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Covering a nontaming knot by the unlink

MICHAEL H FREEDMAN

DAVID GABAI

There exists an open 3–manifold M and a simple closed curve  �M such that
�1.M n  / is infinitely generated, �1.M / is finitely generated and the preimage of
 in the universal covering of M is equivalent to the standard locally finite set of
vertical lines in R3 , that is, the trivial link of infinitely many components in R3 .

57N10; 57M10, 57N45

0 Introduction

Definition 0.1 We say that the locally finite collection of proper lines � � R3 is
a trivial R3 –link if there exists a homeomorphism of R3 taking � to a subset of
.Z; 0/�R� R2 �R.

For example, if L is a locally finite union of geodesics in H3 , then L is a R3 –trivial
link, as seen by applying Morse theory to the distance function from any point in H3 .

The main result in this paper is the following:

Theorem 0.2 There exists a simple closed curve  in an open 3–manifold M such
that

(1) �1.M �  / is infinitely generated,

(2) �1.M / is finitely generated,

(3) the universal covering �M of M is R3 and

(4) the preimage � of  in �M is R3 –trivial.

Addendum 0.3 A simple closed curve ! can be chosen in the above manifold M

satisfying the above properties as well as the following additional ones:

(1) ! is algebraically disc busting in �1.M / and

(2) 0D Œ!� 2H1.M;Z2/.

Published: 17 December 2007 DOI: 10.2140/agt.2007.7.1561

http://www.ams.org/mathscinet/search/mscdoc.html?code=57N10,(57M10, 57N45)
http://dx.doi.org/10.2140/agt.2007.7.1561


1562 Michael H Freedman and David Gabai

Definition 0.4 A nontaming knot is a smooth simple closed curve k in a 3–manifold
M such that �1.M / is finitely generated and �1.M � k/ is infinitely generated.

Remarks 0.5 By Tucker [8], the condition �1.M � / is infinitely generated implies
that the manifold M is not tame, that is, not the interior of a compact manifold. There
are lots of examples of nontame manifolds with finitely generated fundamental group
whose universal covers are R3 , for example, see Theorem 2.1. This paper provides
the first example of a knot in such a manifold, which is sufficiently complicated to be
nontaming, yet sufficiently straight to lift to an R3 –unlink.

Our manifold M is obtained as a nested union of handlebodies of genus 2, V1 � V2 �

V3 � � � � where the inclusion Vi � ViC1 is as in Figure 1. Let  � V1 be the knot also
shown in Figure 1.

V1

V2



Figure 1: Glue the top disc to the bottom one and the left disc to the right
one to obtain the embedding of V1 into V2 .

The paper is organized as follows. In Section 1 we show that M is homotopy equivalent,
but not homeomorphic to the standard open genus–2 handlebody and that �1.M �  /

is infinitely generated. In Section 2 we show that � is the trivial R3 –link of infinitely
many components. In Section 3 we prove Addendum 0.3.

Historical Remarks In the early 1990s the first author showed that the nonexistence of
a knot having the properties stated in our main result implies the Tame Ends conjecture
(also known as the Marden conjecture [4]) for hyperbolic 3–manifolds. See Myers [5].
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In the fall of 1996 the authors found the knot  �M . We are finally presenting its
proof. Very recently, we found the example of Addendum 0.3.

Ian Agol [1] and independently Danny Calegari and the second author [2] have obtained
proofs of the Tame Ends conjecture.

Notation 0.6 If X � Y , then N.X / denotes a regular neighborhood of X in Y . If
X is a topological space, then jX j denotes the number of components of X .

Acknowledgements The second author was partially supported by NSF grant DMS-
0071852.

1 �1.M � k/ is infinitely generated

Since the inclusion of each Vi into ViC1 is a homotopy equivalence, it follows that the
inclusion of V1 into M is a homotopy equivalence and hence M is an open genus–2

homotopy handlebody.

To show that �1.M � k/ is infinitely generated it suffices to show that @V3 is in-
compressible in V3�  and for each i , @.ViC1�

ı
Vi/ is incompressible in ViC1�

ı
Vi

and ViC1�
ı
Vi is not a product. See Figure 2. These facts, together with the work of

Stallings [7] show that the induced map �1.@Vi/! �1.ViC1�
ı
Vi/ is injective but not

surjective. The standard Seifert–Van Kampen argument completes the proof.

Lemma 1.1 @V3 is incompressible in V3�  .

Proof It suffices to show that if W0 D V3�
ı

N. /, then R0 WD @V3 is incompressible
in W0 . Let D3 � V3 (resp. E � V3 ) be the disc obtained by gluing D0

3
to D00

3
(resp.

E1 to E2 ). By considering boundary compressions it suffices to show that if W1

is W0 split along D3 and R1 is R0 split along D3 , then R1 is incompressible in
W1 . Let W2 (resp. R2 ) denote W1 (resp. R1 ) split along E . We abuse notation by
now viewing D0

3
;D00

3
(resp. E1;E2 ) as compact annuli (resp. pants). Note that R2

is incompressible in W2 , for any essential compressing disc H would nontrivially
separate the set fD0

3
;D00

3
;E1;E2g. On the other hand by considering @N. /\W2 we

see that all of these components must lie in the same component of W2�H .

Therefore to show that R1 is incompressible in W1 it suffices to show that there
exists no essential, properly embedded disc .F; @F /� .W2;E1[E2[R2/ such that
@F \ .E1[E2/ is connected. We now show that F \E1 D∅. A similar argument
will show that F \E2 D∅. In the natural way write W2 as P � Œ1; 2� where P is a

Algebraic & Geometric Topology, Volume 7 (2007)
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E1

D0
3

D003



V3

E2

Figure 2: The knot  viewed inside V3

disc with 3 open discs removed and D00
3
[E1 �

ı
P� 1 and D0

3
[E2 �

ı
P� 2. Here

Pi denotes P � i . Assume that F was chosen so that jF \P2j is minimal and that
F \ .R2\@P � Œ1; 2�/ are arcs from P1 to P2 . Isotope F to be Morse with respect to
projection onto the Œ1; 2� factor. Arguing as in Roussarie [6] we can assume that the
only critical points are of index �1. Since F is disjoint from E2 [D0

3
and F is a

disc it follows that F \P2 is a finite union of parallel arcs and the closest saddle point
to P2 must involve distinct such arcs. Therefore, if F contained a saddle tangency,
then by considering a boundary compression we could have found another essential F

as above, with jF \P � 2j reduced. It follows that F has no saddle tangencies and
hence jF \E1j � 3, which is a contradiction. See Figure 3.

Remark 1.2 Another way to prove Lemma 1.1 is to show that the manifold obtained
by doubling V3�

ı
N. / along @V3 is irreducible. One can prove irreducibility of the

double by constructing a taut sutured manifold hierarchy.

Note that @V2 is compressible in V2�  .

Since the inclusion of Vi into ViC1 is a homotopy equivalence we obtain the following:

Lemma 1.3 For each i � 1;ViCi �
ı
Vi has incompressible boundary.

Algebraic & Geometric Topology, Volume 7 (2007)
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E1

P1

W2







E2

P2

Figure 3

Lemma 1.4 For i � 1;ViC1�
ı
Vi is not a product.

Proof It suffices to consider the case i D 2. If V3 �
ı
V2 is a product, then the pair

.V3;  / is homeomorphic to .V2;  /. On the other hand, the note after Remark 1.2
implies that @V2 is compressible in V2 �  , while Lemma 1.1 implies that @V3 is
incompressible in V3�  .

Here is a second proof. Let W D V3�
ı
V2 . Let .W; �/ be the sutured manifold with

R�.�/ D @V2 and RC.�/ D @V3 . It suffices to construct a taut sutured manifold
hierarchy .W; �/ D .N0; �0/! .N1; �1/! � � � ! .D2 � I; @D2 � I/ such that for
some j , RC.�j / is not homeomorphic to R�.�j /, since by [3] a taut sutured manifold
decomposition of a product always yields a product. (Products are exactly those taut
sutured manifolds of minimal complexity, and taut splittings do not increase complexity.)
Figure 4 shows a step in such a hierarchy. The top sutured manifold .N2; �2/ is .W; �/

split along the product annulus D3 �
ı
V2 followed by splitting along a product disc

(that is, a disc crossing the sutures twice) meeting E2�
ı
V2 in a single arc. The thick

brown lines denote the sutures. Note that each of RC.�2/;R�.�2/ is a pant. To obtain
.N3; �3/ split along the annulus corresponding to A2 and A1 , so that A2 is given the
C–orientation. Note that RC.�3/ is not homeomorphic to R�.�3/. Splitting .N3; �3/

along a product disc yields .N4; �4/ where N4 DD2 �S1 and the sutures of �4 are
4 parallel longitudes. One more splitting yields, .D2 � I; @D2 � I/.
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A1 A2

C

C

C

�

�

�

Glue annuli A1 to A2 to obtain .N2; �2/.

C

C

C

�

�

�

.N3; �3/

�

C

Figure 4

2 � is R3–trivial

The following is well known.

Theorem 2.1 If the open 3–manifold N is exhausted by compact irreducible mani-
folds W1 �W2 � � � � such that for each i , in�W �1.Wi/! �1.WiC1/ is injective, then
zN D R3 .
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Proof The universal covering space zN of N is exhausted by the universal covering
spaces of the various Wi ’s. By Waldhausen [9], the universal covering space of Wi is
B3�Ki , where Ki � @B

3 is compact. Since a space is R3 if every compact set lies
in a 3–cell, the result follows.

Lemma 2.2 If L is a smooth locally finite link in the open unit 3–ball B � R3 ,
such that away from exactly one point, each component is transverse to the concentric
2–spheres, then L is R3 –trivial.

Corollary 2.3 A locally finite collection of geodesics in H3 is R3 –trivial.

Definition 2.4 Let T denote the standard infinite R3 –link .Z; 0/ � R � R2 � R.
Let X be the 3–manifold with boundary obtained by removing small open regular
neighborhoods of the rays RX WD .Z; 0/� Œ1;1/[ .1;�1�. Let TX be the restriction
of T to X .

Remark 2.5 If X1 is the 3–manifold with boundary obtained from the standard
infinite R3 –link by removing small open regular neighborhoods of the rays RX1

defined by f.n; 0/� Œn;1/[ .�1; n� 1� j n 2 Zg and TX1
is the restriction of T to

X1 , then .X1;TX1
/ is diffeomorphic to .X;TX /.

The pair .X;TX / can be viewed geometrically via the following lemma.

Lemma 2.6 Let G be the 2–dimensional Schottky group generated by length 10
translations g1;g2 along orthogonal geodesics A;B � H2 . Extend G to act on H3 .
Let Q� H3 be the totally geodesic plane orthogonal to B at distance 5 from A\B

and Q be the orbit GQ. Let Y be the closure of a component of H3�Q and GBY the
restriction of the orbit GB to Y . Then there is a diffeomorphism .X;TX /! .Y;GBY /.

Let � W �M !M denote the universal covering projection and let � denote the link
��1. /. By Theorem 2.1 �M is homeomorphic to R3 .

The construction of M gives rise to a properly embedded plane P � M which
intersects each Vi in a single disc Di and intersects V3 in the disc D3 . Furthermore
P \  DD3\  . Let P D ��1.P /.

Proposition 2.7 There exists a diffeomorphism . �M ; �/! .H3;GB/.
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Assuming for the moment Proposition 2.7 we obtain the following proof:

Proof that � is R3 –trivial It follows from the Proposition 2.7 that the pair . �M ; �/

is diffeomorphic to .H3; �/ where � is a locally finite union of pairwise disjoint
geodesics. By Lemma 2.2, � is R3 –trivial.

Proof of Proposition 2.7 It suffices to show that if W is the closure of a component
of �M � P and �W is the restriction of � to W , then there is a diffeomorphism
.W; �W /! .Y;GBY / where Y and GBY are as in Lemma 2.6. By Lemma 2.6 it
suffices to show that .W; �W / is diffeomorphic to .X;TX /, where TX is defined as
in Definition 2.4. Let Wi denote the compact manifold obtained by splitting Vi open
along Di . Then W is exhausted by the manifolds zVi .

Consider the R3 –link † shown in Figure 5. It has infinitely many components and
is invariant under a rigid R3 –translation g . Each component has an end which is
a vertical ray and another that forever spirals down. Let R be the union of the
(thick) blue rays, two for each component of †. Let

ı
N.R/ be a union of small

open regular neighborhoods of the components of R and Z D R3�
ı

N.R/. The pair
.W; �W / is diffeomorphic to .Z; †\Z/. Indeed, Z can be exhausted by manifolds
diffeomorphic to zVi in a manner compatible with the inclusion zVi�

zViC1 . Furthermore,
the quotient Z=hgi DW =Z where Z is the group of covering translations of W and
zVi=ZD Vi . Figure 6 shows three fundamental domains V1 within Z . Figure 7 shows
one fundamental domain of V2 . Notice that the curves ˛ and ˇ bound discs in the
boundary of this fundamental domain which lie in @Z . Again, just translate by g to
get the entire embedding of zV2 �Z . In a similar manner construct zVi ; i � 3.

Consider the collection fHig, i 2 Z of horizontal planes shown as lines in Figure 8.
Coordinates on R3 could have been chosen so that Hi D R2 � i and g.Hi/DHiC1 .
If Si is the slab R2 � Œi; i C 1�, then †jSi is equivalent to the link .Z; 0/� Œi; i C 1�.
Putting these slabs together, we conclude that † is R3 –trivial.

The diffeomorphism H of R3 which takes † to the standard link T could have been
chosen to fix H0 pointwise and setwise fix the various horizontal planes. Therefore
it could have been chosen to take R to the rays RX1

. This shows that .W; �W / is
diffeomorphic to .X1;TX1

/ and hence is diffeomorphic to .X;TX /.

3 Another example

Theorem 0.2 answers in the negative a conjecture of the first author. Myers [5] asked
whether a more restrictive version of that conjecture holds. The example of this section
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Figure 5: This infinite R3 –link is rigidly Z–translation invariant. The top
part of each strand is straight and the bottom part is infinitely twisted in the
helical pattern indicated.
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Figure 6: Three fundamental domains of V1 lifted to Z

provides a similar answer to that question. Let the manifold M be as in Section 2,
with the knot ! � V1 presented as in Figure 9.

Proof of Addendum 0.3 With respect to the standard generators of �1.V1/; ! repre-
sents the element a2b2 which according to Myers [5] is algebraically disc busting in
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˛

ˇ

Figure 7: One fundamental domain of zV2 lifted to Z

V1 and hence in M . that is, �1.M / cannot be expressed as a nontrivial free product
such that Œ!� can be conjugated to lie in a single factor. Since ! is algebraically disc
busting, @V1 is incompressible in V1�! . As in Section 1, �1.M �!/ being infinitely
generated then follows from Lemma 1.3 and Lemma 1.4.
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H4

H3

H2

H1

H0

H�1

H�2

H�3

H�4

H�5

H�6

Figure 8

An argument similar to that of Section 2 shows that the restriction of � to W is the
union of properly embedded arcs �W as drawn in Figure 10. Figure 10 can be decoded
with the help of Figure 11, for example to unclutter the picture, certain pairs of thin
green arcs are drawn as one arc. Note that W is R3 with open regular neighborhoods
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V2

V1

!

Figure 9

of a countable collection of rays deleted. These neighborhoods are denoted by the thick
blue lines. Finally the boxes drawn in Figure 10 coordinatize R3 and will be useful for
the next paragraph. Imagine that both @W and �W lie very close to the xy–plane.
Let fEig denote the components of @W .

To each component E of @W we define a foliation FE of W which is the restriction
of a topologically concentric foliation on R3 with center in the component of R3�W

separated off by E . For each i; FEjEi will be a topologically concentric foliation
by circles with center point the dot shown in Figure 12. FE will have exactly one
tangency with each component of �W except for the two components �E which hit
E and FE will be transverse to �E . Suppose that E is the component containing the
point .0; 0/ shown in Figure 10. The leaves St of FE will be parametrized by Œ0;1/,
where S0 is a point. Define Si ; i 2 N according to the pattern given in Figure 12.
Next modify these spheres as in Figure 13. In particular if Si \Ej ¤∅, then Si \Ej

is a circle. The other spheres get modified in a similar way. For example, the modified
S3 has three tube like extensions. One passes by .1; 1/ and the others at .2; 2/ and
.3; 3/. It is an exercise to show that the desired foliation FE can be constructed to
contain these integral spheres. Note that near .0; 0/, but not including .0; 0/, all the
leaves of FE are discs.

In a similar way construct a foliation F0 on W to have all the properties of FE except
that the center point of the concentric foliation lies in int.W ��W /, nearby leaves are
spheres and each component of �W is tangent to F0 at exactly one point.

Algebraic & Geometric Topology, Volume 7 (2007)
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.0; 0/

Figure 10

To show that � is R3 –trivial we describe a foliation F on �M DR3 which satisfies the
hypothesis of Lemma 2.2 with respect to the link �. �M is built by gluing copies of W

in a treelike fashion. Let T be the tree dual to P � �M with base vertex v0 . Let v0 also
denote the corresponding copy of W . Define F jv0DF0 . If vi and v0 have an edge in
common and vi is glued to v0 along the plane Eg.i/ � @vi , then give vi the foliation

Algebraic & Geometric Topology, Volume 7 (2007)
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suitably rotated

Figure 11

FEg.i/
. In what follows we denote FEg.i/

by Fg.i/ . Since each foliation restricts to
a concentric foliation on Eg.i/ the identification of F0 and Fg.i/ is determined by a
homeomorphism h0i W Œ0;1/! Œ0;1/. Similarly if vj and vk share an edge with vj
closer to v0 , then give vk the foliation Fg.k/ where the plane Eg.k/ � @vk glues to
vj . So F is determined by the various homeomorphisms hij W Œ0;1/! Œ0;1/ where
vi and vj share an edge. Any choice of functions gives rise to a foliation by spheres
and planar surfaces of possibly infinite Euler characteristic. Furthermore, since each
leaf of FEi

is compact and hits Ei in exactly one component, it follows that each leaf
of F hits v0 in exactly one component. If the leaves of F0 are parametrized by Œ0;1/
and T0 � T1 � � � � is an exhaustion of T by compact connected sets, then pass to a
subsequence of the Ti ’s and choose the functions hij so that if t � n� 1 2 N and Lt

is the leaf of F passing through the leaf of F0 parametrized by t 2 Œ0;1/, then Lt

is a sphere contained in �Mn , where �Mn is the submanifold of �M corresponding to
Tn . Assume that F has been inductively constructed on �Mn�1 and satisfies the above
conditions for t � n�2. Let G denote those leaves of F j �Mn�1 which restrict to leaves
Lt � F0 with t 2 Œ0; n� 1�. There is a finite set F D fF1; � � � ;Fkg of components
of @ �Mn�1 so that G \ @ �Mn�1 � F and lies in a compact subset C of F . By passing
to a subsequence we can suppose that each Fi glues to a vertex of Tn . If vj glues
to vi 2 Tn�1 along Fp , where 1� p � k , then choose the function hij so that each
circle c of GjFp is capped off by a disc of Fg.j/ .
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.0; 0/

S1

�

S2

S3

S4

Figure 12
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.0; 0/

S1

S2

Figure 13
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