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On the multiplicative structure of topological Hochschild
homology

MORTEN BRUN

ZBIGNIEW FIEDOROWICZ

RAINER M VOGT

We show that the topological Hochschild homology THH.R/ of an En –ring spec-
trum R is an En�1 –ring spectrum. The proof is based on the fact that the tensor
product of the operad Ass for monoid structures and the little n–cubes operad Cn is
an EnC1 –operad, a result which is of independent interest.

55P43; 18D50

In 1993 Deligne asked whether the Hochschild cochain complex of an associative ring
has a canonical action by the singular chains of the little 2–cubes operad. Affirmative
answers for differential graded algebras in characteristic 0 have been found by Kontse-
vich and Soibelman [11], Tamarkin [15; 16] and Voronov [19]. A more general proof,
which also applies to associative ring spectra is due to McClure and Smith [14]. In
[10] Kontsevich extended Deligne’s question: Does the Hochschild cochain complex
of an En differential graded algebra carry a canonical EnC1 –structure?

We consider the dual problem: Given a ring R with additional structure, how much
structure does the topological Hochschild homology THH.R/ of R inherit from R?
The close connection of THH with algebraic K–theory and with structural questions
in the category of spectra make multiplicative structures on THH desirable.

In his early work on topological Hochschild homology of functors with smash product,
Bökstedt proved that THH of a commutative such functor is a commutative ring
spectrum (unpublished). The discovery of associative, commutative and unital smash
product functors of spectra simplified the definition of THH and the proof of the
corresponding result for E1–ring spectra considerably (see, for example, McClure,
Schwänzl and Vogt [13]).

In this paper we morally prove the following:

Theorem A For n� 2, if R is an En –ring spectrum then THH.R/ is an En�1 –ring
spectrum.
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The same result has been obtained independently by Basterra and Mandell using
different techniques [2].

Why “morally”? To define THH.R/ we need R to be a strictly associative spectrum.
In general, En –structures do not have a strictly associative substructure. So we have to
replace R by an equivalent strictly associative ring spectrum Y , whose multiplication
extends to an En –structure. Then the statement makes sense for Y . Here is a more
precise reformulation of Theorem A.

Theorem B Let R be an En –ring spectrum. Then there are En –ring spectra X and
Y and maps of En –ring spectra

Y  �X �!R

which are homotopy equivalences of underlying spectra such that the En –structure on
Y extends a strictly associative ring structure and the topological Hochschild homology
THH.Y / inherits an En�1 –ring structure from Y .

Theorem B is an easy consequence of the universality of the W –construction of
Boardman and Vogt [5; 18] and an interchange result involving the operad structures
of the operad Ass codifying monoid structures and the little n–cubes operad Cn . The
interchange is codified by the tensor product of operads (for terminology see 1.6). Our
key result will be the following:

Theorem C Ass˝ Cn is an EnC1 –operad satisfying Condition 1.2 below.

The second author announced this theorem in [9] and sketched the main ideas for a
proof. Here we will include a detailed proof by depicting the spaces .Ass˝Cn/.k/ as
iterated colimits of diagrams of contractible spaces over posets. The diagrams of this
iterated colimit combine to give a diagram over a Grothendieck construction, whose
realization will turn out to be an EnC1 –operad.

Since this iterated colimit construction might be of use in other cases we give a formal
definition in an appendix.

In this paper we will be working in the categories T op, T op� of (based) compactly
generated spaces in the sense of Vogt [17] (often also called k –spaces), and Sp of
S –module spectra in the sense of Elmendorf, Kriz, Mandell and May [8]. Hence
spectrum will always mean S –module spectrum.
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1 En–operads

In this section we recall the basic definitions underlying the statement of Theorem C.

Definition 1.1 An operad is a topologically enriched strict symmetric monoidal
category .B;˚; 0/ such that:

� ob B D N and m˚ nDmC n

� B.m; n/D
`

r1C:::CrnDm

B.r1; 1/� : : :�B.rn; 1/�†r1
�:::�†rn

†m

Since the morphism spaces B.m; n/ are determined by the spaces B.r; 1/ we usually
write B.r/ for B.r; 1/ and work with them. A map of operads f W B!C is a continuous
strict symmetric monoidal functor such that f .n/D n for all n 2N. It is called a weak
equivalence if f W B.n/! C.n/ is a homotopy equivalence of spaces for all n. We
call it a †–equivalence if these map are †n –equivariant homotopy equivalences. An
operad B is called †–free if B.r/! B.r/=†r is a numerable principal †r –bundle
for all r .

For technical reasons we sometimes require the following condition:

Condition 1.2 fidg � B.1/ is a closed cofibration.

Definition 1.3 Let Cn denote the little n–cubes operad (see Boardman and Vogt [4,
Chapter 2, Example 5]). An En –operad is an operad B for which there exists a
sequence of †–equivalences of operads:

B D B0

f0 // B1 � � � � � �
f1oo // Br Cn

froo

1.4 Let Opr denote the category of operads. In [5, Chapter III] Boardman and Vogt
constructed a continuous functor

W W Opr �!Opr

together with a natural transformation

"W W �! Id

taking values in †–equivalences. It can be interpreted as a cofibrant replacement
construction (see Vogt [18]). In particular, given a diagram of maps of operads

C
g

��
W B

f // D
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such that B satisfies Condition 1.2 and g is a †–equivalence, then up to homotopy
through operad maps there exists a lift hW W B! C , and h is unique up to homotopy
through operad maps. If B is also †–free, the same holds if g is only a weak
equivalence [5, 3.17].

This implies the following proposition:

Proposition 1.5 Let B and C be En –operads such that B satisfies Condition 1.2. Let

B D B0

f0 // B1 � � � � � �
f1oo // Br C

froo

be a sequence of weak equivalences connecting them. Then there is a diagram of weak
equivalences

W B

"B

wwnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

g1

}}||
||

||
||

||
||

||
||

|

gr C1

''PPPPPPPPPPPPPPPPPPPPPPPPPPPPP

gr

!!B
BB

BB
BB

BB
BB

BB
BB

BB

B
f0 // B1

: : : //f1oo Br C
froo

commuting up to homotopy through operad maps. The gi are unique up to homotopy
through operad maps. In particular, taking B D Cn , there exists a weak equivalence
W Cn! C .

1.6 En –structures are closely related to n interchanging .E1 DA1/–structures. Let
C and D be two operads and X be an object having a C– and a D–structure. These
structures are said to interchange if for each c 2 C.n/ the operation

cW X n
�!X

is a D–homomorphism, or equivalently, for each d 2D.m/ the operation

d W X m
�!X

is a C–homomorphism, ie the diagram

(1–1)

.X m/n

dn

��

Š .X n/m
cm

// X m

d

��
X n c

X

commutes for all c 2 C.n/ and all d 2D.m/.
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The resulting structure on X is codified by an operad C˝D called the tensor product
of C and D . Formally, C˝D is the quotient of the categorical sum C˚D in Opr by
factoring out relation (1–1). For more details see [5, page 40ff].

Theorem C will be proved in Section 4. In Equation (4–4) we give an explicit chain of
†–equivalences of operads connecting .Ass˝ Cn/ with CnC1 .

2 Algebraic structures on spectra

2.1 The category Sp of spectra is enriched over T op� and complete and cocomplete
in the enriched sense (for details see Elmendorf, Kriz, Mandell and May [8, Chapter
VII]). If K , L are based spaces and M;N are spectra we have a natural isomorphism

M ^ .K ^L/Š .M ^K/^L

and natural homeomorphisms

Sp.M ^K;N /Š T op�.K;Sp.M;N //Š Sp.M;F.K;N //

where F.K;N / is the function spectrum. In particular,

�^KW Sp �! Sp

preserves colimits.

2.2 We can form the based topological endomorphism operad EndM , given by

EndM .n/D Sp.M^n;M /

with the 0–map as base point, where M^0 D S is the sphere spectrum.

If C is any operad in T op , a C–structure on M is a based operad map

CC �! EndM

where CC.n/D C.n/CD C.n/tf�g with basepoint �. This transforms the topological
operad C into a based topological operad CC ; the monoidal structure in T op� is given
by the smash product. Passing to adjoints a C–structure on M is given by a sequence
of maps

C.n/C ^†n
M^n // M; n 2 N

satisfying certain conditions due to the fact that CC! EndM is a symmetric monoidal
functor.

M together with a given C–structure is called a C–algebra or C–ring spectrum.
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To make sense of the interchange diagram (1–1) we have to give M^n a C–structure:
If M and N are C–algebras, then the canonical C–algebra structure on M ^N is
given by the maps

C.n/C! .C.n/� C.n//C D C.n/C^ C.n/C! EndM .n/^ EndN .n/! EndM^N .n/

where the first map is induced by the diagonal and the last by the smash product.

Finally we will need the proposition:

Proposition 2.3 If M� is a simplicial C–algebra, then the realization jM�j inherits a
C–algebra structure.

This follows from the fact that �^C.n/C preserves colimits. For details see [8, X. 1.3,
X. 1.4].

3 THH of En–ring spectra

Definition 3.1 Let B and C be En –operads, let R be a B–algebra and M be a C–
algebra. An En –ring map from R to M is a pair .˛; f / consisting of an operad map
˛W B! C and a homomorphism f W R!M of B–algebras, where the B–structure
on M is the pulled back C–structure.

3.2 Let R!M be an En –ring map between En –ring spectra. In view of Proposition
1.5 and Theorem C we may assume that it is a homomorphism of W .Ass˝ Cn�1/–
algebras.

For any operad B we have the free algebra functor B from spectra to B–algebras
defined by

B.X /D
_
n�0

B.n/C ^†n
X^n:

We now form the monadic bar constructions [8, Chapter XII] to obtain a diagram of
En –ring spectra (here W.C/ stands for the free algebra functor associated with the
operad W C )

B.Ass˝Cn�1;W.Ass˝ Cn�1/;R/

��

B.W.Ass˝ Cn�1/;W.Ass˝ Cn�1/;R/

��

//oo R

��
B.Ass˝Cn�1;W.Ass˝ Cn�1/;M / B.W.Ass˝ Cn�1/;W.Ass˝ Cn�1/;M / //oo M
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and En –ring maps by Proposition 2.3. Since "W W .Ass˝ Cn�1/!Ass˝ Cn�1 is a
weak †–equivalence, the horizontal maps are homotopy equivalences of spectra [8, X.
2.4]. Let

f W YR �! YM

denote the left vertical .Ass˝ Cn�1/–algebra homomorphism. In particular, f is a
homomorphism of strictly associative, unital ring spectra, so that YM is a YR –bimodule.
We can form the topological Hochschild homology of YR with coefficients in YM :

3.3 Let Q be a monoid in Sp and N a Q–bimodule. Then THH.QIN / is defined
to be the realization of the simplicial spectrum

Œn� �! THH.QIN /n DQ^n
^N

with the well-known Hochschild boundary and degeneracy maps.

The inclusion of the 0–skeleton defines a natural map

�W N �! THH.QIN /:

In our situation THH.YRIYM /� is a simplicial Cn�1 –algebra by the interchange
relation (1–1). Hence THH.YRIYM / is a Cn�1 –algebra and

�W YM �! THH.YRIYM /

is a homomorphism of Cn�1 –algebras. We obtain the following generalization of
Theorem B:

Theorem 3.4 Let f W R!M be an En –ring map between En –ring spectra. Then
there is a commutative diagram of En –ring spectra and En –ring maps

YR

fY

��

XR
oo //

fX

��

R

f

��
YM XM

//oo M

with the following properties:

(1) The horizontal maps are homotopy equivalences of spectra.

(2) YR and YM are .Ass˝ Cn�1/–algebras and fY is an .Ass˝ Cn�1/–algebra
homomorphism.

The second property implies that THH.YRIYM / is a Cn�1 –ring spectrum, and the
natural map �W YM ! THH.YRIYM / is a Cn�1 –algebra homomorphism.

Algebraic & Geometric Topology, Volume 7 (2007)
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4 Proof of Theorem C

In general analyzing the homotopy type of the tensor product of operads is an intractable
problem. Our strategy is to use Berger’s notion of a cellular decomposition of an operad
over a poset operad [3]. Berger’s cellular decomposition of Cn over the complete
graphs operad KB

n (definitions will follow) contains a minor flaw (see Remark 4.6)
which can be corrected by modifying KB

n slightly. We represent .Ass˝ Cn/.k/ as the
colimit of a diagram

Fk W KnC1.k/ �! T op

of contractible spaces, indexed by the k –th space of the modification KnC1 of Berger’s
complete graphs operad KB

nC1
, such that

� the diagrams are compatible with the operad structures of KnC1 and Ass˝ Cn

in a sense we will make more precise below;

� the canonical map hocolim Fk ! colim Fk D .Ass˝ Cn/.k/ is a homotopy
equivalence.

Then the collection of the hocolim Fk forms an operad hocolim F and we have a chain
of weak equivalences of operads:

jKnC1j D hocolimKnC1
� hocolim Foo // Ass˝ Cn

Since the topological realization jKnC1j of KnC1 is a †–free topological operad, so is
hocolim F . We will show that .Ass˝Cn/ is †–free, hence both weak equivalences are
†–equivalences. Moreover, Berger’s argument in [3] applied to KnC1 , as opposed to
KB

nC1
, proves that jKnC1j is an EnC1 –operad, and we shall recapitulate the essential

part of his argument in this section. Hence Ass˝ Cn is an EnC1 –operad, too.

4.1 The modified complete graphs operad K A coloring of the complete graph on
the set of vertices f1; 2; 3; : : : ; kg is an assignment of colors to each edge of the graph
from the countable set of colors f1; 2; 3; : : : g. A monochrome acyclic orientation of a
colored complete graph on k vertices is an assignment of direction to each edge of
the graph such that no directed cycles of edges of the same color occur. The poset
K.k/ has as elements pairs .�; �/, where � is a coloring and � is a monochrome
acyclic orientation of the complete graph on k vertices. The order relation on K.k/ is
determined as follows: we say that .�1; �1/� .�2; �2/ if for any colored oriented edge
a

i
�!b in .�1; �1/ the corresponding edge in .�2; �2/ has orientation and coloring

a
j
�!b with j � i or b

j
�!a with j > i . The n–th filtration Kn.k/ is the subposet of

K.k/ where the colorings are restricted to take values in the subset f1; 2; 3; : : : ; ng.
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The action of the symmetric group †k on K.k/ is via permutation of the vertices. The
composition

K.k/�K.m1/�K.m2/� � � � �K.mk/ �!K.m1Cm2C � � �Cmk/

assigns to a tuple of orientations and colorings in K.k/�K.m1/�K.m2/�� � ��K.mk/

the orientation and coloring obtained by subdividing the set of m1Cm2C � � �Cmk

vertices into k adjacent blocks containing m1 , m2 , . . . , mk vertices respectively. The
edges connecting vertices within the i –th block are oriented and colored according to
the given element in K.mi/. The edges connecting vertices between blocks i and j

are all oriented and colored according to the corresponding edge in the given element
of K.k/.

Berger’s complete graphs operad KB
n is the suboperad of Kn consisting of those

oriented colored graphs which do not have any cycles, ie polychromatic cycles are also
disallowed for elements in KB

n .k/.

4.2 Analysis of Ass ˝ Cn By Boardman and Vogt [6, Theorem 5.5] the space
.Ass˝ Cn/.k/ is the quotient of †k � Cn.1/

k by the relation

(4–1) .� I c1; : : : ; ck/� .�I c1; : : : ; ck/

if and only if ��1.i/ < ��1.j / and ��1.i/ > ��1.j / imply that .ci ; cj / 2 Cn.2/ �

Cn.1/
2 . (Recall that Cn.k/ consists of the subspace of k –tuples of subcubes of the unit

cube with disjoint interiors and thus can be naturally thought of as a subspace of Cn.1/
k .)

The element .�; c1; : : : ; ck/ 2†k � Cn.1/
k represents the operation .x1; : : : ;xk/ 7!

c�1.x�1/ � : : : � c�k.x�k/, where � stands for the monoid multiplication. This also
specifies the operad structure.

Observation 4.3 Since .Ass˝ Cn/.1/ D Cn.1/ and Cn satisfies Condition 1.2, so
does Ass˝ Cn .

Since there is only one color for edges of elements in K1.k/, the operads K1 and
KB

1
coincide. In particular, the elements in K1.k/ do not contain any cycles. An

orientation with no cycles of the complete graph on the set of vertices f1; 2; : : : ; kg is
a total ordering of f1; 2; : : : ; kg, which in turn can be identified with a permutation of
f1; 2; : : : ; kg. Hence a representative of an element in .Ass˝Cn/.k/ can be identified
with an oriented graph � 2K1.k/ together with a labeling of the vertices by elements
of Cn.1/.

To take care of the relation (4–1) we enlarge the modified complete graphs operad:
we allow complete graphs with partial monochrome acyclic orientations and partial
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colorings. Such graphs �0 are obtained from oriented colored graphs � 2 K.k/ by
choosing a subset S of the set E.k/ of edges of � and forgetting the orientations and
colors of all edges in S . Let �K.k/ denote the poset of all pairs .�; �/, where � is
a partial coloring and � is a partial monochrome acyclic orientation of the complete
graph on k vertices obtained from some element in K.k/. The order relation is defined
as follows: .�1; �1/� .�2; �2/ if every uncolored unoriented edge in .�1; �1/ is also
uncolored unoriented in .�2; �2/, and for any colored oriented edge a

i
�!b in .�1; �1/

the corresponding edge in .�2; �2/ is either uncolored unoriented or has orientation
and coloring a

j
�!b with j � i or b

j
�!a with j > i .

The symmetric group actions and composition in �K , and the n–th filtration �Kn are
defined as in K . We shall refer to �K and its filtrations as the augmented complete
graphs operad.

While the topological realization of Kn is an En –operad, this is not true for �Kn :
j�Kn.k/j is equivariantly contractible to the †k fixed point specified by the complete
graph on f1; 2; : : : ; kg with all its edges unoriented and uncolored, which is terminal
in �Kn.k/.

If we now label the vertices of �2 �K1.k/ by elements in Cn.1/ with the extra condition
that the pair of labels .c; c0/ of the end points of a nonoriented edge is an element
of Cn.2/, then � with its vertex labels .c1; : : : ; ck/ represents the equivalence class
in .Ass˝ Cn/.k/ of all .�0I c1; : : : ; ck/, where �0 2K1.k/ is an element from which
� can be obtained by forgetting orientations and colors. These labeled augmented
complete graphs form an operad �K1#Cn . Its composition is induced by the composition
in �K1 and the following labeling condition: if the i –th vertex of the element in �K1.k/

has the label a we compose the labels of the vertices of the elements in �K1.mi/

from the left with a. So .�K1#Cn/.k/ is the disjoint union of all A.�/; � 2 �K1.k/,
where A.�/� Cn.1/

k denotes the space of possible vertex labels of �. We obtain that
.Ass˝ Cn/.k/ is a quotient of .�K1#Cn/.k/. More precisely, the analysis of Ass˝ Cn

of 4.2 can be restated as:

Lemma 4.4 .Ass˝ Cn/.k/ is the colimit of the diagram

AW �K1.k/
op
�! T op; � 7!A.�/

where we consider each poset as a category with a morphism �1 ! �2 whenever
�1 � �2 .

Our next step is to depict A.�/ as a colimit of contractible subspaces. Here KnC1

comes into the picture. Let � be a graph in �K1.k/ and S �E.k/ the set of its colored
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edges. We define Tk.�/ to be the subposet of �Kn.k/ of all �0 whose set of colored
edges is precisely E.k/nS .

We define n strict order relations on Cn.1/ as follows: Let c1; c2 2 Cn.1/ and let
.y1; : : : ;yn/ be the highest corner of c1 and .x1; : : : ;xn/ the lowest corner of c2 . For
1� i � n we define

ci <i c2 if and only if yi � xi :

For each � 2 �Kn.k/ we define a closed subspace H.�/� Cn.1/
k by

H.�/D f.c1; : : : ; ck/ 2 Cn.1/
k
I cp <i cq if p

i
! q in �g;

and we have a functor

Fk.�/W Tk.�/ �! T op; �0 7!
[
fH.�/I � 2 Tk.�/ �� �

0
g

where the union is taken in Cn.1/
k .

Lemma 4.5 A.�/ D colim Fk.�/. Moreover if P is an order ideal of Tk.�/ (ie if
˛ 2 P , then each ˇ < ˛ is in P ), the colimit of the restriction to P is a subspace of
A.�/.

Proof Let R.�/ D colim Fk.�/. By construction, A.�/ D
S
�02T .�/H.�0/. Since

the H.�0/ are closed subspaces of A.�/, if suffices to show that the canonical map
pW R.�/!A.�/ is bijective. It is clearly surjective. So let x 2H.�1/\H.�2/�A.�/.
We need to show that x 2H.�1/ is related to x 2H.�2/ in the colimit R.�/. Now
x D .c1; : : : ; ck/ 2 Cn.1/

k , and the little cubes c1; : : : ; ck satisfy ordering conditions
specified by �1 and �2 . Define �3 2

�Kn.k/ as follows: the edge between p and
q obtains no color or orientation if the corresponding edges in �1 and �2 are not
colored (note: by definition of Tk.�/ an edge in �1 is not colored if and only if the
corresponding edge in �2 is not colored). If both are colored, the corresponding edge
in �3 obtains the color and orientation of the edge with the smaller color (if the colors
agree, so do the orientations; this is forced by the ordering conditions for c1; : : : ; ck ).
The ordering conditions for c1; : : : ; ck also imply that �3 does not have monochrome
cycles. By construction, �3 2Tk.�/ and �3��1 and �3��2 , and x 2H.�3/. Hence
x 2H.�1/ and x 2H.�2/ represent the same element in the colimit.

This argument also proves the second statement.

Remark 4.6 If � is the complete graph with no colors, then Tk.�/ D Kn.k/, and
Lemma 4.5 gives, in the terminology of Berger [3], a “cellular decomposition” of
Cn.k/ over Kn.k/. In [3] Berger claimed that the same construction gives a cellular
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decomposition of Cn.k/ over KB
n .k/ and used this to show that jKB

n j is an En –operad.
The following example illustrates that this construction does not give such a cellular
decomposition over KB

n :

Let .c1; c2; c3/ 2 C3.3/ be the configuration with c1 D Œ0;
1
2
�� Œ2

3
; 1�� Œ0; 1

3
�, c2 D

Œ0; 1�� Œ1
3
; 2

3
�� Œ1

3
; 2

3
�, and c3D Œ

1
2
; 1�� Œ0; 1

3
�� Œ2

3
; 1�. Over KB

3
this configuration lies

in the interior of the cells C˛ and Cˇ where:

1 2

3

1

2

3

3

1 2

3

1 2

ˇ D˛ D

So the cells C˛ and Cˇ do not have disjoint interiors, which violates Berger’s notion
of a cellular decomposition. In contrast to KB

3
, over K3 , this configuration lies in C


with

1 2

3

21 2


 D

which is in the boundary of C˛ and Cˇ . For definitions and terminology consult
Berger [3].

We want to point out that results from [3] and [1] imply that jKB
n j is an En –operad

and that the inclusion jKB
n j � jKnj is a †–equivalence.

The colimit decompositions of the A.�/ are functorial with respect to the colimit
decomposition of .Ass˝ Cn/.k/ of Lemma 4.4 in the following sense: Tk defines a
functor:

Tk W
�K1.k/

op
�! Posets; � 7! Tk.�/

For a morphism f W �1 ! �2 in �K1.k/
op , ie �2 � �1 , we have a map of posets

Tk.f /W Tk.�1/�!Tk.�2/ defined as follows: let Si be the set of uncolored unoriented
edges of �i . Then S2 � S1 , and E.k/nS1 is the set of uncolored edges of any � 2
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T .�1/. The map Tk.f / sends � to x� obtained from � by forgetting the orientations
and colors of all edges in E.k/nS2 . Moreover, Fk.�1/.�/� Fk.�2/.x�/ because we
have less order conditions on the cubes in Fk.�2/.x�/. Hence the collection of functors
fFk.�/I � 2 �K1.k/

opg is a Tk –indexed family of functors in the sense of Definition
A.1 below and we can combine the diagrams to a diagram

Fk W
�K1.k/

op
Z

Tk �! T op; .�; �/ 7! Fk.�/.�/

where �K1.k/
op
R

Tk is the Grothendieck construction. Its objects are pairs .�; �0/
with � 2 �K1.k/

op and �0 2 Tk.�/, and morphisms .f;g/W .�1; �
0
1
/! .�2; �

0
2
/ with

f W �1 ! �2 in �K1.k/
op , ie �2 � �1 in �K1.k/ and gW Tk.f /.�

0
1
/ D S�0

1
! �0

2
, ie

S�0
1
� �0

2
, in �Kn.k/.

Lemma 4.7 .Ass˝ Cn/.k/D colim Fk .

Proof For � 2 �K1.k/
op let

i�W Tk.�/ �! �K1.k/
op
Z

Tk

denote the inclusion. Then

colim�K1.k/op
R

Tk
Fk D colim.�K1.k/

op
! T op; � 7! colimTk.�/ Fk ı i�/:

Since Fk ı i� D Fk.�/, Lemma 4.4 and Lemma 4.5 imply the statement.

Lemma 4.8 There is an isomorphism of categories:

'W KnC1.k/ �! �K1.k/
op
Z

Tk

Proof The isomorphism is defined by sending � 2KnC1.k/ to .'1.�/; '2.�// where
'1.�/ is obtained from � by replacing the color nC 1 by the color 1 and by deleting
colors and orientations of edges colored by any i � n, and '2.�/ by forgetting colors
and orientations of all edges colored by nC1. Observe that '2.�/ is in Tk.'1.�//.

Lemma 4.9 For each � 2KnC1.k/ the space .Fk ı'/.�/ is contractible.

Proof .Fk ı'/.�/D
S
fH.�/I � 2 Tk.'1.�//; �� '2.�/g. Berger has proved the

contractability of
S
fH.�/I � 2 Kn.k/; � � �g with � 2 KB

n .k/ [3, Theorem 5.5].
The same argument applies to our situation.
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Lemma 4.10 The diagram Fk ı' is Reedy-cofibrant, ie for all � 2KnC1.k/

colim�<�.Fk ı'/.�/ �! .Fk ı'/.�/

is a closed cofibration.

Proof By Lemma 4.5, colim�<�.Fk ı'/.�/D
S
�<�H.'2.�//, so that we have to

show that [
�<�

H.'2.�//�
[
���

H.'2.�//

is a closed cofibration. Let �1; : : : ; �s be the predecessors of � and let �i D '2.�i/,
�0 D '2.�/. Since Sn

iD1 H.�i/\H.�0/ //

��

H.�0/

��Sn
iD1 H.�i/ // Fk.�/

is a pushout, it suffices to show thatSn
iD1H.�i/\H.�0/ �!H.�0/

is a closed cofibration. By Lillig’s union theorem [12, Corollary 3] this holds if for any
choice of objects �1; : : : ; �r 2

�Kn.k/ the map

H.�1/\ : : :\H.�r / �!H.�r /

is a closed cofibration. A little cube c 2 Cn.1/ is determined by its lowest vertex
x D .x1; : : : ;xn/ and its highest vertex y D .y1; : : : ;yn/. So Cn.1/

k �R2nk is given
by inequalities

0� xij < yij � 1 i D 1; : : : ; k; j D 1; : : : ; n:

The subspace H.�/ � Cn.1/
k consists of elements satisfying additional nonstrict

inequalities given by the ordering conditions.

Let A�R2nk be the subspace given by all inequalities determining H.�1/\: : :\H.�r /

made nonstrict, and X the corresponding space obtained from H.�r /. Then A�X

clearly is a closed cofibration. Define � W X ! Œ0; 1� to be the product of all .yij �xij /

for which we have strict inequalities in H.�1/\ : : :\H.�r / (they are the same as the
ones in the list of H.�r /), and let V D ��1.�0; 1�/. Then by a result of Dold [7, Satz 1],

V \ADH.�1/\ : : :\H.�r /� V DH.�r /

is a closed cofibration.
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Corollary 4.11 The canonical map hocolim.Fkı'/!colim.Fkı'/D .Ass˝Cn/.k/

is a homotopy equivalence.

For a proof see Balteanu, Fiedorowicz, Schwänzl and Vogt [1, Proposition 6.9], which
shows that for a Reedy cofibrant diagram on a poset, the map from the homotopy
colimit to the colimit is an equivalence.

Lemma 4.12 The operad Ass˝ Cn is †–free.

Proof By [6, Corollary 5.7] the †k –action on .Ass˝ Cn/.k/ is free. Since each
space .Ass˝ Cn/.k/ is Hausdorff and paracompact, the lemma follows.

The maps

(4–2) jKnC1.k/j  � hocolim.Fk ı'/ �! .Ass˝ Cn/.k/

assemble to †–equivalences of operads.

For each k the maps are homotopy equivalences by Lemma 4.9 and Corollary 4.11.
Both are equivariant homotopy equivalences since jKnC1.k/j and .Ass˝ Cn/.k/ are
free †k –spaces. It remains to prove that the collection of these maps form maps of
operads. For this it suffices to show that

(4–3) H.'2.�// ı .H.'2.�1//� : : :�H.'2.�k///�H.'2.� ı .�1˚ : : :˚�k///

for � 2 KnC1.k/ and �i 2 KnC1.li/; i D 1; : : : ; k . On the left side, composition is
determined by the one in �K1#Cn/, on the right side we have composition in KnC1 .

Condition (4–3) is a consequence of the following properties of our order relations on
Cn.1/:

(i) c1 <i c2 if and only if c3 ı c1 <i c3 ı c2 for all c3 2 Cn.1/

(ii) c1 <i c2) c1 ı c3 <i c2 ı c4 for all c3; c4 2 Cn.1/

Finally we show:

Lemma 4.13 jKnj is an En –operad for each n.

Proof '.Kn.k// � �K1.k/
op
R

Tk exactly consists of all those pairs .'1.�/; '2.�//

for which '1.�/ does not have any colors. Hence Tk.'1.�//DKn.k/, and Diagram
(4–2) restricts to a diagram of †k –equivariant homotopy equivalences:

jKn.k/j  � hocolim.Fk ı .'jKn.k/// �! Cn.k/
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To distinguish between the Fk for the various n we denote Fk above by F
.n/

k
and

similarly for ' . Summarizing, there is an explicit chain of †–equivalences:

(4–4)

Ass˝ Cn hocolim.F .n/ ı'.n//oo

ttjjjjjjjjjjjjjjjjjj

jKnC1j hocolim.F .nC1/ ı .'.nC1/jKnC1//
oo // CnC1

Together with Observation 4.3 this completes the proof of Theorem C.

Appendix A Iterated colimits and Grothendieck’s construc-
tion

Our description of .Ass˝ Cn/.k/ as an iterated colimit is a special case of a more
general situation, which may be of separate interest.

Let F W A!Cat be any functor. Recall that the Grothendieck construction A
R

F is the
category whose objects are pairs .A;B/ with A2 objA and with B 2 objF.A/. A mor-
phism .A1;B1/�! .A2;B2/ is a pair .˛; ˇ/ where ˛W A1!A2 and ˇW F.˛/.B1/!

B2 .

Definition A.1 An F –indexed family of functors into a category C is a collection of
functors

fGAW F.A/ �! C W A 2 objAg

and natural transformations

f�˛W GA1
�!GA2

F.˛/ W ˛W A1!A2 2morAg

satisfying �idA D idGA for all A 2 objA and satisfying the following associativity
conditions

GA1

�˛2˛1 //

�˛1

((QQQQQQQQQQQQQQ GA3
F.˛2˛1/DGA3

F.˛2/F.˛1/

GA2
F.˛1/

�˛2
F.˛1/

44iiiiiiiiiiiiiiii

for any composable pair of morphisms in A:

A1

˛1
�!A2

˛2
�!A3
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An F –indexed family of functors determines a functor G
R

F W A
R

F �! C given on
objects by G

R
F.A;B/DGA.B/ and on morphisms .˛; ˇ/W .A1;B1/ �! .A2;B2/

by

GA1
.B1/

�˛
�����!GA2

F.˛/.B1/
GA2

.ˇ/

�����!GA2
.B2/:

Now suppose C is a category with small colimits. Then the natural transformations �˛
induce a functor A! C , which takes an object A to colimF.A/GA . We then have:

Proposition A.2 colimA2objA
�
colimF.A/GA

�
Š colimA

R
F G

R
F

The proof is straight forward.
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