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Mutant knots and intersection graphs

SERGEI V CHMUTOV

SERGEI K LANDO

We prove that if a finite order knot invariant does not distinguish mutant knots, then
the corresponding weight system depends on the intersection graph of a chord diagram
rather than on the diagram itself. Conversely, if we have a weight system depending
only on the intersection graphs of chord diagrams, then the composition of such a
weight system with the Kontsevich invariant determines a knot invariant that does not
distinguish mutant knots. Thus, an equivalence between finite order invariants not
distinguishing mutants and weight systems depending only on intersections graphs is
established. We discuss the relationship between our results and certain Lie algebra
weight systems.

57M25, 57M15; 57M27, 05C10

1 Introduction

Below, we use standard notions of the theory of finite order, or Vassiliev, invariants of
knots in 3–space; their definitions can be found, for example, in Chmutov, Duzhin and
Mostovoy [6] or Lando and Zvonkin [14], and we recall them briefly in Section 2. All
knots are assumed to be oriented.

Two knots are said to be mutant if they differ by a rotation of a tangle with four
endpoints about either a vertical axis, a horizontal axis, or an axis perpendicular to the
page. If necessary, the orientation inside the tangle may be replaced by the opposite
one. Two famous examples of mutant knots are the Conway (11n34) knot C of genus
3 and the Kinoshita–Terasaka (11n42) knot KT of genus 2, drawn in Figure 1 (see
The Knot Atlas [1]). Note that the change of the orientation of a knot can be achieved
by a mutation in the complement to a trivial tangle.

C D KT D

Figure 1: The Conway knot C and the Kinotshita–Terasaka knot K
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Many known knot invariants cannot distinguish mutant knots. Neither the Alexander
polynomial, nor the (colored) Jones polynomial, nor the HOMFLY as well as the
Kauffman two variable polynomials distinguish mutants; see, for example, Morton and
Cromwell [17].

On the other hand, a big class of knot invariants, known as Vassiliev or finite order
knot invariants has been thoroughly studied during the last decade. Finite order knot
invariants form a filtered commutative associative ring. All Vassiliev invariants up to
order 10 do not distinguish mutants as well; see Murakami [18]. However, there is a
Vassiliev invariant of order 11 distinguishing C and KT [17; 18]. It comes from the
colored HOMFLY polynomial.

Vassiliev knot invariants can be described in terms of weight systems, that is, functions
on chord diagrams, which are combinatorial objects consisting of chords with disjoint
ends in a circle, satisfying certain conditions. In the present paper, we give a description
of Vassiliev invariants not distinguishing mutants. Namely, we show (Theorem 1) that
they are exactly those associated to weight systems whose values depend on the
intersection graph of a chord diagram rather than the diagram itself. Distinct chord
diagrams can have coinciding intersection graphs, and the vector space of weight
systems depending on intersections graphs is smaller than that of all weight systems.

The study of weight systems determined by intersection graphs was initiated by Chmu-
tov, Duzhin and Lando [5], and a number of interesting such invariants has been
discovered since then. Our results imply that the weight systems associated to the Lie
algebra sl.2/ and the Lie superalgebra gl.1j1/ also belong to this class. These weight
systems are the ones corresponding to the colored Jones and Alexander polynomials
respectively.

In Section 2, we recall necessary definitions and state the main results of the paper.
Section 3 is devoted to the proof of Theorem 1. In Section 4, we discuss the relationship
between intersection graphs and the weight systems associated to the Lie algebra sl.2/

and the Lie superalgebra gl.1j1/.

The paper was written during the second author’s visit to the Department of Mathematics
of Ohio State University. He expresses his gratitude to this institution for warm
hospitality and excellent working conditions. We are grateful to S Duzhin, C Soulié,
K J Supowit, and A Vaintrob for useful discussions. We are indebted to T Ohtsuki for
numerous valuable suggestions on improvement of the exposition and for an alternative
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(RFBR 05-02-89000-NWOa), GIMP ANR-05-BLAN-0029-01.
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2 Definitions and statements of main results

Let us recall the notions of Vassiliev invariant and weight system. A knot is a smooth
nondegenerate embedding of S1 into 3–space, and a knot invariant is a function on
the set of knots K taking the same values on isotopic knots. If otherwise is not stated
explicitly, all knot invariants are assumed to take values in Q. Any knot invariant can
be extended to singular knots having only double points according to the Vassiliev skein
relation

v

� �
D v

� �
� v

� �
:

A knot invariant is said to be of order at most n if its extension vanishes on each
singular knot with nC1 double points. Knot invariants of order at most n, for some n,
are finite order, or Vassiliev, invariants. The value of a knot invariant of order at most n

on a singular knot with n double points depends on the chord diagram of the knot, that
is, the source circle S1 with chords whose ends are the preimages of the double points,
rather than on the knot itself. Thus, any knot invariant of order at most n determines a
function on chord diagrams with n chords.

Any function w on chord diagrams obtained in this way satisfies the so-called four-term
relations,

(4T) w

� �
�w

� �
Cw

� �
�w

� �
D 0 ;

where the dotted arcs of the four diagrams can carry an arbitrary set of chords, the
same for all the four pictures. In addition, any such function vanishes on all chord
diagrams having an isolated chord, that is, a chord intersecting no other chord (the
one-term, or (1T), relations). The Kontsevich theorem [12] states that these are the
only restrictions: any function satisfying the four-term and the one-term relations is
obtained from a finite order invariant of knots by means of the above procedure. The
proof of the theorem is based on a construction known as the Kontsevich integral.

The notion of finite order invariant can be extended to framed knots, that is, knots
endowed with a framing, which is a smooth nondegenerate embedding of a tubular
neighborhood of the zero section in the tangent bundle to S1 to 3–space. The ex-
tension [15] of Kontsevich’s theorem to framed knots states that the corresponding
functions on chord diagrams are exactly those that satisfy the (4T)-relations. Functions
on chord diagrams satisfying the four-term relations are called weight systems. Again,
if it is not stated otherwise, weight systems are assumed to take values in Q. Weight
systems satisfying, in addition, (1T)-relations are said to be unframed. Weight systems
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form a graded commutative cocommutative Hopf algebra, and unframed weight systems
is a Hopf subalgebra in it.

The Kontsevich invariant KI , constructed on the base of the Kontsevich integral, is an
invariant taking any knot to the Hopf algebra ADA0˚A1˚A2˚: : : of chord diagrams
over Q, which is dual to that of unframed weight systems. Here An WD An=(4T+1T)
is the quotient space of the space An spanned by all chord diagrams with n chords
modulo the subspace spanned by all quadruples of chord diagrams in the 4T-relations
and all chord diagrams having an isolated chord.

Any unframed weight system induces, in composition with the Kontsevich invariant, a
finite order invariant of knots. Such knot invariants are called canonical. The Kontsevich
integral is universal, in the sense that the canonical invariants span the whole space of
Vassiliev invariants.

To a chord diagram, its intersection graph (also called circle graph) is associated. The
vertices of the graph correspond to the chords of the diagram, and two vertices are
connected by an edge if and only if the corresponding chords intersect. Thus, any
function g on graphs determines, through the triangle

fchord diagramsg w //

intersection graph
((PPPPPPPPPPPP Q

fgraphsg
g

;;wwwwwwwww

;

a function w on chord diagrams.

Direct calculations for small n show that the values of weight systems are uniquely
determined by the intersection graphs of the chord diagrams. This fact motivated the
intersection graph conjecture in [5] (see also [6]) which states that any weight system
depends on the intersection graph only. This conjecture happened to be false, because
of the existence of a finite order invariant that distinguishes two mutant knots mentioned
above and the following fact.

The canonical knot invariant induced by an unframed weight system whose values
depend only on the intersection graph of the chord diagrams cannot distinguish mutants.

Our goal is to prove the converse statement thus establishing an equivalence between
finite order knot invariants nondistinguishing mutants and unframed weight systems
depending on the intersection graphs of chord diagrams only.

Theorem 1 If a finite order knot invariant does not distinguish mutants, then the
corresponding unframed weight system depends only on the intersection graphs of
chord diagrams.
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Together, the two statements can be combined as follows.

A canonical knot invariant does not distinguish mutants if and only if its weight system
depends on the intersection graphs of chord diagrams only.

The same statement is true about finite order invariants of framed knots and arbitrary
weight systems.

Here is the diagram of relevant spaces and maps between them.

An

xxqqqqqqqqqqqq

��

((QQQQQQQQQQQQQQQQQ

K KI //

��

A

��



��

proj // An
w //

��




��

Q

An=mutant

zzuuuuuuuuuuuu

NNNNNNNNNNN

NNNNNNNNNNN

K=mutant // A=mutant //

$$HHHHHHHHHHHH
An=mutant

$$IIIIIIIIIIII
Span

�
circle graphs

with n vertices

�
g

OO

wwppppppppppp

F=(1T)
proj // Fn=(1T)

DD																															

The equivalence relation “mutant” on chord diagrams will be defined in Section 3.1. The
equality An=mutantD Span.circle graphs with n vertices/ is the result of Theorem 2
there. The space Fn is the degree n part of the 4–bialgebra of graphs F introduced
in [13] (see Section 4.2), and the (1T)-relations in F are defined as spanned by graphs
with isolated vertices.

Recently, B Mellor [16] extended the concept of intersection graph to string links. We
do not know whether our Theorem 1 admits an appropriate generalization.

3 Proof

3.1 Representability of graphs as the intersection graphs of chord dia-
grams

Not every graph can be represented as the intersection graph of a chord diagram. For
example, the following graphs are not intersection graphs.
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A characterization of those graphs that can be realized as intersection graphs is given
by an elegant theorem of A Bouchet [4].

On the other hand, different diagrams may have coinciding intersection graphs. For
example, next three diagrams have the same intersection graph :

A combinatorial analog of the tangle in mutant knots is a share [5; 6]. Informally, a
share of a chord diagram is a subset of chords whose endpoints are separated into at
most two parts by the endpoints of the complementary chords. More formally, we have
the following:

Definition 1 A share in a chord diagram is a union of two arcs of the outer circle and
chords ending on them possessing the following property: each chord one of whose
ends belongs to these arcs has both ends on these arcs.

Here are some examples:

A share Not a share Two shares

The complement of a share also is a share. The whole chord diagram is its own share
whose complement contains no chords.

Definition 2 A mutation of a chord diagram is another chord diagram obtained by
a rotation of a share about one of the three axes. Two chord diagrams are said to be
mutant if they can be transformed into one another by a sequence of mutations.

For example, three mutations of the share in the first chord diagram above produce the
mutations in Figure 2.

Obviously, mutations preserve the intersection graphs of chord diagrams.

Mutations of chord diagram were used in Soulié [19] for studying mutations of alter-
nating links.
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Figure 2

Theorem 2 Two chord diagrams have the same intersection graph if and only if they
are related by a sequence of mutations.

This theorem is contained implicitly in Bouchet [3], Courcelle [8] and Gabor, Supowit
and Hsu [11] where chord diagrams are written as double occurrence words, the
language better suitable for describing algorithms than for topological explanation.

Proof of Theorem 2 The proof of this theorem uses Cunningham’s theory of graph
decompositions [9].

A split of a (simple) graph � is a disjoint bipartition fV1;V2g of its set of vertices
V .�/ such that each part contains at least 2 vertices, and there are subsets W1 � V1 ,
W2 � V2 such that all the edges of � connecting V1 with V2 form the complete
bipartite graph K.W1;W2/ with the parts W1 and W2 . Thus for a split fV1;V2g the
whole graph � can be represented as a union of the induced subgraphs �.V1/ and
�.V2/ linked by a complete bipartite graph.

Another way to think about splits, which is sometimes more convenient and which we
shall use in the pictures below, looks like follows. Consider two graphs �1 and �2

each having a distinguished vertex v1 2 V .�1/ and v2 2 V .�2/, respectively, called
markers. Construct the new graph � D �1 �.v1;v2/ �2 whose set of vertices is

V .�/D fV .�1/� v1g t fV .�2/� v2g

and whose set of edges is

E.�/D f.v01; v
00
1/ 2E.�1/ W v

0
1 6D v1 6D v

00
1g t f.v

0
2; v
00
2/ 2E.�2/ W v

0
2 6D v2 6D v

00
2g

t f.v01; v
0
2/ W .v

0
1; v1/ 2E.�1/ and .v2; v

0
2/ 2E.�2/g :

Representation of � as �1 �.v1;v2/ �2 is called a decomposition of � , �1 and �2 are
called the components of the decomposition. The partition fV .�1/� v1;V .�2/� v2g

is a split of � . Graphs �1 and �2 might be decomposed further giving a finer
decomposition of the initial graph � . Pictorially, we represent a decomposition by
pictures of its components where the corresponding markers are connected by a dashed
edge.
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A prime graph is a graph with at least three vertices admitting no splits. A decomposition
of a graph is said to be canonical if the following conditions are satisfied:

(i) Each component is either a prime graph, or a complete graph Kn , or a star Sn ,
which is the tree with a vertex, the center, adjacent to n other vertices.

(ii) No two components that are complete graphs are neighbors, that is, their markers
are not connected by a dashed edge.

(iii) The markers of two components that are star graphs connected by a dashed edge
are either both centers or both not centers of their components.

W H Cunningham proved [9, Theorem 3] that each graph with at least six vertices
possesses a unique canonical decomposition.

Let us illustrate the notions introduced above by two examples of canonical decom-
position of the intersection graphs of chord diagrams. We number the chords and the
corresponding vertices in our graphs, so that the unnumbered vertices are the markers
of the components. The first example is our example from Figure 2:

4
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33

4

A chord diagram
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The intersection graph
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The canonical decomposition

The second example represents the chord diagram of the double points in the plane
diagram of the Conway knot C from Figure 1. The double points of the shaded tangle
are represented by the chords 1,2,9,10,11.
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Canonical decomposition

The key observation in the proof of Theorem 2 is that components of the canonical de-
composition of any intersection graph admit a unique representation by chord diagrams.
For a complete graph and star components, this is obvious. For a prime component,
this was proved by A Bouchet [3, Statement 4.4] (see also Gabor, Supowit and Hsu
[11, Section 6] for an algorithm finding such a representation for a prime graph).
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Now to describe all chord diagrams with a given intersection graph, we start with
a component of its canonical decomposition. There is only one way to realize the
component by a chord diagram. We draw the chord corresponding to the marker as a
dashed chord and call it the marked chord. This chord indicates the places where we
must cut the circle removing the marked chord together with small arcs containing its
endpoints. As a result we obtain a chord diagram on two arcs. Repeating the same
procedure with a neighbor component of the canonical decomposition, we get another
chord diagram on two arcs. We have to sew these two diagrams together by their arcs in
an alternating order. There are four possibilities to do this, and they differ by mutations
of the share corresponding to the second (or, alternatively, the first) component. This
completes the proof of Theorem 2.

To illustrate the last stage of the proof consider our standard example and take the star
2-3-4 component first and then the triangle component. We get

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

4

2

3
CUT

and
��
��
��
��

5

�
�
�

�
�
� CUT�

�
�
�

Because of the symmetry, the four ways of sewing these diagrams produce only two
distinct chord diagrams with a marked chord:

CUT
and

CUT
;

repeating the same procedure with the marked chord for the last 1-6 component of the
canonical decomposition, we get

��
��
��
��

6

1�������� CUT

��
��
��
��

Sewing this diagram into the previous two in all possible ways we get four mutant
chord diagrams from Figure 2.

As an enjoyable exercise we leave to the reader to work out our second example with
the chord diagram of the diagram of the Conway knot and find the mutation producing
the chord diagram of the plane diagram of the Kinoshita–Terasaka knot using the
canonical decomposition.
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3.2 Proof of Theorem 1

Suppose we have a Vassiliev knot invariant v of order at most n that does not distinguish
mutant knots. Let D1 and D2 be chord diagrams with n chords whose intersection
graphs coincide. We are going to prove that the values of the weight system of v on
D1 and D2 are equal.

By Theorem 2, it is enough to consider the case when D1 and D2 differ by a single
mutation in a share S . Let K1 be a singular knot with n double points whose chord
diagram is D1 . Consider the collection of double points of K1 corresponding to
the chords occurring in the share S . By the definition of a share, K1 has two arcs
containing all these double points and no others. By sliding the double points along
one of these arcs and shrinking the other arc we may enclose these arcs into a ball
whose interior does not intersect the rest of the knot. In other words, we may isotope
the knot K1 to a singular knot so as to collect all the double points corresponding to
S in a tangle TS . Performing an appropriate rotation of TS we obtain a singular knot
K2 with the chord diagram D2 . Since v does not distinguish mutants, its values on
K1 and K2 are equal. Theorem 1 is proved.

To illustrate the proof, let D1 be the chord diagram from our standard example. Pick a
singular knot representing D1 , say

K˙1 = 61 2 3
4

5 D˙1 =
4

1
1

6

6

5

5

2 2

33

4

To perform a mutation in the share containing the chords 1,5,6, we must slide the
double point 1 close to the double points 5 and 6, and then shrink the corresponding
arcs:

2
3

4
5 6

1

Sliding the double point 1

1

3
42 5

6

Shrinking the arcs

3
2 4 5

6

1

Forming the tangle TS

TS

Now doing an appropriate rotation of the tangle TS we obtain a singular knot K2

representing the chord diagram D2 .
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4 Lie algebra weight systems and intersection graphs

Kontsevich [12] generalized a construction of Bar-Natan [2] of weight systems defined
by a Lie algebra and its representation to a universal weight system, with values in the
universal enveloping algebra of the Lie algebra. The weight system associated to a Lie
algebra g (with a specific invariant scalar product, which we do not mention in notation)
is a mapping WgW An=(4T)! U.g/g from the Hopf algebra of chord diagrams to the
subalgebra of g–invariant elements (that is, the center) in the universal enveloping
algebra U.g/ of g. Note that this weight system does not satisfy the one-term relation.
In [20], Vaintrob extended this construction to Lie superalgebras.

Any representation �W g! gl.V / of a Lie algebra g can be extended to a representation
of the universal enveloping algebra of g; we denote this representation by the same
letter � . By taking the trace Tr, this representation determines a number-valued weight
system Tr ı � ıWg . Thus, all weight systems associated to representations of a Lie
algebra are encoded in the universal weight system. Weight systems associated to
representations are said to be colored by the representations.

Our main goal in this section is to prove the following:

Theorem 3 The universal weight systems associated to the Lie algebra sl.2/ and to
the Lie superalgebra gl.1j1/ depend on the intersection graphs of chord diagrams rather
than on the diagrams themselves.

Thus, we have the commutative diagram

fchord diagramsg
Wsl.2/ //

))TTTTTTTTTTTTTTT U.sl.2//sl.2/

fintersection graphsg

55llllllllllllll

;

and similarly for Wgl.1j1/ . It follows immediately that the canonical knot invariants
corresponding to these two algebras do not distinguish mutants. For sl.2/, this fact is
already known, since this weight system is the one of the colored Jones polynomial;
nevertheless, we give a direct proof on the intersection graphs side.

Note that for more complicated Lie algebras the statement of Theorem 3 is no longer
true. For example, the universal sl.3/ weight system distinguishes between the Conway
and the Kinoshita–Terasaka knots.

In fact, for each of the two algebras we prove more subtle statements.
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Theorem 4 The universal weight system Wsl.2/ depends on the matroid of the inter-
section graph of a chord diagram rather than on the intersection graph itself.

This theorem inevitably leads to numerous questions concerning relationship between
weight systems and matroid theory, which specialists in this theory may find worth
being investigated.

Weight systems have a graph counterpart, so-called 4–invariants of graphs [13]. These
are linear functions on the 4–bialgebra F of graphs, which is a graph counterpart of
chord diagrams. The knowledge that a weight system depends only on the intersection
graphs does not guarantee, however, that it arises from a 4–invariant. In particular, we
do not know, whether this is true for the universal sl.2/ weight system. Either positive
(with an explicit description) or negative answer to this question would be extremely
interesting. For gl.1j1/, the answer is positive.

Theorem 5 The universal weight system Wgl.1j1/ is induced by a 4–invariant of
graphs.

Thus, for Wgl.1j1/ , the commutative triangle acquires the form:

An=(4T)
Wgl.1j1/ //



##GGGGGGGGG U.gl.1j1//gl.1j1/

Fn

88qqqqqqqqqqq

For small orders, the fact that Wgl.1j1/ depends on intersection graphs only was estab-
lished in an undergraduate thesis work of David Jordan at the University of Oregon.

In the first two subsections below, we recall the construction of universal weight
systems associated to Lie algebras and the notion of 4–invariant of graphs. The next
two subsections are devoted to separate treating of the Lie algebra sl.2/ and the Lie
superalgebra gl.1j1/ universal weight systems. The last subsection contains Ohtsuki’s
proof of Theorem 3.

4.1 Weight systems via Lie algebras

Our approach follows that of Kontsevich in [12]. In order to construct a weight system,
we need a complex Lie algebra g endowed with a nondegenerate invariant bilinear
form .�; �/. The invariance requirement means that .x; Œy; z�/D .Œx;y�; z/ for any three
elements x;y; z 2 g. Pick an orthonormal basis a1; : : : ; ad , .ai ; aj /D ıij , d being
the dimension of g. Any chord diagram can be made into an arc diagram by cutting
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the circle at some point and further straightening it. For an arc diagram of n arcs, write
on each arc an index i between 1 and d , and then write on both ends of the arc the
letter ai . Reading all the letters left to right we obtain a word of length 2n in the
alphabet a1; : : : ; ad , which is an element of the universal enveloping algebra of our
Lie algebra. The sum of all these words over all possible settings of the indexes is the
element of the universal enveloping algebra U.g/ assigned to the chord diagram. This
element is independent of the choice of the cutting point of the circle, as well as the
orthonormal basis. It belongs to the center U.g/g of the universal enveloping algebra
and satisfies the 4–term relation, whence can be extended to a weight system. The
latter is called the universal weight system associated to the Lie algebra and the bilinear
form, and is denoted by Wg ; it can be specialized to specific representations of the
Lie algebra as in the original Bar-Natan’s approach. Obviously, any universal weight
system is multiplicative: its value on a product of chord diagrams coincides with the
product of its values on the factors.

The simplest noncommutative Lie algebra with a nondegenerate invariant bilinear form
is sl.2/. It is 3–dimensional, and the center U.sl.2//sl.2/ of its universal enveloping
algebra is the ring CŒc� of polynomials in a single variable c , the Casimir element.
The corresponding universal weight system was studied in detail in Chmutov and
Varchenko [7]. It attracts a lot of interest because of its equivalence to the colored
Jones polynomials.

In [20], Vaintrob generalized Kontsevich’s construction to Lie superalgebras, and this
construction was elaborated in Figueroa-O’Farrill, Kimura and Vaintrob [10] for the
simplest noncommutative Lie superalgebra gl.1j1/. The center U.gl.1j1//gl.1j1/ of the
universal enveloping algebra of this algebra is the ring of polynomials CŒc;y� in two
variables. The value of the corresponding universal weight system on a chord diagram
with n chords is a quasihomogeneous polynomial in c and y , of degree n, where the
weight of c is set to be 1, and the weight of y is set to be 2.

4.2 The 4–bialgebra of graphs

By a graph, we mean a finite undirected graph without loops and multiple edges. Let
Gn denote the vector space freely spanned over C by all graphs with n vertices, G0DC

being spanned by the empty graph. The direct sum

G D G0˚G1˚G2˚ : : :

carries a natural structure of a commutative cocommutative graded Hopf algebra. The
multiplication in this Hopf algebra is induced by the disjoint union of graphs, and the
comultiplication is induced by the operation taking a graph G into the sum

P
GU˝G xU ,
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where U is an arbitrary subset of vertices of G , xU its complement, and GU denotes
the subgraph of G induced by U .

The 4–term relation for graphs is defined in the following way. By definition, the
4–term element in Gn determined by a graph G with n vertices and an ordered pair
A;B of its vertices is the linear combination

G �G0AB �
�GABC

�G0AB;

where

� G0
AB

is the graph obtained by deleting the edge AB in G ;

� �GAB is the graph obtained by switching the adjacency to A of all the vertices
adjacent to B in G ;

� �G0
AB

is the graph obtained by deleting the edge AB in G0
AB

(or, equivalently,
by switching the adjacency to A of all the vertices adjacent to B in G0

AB
).

All the four terms in a 4–term element have the same number n of vertices. The
quotient of Gn modulo the span of all 4–term elements in Gn (defined by all graphs
and all ordered pairs of adjacent vertices in each graph) is denoted by Fn . The direct
sum

F D F0˚F1˚F2˚ : : :

is the quotient Hopf algebra of graphs, called the 4–bialgebra. The mapping taking a
chord diagram to its intersection graph extends to a graded Hopf algebra homomorphism

 W A! F from the Hopf algebra of chord diagrams to the Hopf algebra of graphs.

Being commutative and cocommutative, the 4–bialgebra is isomorphic to the poly-
nomial ring in its basic primitive elements, that is, it is the tensor product S.P1/˝

S.P2/˝ : : : of the symmetric algebras of its homogeneous primitive spaces.

4.3 The sl.2/ weight system

Our treatment of the universal weight system associated with the Lie algebra sl.2/

is based on the recurrence formula for computing the value of this weight system on
chord diagrams due to Chmutov and Varchenko [7]. The recurrence states that if a
chord diagram contains a leaf, that is, a chord intersecting only one other chord, then
the value of Wsl.2/ on the diagram is .c�1=2/ times its value on the result of deleting
the leaf, and, in addition,

- - + = 2 - 2
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meaning that the value of Wsl.2/ on the chord diagram on the left-hand side coincides
with the linear combinations of its values on the chord diagrams indicated on the right.

Proof of Theorem 3 Now, in order to prove Theorem 3 for the universal sl.2/ weight
system, we must prove that mutations of a chord diagram preserve the values of this
weight system. Take a chord diagram and a share in it. Apply the above recurrence
formula to a chord and two its neighbors belonging to the chosen share. The recurrence
relation does not affect the complementary share, while all the instances of the modified
first share are simpler than the initial one (each of them contains either fewer chords or
the same number of chords but with fewer intersections). Repeating this process, we
can replace the original share by a linear combination of the simplest shares, chains,
which are symmetric meaning that they remain unchanged under rotations. The sl.2/

case of Theorem 3 is proved.

Proof of Theorem 4 Now let us turn to the proof of Theorem 4. For elementary notions
of matroid theory we refer the reader to any standard reference, say to Welsh [21].
Recall that a matroid can be associated to any graph. It is easy to check that the matroid
associated to the disjoint union of two graphs coincides with that for the graph obtained
by identifying a vertex in the first graph with a vertex in the second one. We call the
result of gluing a vertex in a graph G1 to a vertex in a graph G2 a 1–product of G1

and G2 . The converse operation is 1–deletion. Of course, the 1–product depends
on the choice of the vertices in each of the factors, but the corresponding matroid is
independent of this choice.

Similarly, let G1 , G2 be two graphs, and pick vertices u1; v1 in G1 and u2; v2 in G2 .
Then the matroid associated to the graph obtained by identifying u1 with u2 and v1

with v2 coincides with the one associated to the graph obtained by identifying u1 with
v2 and u2 with v1 . The operation taking the result of the first identification to that of
the second one is called the Whitney twist on graphs.

Both the 1–product and the Whitney twist have chord diagram analogs. For two chord
diagrams with a distinguished chord in each of them, we define their 1–product as a
chord diagram obtained by replacing the distinguished chords in the ordinary product of
chord diagrams chosen so as to make them neighbors by a single chord connecting their
other ends. The Whitney twist also is well defined because of the following statement.

Lemma 1 Suppose the intersection graph of a chord diagram is the result of identifying
two pairs of vertices in two graphs G1 and G2 . Then both graphs G1 and G2 are
intersection graphs, as well as the Whitney twist of the original graph.
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The assertion concerning the graphs G1 and G2 is obvious. In order to prove that
the result of the Whitney twist also is an intersection graph, let c1; c2 denote the two
chords in a chord diagram C such that deleting these chords makes C into an ordinary
product of two chord diagrams C1;C2 . By reflecting the diagram C2 and restoring the
chords c1 and c2 we obtain a chord diagram whose intersection graph is the result of
the desired Whitney twist. The lemma is proved.

According to the Whitney theorem, two graphs have the same matroid if and only if
they can be obtained from one another by a sequence of 1–products/deletions and
Whitney twists. Therefore, Theorem 4 follows from:

Lemma 2 (i) The value of Wsl.2/ on the 1–product of chord diagrams coincides
with the product of its values on the factors divided by c .

(ii) The value of Wsl.2/ remains unchanged under the Whitney twist of the chord
diagram.

Statement (i) is proved in [7]. The proof of statement (ii) is similar to that of Theorem
3. Consider the part C2 participating in the Whitney twist and apply to it the recurrence
relations. Note that the relations do not affect the complementary diagram C1 . Simpli-
fying the part C2 we reduce it to a linear combination of the simplest possible diagrams,
chains, which are symmetric under reflection. Reflecting a chain preserves the chord
diagram, whence the value of the sl.2/ weight system. Theorem 4 is proved.

4.4 The gl.1j1/ weight system

Define the (unframed) Conway graph invariant with values in the ring of polynomi-
als CŒy� in one variable y in the following way. We set it equal to .�y/n=2 on graphs
with n vertices if the adjacency matrix of the graph is nondegenerate, and 0 otherwise.
Recall that the adjacency matrix AG of a graph G with n vertices is an .n�n/–matrix
with entries in Z2 obtained as follows. We choose an arbitrary numbering of the
vertices of the graph, and the entry aij is 1 provided the i –th and the j –th vertices
are adjacent and 0 otherwise (diagonal elements aii are 0). Note that for odd n, the
adjacency matrix cannot be nondegenerate, hence the values indeed are in the ring of
polynomials. The Conway graph invariant is multiplicative: its value on the disjoint
union of graphs is the product of its values on the factors.

Clearly, the Conway graph invariant is a 4–invariant. Moreover, it satisfies the 2–term
relation, which is more restrictive than the 4–term one: its values on the graphs G and�GAB coincide for any graph G and any pair of ordered vertices A;B in it. Indeed,
consider the graph as a symmetric bilinear form on the Z2 –vector space whose basis is
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the set of vertices of the graph, the adjacency matrix being the matrix of the bilinear
form in this basis. In these terms, the transformation G 7! �GAB preserves the vector
space and the bilinear form, but changes the basis A;B;C; � � � ! ACB;B;C; : : : .
Thus, it preserves the nondegeneracy property of the adjacency matrix.

The subspace F1 is spanned by the graph p1 with a single vertex (whence no edges),
which is a primitive element. Since F is the polynomial ring in its primitive elements,
each homogeneous space Fn admits a decomposition into the direct sum of two
subspaces, one of which is the subspace of polynomials in primitive elements of degree
greater than 1, and the other one is the space of polynomials divisible by p1 . We
define the framed Conway graph invariant as the only multiplicative 4–invariant with
values in the polynomial ring CŒc;y� whose value on p1 is c , and on the projection
of any graph to the subspace of p1 –independent polynomials along the subspace of
p1 –divisible polynomials coincides with the Conway graph invariant of the graph.

The values of the framed Conway graph invariant can be computed recursively. Take
a graph G and consider its projection to the subspace of graphs divisible by p1 . On
this projection, the framed Conway graph invariant can be computed because of its
multiplicativity. Now add to the result the value of the (unframed) Conway graph
invariant on the graph. Now we can refine the statement of Theorem 5.

Theorem 6 The gl.1j1/ universal weight system is the pullback of the framed Conway
graph invariant to chord diagrams under the homomorphism 
 .

Proof The proof follows from two statements in [10]. Theorem 3.6 there states
that setting c D 0 in the value of Wgl.1j1/ on a chord diagram we obtain the result of
deframing this weight system. Theorem 4.4 asserts that this value is exactly the Conway
invariant of the chord diagram. The latter coincides with the Conway graph invariant
of the intersection graph of the chord diagrams defined above. Since the deframing for
chord diagrams is a pullback of the deframing for graphs, we are done.

4.5 Ohtsuki’s proof of Theorem 3

In this section, we reproduce the proof of Theorem 3 due to T Ohtsuki (private commu-
nication). The proof uses the algebras A.""/, C.""/, and B.x;y/. We shall use the
terminology and notation of Chmutov, Duzhin and Mostovoy [6] and refer the reader
to this book for their precise definitions and properties. Here A.""/ is the algebra of
chord diagrams supported on two vertical arrows "" modulo the 4T-relation, C.""/ is
the algebra of closed Jacobi diagrams on "" modulo the AS, IHX, and STU relations,
and B.x;y/ is the algebra of open Jacobi diagrams with univalent vertices labeled
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by x and y modulo the AS, IHX, and the link relations. All the three algebras are
isomorphic to one another [6].

For each of these algebras and for a Lie (super)algebra g with an invariant scalar product,
one can define a universal weight system Wg which takes values in .U.g/˝U.g//g in
the case of the algebras A.""/ and C.""/, and in .S.g/˝S.g//g in the case of the
algebra B.x;y/. Here S.g/ denotes the symmetric tensor algebra of the vector space
g. But according to the Poincaré–Birkhoff–Witt theorem, the vector spaces U.g/ and
S.g/ are isomorphic. Therefore, we may think that the universal weight system Wg

takes values in .U.g/˝U.g//g for all the three algebras.

Theorem 3 would follow from the symmetry of the image of a chord diagram on ""
as we insert it into a chord diagram on a circle and take the universal weight system
Wg with values in U.g/g .

The gD sl.2/ case Here .U.sl.2//˝U.sl.2//sl.2/ is generated by the three elements
c˝ 1, 1˝ c , and

Wsl.2/

� �
;

where c is the Casimir element in U.sl.2//. Obviously, after inserting them into a
chord diagram on a circle they become symmetric.

The gD gl.1j1/ case The universal weight system Wgl.1j1/ vanishes on any Jacobi
diagram containing either of the fragments

or .

The quotient space of B.x;y/ modulo Jacobi diagrams with these fragments is gener-
ated by the diagrams

x x;y x;y x;y x

y y

and

x;y x;y x;y

where the notation x;y means that the corresponding univalent vertices are labeled
either by x or by y . These diagrams become symmetric after the insertion into a chord
diagram on the circle modulo the above mentioned diagrams.

This completes Ohtsuki’s proof.
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