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Contact Ozsváth–Szabó invariants and Giroux torsion

PAOLO LISCA

ANDRÁS I STIPSICZ

In this paper we prove a vanishing theorem for the contact Ozsváth–Szabó invariants
of certain contact 3–manifolds having positive Giroux torsion. We use this result to
establish similar vanishing results for contact structures with underlying 3–manifolds
admitting either a torus fibration over S1 or a Seifert fibration over an orientable base.
We also show – using standard techniques from contact topology – that if a contact
3–manifold .Y; �/ has positive Giroux torsion then there exists a Stein cobordism
from .Y; �/ to a contact 3–manifold .Y; � 0/ such that .Y; �/ is obtained from .Y; � 0/

by a Lutz modification.

57R17; 57R57

1 Introduction

In [12] Giroux introduced the important invariant Tor.Y; �/ of a contact 3–manifold
.Y; �/, which is now called the Giroux torsion, and is defined as follows: Tor.Y; �/ is
the supremum of the integers n� 1 for which there is a contact embedding of

Tn WD .T 2 � Œ0; 1�; ker.cos.2�nz/dx� sin.2�nz/dy//

into .Y; �/. We say that Tor.Y; �/D 0 if no such embedding exists.

Closed, toroidal 3–manifolds carry infinitely many universally tight contact structures
obtained by inserting copies of Tn around incompressible tori (see Colin [1; 2], Colin–
Giroux–Honda [4] and Honda–Kazez–Matić [19]). Remarkably, as the following result
shows, embedded copies of Tn are the only source of infinite families of distinct tight
contact structures on a closed 3–manifold.

Theorem 1.1 (Colin–Giroux–Honda [4, Theorem 1.4]) Let Y be a closed 3–manifold.
For every natural number n the 3–manifold Y carries at most finitely many isomorphism
classes of tight contact structures with Giroux torsion bounded above by n.
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Contact Ozsváth–Szabó invariants are very useful tools in studying contact structures
on closed 3–manifolds. The nature of these invariants is still unclear though, and it is
natural to ask how the invariants change under the introduction of Giroux torsion. Based
on the analogy between Seiberg–Witten and Heegaard Floer theories the following is
expected:

Conjecture 1.2 If Tor.Y; �/ > 0 then the untwisted contact Ozsváth–Szabó invariant
c.Y; �/ vanishes.1

Conjecture 1.2 has been verified by Paolo Ghiggini [8] for a class of contact Seifert
fibered 3–manifolds. In the following we will extend his result and verify Conjecture
1.2 for a much wider family of contact 3–manifolds.

A recent result of D Gay [5] asserts that a contact structure with positive Giroux torsion
is not strongly fillable. Since strongly fillable contact structures have nonvanishing
contact Ozsváth–Szabó invariants, Conjecture 1.2 is consistent with Gay’s result. Indeed,
starting from any contact 3–manifold with positive Giroux torsion, Gay constructs
a symplectic cobordism which contains homologically essential 2–spheres with self–
intersection zero. This suggests that such a cobordism could be used to find constraints
on certain Seiberg–Witten invariants, thus re–proving Gay’s nonfillability result. On
the other hand, at present we do not understand well enough how the contact invariants
of Ozsváth and Szabó’s behave under the maps induced between the relevant Heegaard
Floer groups by general symplectic cobordisms. This is the main obstacle which
prevents us from proving Conjecture 1.2 using Gay’s construction.

In this paper we build a different type of cobordism on a contact 3–manifold with
positive Giroux torsion. Our cobordism is better suited than the one of Gay’s to study
the contact Ozsváth–Szabó invariants because it is a union of Stein 2–handles, and the
behaviour of the invariants under the corresponding maps is well understood. It follows
that the contact invariant is always in the image of such a map, which is very useful. In
fact, in the cases considered in this paper we prove that the invariant is equal to zero
by showing that a certain map induced by the cobordism vanishes.

Throughout the paper, every 3–manifold will be considered to be oriented and every
contact structure positive and cooriented. Recall that in Ozsváth–Szabó [27] a variety
of homology groups – the Ozsváth–Szabó homologies – and a natural map

'.Y;t/WHF1.Y; t/!HFC.Y; t/

1After the completion of this work, P Ghiggini, K Honda and J van Horn-Morris posted [10] containing
a proof of Conjecture 1.2. Their approach — relying on a newly invented invariant of Honda, Kazez and
Matić [18] — is different from the surgery theoretic approach we adopt in this paper.
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are defined for closed, oriented spinc 3–manifolds. (For more about Ozsváth–Szabó
homologies see Section 2.)

Definition 1.3 We say that the closed 3–manifold Y has simple Ozsváth–Szabó
homology at the spinc structure t 2 Spinc.Y / if the map '.Y;t/ is surjective. Y is
called OSz–simple if Y has simple Ozsváth–Szabó homology for every spinc structure
t 2 Spinc.Y /.

A rational homology sphere is called an L–space in Ozsváth–Szabó [29] provided
that the map '.Y;t/ is surjective for every t. Examples of L–spaces can be produced
by considering plumbings of spheres along trees with no “bad vertices” (see Ozsváth–
Szabó [24]) or by taking double branched covers of S3 along nonsplit, alternating links
(see Ozsváth–Szabó [30, Section 3]). If one uses Z=2Z–coefficients then Seifert fibered
3–manifolds over an orientable base with sufficiently large background Chern numbers
are OSz–simple, see Section 2. Also, it is not hard to see that Y is OSz–simple if and
only if �Y is.

Given a contact 3–manifold .Y; �/, we shall denote by t� the spinc structure induced
by � . Our first result is:

Theorem 1.4 Let .Y; �/ be a contact 3–manifold such that Y is OSz–simple. If
Tor.Y; �/ > 1 then c.Y; �/ D 0. If b1.Y / � 1 then Tor.Y; �/ > 0 already implies
c.Y; �/D 0.

Remark 1.5 The proof of Theorem 1.4 works under the weaker assumption that Y

has simple Ozsváth–Szabó homology at the spinc structure t� . One way to check that
Y has simple Ozsváth–Szabó homology at t is to prove that Y is OSz–simple, see
Proposition 2.4.

The following two results deal with many cases where the underlying manifolds are
not OSz–simple.

Theorem 1.6 Let Y be a closed 3–manifold which admits a torus fibration over S1 .
Then there exists an integer nY � 0 such that for every contact structure � on Y with
Tor.Y; �/ > nY we have c.Y; �/ D 0. If the monodromy A of the torus fibration is
trivial then nY D 0. If A is elliptic (j tr.A/j < 2) or parabolic (j tr.A/j D 2) then
nY � 1.

Theorem 1.7 Let .Y; �/ be a contact 3–manifold such that Y admits a Seifert fibration
over an orientable base. If Tor.Y; �/ > 2 then using Z=2Z–coefficients the contact
Ozsváth–Szabó invariant c.Y; �/ vanishes.
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In a slightly different direction, these vanishing results can be used to study strong
and Stein fillability of contact structures. In [6] Ghiggini found the first examples of
strongly fillable contact structures which are not Stein fillable. His examples live on
the Brieskorn 3–spheres �†.2; 3; 12nC 5/, n � 1. The following consequence of
Theorem 1.4, pointed out to us by Paolo Ghiggini, slightly generalizes [6, Theorem 1.5].

Theorem 1.8 Let †n be the Brieskorn homology 3–sphere of type .2; 3; 6nC 5/,
oriented as the link of the corresponding isolated singularity. For every n � 2, the
oriented 3–manifold �†n carries a strongly fillable contact structure which is not Stein
fillable.

Finally, using standard techniques from contact topology we establish the following
Theorem 1.9, which lies within the circle of ideas of this paper and appears to be of
independent interest. It is worth pointing out that we did not use Theorem 1.9 to prove
any of the previous results, except for the second part of the statement of Theorem
1.4. Given a smoothly embedded torus T � .Y; �/ with characteristic foliation made
of simple closed curves, following Colin [3] and Colin–Giroux–Honda [4], we call
the insertion of a copy of T1 around T a Lutz modification of � along T (not to be
confused with the so–called Lutz twist along a knot transverse to � ).

Theorem 1.9 Let n� 1, and suppose that Tn embeds inside the contact 3–manifold
.Y; �/. Then there is a sequence of Legendrian surgeries on .Y; �/ which yields a contact
3–manifold .Y; � 0/ such that .Y; �/ is obtained from .Y; � 0/ by a Lutz modification
along an embedded copy of Tn�1

2.

The paper is organized as follows. Section 2 is devoted to the recollection of basic
facts regarding Ozsváth–Szabó homologies and contact Ozsváth–Szabó invariants. We
also compute the Ozsváth–Szabó homology groups of some of the 3–manifolds which
will appear in later arguments. In Section 3 we prove a few auxiliary results which will
be used in the proofs of the results stated above. In Section 4 we prove all the results
except Theorem 1.9, which is proved in Section 5.

Acknowledgements The second author was partially supported by OTKA T49449.
The authors also acknowledge partial support by the EU Marie Curie TOK program
BudAlgGeo. We would like to thank Paolo Ghiggini for helpful discussions and for
pointing out a computational mistake.

2When nD 1 , this is to be interpreted as an embedded 2–torus with characteristic foliation made of
simple closed curves.
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2 Contact Ozsváth–Szabó invariants

2.1 Ozsváth–Szabó homologies

In the seminal papers of Ozsváth and Szabó [27; 26] a collection of homology groups –
the Ozsváth–Szabó homologies – bHF .Y; t/;HF˙.Y; t/ and HF1.Y; t/ have been
assigned to any closed, oriented spinc 3–manifold .Y; t/. A spinc cobordism .W; s/
from .Y1; t1/ to .Y2; t2/ induces ZŒU �–equivariant homomorphisms yFW ;s , F˙

W ;s and
F1

W ;s between the corresponding groups. We shall use the symbol FW ;s to denote any
of these maps. For a fixed spinc structure t 2 Spinc.Y / these groups fit into long exact
sequences

: : :!HF�d .Y; t/!HF1d .Y; t/
'.Y;t/�! HFC

d
.Y; t/! : : :

: : :! bHF d .Y; t/!HFC
d
.Y; t/

�U�!HFC
d�2

.Y; t/! : : :

These exact sequences are functorial with respect to the maps induced by spinc

cobordisms. Throughout the paper we shall use Ozsváth–Szabó homology groups
with Z–coefficients, with the exceptions of Theorem 1.7 and Proposition 2.6, where
Z=2Z–coefficients are used.

Ozsváth–Szabó homology groups and the maps induced by the cobordisms form a
TQFT in the sense that the composition of two spinc cobordisms .W1; s1/ and .W2; s2/

induce a map which can be given by the composition of the maps. There is, however,
a subtlety following from the fact that the spinc structures si on Wi (i D 1; 2) do
not uniquely determine a spinc structure on the union W1 [W2 . Consequently the
composition formula reads as follows:

Theorem 2.1 (Ozsváth–Szabó [31, Theorem 3.4]) Suppose .W1; s1/ and .W2; s2/

are spinc cobordisms with @W1D�Y1[Y2 , @W2D�Y2[Y3 and set W DW1[Y2
W2 .

Let S denote the set of spinc structures on W which restrict to Wi as si for i D 1; 2.
Then

FW2;s2
ıFW1;s1

D
X
s2S
˙FW ;s:

An important ingredient in our subsequent discussions is

Proposition 2.2 (Ozsváth–Szabó [31, Lemma 8.2]) Suppose that .W; s/ is a 4–
dimensional spinc cobordism between .Y1; t1/ and .Y2; t2/. If bC

2
.W / > 0 then the

map
F1W ;sWHF1.Y1; t1/!HF1.Y2; t2/

is zero.
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Corollary 2.3 Suppose that the 4–dimensional cobordism W between Y1 and Y2 has
bC

2
.W / > 0 and Y1 has simple OSz–homology at t1 . Then for every spinc structure

s 2 Spinc.Y / with sjY1
D t1 the maps FC

W ;s and yFW ;s vanish.

Proof Proposition 2.2 implies the vanishing of F1
W ;s . Combining this with the as-

sumption that Y1 has simple OSz–homology at t1 , the fact that

FC
W ;s ı'.Y1;sjY1/ D '.Y2;sjY2

/ ıF1W ;s

immediately implies the vanishing of FC
W ;s . The vanishing of yFW ;s now follows from

the naturality of the exact sequence connecting the groups bHF and HFC .

Examples of OSz–simple manifolds are provided by certain torus bundles over S1 .

Proposition 2.4 A torus bundle Y ! S1 with elliptic or parabolic monodromy
A 2 SL.2;Z/ (that is, j tr.A/j< 2 or j tr.A/j D 2) is OSz–simple.

Proof Suppose first that Y has elliptic monodromy. By the classification of torus
bundles over S1 (see, for example, Hatcher [16]) it follows that, up to changing its
orientation, Y is the boundary of one of the three plumbings described in Figure 1. In

# #

#�2

�2 �2 �2 �2 �2 �2 �2 �2

Y8 D @ zE8

�2

�2 �2 �2 �2 �2 �2 �2

Y7 D @ zE7

�2

�2

�2 �2 �2 �2 �2

Y6 D @ zE6

Figure 1: Torus bundles with elliptic monodromy

fact, these plumbings are regular neighbourhoods of the elliptic singular fibers zE6 , zE7

and zE8 , see Harer–Kas–Kirby [15]. It is easy to check that by deleting the vertices
indicated by the arrows one gets the 3–manifolds S3

i�9
.K/, where K denotes the left–

handed trefoil knot (i D 6; 7; 8). On the other hand, by assigning weight .�1/ to the
vertices indicated by the arrows, we get the lens spaces L.9� i; 1/ (i D 6; 7; 8). Since
lens spaces, and all r –surgeries on K with r ��1 are L–spaces (see Ozsváth–Szabó
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[26, Section 3] and [23, Lemma 7.12 and Section 8]), the surgery exact triangle [26]
for the bHF –theory implies that rk bHF .Yi/� 2.9� i/ (i D 6; 7; 8/. Since

H1.Yi IZ/D Z˚Z=.9� i/Z .i D 6; 7; 8/;

and for a torsion spinc structure t2Spinc.Y / with b1.Y /D1 we have rk bHF .Y; t/�2

(see Lisca–Stipsicz [21]), we conclude that rk bHF .Yi/ D 2.9� i/, which, in view
of [21, Proposition 2.2] shows that each Yi (i D 6; 7; 8) is OSz–simple. (For Y8 the
same fact is proved in [23, Section 8.1].)

Let us now consider the case of parabolic monodromy. By the classification of torus
bundles (see, for example, Hatcher [16]), we know that Y is either a circle bundle
over a torus or a Klein bottle, or it is diffeomorphic to the Seifert fibered 3–manifold
described by the diagram of Figure 2.

#
�2

�2

�2

�2 �2

Figure 2: The Seifert fibered manifold M
�
0I 1

2
; 1

2
;�1

2
;�1

2

�
The trivial circle bundle T 3 over the 2–torus is OSz–simple by Ozsváth–Szabó [23,
Section 8.4]. If the circle bundle Yn!T 2 has Euler number n then Yn is diffeomorphic
to M f0; 0; ng of [23, Subsection 8.2]. For nD 1 the Ozsváth–Szabó homology group
bHF .Y1/ is shown in the proof of [23, Proposition 8.4] to be Z4 , verifying the statement.
For n> 1 we can proceed by a simple induction on n: By the surgery triangle written
for the n–framed unknot in the surgery diagram for M f0; 0; ng described in [23,
Subsection 8.2] we get

rk bHF .YnC1/� rk bHF .S1 �S2#S1 �S2/C rk bHF .Yn/D 4C 4nD 4.nC 1/:

On the other hand,
H1.YnC1IZ/Š Z2˚Z=.nC 1/Z

implies that rk bHF .YnC1/ � 4.nC 1/, hence Yn is OSz–simple for n � 0. Since
by reversing the orientation if necessary, we may assume the Euler number n to be
positive, we conclude the proof for circle bundles over T 2 .

Circle bundles over the Klein bottle K can be handled similarly. A surgery description
of such a 3–manifold Zn with Euler number n is given by Figure 3 (see Gompf and
Stipsicz [14, Figure 6.4 with k D 0 and l D 2]). Simple Kirby calculus shows that this
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nC 40 0

2 2

Figure 3: Circle bundle over the Klein bottle with Euler number n

�2

�2

�1
n �1

�2

�2

@Š

�2

�2

�2
�2 �2 �2

�2

�2

� � � � � �„ ƒ‚ …
n�1

 �

(a) (b)
Figure 4: Alternative plumbing diagrams for circle bundle over the Klein bottle

diagram provides the same 3–manifold as the plumbing of Figure 4(a).

For n> 0 this is equivalent to the plumbing of Figure 4(b), and for nD 0 (after turning
the diagram into a surgery picture and sliding one .�1/–circle over the other and
cancelling the 0–framed unknot against the .�1/–circle) we get that Figure 4(a) gives
the same 3–manifold as Figure 2. As before, we can assume that n � 0 by possibly
reversing orientation. Consider the surgery exact sequence for the vertex indicated by
the arrow in Figure 4(b) (and Figure 2 for nD 0). Notice that the two other manifolds
in the surgery triangle are both L–spaces: one is diffeomorphic to the link LnC4

of the DnC4 singularity, while the other to Ln for n � 4, to L.4; 3/ for n D 3, to
L.2; 1/#L.2; 1/ for nD 2, to L.4; 1/ for nD 1 and finally to �L4 for nD 0. Since
Ln is well–known to have elliptic geometry, by Ozsváth–Szabó [29, Proposition 2.3]
it is an L–space. Thus, since jH1.LnIZ/j D 4, we have

bHF .Ln/Š bHF .L.4; i//Š bHF .L.2; 1/#L.2; 1//Š Z4:

This implies that rk bHF .Zn/ � 8. On the other hand, H1.ZnIZ/ is either Z ˚
Z=2Z˚Z=2Z or Z˚Z=4Z (depending on the parity of n), hence we conclude that
bHF .Zn/D Z8 , verifying the statement.

Remark 2.5 Notice that torus bundles with elliptic monodromies are boundaries of
neighbourhoods of type II , II� , III , III� , IV , IV� fibers in elliptic fibrations (see
Harer–Kas–Kirby [15]). Torus bundles with parabolic monodromies can be regarded
(up to orientation) as boundaries of neighbourhoods of elliptic In –fibers (when the
torus bundle is a circle bundle over T 2 , n � 1) and of elliptic I�n –fibers (which are
S1 –fibrations over the Klein bottle, n� 0), see [15].
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Further examples of OSz–simple 3–manifolds are provided by certain Seifert fibered 3–
manifolds. If Y is a Seifert fibered 3–manifold over S2 with nonnegative background
Chern number then �Y is the boundary of a starshaped plumbing with no bad vertices
(in the sense of Ozsváth–Szabó [24]). By [24] this implies that �Y , and therefore
Y is OSz–simple. If Y is a Seifert fibered 3–manifold over an orientable base and
the background Chern number is large enough then Y is OSz–simple, provided we
use Z=2Z–coefficients in the definition of the Ozsváth–Szabó homology groups. Most
probably the statement holds true for Z–coefficients as well, but since the computational
tool we will use in the proof has been verified in Ozsváth–Szabó [22] with Z=2Z–
coefficients, we restrict our attention to this case. Before stating the result we need
to fix our notations on Seifert fibered spaces. We do this following the conventions
of [22]. We say that a Seifert fibered 3–manifold Y over a genus g surface has Seifert
invariants

�
a; r1

q1
; : : : ; rn

qn

�
if the Seifert fibration on Y is obtained in the canonical

way by performing
��q1

r1

�
–, : : :,

��qn

rn

�
–surgeries along n fibers of the circle bundle

Yg;a!†g over an orientable genus–g surface †g with Euler number e.Yg;a/D a.
In the above definition we assume ri

qi
2 .0; 1/\Q, i D 1; : : : ; n.

Proposition 2.6 Let Y be a Seifert fibered 3–manifold over a genus g surface with
Seifert invariants

�
a; r1

q1
; : : : ; rn

qn

�
. If a> 2g and we consider Ozsváth–Szabó homology

groups with Z=2Z–coefficients, then Y is OSz–simple.

Proof Let us fix a spinc structure t 2 Spinc.Y / on Y . According to [22, Theorem
10.1] we only need to check that the function ht W Z! Z has a unique local minimum
for every t satisfying �g � t � g . By definition,

ht .s/D

8̂<̂
:
Ps�1

iD0 ıt .i/ if s > 0

0 if s D 0

�P�1
iDs ıt .i/ if s < 0;

where

(2–1) ıt .s/D .�1/sC1t C �0C a � sC
nX

iD1

j�i C ri � s
qi

k
:

In the formula above we adopt the notations of [22, Section 10]; in particular

H1.Y IZ/Š H1.†gIZ/˚Z=m0Z˚ : : :˚Z=mnZ

.a �m0C
Pn

iD1 ri �mi D 0; ri �m0� qi �mi D 0/

and under the identification Spinc.Y /ŠH1.Y IZ/ provided by [22, Theorem 10.1]
the spinc structure t corresponds to �0 �m0C : : :C �n �mn .
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Therefore it suffices to show that, for every �g � t � g , the function ıt changes sign
only once, that is,

ıt .s/ > 0 implies ıt .sC 1/ > 0:

Notice that we have a freedom in choosing �0 (and [22, Theorem 10.1] shows, in
particular, that different choices giving the same spinc structure yield the same Ozsváth–
Szabó homology groups). Since we are only concerned with torsion spinc structures,
we can fix �0 to be arbitrarily large in absolute value and negative. It then follows from
Formula (2–1) that we can assume ıt .s/ < 0 for s � 0. Now suppose that �g � t � g ,
s>0 and ıt .s/>0. To finish the proof it clearly suffices to verify that ıt .s/<ıt .sC1/.
Since

nX
iD1

j�i C ri � s
qi

k
<

nX
iD1

j�i C ri � .sC 1/

qi

k
and 2jt j � 2g < a, we have

ıt .s/D .�1/sC1t C �0C a � sC
nX

iD1

j�i C ri � s
qi

k
<

� .�1/sC1t C �0C a � sC aC
nX

iD1

j�i C ri � .sC 1/

qi

k
D ıt .sC 1/;

as required.

2.2 Contact Ozsváth–Szabó invariants

A contact structure � on Y determines an element c.Y; �/2bHF .�Y; t�/ (and similarly
in HFC.�Y; t�/) up to sign, which has the following crucial properties (see Ozsváth–
Szabó [28; 25]):

� ˙c.Y; �/ is an isotopy invariant of the contact 3–manifold .Y; �/;

� c.Y; �/D 0 if the contact structure � is overtwisted;

� c.Y; �/¤ 0 if .Y; �/ is strongly fillable;

� if .YL; �L/ is given by contact .�1/–surgery along the Legendrian knot L �
.Y; �/, inducing the Stein cobordism W with canonical spinc structure s0 then
by W denoting W when turned upside down we have

FW ;s0
.c.YL; �L//D c.Y; �/ and FW ;s.c.YL; �L//D 0

for all other spinc structures s¤ s0 , see Ghiggini [9] and Plamenevskaya [32].
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Remark 2.7 The above statements hold true using both Z and Z=2Z coefficients.
Ozsváth and Szabó defined twisted versions of their contact invariants in such a way
that every weakly fillable contact structure admits a nontrivial twisted contact Ozsváth–
Szabó invariant for some appropriate twisting. In this paper, however, we concentrate
on untwisted invariants.

3 Auxiliary results

In this section we establish two auxiliary results which will be used in the proofs of
the next section.

Suppose that T 2 � Œ0; 1� is embedded into a 3–manifold Y . Consider the tori Ti D
T 2�ftig with 0< t1< t2<: : :< tk <0 and for every iD1; : : : ; k let fC j

i gsi

jD1
�Ti be

a finite collection of parallel and disjoint simple closed curves. Perform 3–dimensional
Dehn surgery along each C

j
i with framing �1 with respect to the framing induced by

the torus Ti , and call Y 0 the resulting 3–manifold. In the following DC will denote
the right–handed Dehn twist along the curve C � T 2 in the mapping class group �1

of the torus T 2 . To keep notation short, a Dehn twist along a curve C
j
i isotopic to Ci

will be denoted by DCi
.

Proposition 3.1 The 3–manifold Y 0 is obtained from Y by cutting it along T 2 � f0g
and regluing via the diffeomorphism

D
sk

Ck
ıD

sk�1

Ck�1
ı : : : ıD

s1

C1
:

Proof It is an easy exercise to check that the surgery along each C
j
i results in cutting

Y along T � ftig and regluing with the map D
C

j

i

. To prove the statement we only
need to check that performing all the surgeries is equivalent to cutting and regluing via
the composition of diffeomorphisms in the order stated. In order to see this, modulo an
easy induction argument it suffices to show that if F , G and H are closed, oriented
surfaces and 'W F!G ,  W G!H are orientation–preserving diffeomorphisms, then
the two quotients

.F � Œ0; 1
3
�/t .G � Œ1

3
; 2

3
�/t .H � Œ2

3
; 1�/

.x; 1
3
/� .'.x/; 1

3
/; .y; 2

3
/� . .y/; 2

3
/

and
.F � Œ0; 2

3
�/t .H � Œ2

3
; 1�/

.x; 2
3
/� .. ı'/.x/; 2

3
/

are orientation–preserving diffeomorphic. In fact, an orientation–preserving diffeomor-
phism is induced by the map

.idF � idŒ0; 1
3
�/t .'�1 � idŒ 1

3
; 2

3
�/t .idH � idŒ 2

3
;1�/:
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Let us now fix an identification of T 2 � f0g with R2=Z2 , and let a and b denote the
linear curves with slopes 0 and 1, respectively, obtained by mapping the coordinate
axes of R2 to R2=Z2 . For short, let us also denote by a and b the right–handed Dehn
twists along the curves a and b . It is a well–known fact that a and b generate the
mapping class group �1 of the torus T 2 , which has presentation

�1 D ha; b j abaD bab; .ab/6 D 1i:
Using the relation abaDbab it easily follows from .ab/6D1 that .a3b/3D .b3a/3D1.
Consider the element

(3–1)  D .a3b/3b D a3ba3ba3b2

in �1 viewed as a product of six factors, each of which is a power of either a or b .
Let 0< t1 < � � �< t6 < 1, and consider simple closed curves Ci � T 2 � ftig with Ci

isotopic to b for i odd and to a for i even. By adding the right number of parallel
copies of the same curve on each torus T 2�ftig we can ensure that the diffeomorphism
associated via Proposition 3.1 to performing .�1/–surgery along each of the curves is
the above elemenent  2 �1 . Attach 4–dimensional 2–handles along the above knots
with framing .�1/ with respect to the surface framings induced by the tori T 2 � ftig,
and denote the resulting 4–dimensional cobordism built on Y by W .

Proposition 3.2 The 4–dimensional cobordism W defined above satisfies bC
2
.W / >

0.

Proof Consider the first six a–curves Ci and their corresponding 2–handles. By
sliding each of the first five 2–handles over the next one it is easy to see that W

contains the 4–manifold obtained by attaching 2–handles to a chain of five .�2/–
framed unknots contained in a 3–ball inside Y . Now consider the four b–curves and
slide their corresponding 2–handles in the same way. This gives a framed link still
contained in a 3–ball inside Y with intersection graph given by Figure 5.

�2

�2

�2

�2 �2 �2 �2 �2

Figure 5: The 4–dimensional plumbing P �W
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Viewing Figure 5 as representing a smooth 4–dimensional plumbing P �W , it is easy
to check that the associated 8� 8 intersection matrix has determinant �3, hence the
matrix has at least one positive eigenvalue. This implies that bC

2
.P / > 0 and therefore

bC
2
.W / > 0.

4 Proofs of Theorems 1.4, 1.6, 1.7 and 1.8

Proof of Theorem 1.4 The assumption that .Y; �/ has torsion at least 2 implies that
there is a contact embedding i WT2 ,! .Y; �/. Since the germ of a contact structure
around a surface is determined by the induced characteristic foliation, for some small
� > 0 there is a contact embedding

(4–1) .T 2 � Œ��; 1C ��; ker.cos.4�z/dx� sin.4�z/dy// ,! .Y; �/

extending i above. Fix an identification of the torus T 2 with R2=Z2 such that the
characteristic foliation induced on T 2 � f0g has slope 1 and let a and b be simple
closed curves on T 2 with slopes 0 and 1, respectively. As before, by abuse of
notation, we shall denote by a and b the elements of the mapping class group of the
torus �1 determined by positive Dehn twists around the curves a and b . Since in the
group �1 we have .a3b/3 D .b3a/3 D 1, it follows that

1D .a3b/3.b3a/3 D a3ba3ba3b4ab3ab3a;

therefore

(4–2) 1D a.a3b/3.b3a/3a�1 D a4ba3ba3b4ab3ab3:

Then conjugating the last word in (4–2) by bn we get the word

(4–3) .bnab�n/4b.bnab�n/3b.bnab�n/3b4.bnab�n/b3.bnab�n/b3;

which is easily checked to be a composition of powers of Dehn twists along simple
closed curves of slopes

(4–4) �n;1;�n;1;�n;1;�n;1;�n;1:
If n is sufficiently large, by (4–1) we can locate inside .Y; �/ embedded tori whose
characteristic foliations are made of simple closed curves having slopes given by (4–4).
In view of Proposition 3.1 we can perform Legendrian surgery on a suitable number
of parallel Legendrian curves on such tori, so that the resulting smooth 3–manifold
is obtained by cutting Y along T and regluing via a diffeomorphism whose isotopy
class is specified by the word (4–3). But by construction this word represents 1 2 �1 ,
therefore the resulting 3–manifold is Y again, so the construction yields a Stein
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cobordism W from .Y; �/ to .Y; � 0/ for some contact structure � 0 . Moreover, we know
that c.Y; �/D yFW ;s0

.c.Y; � 0//. Since the word (4–2) contains the word given by (3–1),
by Proposition 3.2 we have bC

2
.W / > 0. Therefore if Y is OSz–simple then Corollary

2.3 implies that the map yFW ;s0
vanishes, verifying that c.Y; �/D 0.

We shall now prove the second part of the statement assuming Theorem 1.9, which
will be proved in Section 5. Suppose that b1.Y / � 1 and Tor.Y; �/ > 0, that is, we
have a contact embedding T1 ,! .Y; �/. In Section 5 we will show that one can build
a Stein cobordism W1 from .Y; �/ to a contact 3–manifold .Y; � 0/ using the word
.b3a/3 , in such a way that .Y; �/ is obtained from .Y; � 0/ by a Lutz modification. It
follows by Colin [1] that the contact structures � and � 0 are homotopic as 2–plane
fields, and therefore if c.Y; �/¤ 0 the two invariants c.Y; �/ and c.Y; � 0/ are elements
of the same Ozsváth–Szabó group bHF d .�Y; t�/. Moreover, since Y is OSz–simple
and b1.Y /� 1, this group is of rank 1 (see Ozsváth–Szabó [23, Definition 4.9] when
H1.Y IZ/ Š Z, the remark on [23, page 250] in general, and also Lisca–Stipsicz
[21, Proposition 2.2]). Thus, the restriction of the map FW 1;s0

to bHF d .�Y; t�/ is
multiplication by some k 2Z. Now observe that the smooth cobordism W2DW1 ıW1

obtained by “composing” W1 with itself can be constructed using the word .b3a/6 ,
which contains (up to conjugation) the word given by (3–1). Therefore by Proposition
3.2 bC

2
.W2/ > 0. As before, by Corollary 2.3 this implies F1

W2;s
D 0 for any s 2

Spinc.W2/, and so by Theorem 2.1

.FW1;s0
ıFW1;s0

/.c.Y; � 0//D
X
˙FW2;s.c.Y; �

0//D 0;

and it follows that k D 0. This shows that c.Y; �/D FW1;s0
.c.Y; � 0//D 0, concluding

the proof.

Proof of Theorem 1.6 If the monodromy is trivial then Y is the 3–torus T 3 . Suppose
that � is a contact structure on T 3 with Tor.T 3; �/ > 0. By the classification of tight
contact structures on T 3 (see Kanda [20]), up to applying a diffeomorphism of T 3 we
may assume that there is a contact embedding T1 ,! .T 3; �/ such that T 2�f0g � T1

maps to T 2�fsg � T 2�S1D T 3 for some s 2 S1 . Fix an identification of T 2�fsg
with R2=Z2 , and denote, as before, by a and b , respectively, the right–handed Dehn
twists along simple closed curves with slopes 0 and 1. Arguing as in the proof
of Theorem 1.4 we can use the word .a3b/3b D b in the mapping class group to
build a Stein cobordism W from .T 3; �/ to .Y1; �

0/, where Y1 is a torus bundle over
S1 with monodromy b . By Proposition 2.4 the 3–manifold Y1 is OSz–simple and
by Proposition 3.2 we have bC

2
.W / > 0, therefore by Corollary 2.3 it follows that

c.T 3; �/D FW ;s0
.c.Y1; �

0//D 0.
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The proof of the statement when j tr.A/j< 2 or j tr.A/j D 2 follows from Proposition
2.4 combined with Theorem 1.4.

Now suppose that j tr.A/j > 2. In this case any incompressible torus is isotopic to
the fiber of the fibration (see Hatcher [16, Lemma 2.7]). Let the monodromy of the
fibration be denoted by A 2 SL2.Z/Š �1 and fix a decomposition of A�1 into the
product of right–handed Dehn twists. Since T1 contains tori with linear characteristic
foliations of any rational slope, if Tn ,! .Y; �/ with n sufficiently large, by performing
suitable Legendrian surgeries as before we can construct a Stein cobordism WA from
.Y; �/ to .T 3; �A/ for some contact structure �A . Moreover, up to choosing a larger
n we may assume that Tor.T 3; �A/ > 0, and therefore by the first part of the proof
c.T 3; �A/D 0. It follows that c.Y; �/D FWA;s0

.c.T 3; �A//D 0. Notice that in this
way a bound for the optimal nY can be easily deduced from the decomposition of A�1

into the product of right–handed Dehn twists. (This bound is still far from the value
nY D 0 predicted by Conjecture 1.2.)

Proof of Theorem 1.7 By, for example, [16, page 30], unless Y is an elliptic or
parabolic torus bundle over S1 , an incompressible torus T ,! Y can be isotoped to
be the union of regular fibers of the Seifert fibration. Therefore, in view of Theorem
1.6 we may assume that T consists of regular fibers. By assumption there is a contact
embedding Tn ,! .Y; �/ with n > 2, and we can write Tn D Tn�1 [ T1 . Since
T1 contains tori with linear characteristic foliations with any rational slope, we may
assume that for every integer k � 0 one of those tori contains k disjoint Legendrian
knots L1; : : : ;Lk each of which is smoothly isotopic to a regular fiber of the fibration,
and such that the contact framings and the framings induced by the torus (that is, by
the fibration) coincide. Performing Legendrian surgeries along L1; : : : ;Lk gives a
Stein cobordism WL from .Y; �/ to a contact Seifert fibered 3–manifold .Y 0; � 0/ such
that, when choosing k sufficiently large, Y 0 is a Seifert fibered 3–manifold over an
orientable base with background Chern number sufficiently high. By Proposition 2.6
the 3–manifold Y 0 is OSz–simple (with Z=2Z–coefficients). By the construction we
have Tn�1 ,! .Y 0; � 0/ and by assumption n� 1 > 1, therefore Theorem 1.4 implies
that c.Y 0; � 0/D 0. Thus c.Y; �/D FWL;s0

.c.Y 0; � 0//D 0.

Proof of Theorem 1.8 In this proof we assume familiarity with the work of Ghig-
gini [6; 9]. Ghiggini considers a family f�ig (denoted f�ig in [6; 9]) of contact
structures on �†n , where the index i varies in the set

Pn D f�nC 1;�nC 3; : : : ; n� 3; n� 1g:
Let .M0; �1/ denote the Stein fillable contact 3–manifold obtained by Legendrian
surgery on the Legendrian right–handed trefoil with tbDC1 in .S3; �st /. Each contact
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structure �i is constructed by performing Legendrian surgery along a Legendrian knot
inside .M0; �1/. Ghiggini also considers a different tight contact structure �n on M0 ,
and defines a contact structure �0 on �†n by Legendrian surgery along a Legendrian
knot in .M0; �n/. Denoting by � the contact structure � with reversed orientation,
Ghiggini shows that �i is isotopic to ��i for every i 2Pn and �0 is isotopic to �0 . All
of the above holds regardless of the parity of n. Since the statement has been already
proved in [6] for every even n, from now on we shall assume that n is odd. Arguing
as in [6, Lemma 4.4] and [6, Proof of Theorem 2.4], it follows that

(4–5) cC.�0/D ˛0cC.�0/C
X

i2Pnf0g

˛i.c
C.�i/C cC.��i//;

where we may assume ˛i 2 f0; 1g (it suffices to work with Z=2Z–coefficients). Recall
that each of the Legendrian surgeries from .M0; �1/ to .�†n; �i/ as well as the Leg-
endrian surgery from .M0; �n/ to .�†n; �0/ induce the same smooth 4–dimensional
cobordism V . Thus, arguing as in [6, Proof of Theorem 2.4] we have

FC
V
.cC.�i/C cC.��i//D 0 .mod 2/

for every i 2 P n f0g. Therefore, in view of Equation (4–5) we have

˛0cC.�1/D ˛0FC
V
.cC.�0//D FC

V
.cC.�0//D c.�n/D 0;

where the last equality follows from Theorem 1.6 because M0 is a torus bundle with
elliptic monodromy and by construction Tor.M0; �n/� n�1> 1 because n� 3. Since
.M0; �1/ is Stein fillable, we have cC.�1/ ¤ 0, therefore we conclude that ˛0 D 0,
and from this point on the argument proceeds as in [6, Proof of Theorem 2.4].

5 Proof of Theorem 1.9

The proof of Theorem 1.4 relied on the construction of a particular cobordism W

from Y to Y which, provided the contact structure � on Y had torsion Tor.Y; �/ > 1,
also supported a Stein structure. The chosen Stein cobordism might seem to be ad
hoc, but as we explain below, the contact surgery on .Y; �/ corresponding to this Stein
cobordism has a clear contact topological interpretation: it is the inverse of a Lutz
modification.

In this section we shall assume familiarity with results, notation and terminology from
Giroux [11] and Honda [17]. Let T 2 be a 2–torus with an identification T 2 Š R2=Z2 .
Let B0 Š T 2 � Œ0; 1� and B1 Š T 2 � Œ0; 1� be basic slices of the same sign with
boundary slopes respectively .s0; s/ and .s; s1/. Let B denote B0[B1 , the contact
3–manifold obtained by gluing together (via the identity map) B0 and B1 along their
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boundary components of slope s . Let T � B be a minimal convex torus parallel to
the boundary having slope s , and let C � T be one of its Legendrian divides.

Lemma 5.1 The contact 3–manifold B0 obtained from B by Legendrian surgery
along C is isomorphic to the contact 3–manifold B0[B0

1
, where B0

1
is a basic slice

with the same sign as B0 and boundary slopes .s;D�1
C
.s1//.

Proof It is easy to see that since B is the union of two basic slices, it is contactomorphic
to a toric layer sitting inside a neighborhood of a Legendrian knot in the standard contact
3–sphere .S3; �st /. It follows that B0 contact embeds into a closed contact 3–manifold
.Y; �/ given by a Legendrian surgery on .S3; �st / in such a way that the image of any
torus in B0 parallel to the boundary bounds a solid torus in Y . Since .Y; �/ is Stein
fillable and hence tight, B0 must be both tight and minimally twisting, otherwise one
could easily find an overtwisted disk inside .Y; �/. We can choose the identification
T 2 Š R2=Z2 so that s0 D 1 and s D 0. Then s1 D �1

n
for some integer n � 0 and

the action of D�1
C

on s1 is determined by�
1 �1

0 1

��
n

�1

�
D
�

nC 1

�1

�
;

which shows that the boundary slopes of B0 are 1 and � 1
nC1

, therefore B0 decomposes
as B0[B0

1
. It remains to check that the signs of B0

1
and B0 are equal. Observe that

B1 �B1 , where B1 is a basic slice with boundary slopes .0; 1/ and B0[B1 embeds
in .T 3; ker.cos.4�z/dx� sin.4�z/dy//, which is symplectically fillable (see Giroux
[13]). By doing Legendrian surgery on B0 [B1 along C and computing as before
we see that B0 � B00 D B0 [B

0

1 , where B
0

1 is a basic slice with boundary slopes
.0;1/. On the other hand, B00 is tight, minimally twisting and has boundary slopes
.1;1/, hence it is a basic slice as well. Therefore by Honda’s Gluing Theorem [17,
Section 4.7.4] the sign of B

0

1 must be the same as the sign of B0 . But the inclusion
B0

1
�B

0

1 implies, again by the Gluing Theorem, that the sign of B0
1

must be the same
as the sign of B

0

1 . This concludes the proof.

Suppose that a; b 2 R, a< b , and define

TnŒa; b�D .T 2 � Œa; b�; ker.cos.2�nz/dx� sin.2�nz/dy//:

In this notation, we have TnŒ0; 1�D Tn , where Tn is defined in Section 1. Suppose
that a < c < b , the characteristic foliation F on the torus T 2 � fcg � TnŒa; b� is a
union of simple closed curves, and let C � T 2 � fcg be such a closed curve. Then,
there is a diffeomorphism

DC W T 2 � fcg ! T 2 � fcg
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representing the right–handed Dehn twist along C and such that DC .F/D F .

Lemma 5.2 The contact 3–manifold obtained from TnŒa; b� by Legendrian surgery
along C is isomorphic to the contact 3–manifold

TnŒa; c�[DC
TnŒc; b�

obtained by gluing TnŒa; c� to TnŒc; b� via the diffeomorphism DC .

Proof Suppose that the torus T D T 2 � fcg has slope s . Then T can be slightly
perturbed to become a convex torus with minimal dividing set of slope s in such a way
that a closed leaf C of the characteristic foliation becomes a Legendrian divide (see
Ghiggini [7, Lemma 3.4]). We can choose c0 2 .a; c/ and c1 2 .c; b/ so that the tori
T0 D T 2 � fc0g and T1 D T 2 � fc1g can be perturbed to minimal convex tori with
boundary slopes s0 and s1 , respectively, making sure at the same time that the resulting
layers B0 between T0 and T and B1 between T and T1 are both basic slices. Since

TnŒa; b�� .T 2 �R; ker.cos.2�nz/dx� sin.2�nz/dy//;

using the Gluing Theorem as in the proof of Lemma 5.1 one can easily check that B0

and B1 must have the same sign. We have the decomposition

TnŒa; b�DN0[B0[B1[N1;

where each of N0 and N1 is a toric layer with only one convex boundary component.
In view of Lemma 5.1, the result of Legendrian surgery along C can be decomposed as

N0[B0[B01[DC
N1;

where B0 and B0
1

have the same sign and B0
1

is glued to N1 via the diffeomorphism
DC . But it is easy to check that this is exactly the decomposition of the contact
3–manifold TnŒa; c�[DC

TnŒc; b� obtained by perturbing T 2 � fc0g, T 2 � fcg and
T 2 � fc1g to become minimal convex tori.

Proof of Theorem 1.9 Arguing as in the proof of Theorem 1.4 we see that for some
small � > 0 there is a contact embedding

.T 2 � Œ��; 1C ��; ker.cos.2�nz/dx� sin.2�nz/dy// ,! .Y; �/

extending Tn ,! .Y; �/. We can choose ı > 0, �� < �ı < 0, and an identification
T 2ŠR2=Z2 so that the characteristic foliations on T�ıDT 2�f�ıg and T0DT 2�f0g
are made of simple closed curves and have slope, respectively, 0 and 1. Then up to
reparametrizing the interval Œ0; 1� we may assume that the characteristic foliations on
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T1=4 D T 2 � f1=4g, T1=2 D T 2 � f1=2g and T3=4 D T 2 � f3=4g are made of simple
closed curves and have slopes, respectively, 0, 1 and 0. Let

C�ı � T�ı; C1=4 � T1=4; C3=4 � T3=4

and

D1
0 ;D

2
0 ;D

3
0 � T0; D1

1=2;D
2
1=2;D

3
1=2 � T1=2; D1

1 ;D
2
1 ;D

3
1 � T1

be disjoint closed leaves of the respective characteristic foliations. Observe that if we
perform Legendrian surgery on .Y; �/ along (the images of) each of the curves C ’s
and D ’s we obtain a contact 3–manifold of the form .Y; � 0/. In fact, each C –curve has
slope 0, while each D–curve has slope 1. Therefore, if we denote by A, respectively
B , the corresponding Dehn twists up to isotopy, since in the mapping class group of
the torus

(5–1) B3AB3AB3AD .B3A/3 D 1;

if follows from Proposition 3.1 that the 3–manifold underlying the result of the Leg-
endrian surgeries is still Y . To see that .Y; �/ is obtained from .Y; � 0/ by a Lutz
modification, observe that the tori T�ı , T0 , T1=4 , T1=2 , T3=4 and T1 induce, for
some ı0 > 0, � > ı0 > 0, a decomposition

.T 2 � Œ�ı; 1C ı0�; �/DN1[N2[N3[N4[N5[N6;

where the boundary components of N6 have characteristic foliations of slopes .1; n/
for some n� 1. When we perform the Legendrian surgeries along D1

1
, D2

1
, D3

1
and

C3=4 , according to Lemma 5.2 the above decomposition becomes

N1[N2[N3[N4[A N5[B3 N6:

Since

A�1

�
0

1

�
D
��1

1

�
;

the boundary slopes of N1 [ N2 [ N3 [ N4 [A N5 are .0;�1/. Similarly, after
Legendrian surgery along D1

1=2
we get N1[N2[N3[B N4[A N5 with boundary

slopes .0; 0/, and after Legendrian surgery along D2
1=2

and D3
1=2

we get, respectively,
N1[N2[N3[B2 N4[A N5 and N1[N2[N3[B3 N4[A N5 with boundary slopes
.0; 1/ and .0; 2/. It is easily checked that

N3[B3 N4[A N5 DN3[B3 N 04 DN3[N 004 ;

Algebraic & Geometric Topology, Volume 7 (2007)



1294 Paolo Lisca and András I Stipsicz

where N 0
4

is a basic slice with boundary slopes .1;�1/ and N 00
4

is a basic slice with
boundary slopes .1; 2/. After Legendrian surgery along C1=4 we get

N2[A N3[N 004 DN 02;

where N 0
2

is a basic slice with boundary slopes .1;�2/. Similarly,

N1[B3 N 02 DN 01;

where N 0
1

is a basic slice with boundary slopes .0; 1/. Performing the remaining
Legendrian surgery along C�ı amounts to replacing N 0

1
back with N1 , which, in

view of Equation (5–1), is glued via the identity map to the original N6 . Since
N2[N3[N4[N5 Š T1 , this concludes the proof.
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