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Classification of braids which give rise to interchange

STEFAN FORCEY

FELITA HUMES

It is well known that the existence of a braiding in a monoidal category V allows
many higher structures to be built upon that foundation. These include a monoidal
2–category V –Cat of enriched categories and functors over V , a monoidal bicategory
V –Mod of enriched categories and modules, a category of operads in V and a 2–fold
monoidal category structure on V . These all rely on the braiding to provide the
existence of an interchange morphism � necessary for either their structure or its
properties. We ask, given a braiding on V , what non-equal structures of a given
kind from this list exist which are based upon the braiding. For example, what
non-equal monoidal structures are available on V –Cat, or what non-equal operad
structures are available which base their associative structure on the braiding in V .
The basic question is the same as asking what non-equal 2–fold monoidal structures
exist on a given braided category. The main results are that the possible 2–fold
monoidal structures are classified by a particular set of four strand braids which we
completely characterize, and that these 2–fold monoidal categories are divided into
two equivalence classes by the relation of 2–fold monoidal equivalence.

57M99

1 Introduction

There are several levels of connection between the categorical concepts of braiding
and interchange. The first study of these ideas was by Joyal and Street in [9]. They
point out that a second tensor product in a given category which is a monoidal functor
with respect to the first gives rise to a braiding, and vice-versa. Most recently the work
of Balteanu, Fiedorowicz, Schwänzl, and Vogt in [3] includes description of the same
correspondence in the context of lax monoidal functors. The connection between the
n–fold monoidal categories in [3] and the theory of higher categories is through the
periodic table as laid out in [2]. Here Baez and Dolan organize the k –tuply monoidal
n–categories, by which terminology they refer to .nCk/–categories that are trivial
below dimension k . The triviality of lower cells allows the higher ones to compose
freely, and thus these special cases of .nCk/–categories are viewed as n–categories
with k multiplications.
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A k –tuply monoidal n–category is a special k –fold monoidal n–category. The spe-
cialization results from the definition(s) of n–category, all of which seem to include the
axiom that the interchange transformation between two ways of composing four higher
morphisms along two different lower dimensions is required to be an isomorphism.
In [3] the k –fold monoidal categories have interchange transformations that are not
isomorphisms. If those transformations are indeed isomorphisms then the k –fold
monoidal 1–categories do reduce to the braided and symmetric 1–categories of the
periodic table. Whether this continues for higher dimensions, yielding for example the
sylleptic monoidal 2–categories of the periodic table as 3–fold monoidal 2–categories
with interchange isomorphisms, is an open question.

The key requirement of a 2–fold monoidal structure on a category is that a second tensor
product (in the sense of [9]) must be a functor which preserves the structure of the first
tensor product. Technically we say that the second is a monoidal functor with respect to
the first. When the two tensor products are identical, this translates into the existence of a
coherent interchange transformation �ABCD W .A˝B/˝.C˝D/! .A˝C /˝.B˝D/.
The chief goal of this paper is to study and classify the braids on four strands which can
play the role of an interchange transformation in a braided category seen as a 2–fold
monoidal category. To be precise, given a braided category .V;˝; ˛; c; I/ (with strict
units, a strong associator ˛ , and braiding c ), we ask the central question: For which
four-strand braids b does the category V have in general a coherent 2–fold monoidal
structure, when that structure has ˝1 D ˝2 D ˝ as functors, has ˛1 D ˛2 D ˛ as
natural transformations, has strict unit I for both identical tensor products, and has x

as the underlying braid of �?

For example, the standard choice of � D 1 ˝ cBC ˝ 1 (where ˝ is associative)
corresponds to the braid

x D :

There is a canonical epimorphism � W Bn! Sn of the braid group on n strands onto
the permutation group. The permutation given by � is that given by the strands of the
braid on the n original positions. For instance on a standard generator of Bn , �i , we
have �.�i/D .i i C 1/. Candidates for interchange would seem to be those defined
using any braid x 2 B4 such that �.x/D .2 3/. However, it will be seen that many
braids which at first seem to accomplish the same interchange (transposing the middle
two terms and nothing else) do not in fact correspond to any � which in general satisfies
the axioms making V into a 2–fold monoidal category. For contrast, here is a braid
which turns out to exemplify this failure:

x D
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Under the hypotheses in this central question, there are four more requirements on the
braid x which must be filled for the answer to be affirmative. We refer to them, in
parallel to the axioms in [3], as internal and external unit conditions, and internal and
external associativity conditions. This nomenclature is the same as for the corresponding
axioms of a 2–fold monoidal category, which we will give in full in Section 3. We
refer to the strands of a braid by their initial positions. A sub-braid will refer to the
braid resulting from the deletion of a subset of the strands of a braid.

The internal unit condition on the four-strand braid x is that the sub-braids resulting
from deleting either the first two or the last two strands are both the identity (trivial
braid) on two strands. The external unit condition is that the sub-braids resulting from
deleting either the first and third strand or the second and fourth strand are again the
identity on two strands.

Internal associativity is pictured as an equality in B6 of two six-strand braids derived
from the original four strand braid. We call the two derived six strand braids Lx and
Rx . Lx is algorithmically described as: (a) performing a copy of x on the first 4
strands; (b) grouping the new first and second pairs as if the edges of two ribbons–the
two pairs are actually (1,3) and (2,4); and (c) performing a copy of x on the four
new “strands”– the two ribbons along with the remaining two strands 5 and 6. Rx is
described by three similar steps, but the initial copy of x is on the last 4 strands, and
the following ribbon edge pairing is on the pairs (3,5) and (4,6). The required equality,
where �.x/ D .2 3/, is pictured here. Shading between two strands represents the
ribbon edge pairing:

Lx D
x

x
D

x

x
DRx

External associativity is pictured as an equality in B6 of two six-strand braids derived
from the original four strand braid. We call the two derived six strand braids L0x and
R0x . L0x is algorithmically described as: (a) pairing sets of strands (2,3) and (5,6)
as if the edges of two ribbons; (b) performing a copy of x on the four new “strands”–
the two ribbons along with the remaining two strands 1 and 4; and (c) performing a
copy of x on the new first four strands which are actually (2,3,5,6). R0x is similarly
described as (a) pairing sets of strands (1,2) and (4,5) as if the edges of two ribbons;
(b) performing a copy of x on the four new “strands”– the two ribbons along with the
remaining two strands 3 and 6; and (c) performing a copy of x on the new last four
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strands which are actually (1,2,4,5). The required equality is

L0x D

x

x

D

x

x

DR0x

Example 2.9 and Example 2.11 contain pictures of original and derived braids. Notice
that if x is equal to its own 180 degree rotation, then L0x is the 180 degree rotation of
Lx , and R0x is the 180 degree rotation of Rx .

The classification in Theorem 3.6 of four-strand braids which obey all four requirements
turns out to be fairly simple. These braids, which can underlie a coherent interchange
in a 2–fold monoidal category, we designate as (unital) interchanging braids. The first
main result is that unital interchanging braids are precisely those given in terms of
standard generators by

bn˙ D .�2�1�3�2/
˙n�˙1

2 .�1�3/
�n

for n a non-negative integer. For example b2C appears as

Several geometrical facts can be observed about these unital interchanging braids. First,
the braid bn˙ is a special element from the double coset H�˙1

2
K of the braid group

on four strands. Here H is the subgroup generated by the braid �2�1�3�2 and K is
the subgroup generated by �1�3 . Second, the braids bn˙ are each equal to their own
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180 degree rotations. For example we have

D

The best way to visualize this equality is to draw a rectangle around the “center” portion
of the left braid, where a single copy of �2 divides the two “double stranded positive
crossings” above from the two “negative crossings in tandem” below. Now imagine
rotating this rectangle out of the plane of the page so as to uncross the upper double
stranded crossings. After one full rotation (in order to completely undo the double
stranded crossings) the right hand braid is achieved. A good exercise would involve
asking that this geometric argument be made into an inductive proof. The braid equality
in terms of generators is

bn˙ D .�2�1�3�2/
˙n�˙1

2 .�1�3/
�n
D .�1�3/

�n�˙1
2 .�2�1�3�2/

˙n:

Thus the third resulting fact is that the braid bn˙ is in the intersection H�˙1
2

K \

K�˙1
2

H . It would be interesting to know whether or not the only braids in this
intersection are the braids bn˙ . It would also be interesting to know what connection,
if any, there is to the the similar braid equalities which arise in the theory of tortile
categories, as in Shum [14].

The rest of this paper proceeds as follows: In Section 2 we begin with a review of the
category V –Cat of enriched categories over a braided category V . This is due to the
fact that when V is braided then V –Cat can be equipped with a monoidal structure. It
turns out that the central question of which braids can underlie a coherent interchange
is equivalent to the question of which braids can underlie the middle four interchange
of the composition morphisms for a tensor product on V –Cat. To be precise, given a
braided category .V;˝; ˛; c; I/ (with strict unit, a strong associator ˛ , and braiding c ),
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we ask the new question: For which four-strand braids b does the 2–category V –Cat
have in general a coherent monoidal structure, given canonical choices for the objects,
hom-objects, and unit morphisms of the tensor product of two enriched categories, and
the canonical choice for the associator in V –Cat, and given b as the underlying braid
of the middle four interchange �?

In Forcey [6] it is shown that the external and internal unit conditions of a 2–fold
monoidal category V imply the unital nature of V –Cat and the unit axioms for a
product of V –categories respectively. The external and internal associativity conditions
imply respectively the V –functoriality of the associator in V –Cat and the associativity
of the composition morphisms for tensor products of V –categories. Here we actually
move in the opposite direction of implication: in order to find evidence of sufficiency of
the conditions which a braid must meet to be interchanging we find tensor products on
V –Cat which have the interchanging braids underlying their middle four interchange.

In Section 3 we review the axioms of a 2–fold monoidal category and demonstrate
the necessity of the conditions for our main result. In Section 4 we ask which of
the 2–fold monoidal categories we have described as arising from a certain braided
category are equivalent as 2–fold monoidal categories. Our result is that the relation
of equivalence of 2–fold monoidal categories splits our interchanging braids into into
two equivalence classes, represented by �2 and ��1

2
. Section 5 gives a list of easily

detectable obstructions which prevent a braid from having the interchanging property –
that is, which prevent it from being equivalent to one of the braids described by our
main result. The value of our classification is principally to provide a solid framework
for proofs about structures based upon a braiding. It turns out that only certain braids
can correspond to interchange transformations. Thus our results can be used to provide
cases for proofs, either by treating all the cases up to braid equivalence or more often
just by treating representative cases of categorical equivalence classes.

As an example in Section 6 we generalize results mentioned by Joyal and Street. They
point out that the category of enriched categories over a braided category is in general
not braided and that taking the opposite is not an involution. We give a proof which
uses knot theory to demonstrate non-existence in general for all possible interchanges.
In questions of classification of structures in a specific monoidal category, our result on
interchanges may be necessary in order to construct a complete picture. In Section 7
we relate our results to classification of operads in a braided category. Throughout we
work in monoidal categories with a coherent strong associator, where “strong” implies
that the natural transformation in question is an isomorphism. The units will however
be strict.
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Thanks are due to many whose time was contributed to the development of this paper.
Included are the referees, who offered excellent suggestions for improvement of clarity,
as well as Imre Tuba, Steve Lack, Jesse Siehler and Ross Street.

2 Braiding and enrichment

First we briefly review the definition of a category enriched over a monoidal category V .
Enriched functors and enriched natural transformations make the collection of enriched
categories into a 2–category V –Cat. The definitions and proofs can be found in more
or less detail in Kelly [10], Eilenberg and Kelly [5] and of course in Mac Lane [11].
Some are included here for easy reference.

2.1 Definition A monoidal category is a category V together with a functor ˝W V �
V! V and an object I such that

(1) ˝ is associative up to the coherent natural isomorphisms

˛ABC W .A˝B/˝C !A˝ .B˝C /

called associators. The coherence axiom is given by the usual commuting
pentagonal diagram as in [11].

(2) In this paper, I is a strict 2–sided unit for ˝.

2.2 Definition A (small) V -Category A is a set jAj of objects, a hom-object
A.A;B/ 2 jVj for each pair of objects of A, a family of composition morphisms
MABC W A.B;C /˝A.A;B/! A.A;C / for each triple of objects, and an identity
element jAW I !A.A;A/ for each object. The composition morphisms are subject to
the associativity axiom which states that the following pentagon commutes:

.A.C;D/˝A.B;C //˝A.A;B/ ˛ //

M˝1uukkkkkkkkkkkkkk
A.C;D/˝.A.B;C /˝A.A;B//

1˝M

))SSSSSSSSSSSSSS

A.B;D/˝A.A;B/
M

,,XXXXXXXXXXXXXXXXXXXXXXXXXXX
A.C;D/˝A.A;C /

M
rrffffffffffffffffffffffffffff

A.A;D//

Algebraic & Geometric Topology, Volume 7 (2007)



1240 Stefan Forcey and Felita Humes

and to the unit axioms which state that both the triangles in the following diagram
commute

I˝A.A;B/
D

**TTTTTTTTTTTTTTTTT

jB˝1

��

A.A;B/˝I

1˝jA

��

D
ttjjjjjjjjjjjjjjjjj

A.A;B/

A.B;B/˝A.A;B/

MABB

44jjjjjjjjjjjjjjjjj
A.A;B/˝A.A;A/

MAAB

jjTTTTTTTTTTTTTTTTT

If VDSet then these diagrams are the usual category axioms. Basically, composition of
morphisms is replaced by tensoring and the resulting diagrams are required to commute.
The next two definitions exhibit this principle and are important since they give us the
setting in which to construct a category of V –categories.

2.3 Definition For V –categories A and B , a V –f unctor T W A! B is a function
T W jAj! jBj and a family of morphisms TABW A.A;B/!B.TA;TB/ in V indexed
by pairs A;B 2 jAj. The usual rules for a functor that state T .f ıg/D Tf ıTg and
T 1A D 1TA become in the enriched setting, respectively, the commuting diagrams

A.B;C /˝A.A;B/ M //

T˝T
��

A.A;C /

T
��

B.TB;T C /˝B.TA;TB/
M // B.TA;T C /

and
A.A;A/

TAA

��

I

jA

66mmmmmmmmmmmmmmm

jTA ((QQQQQQQQQQQQQQQ

B.TA;TA/

V –functors can be composed to form a category called V –Cat. This category is actually
enriched over Cat, the category of (small) categories with Cartesian product.

2.4 Definition A braiding for a monoidal category V is a family of natural isomor-
phisms cX Y W X ˝Y ! Y ˝X such that the following diagrams commute. They are
drawn next to their underlying braids. Recall that by “underlying braid” of a composite
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of braidings and associators between two products of the same n objects, we refer
to the n–strand braid with crossings corresponding precisely to each instance of the
braiding and its inverse.

(1)

.X ˝Y /˝Z

cXY˝1vvmmmmmmmmmmmm

˛XY Z // X ˝ .Y ˝Z/
cX.Y˝Z/

((QQQQQQQQQQQQ

.Y ˝X /˝Z

˛YXZ

((QQQQQQQQQQQQ
.Y ˝Z/˝X

˛Y ZXvvmmmmmmmmmmmm

Y ˝ .X ˝Z/
1˝cXZ// Y ˝ .Z˝X /

(2)

X ˝ .Y ˝Z/

1˝cY Zvvmmmmmmmmmmmm

˛�1
XY Z // .X ˝Y /˝Z

c.X˝Y /Z

((QQQQQQQQQQQQ

X ˝ .Z˝Y /
˛�1

XZY

((QQQQQQQQQQQQ
Z˝ .X ˝Y /

˛�1
ZXYvvmmmmmmmmmmmm

.X ˝Z/˝Y
cXZ˝1// .Z˝X /˝Y

A braided category is a monoidal category with a chosen braiding. We will assume a
strict unit in the monoidal categories considered here which implies a strict respect for
units by the braiding. That is, cIA D cAI D 1A .

Joyal and Street proved the coherence theorem for braided categories in [9], an imme-
diate corollary of which is that in a free braided category generated by a set of objects,
a diagram commutes in general if and only if all legs having the same source and target
have the same underlying braid.

2.5 Definition A symmetry is a braiding such that the following diagram commutes

X ˝Y
1 //

cXY

%%KKKKKKKKK X ˝Y

Y ˝X

cYX

99sssssssss
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In other words c�1
X Y
D cYX . A symmetric category is a monoidal category with a

chosen symmetry.

As pointed out by Joyal and Street, it is true that c�1 is a braiding whenever c is.
These two braidings are equivalent if and only if c is a symmetry; see Theorem 4.2
for the proof of this. It should be noted that there is immediately an obstruction to
other potential braidings based on the original. For sake of efficiency we use notation
cn
AB
D cAB ı cBA ı cAB ı � � � ı cAB where there are n instances of c . It appears at first

that if cAB is a braiding then c0 D c˙.2nC1/ is potentially a braiding for any n, but
actually we find that:

2.6 Lemma for n � 1, c0 D c˙.2nC1/ is a braiding if and only if c is a symmetry.
(In that case c˙.2nC1/ is also a symmetry.)

Proof The obstruction arises from the the braided coherence theorem applied to the
hexagonal diagrams with c˙.2nC1/ in place of the original instances of c . Observe that,
when we test the potential braiding for nD 1, the hexagonal diagram (1) of Definition
2.5 has legs with the following two underlying braids. As denoted, this is an inequality:

6D

Indeed we have that the required equality of braids for the first hexagonal axiom can
never hold for n � 1. We check the positive powers of c and note that the case for
the negative powers is shown similarly. For c0 D c2nC1 the braid inequality underly-
ing the legs of the hexagonal diagram, in terms of the standard braid generators, is
�2nC1

1
�2nC1

2
¤ �1�2.�2�1�1�2/

n . It is easy to see this inequality since the semigroup
of positive braids embeds into the braid group of the same number of strands, as shown
in Garside [8]. Thus any two positive braids are equivalent in the braid group if and
only if they are equivalent in the positive semigroup, that is, related by a chain of
braid relations. For three strand braids the only possible braid relation is the standard
�1�2�1 D �2�1�2 . Note that in the braid words representing the three strand braids
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in question there are no instances of either side of this relation, and so both are in a
unique positive form, and so clearly not equal.

If V is braided then we can define additional structure on V –Cat. The two classic
structures are duality and tensor product.

2.7 Definition First there is a left opposite of a V –category which has jAopj D jAj
and Aop.A;A0/DA.A0;A/. The composition morphisms are given by

Aop.A0;A00/˝Aop.A;A0/

A.A00;A0/˝A.A0;A/
cA.A00;A0/˝A.A0;A/

��
A.A0;A/˝A.A00;A0/

MAA0A00

��
A.A00;A/

Aop.A;A00/

The axiom for associativity of the composition morphisms in Aop holds due to the
naturality of the braiding, the axiom for M in A, and the commutativity of a pentagonal
diagram. This latter commutes since the braids underlying its legs are the two sides of
the braid relation, also known as the Yang-Baxter equation. The unit morphisms in
Aop are the same as the original jAW I !A.A;A/DAop.A;A/. The unit axioms are
obeyed due to the fact that cIA D cAI D 1A .

The right opposite denoted Apo is given by the same definition of composition and
unit morphisms, but using c�1 .

The two opposites take a V –functor F to its own function on objects but with F
op
AA0
D

F
po
AA0
D FA0A . It is easy to check that thus both opposites are functorial. That the

image of a V –functor under the opposites is still a V –functor is due to the naturality
of c .

It is clear from this definition that .Apo/op D .Aop/po D A. It is also clear that
.Aop/op ¤ A in general unless c is a symmetry, and the same is true for the right
opposite.
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2.8 Definition The second structure is a tensor product for V –Cat, that is, a 2–functor

˝W V–Cat�V–Cat! V–Cat:

(In previous papers we have denoted the product(s) in V –Cat with a superscript (1)
in parentheses, but here it will be understood by context. The superscript (1) will still
be used to denote that a given natural transformation is in V –Cat.) The product of
two V –categories A and B has jA˝Bj D jAj�jBj and .A˝B/..A;B/; .A0;B0//D
A.A;A0/˝B.B;B0/. The unit morphisms for the product V –categories are the com-
posites

I Š I ˝ I
jA˝jB

// A.A;A/˝B.B;B/

The composition morphisms

M.A;B/.A0;B0/.A00;B00/W .A˝B/..A0;B0/; .A00;B00//˝.A˝B/..A;B/; .A0;B0//
�! .A˝B/..A;B/; .A00;B00//

may be given canonically by�
A˝B

��
.A0;B0/; .A00;B00/

�
˝
�
A˝B

��
.A;B/; .A0;B0/

�
�
A.A0;A00/˝B.B0;B00/

�
˝
�
A.A;A0/˝B.B;B0/

�
.1˝˛�1/ı˛

��
A.A0;A00/˝

��
B.B0;B00/˝A.A;A0/

�
˝B.B;B0/

�
1˝.cB.B0;B00/A.A;A0/˝1/

��
A.A0;A00/˝

��
A.A;A0/˝B.B0;B00/

�
˝B.B;B0/

�
˛�1ı.1˝˛/

���
A.A0;A00/˝A.A;A0/

�
˝
�
B.B0;B00/˝B.B;B0/

�
MAA0A00˝MBB0B00

��
A.A;A00/˝B.B;B00/

�
A˝B

��
.A;B/; .A00;B00/

�
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That, in general, .A˝B/op ¤Aop˝Bop unless c is a symmetry follows from the braid
inequality

¤ :

Now consider more carefully the morphisms of V which make up the composition
morphism for a tensor product of enriched categories, especially those which accomplish
the “middle four interchange” (see Kelly [10]) of the interior hom-objects, that is, all
but the last pair of instances of the original composition M . In the symmetric case,
any other combination of instances of ˛ and c with the same domain and range would
be equal, due to symmetric coherence. In the merely braided case, there at first seems
to be a much larger range of available choices. Candidates for composition morphisms
would seem to be those defined using any braid b 2 B4 such that �.b/D .2 3/.

Thus a candidate for a new monoidal structure on V –Cat could be given by the
same canonical choices for objects, hom-objects, and unit morphisms as in Definition
2.8 but with alternate composition morphisms. The composition morphisms would
be defined as above, but with the middle four interchange denoted �.b/ given by a
series of instances of ˛ and c such that the underlying braid is b . Thus we might
define M.A;B/.A0;B0/.A00;B00/D.MAA0A00˝MBB0B00/ı�.b/ . That MAA0A00˝MBB0B00

will have the correct domain on which to operate is guaranteed by the permutation
condition on b .

Two important axioms that must hold for a proposed alternate monoidal structure on
V –Cat are associativity of composition M (inside the proposed tensor product of two
V –categories) and V –functoriality of the associator ˛ (so that there exists an associator
for the proposed tensor product). For the associativity of composition to hold the
following diagram must commute, where the first vertex is

..A˝B/..A00;B00/; .A000;B000//˝.A˝B/..A0;B0/; .A00;B00///˝.A˝B/..A;B/; .A0;B0//

and the last bullet represents
�
A˝B

��
.A;B/; .A000;B000/

�
.

�
˛ //

M˝1

������������
�

1˝M

��7777777777

�

M

$$JJJJJJJJJJJJJJJ �

M

zzttttttttttttttt

�
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This means that the exterior of the following expanded diagram is required to commute.
We leave out some parentheses for clarity and denote the middle four interchange
by �.b/ (perhaps composed with some associators). Also for convenience we write
X DA.A;A0/, X 0DA.A0;A00/, X 00DA.A00;A000/, Y DB.B;B0/, Y 0DB.B0;B00/
and Y 00 D B.B00;B000/.

ŒX 00˝Y 00˝X 0˝Y 0�˝.X˝Y /

˛

))SSSSSSSSSSSSSS

�.b/uukkkkkkkkkkkkkk

ŒX 00˝X 0˝Y 00˝Y 0�˝.X˝Y /

˛

��

.X 00˝Y 00/˝ŒX 0˝Y 0˝X˝Y �

�.b/

��
.X 00˝X 0/˝.Y 00˝Y 0/˝X˝Y

�.b/

��

.X 00˝Y 00/˝ŒX 0˝X˝Y 0˝Y �

˛

��
Œ.X 00˝X 0/˝X �˝Œ.Y 00˝Y 0/˝Y �

˛˝˛

,,YYYYYYYYYYYYYYYYYYYYYYYYYY

.M˝1/˝.M˝1/

��

X 00˝Y 00˝.X 0˝X /˝.Y 0˝Y /

�.b/

��
ŒA.A0;A000/˝X �˝ŒB.B0;B000/˝Y �

M˝M
��

ŒX 00˝.X 0˝X /�˝ŒY 00˝.Y 0˝Y /�

.1˝M /˝.1˝M /

��
A.A;A000/˝B.B;B000/ ŒX 00˝A.A;A00/�˝ŒY 00˝B.B;B00/�

M˝M
oo

The bottom region commutes by the associativity axioms for A and B . We are left
needing to show that the underlying braids are equal for the two legs of the upper
region. In Example 2.9 we give some examples of the underlying braids of the left and
right legs for various choices of b . By inspection of the diagram these left and right
underlying braids are the six-strand braids we denote respectively Lb and Rb . Recall
from the introduction that the requirement that LbDRb is called internal associativity.
The first example for b is the one used in the original definition of A˝B given above.

2.9 Example

b.1/ D b0C D
I Lb.1/ D D DRb.1/:

b.2/ D I Lb.2/ D ¤ DRb.2/:

Algebraic & Geometric Topology, Volume 7 (2007)



Classification of braids which give rise to interchange 1247

b.3/ D I Lb.3/ D D DRb.3/:

b.4/ D I Lb.4/ D ¤ DRb.4/:

b.5/ D b1� D I Lb.5/ D D DRb.5/:

2.10 Remark Before turning to check on V –functoriality of the associator, we note
that b.3/ is the braid underlying the composition morphism of the product category
.Aop/op˝B where the product is defined using b.1/ . This provides the hint that the
two derived braids Lb.3/;Rb.3/ 2B6 are equal because of the fact that the opposite of
a V –category is a valid V –category. In fact we can describe sufficient conditions for
Lb to be equivalent to Rb by describing the braids b that underlie the composition
morphism of a product category given generally by ...Aop/::: op˝ .Bop/::: op/op/::: op

where the number of op exponents is arbitrary in each position.

Those braids are alternately described as lying in H�2K0 � B4 where H is the cyclic
subgroup generated by the braid �2�1�3�2 and K0 is the subgroup generated by
the two generators f�1; �3g. The latter subgroup K0 is isomorphic to Z �Z . The
first coordinate corresponds to the number of op exponents on A and the second
component to the number of op exponents on B . Negative integers correspond to the
right opposites, po. The power of the element of H corresponds to the number of
op exponents on the product of the two enriched categories, that is, the number of op
exponents outside the parentheses. That b 2H�2K0 implies Lb DRb follows from
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the fact that the composition morphisms belonging to the opposite of a V –category obey
the pentagon axiom. An exercise of some value is to check consistency of the definitions
by constructing an inductive proof of the implication based on braid group generators.
This is not a necessary condition for Lb DRb , since for example the equation holds
for bD .�2�1�3�2/

n , but it may be when the additional requirement that �.b/D .2 3/

is added. More work needs to be done to determine the necessary conditions and to
study the structure and properties of the braids that meet these conditions. Of course we
will see shortly that when certain unit conditions are obeyed then there is a necessary
and sufficient condition.

V –functoriality of the associator is necessary because here we have a 2–natural trans-
formation ˛.1/ . This means we have a family of V –functors indexed by triples of
V –categories. On objects

˛
.1/
ABC..A;B/;C /D .A; .B;C //:

In order to guarantee that ˛.1/ obey the coherence pentagon for hom-object morphisms,
we define it to be based upon ˛ in V . This means precisely that

˛
.1/
ABC..A;B/;C /..A0;B0/;C 0/

W Œ.A˝B/˝ C�...A;B/;C /; ..A0;B0/;C 0//
�! ŒA˝ .B˝ C/�..A; .B;C //; .A0; .B0;C 0///

is defined to be

˛A.A;A0/B.B;B0/C.C;C 0/W .A.A;A0/˝B.B;B0//˝ C.C;C 0/
�!A.A;A0/˝ .B.B;B0/˝ C.C;C 0//:

This definition guarantees that the ˛.1/ pentagons for objects and for hom-objects
commute: the first trivially and the second by the fact that the ˛ pentagon commutes in
V . We must also check for V –functoriality. The unit axioms are trivial – we consider
the more interesting axiom. The following diagram must commute, where the first
vertex is

Œ.A˝B/˝C�...A0;B0/;C 0/;..A00;B00/;C 00//˝Œ.A˝B/˝C�...A;B/;C /;..A0;B0/;C 0//

and the last vertex is

ŒA˝ .B˝ C/�..A; .B;C //; .A00; .B00;C 00///:

�
M //

˛.1/˝˛.1/

��

�

˛.1/

��
�

M
// �
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This means that the exterior of the following expanded diagram is required to commute.
We leave out some parentheses for clarity and denote the middle four interchange
by �.b/ (perhaps composed with some associators). Also for convenience we write
X D A.A0;A00/, Y D B.B0;B00/, Z D C.C 0;C 00/, X 0 D A.A;A0/, Y 0 D B.B;B0/
and Z0 D C.C;C 0/

.X˝Y /˝Z˝.X 0˝Y 0/˝Z0

�.b/

**VVVVVVVVVVVVVVVVVV

˛ttiiiiiiiiiiiiiiiii

X˝.Y˝Z/˝X 0˝.Y 0˝Z0/

�.b/

��

.X˝Y /˝.X 0˝Y 0/˝Z˝Z0

˛

��
X˝X 0˝.Y˝Z/˝.Y 0˝Z0/

˛

��

ŒX˝Y˝X 0˝Y 0�˝.Z˝Z0/

�.b/

��
.X˝X 0/˝ŒY˝Z˝Y 0˝Z0�

�.b/

��

Œ.X˝X 0/˝.Y˝Y 0/�˝.Z˝Z0/

˛qqdddddddddddddddddddddddddddddddddd

.M˝M /˝M

��
.X˝X 0/˝Œ.Y˝Y 0/˝.Z˝Z0/�

M˝.M˝M /

**UUUUUUUUUUUUUUUUU ŒA.A;A00/˝B.B;B00/�˝C.C;C 00/

˛tthhhhhhhhhhhhhhhhhh

A.A;A00/˝ŒB.B;B00/˝C.C;C 00/�

The bottom quadrilateral commutes by naturality of ˛ . We are left needing to show
that the underlying braids are equal for the two legs of the upper region. In Example
2.11 we give some examples of the underlying braids of the left and right legs for
the same choices of b as shown in Example 2.9. By inspection of the diagram these
left and right underlying braids are the six-strand braids we denote respectively L0b

and R0b . Recall from the introduction that the requirement that L0b DR0b is called
external associativity. The first braid is the one used in the original definition of A˝B
given above.

2.11 Example

b.1/ D b0C D
I L0b.1/ D

D DR0b.1/

b.2/ D I L0b.2/ D
D DR0b.2/
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b.3/ D I L0b.3/ D ¤ DR0b.3/

b.4/ D I L0b.4/ D ¤ DR0b.4/

b.5/ D b1� D I L0b.5/ D
D DR0b.5/

2.12 Remark A comparison with Example 2.9 is of interest. Braids b.2/ and b.3/ are
180 degree rotations of each other. Notice that the second braid in Example 2.11 leads
to an equality that is actually the same as for the third braid in Example 2.9. To see
this the page can be rotated by 180 degrees. Similarly, the inequality preventing braid
b.2/ from yielding an associative composition morphism is the 180 degree rotation of
the inequality preventing braid b.3/ from yielding a V –functorial associator. Braid
b.1/ and braid b.5/ are each their own 180 degree rotation (we took advantage of the
latter fact in drawing L0b.5/ and R0b.5/ above), and the two braids proving each to be
the underlying braid of an associative composition morphism are 180 degree rotations
of the two which show each to yield a V –functorial associator. Braid b.4/ is its own
180 degree rotation, and the two braids preventing it from yielding an associative
composition morphism are 180 degree rotations of the two that obstruct it from being
yielding a V –functorial associator. Thus there is a certain kind of duality between
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the requirements of associativity of the enriched composition and the functoriality of
the associator. The full meaning of this duality becomes more clear in the study of
(enrichment over) iterated monoidal categories as in Forcey [6], where we see that in a
braided category two potentially different tensor products have collapsed into one.

If we were considering a strictly associative monoidal category V then the condition
of a V –functorial associator would become a condition of a well defined composition
morphism.

The unit axioms required of the tensor product of two enriched categories are satisfied
in general only if dropping either the first two or the last two strands of b leaves again
the identity on two strands. (This is also due to the naturality of compositions of ˛ and
c and the unit axioms obeyed by A and B .) Recall that we refer to this as the internal
unit condition.

The canonical choice for the unit in V –Cat is the enriched category I which has only
one object denoted 0 and for which I.0; 0/D I , the unit in V . For the unit V –category
I to be indeed a unit for the tensor product in question requires that in the underlying
braid of the middle four interchange dropping either the first and third strand or the
second and fourth strand leaves the identity on two strands. Recall that we refer to this
as the external unit condition. For a careful demonstration of this see [6], keeping in
mind that the interchange � described there corresponds to the middle four interchange
here. Note that the unit conditions are not met by b.2/ and b.3/ in the above examples.

2.13 Definition An interchanging unital braid on four strands is one for which the
permutation associated to the braid is .2 3/, for which both Lb DRb and L0b DR0b

in B6 , and for which the unit conditions are satisfied: deleting any one of the pairs
of strands .1; 2/; .3; 4/; .1; 3/ or .2; 4/ results in the 2 strand identity braid. An
interchange candidate braid is an element of B4 which has the correct permutation
and obeys the unit conditions.

Note that this definition describes precisely what needs to be true of a braid b in
order that it can arise as the underlying braid of the middle four interchange of the
composition morphism of the tensor product of enriched categories over an arbitrary
braided category V . Here we are restricting our attention to monoidal structures on V –
Cat with the canonical choices described in Definition 2.8 for the objects, hom-objects
and unit morphisms of a tensor product of enriched categories. Also let the associator
for that monoidal structure be based upon the associator in the braided category V , and
the unit for that monoidal structure be the canonical choice of the enriched category I .
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2.14 Lemma Given an arbitrary braided category V , let a monoidal structure on
V –Cat be assumed to have the canonical choices described in Definition 2.8 for the
objects, hom-objects and unit morphisms of a tensor product of enriched categories.
Also let the associator for that monoidal structure be based upon the associator in the
braided category V , and the unit for that monoidal structure be the canonical choice of
the enriched category I . Then a four-strand braid b satisfies L0b DR0b if it can arise
as the underlying braid of the middle four interchange of the composition morphism of
the tensor product of enriched categories in any such monoidal structure.

Proof Simply having a valid tensor product in V –Cat for a specific braided category
V , with a middle four interchange built out of instances of the the associators and the
braiding, does not imply that the underlying braid of the middle four interchange is
interchanging (e.g. the braiding might be a symmetry or the composition might be a
coequalizer). However if b underlies a middle four interchange which gives a tensor
product of V –categories which is valid for an arbitrary braided base, then we can get
our result by choosing the example of the free braided category on one object with
duals, denoted C1;2 as in Baez [1].

Notice that we need more structure than just the free braided category on one object.
This is because we are only given the equality in V implied by the diagram for V –
functoriality of ˛.1/ ; this equality is that of two compositions of braidings each with a
tensor product of instances of M attached. Specifically M ˝M ˝M follows each of
the compositions of braidings. Let the generating objects of C1;2 be x and its dual
x� . Recall that the objects are then strings of these generators and the morphisms are
tangles with the number of inputs the length of the domain and the number of outputs
the length of the range. The braiding is the same as described in Joyal and Street [9] for
the free braided category; the tangle formed by crossing all the strands corresponding
to an object A (one strand for each generator in the string) simultaneously with all
those of B . We can find enriched categories over C1;2 since there are monoids in C1;2 ,
recalling that monoids are one-object enriched categories. To see the braid equality
L0b DR0b we can choose the monoid X D x˝x� . Then the composition morphism
is given by

M D 1x˝ e˝ 1x� W x˝x�˝x˝x�! x˝x�

(where e is the counit) which corresponds to the tangle

M D

x� xx x�

x x�
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Now the equality implied by V –functoriality of the associator ˛.1/XXX is a tangle equality
which is formed by starting with doubled versions of the braids L0b and R0b (doubled
since there is a strand for x and x� ). Then both tangles are finished with M˝M˝M ,
that is, three copies of the above tangle for M attached. For example, here is the
left hand side (left leg) of the tangle equality for the braid b.1/ that is implied by the
V –functoriality of the associator. Compare to L0b.1/ above.

x�x x�xx�xx�xx x� x x�

x x� x�x x�x

The right hand side is similarly drawn, with a doubled version of R0b.1/ followed by
three copies of M .

That the two tangles are equal implies that their corresponding sub-tangles are equal;
specifically that their sub-tangles formed by deleting all but the input strands 1,3,5,8,10,
and 12 (which comprise all six output strands) are equal. These sub-tangles are L0b

and R0b respectively.

The question now is whether there are braids underlying the composition of a product
of enriched categories besides the braids b.1/ and b.5/ above (and their inverses) which
fulfill all obligations. The answer is yes. To find interchanging braids we iteratively
build new monoidal structures from the standard ones, using the duality structure that
exists on V –Cat. By Aopn

we denote the nth (left) opposite of A. By ˝ and ˝0 we
denote the standard tensor products defined respectively with braid b.1/ and its inverse
underlying the middle four interchange.

2.15 Theorem The tensor product of enriched categories given by

A˝1� B D .Aop
˝
0 Bop/po
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is a valid monoidal product on V –Cat. Furthermore, so are the tensor products

A˝n� B D .Aopn

˝
0 Bopn

/pon

as well as those with underlying braids that are the inverses of these, denoted

A˝nC B D .Apon

˝Bpon

/opn

:

Proof The first tensor product is mentioned alone since the middle four interchange
in its composition morphism has the underlying braid shown above as braid b.5/ . Thus
we have already demonstrated its fitness as a monoidal product. However this can be
more efficiently shown just by noting that the category given by the product is certainly
a valid enriched category, and that for three operands we have an associator from the
isomorphism given by the following:

˛1�

ABC W .A˝1� B/˝1� C
D ...Aop

˝
0 Bop/po/op

˝
0 Cop/po

D ..Aop
˝
0 Bop/˝0 Cop/po

Š .Aop
˝
0 .Bop

˝
0 Cop//po

D .Aop
˝
0 ..Bop

˝
0 Cop/po/op/po

DA˝1� .B˝1� C/

The associator implicit in this isomorphism is constructed by taking the right opposite
of instances of the standard associator for ˝0 ;

˛1�

ABC D .˛
0.1/
AopBopCop/

po:

The standard associator for ˝0 is identical to the one for ˝. Thus ˛1� is based upon
˛ in V , since the object sets of the domain and range are the usual cartesian products
and since

˛1�

ABC..A;B/;C /..A0;B0/;C 0/
D ˛A.A;A0/B.B;B0/C.C;C 0/:

This new associator is guaranteed to have V –functorial instances since they are the
images (under the right opposite) of V –functors.

Inductively this process can be repeated with all the left opposites and right opposites
raised to the nth degree. Recall that the unit V –category I has only one object 0

and I.0; 0/ D I , the unit in V . That I is indeed a unit for the tensor products in
question follows from the facts that IopD I D Ipo which are in turn evident from facts
cIA D cAI D 1A . Thus we have that, using any of the above tensor products including
the standard ones ˝D˝0C and ˝0 D˝0� defined respectively with braid b.1/ and
its inverse, V –Cat is a monoidal 2–category.
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The braids underlying these new tensor products are not hard to describe directly.
Suppressing the associators, the instances of the braiding forming the middle four
interchange for ˝1C are as follows, using X 0;Y 0;X;Y to stand for hom objects as
above:

.cXX 0 ˝ cY Y 0/ ı .1X ˝ c�1
YX 0 ˝ 1Y 0/ ı .c

�1
.X 0˝Y 0/.X˝Y //;

with underlying braid b.5/ . Note that b.5/ has also been denoted b1� . Another is the
following braid which underlies ˝2C :

Note that this is precisely the braid b2C shown in the introduction. In fact the construc-
tion of the new products leads to the observation that the braid underlying the middle
four interchange in the composition for the product A˝n˙ B is the previously defined
braid bn˙ .

2.16 Remark Note that if in the definition of ˝n˙ we replace ˝0 with ˝ or vice
versa, then we have another valid tensor product, but with a braid underlying the middle
four interchange in its composition morphisms equivalent to that found in ˝.n�1/˙ .
For example:

D

Next we will show that this condition of being equivalent to some bn˙ is necessary for
a braid to be interchanging, offer some quick checks to determine when this condition
holds, and investigate when the resulting monoidal categories are equivalent. All these
steps are best taken in the context of iterated monoidal categories.

3 2–fold monoidal categories

In this section we closely follow Balteanu, Fiedorowicz, Schwänzl and Vogt [3] in
defining a notion of iterated monoidal category. For those readers familiar with that
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source, note that we vary from their definition only by including associativity up to
natural coherent isomorphisms. Thus we begin by reviewing the definition of lax
monoidal functor. In our examples using a braided category, however, the natural
transformations will all be isomorphisms.

3.1 Definition A lax monoidal functor .F; �/W C!D between monoidal categories
consists of a functor F such that F.I/D I together with a natural transformation

�ABW F.A/˝F.B/! F.A˝B/;

which satisfies the following conditions

Internal Associativity: The following diagram commutes

.F.A/˝F.B//˝F.C /
�AB˝1F.C / //

˛

��

F.A˝B/˝F.C /

�.A˝B/C

��
F.A/˝ .F.B/˝F.C //

1F.A/˝�BC

��

F..A˝B/˝C /

F˛
��

F.A/˝F.B˝C /
�A.B˝C / // F.A˝ .B˝C //

Internal Unit Conditions: �AI D �IA D 1F.A/ .

Given two monoidal functors .F; �/W C ! D and .G; �/W D ! E , we define their
composite to be the monoidal functor .GF; �/W C! E , where � denotes the composite

GF.A/˝GF.B/
�F.A/F.B/ // G

�
F.A/˝F.B/

� G.�AB/ // GF.A˝B/:

It is easy to verify that � satisfies the internal associativity condition above by subdi-
viding the necessary commuting diagram into two regions that commute by the axioms
for � and � respectively and two that commute due to their naturality. MonCat is
the monoidal category of monoidal categories and monoidal functors, with the usual
Cartesian product as in Cat.

A monoidal natural transformation � W .F; �/! .G; �/W D! E is a natural transfor-
mation � W F !G between the underlying ordinary functors of F and G such that the
following diagram commutes

F.A/˝F.B/
� //

�A˝�B

��

F.A˝B/

�A˝B

��
G.A/˝G.B/

� // G.A˝B/
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3.2 Definition A 2-fold monoidal category (with strong associators) is a monoidal
category .V;˝1; ˛

1; I/ and a monoidal functor .˝2; �/W V �V! V which satisfies

External Associativity: the following diagram describes a monoidal natural iso-
morphism ˛2 in MonCat.

V �V �V
.˝2;�/�1V //

1V�.˝2;�/

��

V �V
.˝2;�/

��˛2qy llllllllllllll

llllllllllllll

V �V
.˝2;�/

// V

External Unit Conditions: the following diagram commutes in MonCat

V � I
� //

Š

��999999999999999 V �V

.˝2;�/

��

I �V�oo

Š

�����������������

V

Coherence: The underlying natural transformation ˛2 satisfies the usual coher-
ence pentagon.

Explicitly this means that we are given a second associative binary operation ˝2W V �
V!V , for which I is also a two-sided unit. We are also given a natural transformation
called the interchange which is the functoriality constraint for ˝2 :

�ABCD W .A˝2 B/˝1 .C ˝2 D/! .A˝1 C /˝2 .B˝1 D/:

The internal unit conditions for ˝2 as a monoidal functor give �ABII D �IIAB D

1A˝2B , while the external unit conditions give �AIBI D �IAIBD 1A˝1B . The internal
associativity condition for ˝2 as a monoidal functor gives the commutative diagram

..U˝2V /˝1.W˝2X //˝1.Y˝2Z/
�U V W X˝11Y˝2Z //

˛1

��

�
.U˝1W /˝2.V˝1X /

�
˝1.Y˝2Z/

�.U˝1W /.V˝1X/Y Z

��
.U˝2V /˝1..W˝2X /˝1.Y˝2Z//

1U˝2V˝1�W XY Z

��

..U˝1W /˝1Y /˝2..V˝1X /˝1Z/

˛1˝2˛
1

��
.U˝2V /˝1

�
.W˝1Y /˝2.X˝1Z/

� �U V .W˝1Y /.X˝1Z/ // .U˝1.W˝1Y //˝2.V˝1.X˝1Z//:
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The external associativity condition (˛2 must be a monoidal natural transformation)
gives the commutative diagram:

..U˝2V /˝2W /˝1..X˝2Y /˝2Z/
�.U˝2V /W .X˝2Y /Z //

˛2˝1˛
2

��

�
.U˝2V /˝1.X˝2Y /

�
˝2.W˝1Z/

�U V XY ˝21W˝1Z

��
.U˝2.V˝2W //˝1.X˝2.Y˝2Z//

�U.V˝2W /X.Y˝2Z/

��

..U˝1X /˝2.V˝1Y //˝2.W˝1Z/

˛2

��
.U˝1X /˝2

�
.V˝2W /˝1.Y˝2Z/

� 1U˝1X˝2�V W Y Z // .U˝1X /˝2..V˝1Y /˝2.W˝1Z//

Just as in Balteanu, Fiedorowicz, Schwänzl and Vogt [3] we now define a 2–fold
monoidal functor .F; �1; �2/ between 2–fold monoidal categories. It is a functor
F W V!W together with two natural transformations

�1
ABW F.A/˝1 F.B/! F.A˝1 B/ and �2

ABW F.A/˝2 F.B/! F.A˝2 B/

satisfying the same associativity and unit conditions as in the case of monoidal functors.
In addition we require that the following hexagonal interchange diagram commutes:

.F.A/˝2F.B//˝1.F.C /˝2F.D//
�F.A/F.B/F.C /F.D/ //

�2
AB
˝1�

2
CD

��

.F.A/˝1F.C //˝2.F.B/˝1F.D//

�1
AC
˝2�

1
BD

��
F.A˝2B/˝1F.C˝2D/

�1
.A˝2B/.C˝2D/

��

F.A˝1C /˝2F.B˝1D/

�2
.A˝1C /.B˝1D/

��
F..A˝2B/˝1.C˝2D//

F.�ABCD / // F..A˝1C /˝2.B˝1D//

We can now refer to the category 2�MonCat of 2–fold monoidal categories and
2–fold monoidal functors.

The authors of [3] remark that we have natural transformations

�AIIBW A˝1 B!A˝2 B and �IABI W A˝1 B! B˝2 A:

If they had insisted a 2–fold monoidal category be a tensor object in the category
of monoidal categories and strictly monoidal functors, this would be equivalent to
requiring that �D 1. In view of the above, they note that this would imply A˝1 B D

A˝2 B D B ˝1 A and similarly for morphisms. This is shown by what is usually
referred to as the Eckmann-Hilton argument.

Joyal and Street [9] considered a similar concept to Balteanu, Fiedorowicz, Schwänzl
and Vogt’s idea of 2–fold monoidal category. The former pair required the natural
transformation �ABCD to be an isomorphism and showed that the resulting category is
a braided monoidal category. As explained in [3], given such a category one obtains an
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equivalent braided monoidal category by ignoring one of the two operations, say ˝2 ,
and defining the braiding for the remaining operation ˝1 to be the composite

A˝1 B
�IABI // B˝2 A

��1
BIIA // B˝1 A:

In [3] it is shown that a 2–fold monoidal category with ˝1D˝2D˝, � an isomorphism
and

�AIBC D �ABIC D 1A˝B˝C

is a braided monoidal category with the braiding cBC D �IBCI .

Also note that for V braided the interchange given by �ABCD D 1A˝ cBC ˝1D gives
a 2–fold monoidal category where ˝1D˝2D˝. This interchange has the underlying
braid �2 2 B4 . In this setting we ask whether, given a braiding, there are alternate
2–fold monoidal structures on V , with ˝1 D˝2 D˝. This is the same question as
asking whether there are other interchanging unital braids besides b0C D b.1/ D �2

and its inverse. To be precise, given a braided category .V;˝; ˛; c; I/ (with strict
units, a strong associator ˛ , and braiding c ), we ask the central question: For which
four-strand braids b does the category V have in general a coherent 2–fold monoidal
structure, when that structure has ˝1 D ˝2 D ˝ as functors, has ˛1 D ˛2 D ˛ as
natural transformations, has strict unit I for both identical tensor products, and has b

as the underlying braid of �?

3.3 Lemma Given an arbitrary braided category V , let the 2–fold structure of V be
given by ˝1 D ˝2 D ˝. Then a four-strand braid b is interchanging and unital if
and only if any interchange � with underlying braid b obeys the axioms of a 2–fold
monoidal category.

Proof LbDRb implies the internal associativity axiom of a 2–fold monoidal category,
and L0b D R0b implies the external associativity axiom, as we have foreshadowed
with the naming of these braid equalities. This is seen by the coherence theorem for
braided categories. The unit axioms for the interchange are also implied by the unit
conditions on the braid, described by the fact that deleting certain pairs of strands yields
the identity braid. The converse implication is found by letting V be the free braided
category. Then the axioms of a 2–fold monoidal category become precisely the desired
braid equalities.

Now we are almost ready to state and prove the main result. First there are a couple of
geometric observations to be made about the braids bn˙D.�2�1�3�2/

˙n�˙1
2
.�1�3/

�n .
Recall that we refer to the strands of a braid by their initial positions. A sub-braid will
refer to the braid resulting from the deletion of a subset of the strands of a braid.
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3.4 Lemma If n is odd then deleting the outer two strands in the braid bn˙ leaves
the two strand sub-braid �˙n

1
, while deleting the inner two strands gives the sub-braid

�
˙.nC1/
1

. If n is even then deleting the outer two strands in the braid bn˙ leaves the
two strand sub-braid �˙.nC1/

1
, while deleting the inner two strands gives the sub-braid

�˙n
1

.

Proof Consider the upper portion of the braid bn˙ given by .�2�1�3�2/
˙n . The

outer two strands and the inner pair of strands both are crossed ˙n times. If n is even
then the upper portion is pure and so the next generator �˙1

2
is applied to the inner

two strands. If n is odd then the upper portion has the associated permutation which
sends f1 2 3 4g ! f3 4 1 2g and so the next generator �˙1

2
is applied to the outer two

strands. Note that the lower portion of the braid given by .�1�3/
�n contributes no

further crossings to either the outer or inner sub-braids.

3.5 Corollary The braids bn˙ and bm˙ are equivalent if and only if mD n and the
superscript signs are the same.

Proof For two braids to be equivalent it is necessary that all their corresponding
sub-braids be equivalent. If n;m are both odd (or both even) and the signs are the same
then the implication is clear by Lemma 3.4. Let n;m be both odd (or both even) with
the signs not the same. Then if we assume that bn˙ and bm˙ are equivalent then use
of Lemma 3.4 leads to the absurd implication 1D�1. Let n be odd and m be even
with the superscript signs the same. Then if the sub-braids formed by the outer strands
are equal we have that mD nC 1. Then mC 1D nC 2¤ n so the inner sub-braids
are not equal. Finally let n be odd and m be even with the superscript signs not the
same. If the braids are equivalent then mD�.nC 1/ but both m and n are required
to be non-negative, so this is a contradiction.

Now the main result:

3.6 Theorem A braid b 2B4 is interchanging and unital if and only if it is equivalent
to one of the braids bn˙ .

Proof We will show: [b D bn˙ ] H) [b gives rise to a middle four interchange for a
monoidal structure on V –Cat for arbitrary V ]H) [b interchanging and unital] H)
[b D bn˙ ].

By Theorem 2.15 the middle four interchanges given by suppressing the associators

�ABCD D
�
c
�n
CA
˝ c
�n
DB

�
ı
�
1C ˝ c˙1

DA˝ 1B

�
ı
�
c˙n
.A˝B/.C˝D/

�
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with underlying braid bn˙ , are indeed each a middle four interchange.

Therefore by Lemma 2.14 the braids bn˙ obey L0bn˙ DR0bn˙ . Since the braids bn˙

are equal to their own 180 degree rotations, as mentioned in the introduction, this also
implies that Lbn˙ DRbn˙ . The internal unit conditions are fairly easy to verify by
inspection of the braids bn˙ ; deleting the first two or the last two strands leaves the
identity. The external unit conditions are checked just as easily if we again do so using
the 180 degree rotations of bn˙ .

For the converse we assume that b is interchanging and unital and therefore by Lemma
3.3 it underlies an interchange �.b/ in a braided category V seen as a 2–fold monoidal
category with ˝1 D˝2 D˝. We focus on the two strand sub-braids of b underlying
�.b/AIIB

(the outer sub-braid) and �.b/IABI
(the inner sub-braid). We will now show

that a selection of these two underlying braids uniquely determines the braid b .

First assume that we have chosen a two-strand braid to underlie the inner sub-braid of
b . Consider the internal associativity axiom but with U DW DZ D I . Now the top
horizontal arrow of the diagram has as its underlying braid the three-strand identity
braid. The left vertical side of the diagram has the underlying braid formed by placing
the underlying braid of �.b/IXY I

(the inner sub-braid) to the right of a single strand.
The right vertical side has the underlying braid of �.b/I;V˝X;Y;I

. This latter is just the
choice we made for the inner two-strand sub-braid of b , with the first strand doubled.
The bottom horizontal arrow has the underlying braid of �.b/IV YX

. This last three
strand sub-braid of b is thus determined by the assumption that the diagram commutes,
the braided coherence theorem, and the operation of taking the inverse in the braid
group B3 . Thus we have determined the three strand sub-braid of b formed by deleting
the first strand.

Next we assume that we have chosen a braid to underlie �.b/AIIB
. Then we again

use the internal associativity diagram, this time with V D X D Y D I to similarly
determine the underlying braid of �.b/UIW Z

, that is, the three strand sub-braid of b

formed by deleting the second strand.

Finally we set V DW D I in the internal associativity diagram. Now the top horizontal
arrow has the underlying braid formed by placing the outer two-strand sub-braid of b to
the left of the two-strand identity braid. The left vertical side has the underlying braid
formed by placing a predetermined three strand sub-braid of b (formed by deleting
the first strand) to the right of a single strand. The bottom horizontal arrow has the
underlying braid formed by doubling the last strand of a predetermined three-strand
sub-braid of b (formed by deleting the second strand). Thus by the operation of taking
the inverse in the braid group B4 we can determine the braid underlying the right
vertical side. This is precisely the braid b , underlying �.b/UXY Z

.
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Next we will limit the choices we can make for the underlying braids of �.b/IABI
and

�.b/AIIB
. We utilize Joyal and Street’s result that, for any interchange �, a braiding is

given by:

A˝1 B
�IABI // B˝2 A

��1
BIIA // B˝1 A:

Now our �.b/IABI
and �.b/AIIB

have underlying two-strand braids. Thus by Lemma
2.6 and braided coherence we have the equation

��1
.b/BIIA

ı �.b/IABI
D c˙1

AB or �.b/IABI
D �.b/BIIA

ı c˙1
AB:

Now in order for the permutation associated to b to be .2 3/, �.b/IABI
must be an

odd power of c or c�1 . Therefore our choice for the underlying braids of �.b/IABI

and �.b/AIIB
is reduced respectively to a choice of an odd integer z and a choice of

one of its neighboring integers z˙ 1. The choice of z is the power of the c , and thus
the power of �1 for the inner sub-braid. The latter choice of ˙1 is the choice of the
exponent of c in the above equation, and thus determines the power of �1 for the outer
sub-braid.

Now by Lemma 3.4 these possible choices for the underlying braids of �.b/AIIB
and

�.b/IABI
are all actually represented by one of the bn˙ .

Therefore if any braid b is interchanging and unital then it is equivalent to one of the
braids bn˙ .

The next item on the agenda is to investigate the equivalence of the various 2–fold
monoidal structures which can be constructed from a braiding, with differing underlying
interchanging braids.

4 Equivalence of 2–fold monoidal categories

By finding interchanges which are formed from a braiding we have actually defined a
collection of functors Fb from the category of braided categories to the category of
2–fold monoidal categories. The complete classification of interchanging unital braids
is a well defined parametrization of this family.

4.1 Definition For b an interchanging unital braid, the functor Fb takes each braided
category V to itself, seen as a 2–fold monoidal category with interchange �.b/ . A
braided tensor functor f with �W f .A/˝f .B/!f .A˝B/ is taken by Fb to a 2–fold
monoidal functor Fb.f / which has the same definition on objects and morphisms and
for which �1 D �2 D � .
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4.2 Theorem Given an interchanging unital braid b the functor Fb is naturally
equivalent to either Fb

0C
or to Fb0�

but not to both.

Proof It is directly implied by Joyal and Street [9] that given a 2–fold monoidal
category V with ˝1D˝2 and with strong interchange � then that category is equivalent
to the 2–fold monoidal category V 0 with the same objects and morphisms but with
interchange given by

�0ABCD D 1A˝ .�
�1
CIIB ı �IBCI /˝ 1D

For V braided and in terms of an original interchange �.b/ based on a braiding c with
b interchanging and unital, we have seen in the proof of Theorem 3.6 that �0

ABCD
D

1A˝ c˙1
BC
˝ 1D . Thus V 0 D Fb

0˙
.V/. The 2–fold monoidal functorial equivalence

UV W Fb
0˙
.V/! Fb.V/ is the identity on objects and morphisms. Explicitly UV has

�2
AB
D 1A˝B and �1

AB
D �.b/AIIB

. This allows us to define in the target category:

�UV .A/UV .B/UV .C /UV .D/ D �.b/ABCD
:

The required hexagonal interchange diagram commutes due to braided coherence, using
the braid equalities mentioned in Remark 2.16.

For b such that ��1
.b/CIIB

ı �.b/IBCI
D c , that is,

b 2 fbnC j n is even g[ fbn� j n is odd g;

the family of functors UV make up a natural isomorphism U W Fb
0C
! Fb .

For b such that ��1
.b/CIIB

ı �.b/IBCI
D c�1 , that is,

b 2 fbnC j n is odd g[ fbn� j n is even g;

the family of functors UV make up a natural isomorphism U W Fb0�
! Fb .

There is not in general a natural isomorphism from Fb0�
to Fb

0C
. If there were then

the hexagonal interchange diagram for 2–fold monoidal functors with A D D D I

would become the diagram of braided equivalence between V with braiding c and
V with braiding c�1 . There is not in general a braided equivalence between V with
braiding c and V with braiding c�1 since any �2 (in general based upon c ) would
have to satisfy �2 ı c�1 D c ı�2 which is precluded by the braided coherence theorem
and the fact that B2 is abelian.

Thus the interchanging braids can be divided into two equivalence classes by the relation
given by b� b0 if Fb is equivalent to F 0

b
. The two classes are canonically represented

by the braids b0C and b0� . It would be an interesting future study to consider the
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braid groups Bn for n� 4 modulo that equivalence relation on the first four strands.
With that in mind we turn to examine some shortcuts to determining whether a given
braid is interchanging and unital.

5 Obstructions to being an interchange

The general scheme is to find extra conditions on the interchange �.b/ which together
with the unit conditions and the associativity conditions will force the underlying braid
b to have easily checked characteristics. Then we can find families of unital braids in
B4 which cannot underlie an interchange, that is, which are not equivalent to any braid
bn˙ .

5.1 Theorem Given an interchange candidate braid b with the property that delet-
ing either the 2nd or 3rd strand gives the identity braid on three strands, then b is
interchanging if and only if b D �2 , the second generator of B4 , or its inverse.

Proof This follows the logic of Balteanu, Fiedorowicz, Schwänzl and Vogt [3]. Letting
�D �.b/ be the interchange based on the braiding of V with underlying braid b , note
that deleting a strand in b corresponds to replacing the respective object in the product
A˝B˝C ˝D with the identity I . Now let V DW D I in the internal associativity
diagram to see that due to the hypotheses on b we have that �UX Y Z D 1U ˝ �IX Y Z .
Then let X D Y D I in the internal associativity diagram to see that �U V W Z D

�U V W I ˝ 1Z . Together these two facts imply that �ABCD D 1A ˝ �IBCI ˝ 1D .
Then if we take U D Z D W D 0 in the internal associativity law we get the first
axiom of a braided category for c0

BC
D �IBCI , and letting U D Z D X D 0 in

the internal associativity diagram gives the other one. This then implies that either
c0 D c or c0 D c�1 , since no other combinations of c give a braiding. Therefore
�ABCD D 1A˝ c˙1

BC
˝ 1D which has the underlying braid �˙1

2
. The converse is also

clear from this discussion, since all the implications can be reversed. Of course, we
already have the converse since the braids b0˙ are interchanging.

This sort of obstruction can rule out candidate braids such as the braid b.4/ in Example
2.9. It also rules out all but one element each of the left and right �˙.2n�1/

2
–cosets of

the Brunnian braids in B4 , where the Brunnian braids are those pure braids where any
strand deletion gives the identity braid. Even more broadly this obstruction rules out

Algebraic & Geometric Topology, Volume 7 (2007)



Classification of braids which give rise to interchange 1265

braids such as

b D

5.2 Theorem Let b be an interchange candidate braid with the property that deleting
both the inner two strands leaves the identity sub-braid on the remaining two strands.
Then if b is interchanging it follows that deleting either the second or the third strand
will result in the three strand identity sub-braid on either of the remaining subsets of
strands.

Proof Let �.b/ be the interchange based on the braiding, with underlying interchanging
braid b . We are given that �.b/AIIB

D 1A˝B and must demonstrate that �.b/AIBC
D

�.b/ABIC
D 1A˝B˝C . The conclusion about the deletion of the second strand is shown

by considering the internal associativity diagram with V DX DY D I . The conclusion
about the deletion of the third strand is shown by considering the internal associativity
diagram with V D W D Y D I . An alternative proof just uses the main results to
check all the interchanging braids which fit the hypothesis.

This obstruction rules out all but one element each of the left and right �˙.2n�1/
2

–
cosets of the 2–trivial or 2–decomposable braids in B4 . These latter braids are a
generalization of the Brunnian braids in which deletion of any 2 strands results in a
trivial braid.

Notice that the longer interchanging braids bn˙ for n>0 give examples of interchanges
that do not fit the conditions of the obstruction theorems so far. They also serve as
examples of interchanges � such that �IBCI is not a braiding. Recall however that
they do give a braiding via c0

AB
D ��1

BIIA
ı �IABI as predicted by Joyal and Street.

The latter condition also serves as a source of obstructions on its own. According to
their theorem, any interchanging braid will have the property that dropping the outer
two strands will give a two strand braid with one more or one less crossing of the
same handedness than the two strand braid achieved by dropping the inner two strands.
Indeed this condition rules out some of the same braids just mentioned, namely the
Brunnian cosets of higher powers of �2 in B4 .
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The next sort of obstruction is found by slightly weakening the extra conditions. This
will allow us to rule out a larger, different class of candidates, but they will be a little
bit harder to recognize.

5.3 Theorem Let b be an interchange candidate braid with the property that deleting
either the first or the fourth strand results in a 3–strand braid that is just a power of the
braid generator on what were the middle two strands: �˙n

i ; i D 2 or i D 1 respective
of whether the first or fourth strand was deleted. Then b is interchanging implies that
nD 1.

Proof The strand deletion conditions on the underlying braid b of � are equivalent to
assuming that �IBCD D �IBCI ˝ 1D and that �ABCI D 1A˝ �IBCI . Of course the
power of the generator �i being ˙1 is equivalent to saying that �IBCI is the braiding
c or its inverse. Hence we need only show that the assumptions imply that �IBCI is
a braiding. This is seen immediately upon letting U DW D Z D I in the internal
associativity axiom to get the first axiom of a braiding and letting U DX DZ D I to
get the other one.

This theorem can directly rule out candidates which satisfy the Joyal and Street condition
that cAB D �

�1
BIIA

ı �IABI and the first or last strand deletion condition given here,
but which fail to give a single crossing braid upon that removal. The simplest example
is this braid:

It is also true that a candidate braid which yields a single crossing after deletion of the
first and fourth strands, if interchanging, must then obey the condition that deleting
the first or last strand frees the other of those two from any crossings. This can be
most easily seen by use of the main result; we simply check all four examples of
interchanging unital braids which have inner two strand sub-braids a single crossing.
They are b0˙ and b1˙ .

6 Obstructions to braiding in V–Cat

Notice that in the case of symmetric V the axioms of enriched categories for A˝B
and the existence of a coherent 2–natural associator follow from the coherence of
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symmetric categories and the enriched axioms for A and B . It remains to consider just
why it is that V –Cat is braided if and only if V is symmetric, and that if so then V –Cat
is symmetric as well. This fact is stated by Joyal and Street [9]. We choose to give a
proof here which covers all possible interchanging braids explicitly, and all potential
braidings on V –Cat based on any odd power of the braiding on V , by appealing to
information from the theory of knots and links. This is opposed to arguments based on
the fact that a braiding transports over a tensor equivalence, and on Theorem 4.2.

Our choice allows us to demonstrate how low dimensional topology can inform category
theory as well as vice versa. A braiding c.1/ on V –Cat is a 2–natural transformation
so c

.1/
AB is a V –functor A˝B! B˝A. On objects c

.1/
AB..A;B//D .B;A/. Now to

be precise we define c.1/ to be based upon c to mean that

c
.1/
AB.A;B/.A0;B0/

W .A˝B/..A;B/; .A0;B0//! .B˝A/..B;A/; .B0;A0//

is defined to be

cA.A;A0/B.B;B0/W A.A;A0/˝B.B;B0/! B.B;B0/˝A.A;A0/:

This potential braiding must be checked for V –functoriality. Again the unit axioms
are trivial and we consider the more interesting associativity of hom-object morphisms
property. The following diagram must commute:

.A˝B/..A0;B0/; .A00;B00//˝.A˝B/..A;B/; .A0;B0// M //

c.1/˝c.1/

��

.A˝B/..A;B/; .A00;B00//

c.1/

��
.B˝A/..B0;A0/; .B00;A00//˝.B˝A/..B;A/; .B0;A0// M // .B˝A/..B;A/; .B00;A00//

Let X D A.A0;A00/, Y D B.B0;B00/, Z D A.A;A0/ and W D B.B;B0/. Then
expanding the above diagram using the composition defined as above (denoting various
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composites of ˛ by unlabeled arrows) we have

.X˝Y /˝.Z˝W /

**UUUUUUUUUUUUUUUU

cXY˝cZW
jjjjjj

ttjjjjjj

.Y˝X /˝.W˝Z/

��

X˝..Y˝Z/˝W /

1˝.cY Z˝1/

��
Y˝..X˝W /˝Z/

1˝.cXW ˝1/

��

X˝..Z˝Y /˝W /

��
Y˝..W˝X /˝Z/

��

.X˝Z/˝.Y˝W /

c.X˝Z/.Y˝W /
ddddddddddddd

rrddddddddddddd MAA0A00˝MBB0B00

��
.Y˝W /˝.X˝Z/

MBB0B00˝MAA0A00

TTTTTT

))TTTTT

A.A;A00/˝B.B;B00/

cttjjjjjjjjjjjjjjjj

B.B;B00/˝A.A;A00/

The bottom quadrilateral commutes by naturality of c . The top region must then
commute for the diagram to commute, but the left and right legs have the following
underlying braids

¤

Thus as noted by Joyal and Street [9] neither braid b.1/ nor its inverse can in general
give a monoidal structure with a braiding based on the original braiding. In fact, it is
easy to show more.

6.1 Theorem Let V be a braided category with braiding c . Let the tensor product on
V –Cat be given by the canonical choices for the objects, hom-objects, unit morphisms,
unit enriched category, and associator, and let b be the underlying braid of the compo-
sition morphisms for the tensor product of enriched categories. Then in general there
will not be a braiding in V –Cat based upon the braiding c in V . Moreover, this failure
will also be the case for attempts to produce a braiding in V –Cat based upon any (odd)
power c2nC1 .

Proof Notice that in the above braid inequality each side of the inequality consists
of the braid which underlies the definition of the composition morphism, in this case
b.1/ , and an additional braid which underlies the segment of the preceding diagram
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that corresponds to a composite of c.1/ . In terms of braid generators the left side of
the braid inequality begins with �1�3 corresponding to cX Y ˝ cZW and the right side
of the braid inequality ends with �2�1�3�2 corresponding to c.X˝Z/.Y˝W / . Since
the same braid b must end the left side as begins the right side, then for the diagram
to commute we require b�1�3 D �2�1�3�2b . This implies �1�3 D b�1�2�1�3�2b ,
or that the braids �1�3 and �2�1�3�2 are conjugate in B4 . Conjugate braids have
precisely the same link as their closures, but the closure of �1�3 is an unlinked pair of
circles whereas the closure of �2�1�3�2 is the Hopf link.

¤

If we instead let
c
.1/
AB.A;B/.A0;B0/

D c2nC1
A.A;A0/B.B;B0/

then the requirement becomes that the braids .�1�3/
2nC1 and .�2�1�3�2/

2nC1 are
conjugate in B4 . Both braids have as closure a link of two components–two copies
of the .2nC 1; 2/–torus knot. However the first closure is two unlinked copies of
the knot while in the second closure the two (cabled) copies are linked with linking
number 2nC 1. Thus the braids cannot be conjugate, and so the braids underlying
the legs of the functoriality diagram will not be equal for any choice of middle four
interchange.

6.2 Corollary It is also interesting to note that the braid inequality above is the 180
degree rotation of the one which implies that in general .A˝B/op ¤Aop˝Bop . Thus
the proof also implies that the latter inequality holds in general for a tensor products of
enriched categories with any braid b underlying their composition morphisms, as well
as any power of op as the exponent.

6.3 Remark It is quickly seen that if c is a symmetry then in the second half of the
braid inequality the upper portion of the braid consists of cY Z and cZ Y D c�1

Y Z
so in

fact equality holds. In that case then the derived braiding c.1/ is a symmetry simply
due to the definition.

7 Implications for operads

So far herein we have completely characterized families of interchanges based on
a braiding which can define either a 2–fold monoidal structure on a category or a
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monoidal structure on a 2–category. Another common use of a braiding is to define a
monoidal structure on a category of collections, as in the theory of operads. Operads in
a 2–fold monoidal category are defined as monoids in a certain category of collections
by Forcey, Siehler and Sowers [7]. Here we repeat the basic ideas and the expanded
definition in terms of commuting diagrams. The two principle components of an
operad are a collection, historically a sequence, of objects in a monoidal category and
a family of composition maps. Operads are often described as parameterizations of
n–ary operations. Peter May’s original definition of operad in a symmetric (or braided)
monoidal category [12] has a composition 
 that takes the tensor product of the nth

object (n–ary operation) and n others (of various arity) to a resultant that sums the
arities of those others. The nth object or n–ary operation is often pictured as a tree
with n leaves, and the composition appears like this:

SSSSSS
CCC

{{{
mmmmm CCC

{{{ CCC
{{{


 //

YYYYYYYYYYY
CCC

{{{
hhhhhhh

WWWWWWWWWWWW
TTTTTTTTTT
QQQQQQQQ

JJJJJJ
7777

����
tttttt
mmmmmmmm
jjjjjjjjjj
hhhhhhhhhhhh

By requiring this composition to be associative we mean that it obeys this sort of
pictured commuting diagram:

????
����

????
���� 
 //

OOOOOO
oooooo


��

JJJJ
zzzz

VVVVVVVV
mmmmmm


��

????
���� ????

����


 //

OOOOOO
oooooo QQQQQQQ

????
����
oooooo
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In the above pictures the tensor products are shown just by juxtaposition, but now we
would like to think about the products more explicitly. If the monoidal category is not
strict, then there is actually required another leg of the associativity diagram, where the
tensoring is reconfigured so that the composition can operate in an alternate order. Here
is how that rearranging looks in a symmetric (braided) category, where the shuffling is
accomplished by use of the symmetry (braiding): 

00000

�����

˝

 
˝

!!
˝

 
˝

99999

����� !
˝

GGGGGG

wwwwww

shuffle //

0BBBBBBB@

AAAAAA

}}}}}}

˝

1CCCCCCCA
˝

0BBBBBBBB@
˝

˝

99999

�����

1CCCCCCCCA
˝

LLLLLLL

rrrrrrr

We now foreshadow our definition of operads in an iterated monoidal category with the
same picture as above but using two tensor products, ˝1 and ˝2 . It becomes clear
that the true nature of the shuffle is in fact that of an interchange transformation. 

00000

�����

˝2

 
˝2

!!
˝1 

˝2
99999

����� !
˝1

GGGGGG

wwwwww

shuffle //

0BBBBBBB@

EEEEEE

yyyyyy

˝1

1CCCCCCCA
˝2

0BBBBBBBBBB@

˝2

˝1

222222

������

1CCCCCCCCCCA
˝1

GGGGGG

wwwwww

To see this just focus on the actual domain and range of � which are the upper two
levels of trees in the pictures, with the tensor product .j˝2 j/ considered as a single
object.
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Now we are ready to give the technical definitions. We begin with the definition of
2–fold operad in an n–fold monoidal category, as in the above picture, and then mention
how it generalizes the case of operad in a braided category.

7.1 Definition Let V be a strict 2–fold monoidal category. A 2–fold operad C in V
consists of objects C.j /, j � 0, a unit map J W I! C.1/, and composition maps in V


 12
W C.k/˝1 .C.j1/˝2 � � � ˝2 C.jk//! C.j /

for k � 1, js � 0 for s D 1 : : : k and
Pk

nD1 jn D j . The composition maps obey the
following axioms:

(1) Associativity: The following diagram is required to commute for all k�1, js�0

and it � 0, and where
Pk

sD1 js D j and
Pj

tD1
it D i . Let gs D

Ps
uD1 ju and

let hs D
Pgs

uD1Cgs�1
iu . The � labeling the leftmost arrow actually stands for a

variety of equivalent maps which factor into instances of the interchange.

C.k/˝1

 
kN

sD1
2C.js/

!
˝1

 
jN

tD1
2C.it /

!

12˝1id //

id˝1�

��

C.j /˝1

 
jN

tD1
2C.it /

!

12

��
C.i/

C.k/˝1

 
kN

sD1
2

 
C.js/˝1

 
jsN

uD1
2C.iuCgs�1

/

!!!
id˝1.

Nk
2 


12/

// C.k/˝1

 
kN

sD1
2C.hs/

!
12

OO

(2) Respect of units is required just as in the symmetric case. The following unit
diagrams commute.

C.k/˝1 .˝
k
2
I/

1˝1.˝
k
2
J /

��

C.k/

C.k/˝1 .˝
k
2
C.1//


12

88pppppppppppp

I ˝1 C.k/

J˝11

��

C.k/

C.1/˝1 C.k/


12
88qqqqqqqqqq

Now the problem of describing the various sorts of operads in a braided monoidal
category becomes more clear, as a special case. Here again we let ˝ D ˝1 D ˝2 .
The family of 2–fold structures based on interchanging braids gives rise to a family
of monoidal structures on the category of collections, and thus to a family of operad
structures.
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In the operad picture the underlying braid of an operad structure only becomes important
when we inspect the various ways of composing a product with 4 levels of trees in
the heuristic diagram, such as C.2/˝ .C.1/˝ C.1//˝ .C.1/˝ C.1//˝ .C.1/˝ C.1//.
For this composition to be well defined we require the internal associativity of the
interchange that is used to rearrange the terms. When we consider composing a product
with 3 levels of trees in the heuristic diagram, but with a base term C.n/ with n� 3,
such as: C.3/˝ .C.1/˝ C.1/˝ C.1//˝ .C.1/˝ C.1/˝ C.1//, then we see that the
external associativity of � is also required.

Thus the same theorems proven above for interchanging and non-interchanging families
of braids apply here as well, in deciding whether a certain braid based shuffling of
the terms in an operad product is allowable. The point is that not all shuffles using a
braiding make sense, and the viewpoint of the 2–fold monoidal structure is precisely
what is needed to see which shuffles do make sense. By seeing various shuffles as
being interchanges on a fourfold product rather than braidings on a simple binary
product, we are able to describe an infinite family of distinct compositions of the
braiding each leading to well defined operad structure. The underlying braids are
precisely those we denoted bn˙ . In summary, structures based on a braiding are at
worst ill-defined, at best defined up to equivalence, unless a 2–fold monoidal structure
is chosen. Often in the literature the default is understood to be the simplest such
structure where �ABCD D 1A˝cBC˝1D , but to be careful this choice should be made
explicit. We have directly addressed operads and tensor products of enriched categories.
The results herein should also be applied to V –Act, the category of categories with an
action of a monoidal category as described by McCrudden [13], as well as to V –Mod,
the bicategory of enriched categories and modules as described by Day and Street [4].
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