/DE0 , we get the relation

gE0 ı  0 D  ıgE ;

where  0 is the unique element of PSL2.Z/ that satisfies  0.e0/ D e0
1

with
e0

1
D g�1

E0 . .e0//.

Proof The fact about the generators of MCG.H/ follows directly from Brown’s
theorem [2] and from our choice of E˙ even larger than necessary. The relations from
[2, Theorem 1] are included in our theorem as follows. The relations (i) are empty in
our case. The relations (ii), (iii) and (iv) translate easily to relations (a), (b) and (c) in
our theorem, respectively. The relations (d) are extra relations needed because we have
taken a larger set of generators than in Brown’s presentation. If gE.e0/D e0 , then the
relation (d) is immediate. If gE.e0/¤ e0 , then gE0.e0/D e0 (since  …K ), and d)
follows by reversing the roles of gE and gE0 .

5 No central elements

In this section, our goal is to show that, in analogy to the case of surfaces of finite type,
the baseleaf preserving mapping class group MCG.H/ of the punctured solenoid has a
trivial center.
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Proposition 5.1 A TLC tesselation of D is invariant under PSL2.Z/ if and only if it
is the Farey tesselation �� .

Proof We already know that PSL2.Z/ preserves the tesselation �� (indeed the group
PSL2.Z/ is generated by hyperbolic reflections around the sides of the triangle T 2 ��
with vertices .�1; 1; i/).

For the converse, recall that PSL2.Z/ contains order two elliptic elements with fixed
points on each edge of �� and order three elliptic elements with fixed points at the
center of each ideal complementary triangle of �� . Let T be a complementary triangle
of � containing the fixed point a of an elliptic element  2 PSL2.Z/ of order three. It
is an exercise in elementary hyperbolic geometry to show that a is the center of T .

Let b be a fixed point of an elliptic involution  2 PSL2.Z/. If b is in the interior of a
complementary triangle T of � then  .T /¤ T and  .T /\T ¤∅. Thus, the image
of the boundary of T under  intersects transversely the boundary of T . This is in
contradiction to the assumption that  fixes � . It follows that b must lie on an edge of
� .

Let a be the fixed point of an elliptic element of PSL2.Z/ of order three and let
b1; b2; b3 be fixed points of three elliptic involutions of PSL2.Z/ that are shortest
distance to a among all such involutions. Thus, b1; b2; b3 lie on a hyperbolic circle
centered at a. If T is the ideal triangle in the complement of � whose center is a, then
the boundary sides of T are tangent to this circle. Since b1; b2; b3 must lie on edges
of � , this implies that the boundary sides of T are tangent at the points b1; b2; b3 . It
follows that T is a complementary triangle of �� as well. Since this is true for an
arbitrary T , it follows that indeed � D �� .

Theorem 1.3 The baseleaf preserving mapping class group MCG.H/ of the punctured
solenoid H has trivial center.

Proof Let h 2 MCG.H/ be a central element, so h is a word in the generators of
Theorem 1.2. For all g 2MCG.H/, we must have g ı h ı g�1 D h. Let � WD h.��/.
Taking g 2 PSL2.Z/, we find g ı h.��/ D h.��/, ie, g.�/ D � . By Proposition 5.1
above we conclude that � D �� , ie, h.��/D �� . But Penner–Šarić [14, Lemma 7.3]
says that any homeomorphism h W S1! S1 mapping �� to itself must be an element
of PSL2.Z/. Therefore h is in PSL2.Z/. Since PSL2.Z/ has trivial center, it follows
that hD id .

We consider the action of MCG.H/ on the first barycentric subdivision X 0 of X .
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Proposition 5.2 The first barycentric subdivision X 0 of X is a simplicial complex on
which MCG.H/ acts simplicially.

Proof Note that MCG.H/ preserves cells of X . An isotropy group of a vertex of X
is a conjugate of PSL2.Z/. We showed that the isotropy group of an edge is either a
finite index subgroup of PSL2.Z/ which preserves the orientation of the edge or it is
generated by an element of MCG.H/ which reverses the orientation of the edge and
by a finite index subgroup of PSL2.Z/ which preserves the orientation of the edge. In
the first case, each element of the isotropy group fixes each point on the edge. In the
second case, an element either fixes each point of the edge or fixes the midpoint and
reflects the endpoints of the edge.

Let C be a coset two-cell with long edge given by a Whitehead move on TLC tesselation
�� invariant under K < PSL2.Z/ along the orbit of e 2 � and with the short edges
given by Whitehead moves invariant under a subgroup H <K . The isotropy subgroup
of C is a finite extension in PSL2.Z/ of H . In order to show that MCG.H/ acts
simplicially on the first barycentric subdivision of such a two-cell C , it is enough to
show that the long edge cannot be mapped onto a short edge, and this is true because
the rectangles in which change of diagonals for the Whitehead move occur must be
mapped onto the rectangles on which change of diagonals occur. However, the two
groups have different indexes in PSL2.Z/ which gives a contradiction, and the isotropy
group �.C / therefore acts by fixing each point in C . Since an arbitrary coset two-cell
is the image of some C as above, the same statement holds for an arbitrary coset
two-cell.

Let P be a pentagon two-cell based at �� obtained by Whitehead moves along
Kfe1; e2g. Thus, P has a subgroup K0 , where PSL2.Z/ > K0 > K , of its isotropy
group �.P / fixing each point of P . If �.P /¤K0 , then it is generated by K0 and
a single element of h 2MCG.H/ which maps the first edge onto the second. Since
h5.��/D �� , we conclude h5 2 PSL2.Z/. Thus, h5 conjugates a finite index subgroup
of PSL2.Z/ onto itself (ie h5 is mapping class-like) and therefore h is mapping class-
like (see Odden [11]). The map h fixes the center of P and rotates by the angle 2�=5

the pentagon P . The situation for a pentagon not based at �� is the same.

Finally, suppose Q is a square two-cell obtained by Whitehead moves along Kfe1; e2g

then �.Q/ >K0 , where K <K0 < PSL2.Z/. It is possible a priori that �.Q/¤K0 ,
in which case the elements h 2 �.Q/�K0 permute edges of Q and fix the center of
Q.

We finally investigate the topological fundamental group �1.Y/ of the quotient space
Y D X=MCG.H/. To begin, we describe a natural surjection �W MCG.H/! �1.Y/
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as follows. Denote by …W X ! Y the quotient map, let h 2MCG.H/ be arbitrary,
and define � D h.��/. Let  be an edge-path between �� and � in X . Define

�.h/ WD Œ…. /�;

where Œ…. /� is the homotopy class of the closed curve …./ based at ….��/, ie,
Œ…. /� 2 �1.Y;….��// D �1.Y/. It is a standard fact that � is a well-defined and
surjective homomorphism.

Let N be the group generated by the isotropy subgroups of all vertices of X 0 , where
X 0 denotes the first barycentric subdivision of X , so N is normal in MCG.H/. In
fact, N is generated by all conjugates of PSL2.Z/ and by the isotropy groups of edges
and two-cells of X . The isotropy group of an edge in X fixes the center of the edge
and therefore belongs to the isotropy group of a vertex in X 0 , and likewise the isotropy
group of a two-cell in X fixes a vertex of X 0 . Moreover, any element of MCG.H/
which fixes a point in X 0 fixes a point in X .

At this point we use the following result proved by Armstrong in [1].

Theorem (Armstrong [1]) Let G act simplicially on a connected and simply con-
nected complex K , and let H be the normal subgroup generated by those elements of
G which leave some point fixed. Then the fundamental group of the orbit space jKj=G

is isomorphic to G=H .

Together with our Proposition 5.2, the above theorem yields the next result.

Theorem 1.4 The topological fundamental group of Y D X=MCG.H/ satisfies

�1.Y/DMCG.H/=N ;

where N < MCG.H/ is generated by the isotropy groups of vertices, edges and
two-cells of X .

By our discussion above, each element of MCG.H/ which fixes a cell in X is mapping
class-like, meaning that it conjugates a finite index subgroup of G onto itself. Therefore
N is generated by some mapping class-like elements. We pose the following question.

Question Is N equal to the normal subgroup of MCG.H/ generated by all mapping
class-like elements?
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