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An algebraic model for the loop space homology of a
homotopy fiber

KATHRYN HESS

RAN LEVI

Let F denote the homotopy fiber of a map f W K ! L of 2–reduced simplicial
sets. Using as input data the strongly homotopy coalgebra structure of the chain
complexes of K and L , we construct a small, explicit chain algebra, the homology
of which is isomorphic as a graded algebra to the homology of GF , the simplicial
(Kan) loop group on F . To construct this model, we develop machinery for modeling
the homotopy fiber of a morphism of chain Hopf algebras.

Essential to our construction is a generalization of the operadic description of the
category DCSH of chain coalgebras and of strongly homotopy coalgebra maps given
by Hess, Parent and Scott [6] to strongly homotopy morphisms of comodules over
Hopf algebras. This operadic description is expressed in terms of a general theory
of monoidal structures in categories with morphism sets parametrized by co-rings,
which we elaborate here.

55P35, 16W30; 18D50, 18G55, 55U10, 57T05, 57T25

Introduction

In this article we propose a “neoclassical” approach to computing the homology algebra
of double loop spaces, based on developing a deep, operadic understanding of “strongly
homotopy” structures for coalgebras and comodules, a notion that goes back more than
30 years, to work of Gugenheim, Halperin, Munkholm and Stasheff [5; 15]. We also
make extended use of one-sided cobar constructions, which we apply in innovative
ways.

Let CotorC .�;�/ denote the derived functor of the cotensor product ��C�, for any
coalgebra C . Eilenberg and Moore proved long ago [3] that for any (Serre) fibration
E ! B with fiber F such that B is connected and simply connected and for any
commutative ring R, there is an R–linear isomorphism

(0–1) H�.F IR/Š CotorC�.BIR/
�
C�.EIR/;R

�
:
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In particular, if B is actually 2–connected, then

(0–2) H�.�F IR/Š CotorC�.�BIR/
�
C�.�EIR/;R

�
;

so that for any 2–connected space X , there is a linear isomorphism

(0–3) H�.�2X IR/Š CotorC�.�X IR/.R;R/:

The duals of [4, Theorems 4.1 and 5.1] imply that CotorC�.�BIR/
�
C�.�EIR/;R

�
admits an algebra structure with respect to which the isomorphism (0–2) can be assumed
to be an algebra morphism.

In this article we define a functor LF that associates to any map f of 2–reduced
simplicial sets a chain algebra LF.f / such that H�

�
LF.f /

�
is isomorphic as an algebra

to H�.GF /, where F is the homotopy fiber of f and G is the Kan loop group functor
on simplicial sets (Theorem 6.1). The algebra isomorphism H�

�
LF.f /

�
Š H�.GF /

is realized on the chain level by a zig-zag of quasi-isomorphisms of chain algebras

LF.f /
'
 � �

'
�! � � �

'
 � �

'
�! C.GF /:

As a special case, we obtain a functor L2 from the category of 2–reduced simplicial
sets to the category of connected chain algebras over a principal ideal domain R such
that H�

�
L2.K/

�
is isomorphic as a graded algebra to H�.G2KIR/.

The model that we propose for the loop homology of a homotopy fiber offers certain
advantages. First, there are no extension problems to be solved: the homology algebra of
the model is exactly isomorphic to the homology algebra of the loops on the homotopy
fiber. Second, our model is functorial, so that it can be applied to determining the
homomorphism induced on double loop space homology by a simplicial map.

Finally, our model is “small” and therefore amenable to explicit computations. More
precisely, if K is a simplicial set with exactly n nondegenerate simplices of positive
degree, where n < 1, then our model L2.K/ of G2K is a subalgebra of a free
algebra on 2n generators. Like the differential in the cobar construction on C.K/,
the differential in L2.K/ depends only on the differential and the comultiplication on
C.K/. In particular, in Section 6.2, we provide an explicit, relatively simple description
of our model when K is either formal or a double suspension.

By way of comparison, note that the iterated cobar construction on the chains on
K , which is another model of G2K , is free as an algebra on an infinite number of
generators. Its differential depends not only on the differential and the comultiplication
on C.K/, but also on the natural comultiplication on the cobar construction on C.K/,
which can be very involved. Another possible model, the cobar construction on C.GK/,
is also free, but on a generating set that is infinite in each degree, and, in addition, has
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a very complicated differential. Finally, both the multiplication and the differential on
the chain Hopf algebra C.G2K/ itself are extremely complex.

In the general case of loops on the homotopy fiber F of a simplicial map K! L,
the dual of Theorem 5.1 in Félix–Halperin–Thomas [4] states that there is a quasi-
isomorphism of chain algebras

C.GF /
'
�! C.GK/˝t� �C.GL/;

where C.GK/˝t� �C.GL/ denotes the one-sided cobar construction of Definition
3.1, endowed with the multiplication of Corollary 3.6. The chain algebra C.GK/˝t�

�C.GL/ is not of finite type, even if K and L have only a finite number of nonde-
generate simplices, and both its differential and its multiplication are quite complicated.
On the other hand, if K and L have exactly m and n nondegerate simplices of
positive degree, respectively, then the chain algebra model constructed here, LF.f /, is
a subalgebra of a free algebra on mC2n generators, so that its multiplicative structure
is relatively simple. Its differential is also much easier to give explicitly than that of
C.GK/˝t� �C.GL/.

To construct our models, we need the full Alexander–Whitney coalgebra structure of the
normalized chains on a simpicial set. The category F of Alexander–Whitney coalgebras
(cf Definition 2.12) was introduced and studied in Hess–Parent–Scott–Tonks [8]. The
objects of F are connected chain coalgebras .C; �/ such that the comultiplication �
is itself a coalgebra map up to strong homotopy, ie up to a coherent, infinite family of
homotopies, which we denote ‰ . Furthermore, there is a functor e�W F!H, where H
is the category of chain Hopf algebras, such that the chain algebra underlying e�.C; ‰/
is �C , the cobar construction on C .

An Alexander–Whitney model of a chain Hopf algebra H consists of an Alexander–
Whitney coalgebra .C; ‰/ together with a quasi-isomorphism � W e�.C; ‰/ '�!H of
chain algebras that is also a map of coalgebras up to strong homotopy, where the
homotopies are appropriately compatible with the multiplicative structure (cf, Definition
5.1). As illustrated by the results in this article, Alexander–Whitney models can be
useful tools for homology calculations in H.

The topologist’s motivation for considering the category F is the existence of a natural
Alexander–Whitney model of the chain Hopf algebra C.GK/, where K is a reduced
simplicial set. As shown in [8], there is a functor eC W sSet0! F from the category of
reduced simplicial sets to the category of Alexander–Whitney coalgebras such that for
all simplicial sets K , there is a natural quasi-isomorphism of chain algebras

�K W
e� eC .K/ '�! C.GK/;
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which is also a map of coalgebras up to strong homotopy.

Given the existence of natural Alexander–Whitney models, the most important steps
on the path to constructing the model LF.f / and to proving that its homology algebra
is isomorphic to H�.GF / are the following.

(1) For any chain Hopf algebra H and any right H –comodule algebra B , we
observe that CotorH .B;R/ admits a natural graded algebra structure (Corollary
3.8 and, more generally, Proposition 3.19). In particular, for any morphism
'W H 0 ! H of chain Hopf algebras, CotorH .H 0;R/, which can be seen as
the homology of the “homotopy fiber” of ' , admits a natural graded algebra
structure.

(2) We show that the category F admits a natural “based-path” construction, ie a
functor ePW F! F such that eP.C; ‰/ is acyclic for all .C; ‰/, together with a
natural “projection” morphism in F from eP.C; ‰/ to .C; ‰/ (Definition 4.4).

(3) For any morphism !W .C 0; ‰0/! .C; ‰/ in F, we prove that the chain Hopf
algebra e��.C 0; ‰0/aeP.C; ‰/�
is cofree over e�.C; ‰/ on a cobasis that is itself a sub chain algebra, denoted
LF.!/, of e��.C 0; ‰0/` eP.C; ‰/� (Corollary 4.7).

(4) Given an Alexander–Whitney model !W .C 0; ‰0/! .C; ‰/ of a morphism of
chain Hopf algebras 'W H 0!H , we prove that H�

�
LF.!/

�
ŠCotorH .H 0;R/

as graded algebras (Theorem 5.6).

Let f W K!L be a simplicial morphism of 2–reduced simplicial sets with homotopy
fiber F . Applying (4) to eC .f /W eC .K/ ! eC .L/, we obtain an isomorphism of
algebras

H�.GF /Š H�

�
LF
�eC .f /��;

thanks to the algebra isomorphism

H�.GF /Š CotorC.GL/
�
C.GK/;R

�
that follows from the dual of [4, Theorem 5.1].

To make this article as self-contained as possible and to establish our notation, we
begin in Section 1 by recalling the rather extensive foundations on which our current
research is built. Section 1.3, in which we describe the operadic approach to strongly-
homotopy coalgebra structures of Hess–Parent–Scott [6], is particularly important for
the later sections of this paper and essential to providing a clean description of the
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yoga of Alexander–Whitney coalgebras. Readers unfamiliar with the role of co-rings
in monoidal categories as parametrizing objects for enlarged morphism sets or with
operads will find all of the necessary definitions in Section 1.1 and Section 1.2.

Section 3 concerns the naturality of multiplicative structure on Cotor, which plays an
important role in the proofs of Theorem 5.4 and Theorem 5.6, the key elements of
step (4) in the plan outlined above. Given chain Hopf algebras H and H 0 , as well
as a right H –comodule algebra B and a right H 0–comodule algebra B0 , there is
an obvious notion of “morphisms” from .H IB/ to .H 0IB0/: the set of pairs .f Ig/,
where f W H ! H 0 is a chain Hopf algebra map and gW B! B0 is a chain algebra
map respecting the coactions of H and H 0 . It is easy to see that any such pair
induces an algebra map CotorH .B;R/! CotorH 0.B0;R/. There is however a more
general type of “morphism” from .H IB/ to .H 0IB0/, which we call a comodule
algebra map up to strong homotopy (CASH map), that also induces an algebra map
CotorH .B;R/! CotorH 0.B0;R/.

In Section 3.2 we define CASH maps and establish existence results (Proposition 3.16
and Proposition 3.18) that we use afterwards to prove Theorem 5.4 and Theorem 5.6.
Before verifying the existence results, we provide an equivalent, operadic definition
of CASH maps, modeled on the operadic approach to strongly homotopy coalgebra
structures, that facilitates considerably the bookkeeping involved in working with the
infinite family of homotopies associated to a CASH map. The general study of monoidal
structures and parametrizations by co-rings in Section 2 is essential to the development
of this operadic approach.

Section 4 and Section 5 are devoted to the study of Alexander–Whitney coalgebras
and their use in calculations of the homology of homotopy fibers in the category H of
chain Hopf algebras. Topology comes into play again in Section 6, where we apply the
purely algebraic results of the preceeding sections to constructing our loop-homotopy
fiber model. In particular, we study the special cases of double suspensions and of
formal spaces, obtaining a simplified model for the homology of their double loop
spaces, which is a free algebra on a set of generators we describe completely.

The first author would like to thank the University of Aberdeen for its kind hospitality
during the initial phase of research on this project, while the second author would like
to thank the EPFL for hosting him during the completion of the project. Both authors
would like to thank referees for pointing out the relevance of [4] to their work and for
providing helpful organizational advice.

Notation and conventions
� Given objects A and B of a category C, we let C.A;B/ denote the set of

morphisms with source A and target B .
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� Throughout this paper we are working over a principal ideal domain R. We
denote the category of graded R–modules by grModR and the category of
chain complexes over R by ChR . The underlying graded modules of all chain
(co)algebras are assumed to be R–free.

� The degree of an element v of a graded module V is denoted either jvj or simply
v , when used as an exponent, and no confusion can arise.

� Throughout this article we apply the Koszul sign convention for commuting
elements of a graded module or for commuting a morphism of graded modules
past an element of the source module. For example, if V and W are graded
algebras and v˝w; v0˝w0 2 V ˝W , then

.v˝w/ � .v0˝w0/D .�1/jwj�jv
0jvv0˝ww0:

Futhermore, if f W V ! V 0 and gW W !W 0 are morphisms of graded modules,
then for all v˝w 2 V ˝W ,

.f ˝g/.v˝w/D .�1/jgj�jvjf .v/˝g.w/:

� A graded module V is bounded below if there is some N 2 Z such that Vk D 0

for all k < N . It is n–connected if, in particular, Vk D 0 for all k � n. We
write VC for V>0 .

� The suspension endofunctor s on the category of graded modules is defined on
objects V D

L
i2Z Vi by .sV /i Š Vi�1 . Given a homogeneous element v in

V , we write sv for the corresponding element of sV . The suspension s admits
an obvious inverse, which we denote s�1 .

� Given chain complexes .V; d/ and .W; d/, the notation f W .V; d/
'
�! .W; d/

indicates that f induces an isomorphism in homology. In this case we refer to
f as a quasi-isomorphism.

� Let V be a positively-graded R–module. The free associative algebra on V is
denoted T V , ie,

T V ŠR˚V ˚ .V ˝V /˚ .V ˝V ˝V /˚ � � � :

A typical basis element of T V is denoted v1 � � � vn .

� Given a comodule .M; �/ over a coalgebra .C; �/, we let �.i�1/ denote the
iterated comultiplication C ! C˝i and �.i/ the iterated coaction M !M ˝

C˝i . The reduced comultiplication is denoted x�.

� If C is a simply connected chain coalgebra with reduced comultiplication x�
and differential d , then �C denotes the cobar construction on C , ie, the chain
algebra .T s�1.CC/; d�/, where d�D�s�1dsC.s�1˝s�1/x�s on generators.
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Furthermore, for every pair of simply-connected chain coalgebras C and C 0

(0–4) qW �
�
C ˝C 0

� '
�!�C ˝�C 0

denotes the quasi-isomorphism of chain algebras defined by Milgram in [11].

1 Preliminaries

For the convenience of the reader, we recall here certain algebraic foundations of our
work. We begin by reminding the reader how co-rings in monoidal categories can
act as parametrizing objects for categories of modules with enlarged morphism sets,
as described in Hess–Parent–Scott [6] and Hess–Parent–Scott–Tonks [8]. We then
review the theory of operads, seen as monoids with respect to a certain nonsymmetric
monoidal structure on the category of symmetric sequences of objects in a given
symmetric monoidal category. In particular we analyze the category of right modules
over a given operad P , comparing it to the category of P –coalgebras. Finally, we
summarize briefly results in [6] and [8] that provide an operadic description of the
category DCSH of chain coalgebras and of strongly homotopy coalgebra maps, in
terms of a certain co-ring over the associative operad.

1.1 Co-rings in monoidal categories

Let .C;˝; I/ be a monoidal category, and let .A; �; �/ be a monoid in C. If the
category C admits coequalizers and M ˝� and �˝N preserve colimits for all
objects M and N , then the category of A–bimodules, AModA , is a monoidal category
also, with monoidal product �˝A�. If M and M 0 are A–bimodules, then M˝A M 0

is the coequalizer of the diagram

M ˝A˝M 0
IdM ˝�

0

�
�˝IdM 0

M ˝M 0:

The unit object with respect to �˝A� is A itself, where the right and left A–actions
on A are given by the multiplication map �.

Definition 1.1 An A–co-ring is a comonoid in the monoidal category .AModA;˝A;A/.
An A–co-ring thus consists of an A–bimodule M , together with two morphisms of
A–bimodules

 W M !M ˝A M and "W M !A

such that  is coassociative and counital with respect to ".
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Examples of co-rings abound in algebra and topology. In particular, any Frobenius
algebra is a co-ring over itself, while the Hopf algebroids of stable homotopy theory are
co-rings with extra structure. Moreover, any ring homomorphism 'W A!B induces a
canonical B –co-ring structure on M D B˝A B , where the comultiplication is

M !M ˝B M W b˝ b0 7! .b˝ 1/˝ .1˝ b0/:

Co-rings play an important role in this article, as they induce natural enlargements
of categories of modules, leaving the objects fixed and expanding the morphism sets.
Allowing larger morphism sets translates into weakening the notion of morphism of
modules. In this sense a co-ring plays the role of a family of parameters, with respect
to which such a weaker notion is coherently defined.

Definition 1.2 Let ModA denote the category of right A–modules. Given an A–
co-ring .M;  ; "/, let ModA;M denote the category with Ob ModA;M D Ob ModA

and

ModA;M .N;N 0/ WDModA.N ˝A M;N 0/:

Given f 2 ModA;M .N;N 0/ and f 0 2 ModA;M .N 0;N 00/, their composite f 0f 2
ModA;M .N;N 00/ is equal to the composite in ModA of the following sequence of
morphisms of right A–modules.

N ˝A M
IdN ˝A 
������!N ˝A M ˝A M

f˝AIdM
������!N 0˝A M

f 0

�!N 00:

Composition in ModA;M is associative and unital, since  is coassociative and counital.
Furthermore, there is a natural, faithful functor

(1–1) IM W ModA!ModA;M ;

which is the identity on objects and which sends a morphism f W N ! N 0 of right
A–modules to

IM .f /D f ˝A "W N ˝A M !N 0˝A AŠN 0:

The category ModA;M is therefore truly an enlargement of ModA .

We conclude this section by clarifying our vision of a co-ring as a family of a parameters.

Definition 1.3 Let .M;  ; "/ be an A–co-ring, endowed with a strict morphism of
left A–modules �W A!M . Let N;N 0 2Ob ModA . A morphism f 2C.N;N 0/ is a
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morphism of right A–modules up to M –parametrization if there is a strict morphism of
right A–modules gW N ˝A M !N 0 such that the following diagram in C commutes.

N ŠN ˝A A
f

))RRRRRRRRRRRRRRRR

IdN ˝A�

��
N ˝A M

g // N 0

There is an analogous enlargement of the category of left A–modules. For the experts,
we note that these enlargements are, of course, coKleisli constructions, induced by the
comonads �˝A M and M ˝A�.

1.2 Operads and their modules and coalgebras

Let .C;˝; I/ be a symmetric monoidal category such that C admits coequalizers
and countable coproducts and has an initial object 0. Let C† denote the category of
symmetric sequences in C. An object X of C† is a family fX .n/ 2 C j n � 0g of
objects in C such that X .n/ admits a right action of the symmetric group †n , for all
n. The object X .n/ is called the nth level of the symmetric sequence X .

For all X ;Y 2C† , a morphism of symmetric sequences 'W X !Y consists of a family

f'n 2 C
�
X .n/;Y.n/

�
j 'n is †n –equivariant; n� 0g:

More formally, C† is the category of contravariant functors from the symmetric
groupoid † to C, where Ob †DN, the set of natural numbers, and †.m; n/ is empty
if m¤ n, while †.n; n/D†n .

The category C can be “linearly” embedded in the category C† , via a functor

(1–2) LW C! C†;

which is defined on A 2 Ob C by L.A/.1/D A and L.A/.n/D 0 for all n 6D 1 and
similarly for morphisms.

There is another important embedding of C into C†

(1–3) T W C! C†

defined by T .A/.n/DA˝n for all n. The right action of †n on T .A/.n/DA˝n is
given by permutation of the factors, using iterates of the natural symmetry isomorphism

� W A˝A
Š
�!A˝A in C. For example, if C is the category of graded modules, then

.a1˝ � � �˝ an/ � � D a�.1/˝ � � �˝ a�.n/
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for all a1; : : : ; an 2A.

As a first indication of the role of differential structure in symmetric sequences, we
introduce the following useful operation on symmetric sequences of chain complexes
in the image of T . The analogy with the notion of a derivation on an algebra is evident.

Definition 1.4 Let f;g; t W A!B be morphisms of graded R–modules, homogeneous
of degrees 0, 0 and m, respectively. The .f;g/–derivation of symmetric sequences
induced by t is the morphism of symmetric sequences

D.f;g/.t/W T .A/! T .B/

that is of degree m in each level and that is defined as follows in level n.

D.f;g/.t/n D
n�1X
jD0

f ˝j
˝ t ˝g˝n�j�1:

When ADB and f D IdADg , we simplify notation and write D.t/ for the .IdA; IdA/–
derivation induced by t .

Example 1.5 If C is chain complex with differential d , then the levelwise differential
on T .C / is D.d/.

In this article we use the following two monoidal structures on the category of symmetric
sequences.

Definition 1.6 The level tensor product of two symmetric sequences X and Y is the
symmetric sequence given by

.X ˝Y/.n/D X .n/˝Y.n/ .n� 0/;

endowed with the diagonal action of †n .

The following, well-known result is very easy to prove.

Proposition 1.7 Let C D fC.n/gn�0 be the symmetric sequence with C.n/D I and
trivial †n –action, for all n � 0. Then .C†;˝; C/ is a closed symmetric monoidal
category, called the level monoidal structure on C† .

A (co)monoid in C† with respect to the level monoidal structure is called a level
(co)monoid.

Note that the functor T is strong monoidal with respect to the level monoidal structure
on symmetric sequences, ie, for all C;C 2 Ob C, there is a natural isomorphism
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T .C ˝C 0/Š T .C /˝T .C 0/, given in each level by iterated application of the natural
symmetry isomorphism in C.

The category C† also admits a nonsymmetric, right-closed monoidal structure, defined
as follows.

Definition 1.8 The composition tensor product of two symmetric sequences X and
Y is the symmetric sequence X ˘Y given by

.X ˘Y/.n/D
a
k�1
En2Ik;n

X .k/˝†k

�
Y.n1/˝ � � �˝Y.nk/

�
˝†En I Œ†n�;

where Ik;nDfE{D .n1; : : : ; nk/2Nk j
P

j nj D ng and †EnD†n1
�� � ��†nk

, seen as
a subgroup of †n . The left action of †k on

`
En2Ik;n

Y.n1/˝� � �˝Y.nk/ is given by
permutation of the factors, using the natural symmetry isomorphism A˝B Š B˝A

in C.

Proposition 1.9 Let J denote the symmetric sequence with J .1/D 1 and J .n/D 0

otherwise, with trivial †n –action. Then .C†;˘;J / is a right-closed monoidal category,
called the composition monoidal structure on C† .

A proof of this result can be found in Markl–Shnider–Stasheff [10, section II.1.8].

Unwrapping the definition of the composition product of symmetric sequences, we
obtain the next, well-known lemma, which tells us which data determine a morphism
with source a composition of symmetric sequences.

Lemma 1.10 (Markl [9]) Let X , Y and Z be symmetric sequences in C. Let
Im;n D fEnD .n1; : : : ; nm/ j

P
j nj D ng. Let

FD
˚
X .m/˝

�
Y.n1/˝ � � �˝Y.nm/

� �En
�! Z.n/ j n� 0;m� 1; En 2 Im;n

	
be a family of morphisms in C. If the following diagrams commute for all m, n,
En, � 2 †m and �j 2 †nj for 1 � j � m, then F induces a morphism of symmetric
sequences � W X ˘Y! Z .

X .m/˝
�
Y.n1/˝ � � �˝Y.nm/

�
�En

��

�˝��1

// X .m/˝
�
Y.n�.1//˝ � � �˝Y.n�.m//

�
�
��1En

��
Z.n/

�.n�.1/;:::;n�.m// // Z.n/
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X .m/˝
�
Y.n1/˝ � � �˝Y.nm/

�
�En

��

1˝�1˝���˝�m // X .m/˝
�
Y.n1/˝ � � �˝Y.nm/

�
�En

��
Z.n/

�1˚���˚�m // Z.n/

In the statement above, ��1En WD .n�.1/; : : : ; n�.m//, which defines a left action of †m

on Im;n .

Remark 1.11 For any objects X ;X 0;Y;Y 0 in C† , there is an obvious, natural inter-
twining map

iW .X ˝X 0/˘ .Y˝Y 0/ // .X ˘Y/˝ .X 0 ˘Y 0/ :

Definition 1.12 An operad in C is a monoid with respect to the composition product,
ie, a triple .P; 
; �/, where 
 W P ˘P! P and �W J ! P are morphisms in C† , and

 is appropriately associative and unital with respect to �. A morphism of operads is a
monoid morphism in the category of symmetric sequences.

The most important example of an operad in this paper is the associative operad
A, given by A.n/D I Œ†n� for all n, endowed with the obvious multiplication map,
induced by permutation of blocks.

Operads derive their importance from their role in parametrizing n–ary (co)operations
and governing the identites among them. In this article we focus on cooperations and
thus on coalgebras over an operad P . A P –coalgebra is an object A of C along with
a sequence of structure morphisms

�nW A˝P.n/!A˝n; n� 0

that are appropriately associative, equivariant, and unital. We refer the reader to eg,
[10], for the full definition.

A morphism of P –coalgebras is a morphism in C that commutes with the coalge-
bra structure maps. The category of P –coalgebras and their morphisms is denoted
P–Coalg.

Remark 1.13 Algebraists are used to thinking of coalgebras as modules with additional
structure. It is important to note that if P is an operad, then a P –module (in the sense
defined in Section 1.1) is a object of C† with additional structure, while a P –coalgebra
is an object of C with additional structure.
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On the other hand, as explained in [6, Section 2.2], the functor T restricts to a faithful
functor

T W P–Coalg //ModP
from the category of P –coalgebras to the category of right P –modules (with respect
to the composition product ˘), ie P –coalgebra structure on an object A in C induces
a right P –action map T .A/˘P! T .A/ in C† .

Let .M;  ; "/ be a P –co-ring, and consider ModP;M , the enlarged version of ModP
described in the Section 1.1. Define an enlarged version .P;M/–Coalg of P–Coalg
by Ob.P;M/–CoalgD ObP–Coalg
(1–4)
.P;M/–Coalg.A;A0/ WDModP;M

�
T .A/; T .A0/

�
DModP

�
T .A/˘PM; T .A0/

�
;

for all A;A0 2 Ob.P;M/–Coalg, with composition defined as in ModP;M .

Let A and A0 be P –coalgebras. In keeping with Definition 1.3, we say that a mor-
phism f W A ! A0 is a morphism of P –coalgebras up to M–parametrization if
T .f /W T .A/! T .A0/ is a morphism of right P –modules up to M–parametrization.

From this formulation, it follows that co-rings over operads are, in a strong sense,
relative operads. They parametrize higher, “up to homotopy” structure on morphisms
of P –coalgebras and govern relations among the higher homotopies and the n–ary
cooperations on the source and target.

1.3 Strongly-homotopy coalgebra structures

The category DCSH of coassociative chain coalgebras and of coalgebra morphisms up
to strong homotopy was first defined by Gugenheim and Munkholm in the early 1970s
[5], when they were studying extended naturality of the functor Cotor. Its objects are
simply connected, augmented, coassociative chain coalgebras, and a morphism from C

to C 0 is a map of chain algebras �C !�C 0 . The category DCSH plays an important
role in topology (cf, Theorem 2.13).

In a slight abuse of terminology, we say that a chain map between chain coalgebras
f W C !C 0 is a DCSH map if there is a morphism in DCSH.C;C 0/ of which f is the
linear part. In other words, there is a map of chain algebras gW �C !�C 0 such that

gjs�1CC
D s�1f sC higher-order terms:

Let A denote the associative operad in the category of chain complexes. In [6] the
authors constructed an A–co-ring F , called the Alexander–Whitney co-ring, which
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can applied in the framework of Section 1.1 to providing an operadic description of
DCSH. The co-ring F also admits a level comultiplication �F W F ! F ˝F that is
compatible with its composition comultiplication  F W F ! F˘AF and that plays an
important role in development of monoidal structure in DCSH (cf Section 2.2).

The symmetric sequence of graded modules underlying F is A˘S ˘A, where, for all
n� 1, S.n/DRŒ†n� � zn�1 , the free RŒ†n�–module on a generator of degree n� 1,
and S.0/ D 0. We refer the reader to [8, pages 853–854] for the explicit formulas
for the differential @F W F ! F , the composition comultiplication  F and the level
comultiplication �F . We remark that F admits a natural filtration with respect to
which both  F and �F are filtration-preserving, while @F is filtration-decreasing.

Consider .A;F/–Coalg (cf (1–4)). Any morphism � 2 .A;F/–Coalg.C;C 0/ gives
rise to a family F.�/ of linear maps from C into T .C 0/, defined as follows.

(1–5) F.�/ WD f�k D �.�˝ zk�1/W C ! .C 0/˝k
D T .C 0/.k/ j k � 1g:

The existence of such a family F.�/ is equivalent to the existence of a morphism of
symmetric sequences of graded modules L.C /˘S! T .C 0/, where LW grModR!

grMod†R is the “linear” embedding (1–2). We show below (Proposition 2.7) that, under
certain conditions, the existence of such a family implies that of a corresponding map
in .A;F/–Coalg.

The important result below follows immediately from the Cobar Duality Theorem in
[6].

Theorem 1.14 (Hess, Parent and Scott [6]) There is a full and faithful functor, called
the induction functor,

IndW .A;F/–Coalg!A–Alg
defined on objects by Ind.C /D�C for all C 2 Ob.A;F/–Coalg and on morphisms
by

Ind.�/js�1C D

X
k�1

.s�1/˝k�.�˝ zk�1/sW s
�1CC!�C 0

for all � 2 .A;F/–Coalg.C;C 0/.

As an easy consequence of Theorem 1.14, we obtain the following crucial operadic
characterization of DCSH.

Theorem 1.15 (Hess, Parent and Scott [6]) There is an isomorphism of categories

.A;F/–Coalg
Š
�! DCSH

defined to be the identity on objects and to be Ind on morphisms.
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Remark 1.16 Thanks to this operadic description of DCSH, we see that strongly
homotopy coalgebra maps are exactly morphisms of A–coalgebras up to F –parame-
trization.

2 Monoidal structures and modules over operads

We carry out in this section a detailed study of monoidal structures on categories of
modules and of coalgebras over a fixed operad P , in both their usual and enlarged, “up-
to-parametrization” forms, with respect to some P –co-ring Q. We devote particular
attention to the monoids in these categories, which we call P –rings (in ModP ),
pseudo P –rings (in ModP;Q ), P –Hopf algebras (in P–Coalg) and pseudo P –Hopf
algebras (in .P;Q/–Coalg). We begin by treating the general case, then specialize to
.A;F/–Coalg.

2.1 Monoidal structures and co-ring parametrizations

Let .C;˝; I/ be any symmetric monoidal category admitting coequalizers and co-
products. Thanks to the existence and naturality of the intertwining map i (Remark
1.11), the level tensor product of symmetric sequences induces a symmetric monoidal
structure ^ on the category of operads. If .P; 
 / and .P 0; 
 0/ are operads, then
.P; 
 /^ .P 0; 
 0/ WD .P˝P 0; 
 00/, where 
 00 is the composite

.P˝P 0/˘ .P˝P 0/ i
�! .P ˘P/˝ .P 0 ˘P 0/


˝
 0

���! P˝P 0:

The unit object with respect to the monoidal product ^ is C (cf Proposition 1.7).

Henceforth, let .P; 
;�; �/ be a Hopf operad, ie, a level comonoid in the category
of operads: �W P ! P ^P is a coassociative morphism of operads that is counital
with respect to eW P! C , which is also a morphism of operads. The category ModP
of right P –modules then admits a symmetric monoidal product, also denoted ^,
which is defined as follows. If .M; �/ and .M0; �0/ are two right P –modules, then
.M; �/^ .M0; �0/ WD .M˝M0; �00/, where �00 is the composite

.M˝M0/˘P 1˘�
���! .M˝M0/˘ .P˝P/ i

�! .M˘P/˝ .M0˘P/
�˝�0

���!M˝M0:

The unit object is C , endowed with the right P –action given by the composite

C ˘P 1˘"
��! C ˘ C


C
�! C;

where 
C is the usual multiplication on C .
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There is an induced, symmetric monoidal structure .P–Coalg;^; I/ such that there is
a natural isomorphism of functors T .�^�/Š T .�/^ T .�/ from C into ModP .

The category of monoids in .ModP ;^;P/ and morphisms thereof is denoted RingP .
We call the objects of this category P –rings. Restricting to monoids in .P–Coalg;^;I/,
we obtain the category P–Hopf of P –Hopf algebras.

The categories PMod of left P –modules and PModP of P –bimodules over .P; 
;�/
also admit symmetric, level-monoidal structures, defined analogously to that on ModP .
The category of P –bimodules is endowed with a second, nonsymmetric monoidal
structure derived from the composition structure. Given two P –bimodules M and
N , their composition product over P , denoted M˘PN , is defined to be the obvious
coequalizer. Naturality arguments show that the intertwining map induces a natural
morphism of P –bimodules

iW .X ^X 0/˘P.Y ^Y 0/ // .X˘PY/^ .X 0˘PY 0/

intertwining ^ and ˘P .

Definition 2.1 A level-comonoidal P –co-ring is a P –co-ring .Q;  Q; "Q/ endowed
with a coassociative, level comultiplication

�QW Q!Q^Q;

which is counital with respect to

eQW Q! C:

Furthermore, the diagrams

Q

�Q

��

 Q // Q˘PQ

�Q˘P�Q
��

.Q^Q/˘P.Q^Q/

i
��

Q^Q
 Q^ Q// .Q˘PQ/^ .Q˘PQ/

and

Q
�Q //

"Q
��

Q^Q
"Q^"Q

��
P

�P // P ^P
must commute.
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Recall the “inclusion” functor (1–1)

IQW ModP !ModP;Q:

Restricting IQ to P–Coalg defines an “inclusion” functor

(2–1) IQW P–Coalg! .P;Q/–Coalg;

where IQ is defined on a morphism f W C ! C 0 by IQ.f / WD T .f /˘P"Q .

Bringing the level comultiplication �Q into play, we can define a symmetric monoidal
product f on ModP;Q as follows, so that the restriction to ModP is the same as ^. On
objects, MfN is the same as M^N in ModP , while the monoidal product � f � 0
of � 2 ModP;Q.M;N / and � 0 2 ModP;Q.M0;N 0/ is defined to be the following
composite of morphisms of strict P –bimodules.

.M^M0/˘PQ
1̆ P�Q
�����! .M^M0/˘P.Q^Q/

i
�! .M˘PQ/^.M0˘PQ/

�^� 0

���!M^M0:

The compatibility of the two comultiplications implies that �f� is indeed a bifunctor.
The coassociativity of �Q ensures the associativity of f, while the counit of �Q gives
rise to the unit of f. By restriction, and using that T is strong monoidal, we obtain
a monoidal structure f on .P;Q/–Coalg, which is the usual monoidal product of
P –coalgebras on objects.

Definition 2.2 The category of monoids in ModP;Q with respect to the monoidal
product f and of their morphisms is denoted PsRingP;Q . We call its objects pseudo P –
rings, suppressing explicit mention of the governing comultiplication  Q . Restricting
to f–monoids in .P;Q/–Coalg, we obtain the category .P;Q/–PsHopf of pseudo
P –Hopf algebras.

If .B; �/ is a P –ring, where � 2 ModP.B ^ B;B/ is the product map, it is clear
that

�
IQ.B/; IQ.�/

�
is a pseudo P –ring. In other words, IQ induces an “inclusion”

functor
IQW RingP ! PsRingP;Q:

Similarly, there is an induced, “inclusion” functor

IQW P–Hopf! .P;Q/–PsHopf:

When the P –bimodule Q is a free bimodule, there exist “free” constructions in the
category of pseudo P –Hopf algebras, as specified in the next proposition. Before
stating the proposition, we state and prove a crucial lemma, which is useful elsewhere
in this article as well, then introduce one necessary definition.
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Restricting to CDgrModR or CDChR , let LW C!C† be the “linear” embedding of
(1–2). Let uW L! T denote the obvious “inclusion on level 1” natural transformation.

Lemma 2.3 Let A and B be graded R–modules, and let X be a symmetric sequence
of graded R–modules. Any morphism � W L.A/˘X ! T .B/ in grMod†R gives rise
naturally to a morphism b� W T .A/ ˘ X ! T .B/ of symmetric sequences such thatb� .u˘ Id/D � .

Proof Recall from Definition 1.8 that, in the definition of the composition product of
symmetric sequences X and Y , the left action of †k on

`
k�1
En2Ik;n

Y.n1/˝� � �˝Y.nk/

is given by
� � .y1˝ � � �˝yk/D y��1.1/˝ � � �˝y��1.k/

for all � 2†k and yi 2 Y.ni/, 1� i � k .

For all m, n and En 2 Im;n , defineb� EnW T .A/.m/˝ �Y.n1/˝ � � �˝Y.nm/
�
�! T .B/.n/

to be the composite

A˝m˝
�
Y.n1/˝ � � �˝Y.nm/

� Š // .A˝Y.n1//˝ � � �˝ .A˝Y.nm//

�˝m

��
B˝n1 ˝ � � �˝B˝nm

D

��
B˝n:

Since � is a morphism of symmetric sequences, the second diagram in Lemma 1.10
commutes for X D T .A/ and Z D T .B/. The first diagram commutes in this case as
well because for all a1˝� � �˝am 2A˝m and all y1˝� � �˝ym 2Y.n1/˝� � �˝Y.nm/,b���1En.� ˝ �

�1/
�
.a1˝ � � �˝ am/˝ .y1˝ � � �˝ym/

�
Db���1En

�
.a�.1/˝ � � �˝ a�.m//˝ .y�.1/˝ � � �˝y�.m//

�
D˙�.a�.1/˝y�.1//˝ � � �˝ �.a�.m/˝y�.m//

D˙�.n�.1/; : : : ; n�.m// .�.a1˝y1/˝ � � �˝ �.am˝ym//

D �.n�.1/; : : : ; n�.m//b� En�.a1˝ � � �˝ am/˝ .y1˝ � � �˝ym/
�
:

This completes the proof.
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Definition 2.4 Let H be a P –Hopf algebra in grModR or ChR . A free algebraic
P –Hopf extension of H by a generator v consists of a morphism of P –Hopf algebras
j W H!H 0 such that the underlying morphism of graded algebras is the inclusion map
H ,!H

`
T v , where H

`
T v is the coproduct in the category of graded algebras of

H and of the free algebra on v .

We first explain in what sense free algebraic P –Hopf extensions truly are free, in the
nondifferential setting.

Proposition 2.5 Let CD grModR . Let .Q;  Q; "Q; �Q; eQ/ be a level-comonoidal
P –co-ring (cf, Definition 2.1) that is free as a P –bimodule, generated by X . Let
H
`

T v be a free algebraic P –Hopf extension of a P –Hopf algebra H , and let H 0

be another P –Hopf algebra.

For all � 2 .P;Q/–PsHopf.H;H 0/ and � 2Mod†R
�
L.R � v/˘X ; T .H 0/

�
, there is a

unique morphism

2.� C�/ 2 .P;Q/–PsHopf
�
H
a

T v;H 0
�

extending � and �.

The proof of this proposition, which is somewhat technical, is in the appendix.

Corollary 2.6 Let .Q;  Q; "Q; �Q; eQ/ be as in the statement of Proposition 2.5. Let
H and H 0 be P –Hopf algebras. If the underlying algebra of H is free on a free graded
R–module V that is bounded below, then for all � 2 grMod†R

�
L.V / ˘X ; T .H 0/

�
,

there is a unique morphism

b� 2 .P;Q/–PsHopf.H;H 0/

extending �.

More informally, we can say that if P is free as a bimodule, then a pseudo-P –Hopf
algebra map with domain free as an algebra is specified by its values on generators of
P and of the domain.

Proof The proof proceeds by induction on degree of elements in a basis of V , starting
in the lowest degree k for which Vk 6D 0, applying Proposition 2.5 at each step. Here,
� is taken to be the unique morphism with domain 0.
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2.2 Application to the Alexander–Whitney co-ring

Specializing to the case where P D A, the associative operad, and Q D F , the
Alexander–Whitney co-ring (cf, Section 1.3), we explain how to verify that a pseudo-
A–Hopf morphism with free domain respects differential structure. The proof of
Theorem 1.14 relies implicitly on the following proposition, which comes in handy
later in this article as well.

Recall the notion of a family F.�/ induced by � 2 .A;F/–Coalg.C;C 0/ from (1–5)
and of a derivation D.t/W T .A/! T .B/ induced by a morphism t W A!B of graded
R–modules (Definition 1.4).

Proposition 2.7 Let CD ChR . Let H
`

T v be a free algebraic A–Hopf extension
of an A–Hopf algebra H , and let H 0 be another A–Hopf algebra. Let � and �0

denote the comultiplications and d and d 0 the differentials on H
`

T v and on H 0 .
Let

� 2 .A;F/–PsHopf.H;H 0/
with induced family F.�/D f�k j k � 1g.

For any set f�k 2 T .H 0/.k/ j k � 1g such that for all k ,

(2–2) D.d 0/k�k �D.x�0/k�1�k�1 D �k.dv/�
X

iCjDk

.�i ˝ �j /�.v/;

� can be extended to b� 2 .A;F/–PsHopf.H
a

T v;H 0/

such that b� .v˝ zk�1/D �k for all k .

Thanks to this proposition, if T V is a chain Hopf algebra with free underlying algebra
and H 0 is any chain Hopf algebra, it is possible to construct monoidal morphisms in
.A;F/–Coalg from T V to H 0 by induction on the generators V .

Proof The family f�k j k � 1g is equivalent to a morphism of symmetric sequences
of graded R–modules �W L.R � v/˘S! T .H 0/. We can therefore apply Proposition
2.5 to obtain b� as a morphism of nondifferential objects. On the other hand, as we
can see from the definition of @F , the hypothesis on the family f�kg is exactly the
condition that must be satisfied for b� to be a differential map.

We recall now the relationship between the functor Ind (Theorem 1.14) and the
monoidal structures on the source and target categories, as developed in [6] and [8].

Algebraic & Geometric Topology, Volume 7 (2007)



An algebraic model for the loop space homology of a homotopy fiber 1719

Lemma 2.8 (Hess, Parent, Scott and Tonks [8]) The induction functor

IndW .A;F/–Coalg!A–Alg

is comonoidal, ie, there is a natural transformation of functors into associative chain
algebras

qW Ind.�f�/! Ind.�/˝ Ind.�/;

which is given by the Milgram equivalence (0–4) on objects.

Throughout the remainder of this article, we consider objects in the following category
derived from .A;F/–Coalg. Recall zk is the generator of F in level kC 1, which is
of degree k .

Definition 2.9 The objects of the weak Alexander–Whitney category wF are pairs
.C; ‰/, where C is a object in A–Coalg and ‰ 2 .A;F/–Coalg.C;C ˝C / such that

‰.�˝ z0/W C ! C ˝C

is exactly the comultiplication on C , while

wF
�
.C; ‰/; .C 0; ‰0/

�
D f� 2 .A;F/–Coalg.C;C 0/ j‰0� D .� f �/‰g:

The objects of wF are called weak Alexander–Whitney coalgebras.

As noted in the next lemma, the cobar construction provides an important link between
the weak Alexander–Whitney category and the following category of algebras endowed
with comultiplications, which are not necessarily coassociative.

Definition 2.10 The objects of the weak Hopf algebra category wH are pairs .A;  /,
where A is a chain algebra over R and  W A! A˝A is a map of chain algebras,
while

wH
�
.A;  /; .A0;  0/

�
D ff 2A–Alg.A;A0/ j  0f D .f ˝f / g:

Lemma 2.11 (Hess, Parent, Scott and Tonks [8]) The cobar construction extends to
a functor e�W wF! wH;
given by e�.C; ‰/ D �

�C; q Ind.‰/
�
, where Ind.‰/W �C ! �.C ˝ C /, as in

Theorem 1.14, qW �.C ˝ C / ! �C ˝ �C is Milgram’s equivalence (0–4) ande�� D Ind.�/W �C !�C 0 for all � 2 wF
�
.C; ‰/; .C 0; ‰0/

�
.

Motivated by topology, we are particularly interested in those objects .C; ‰/ of wF for
which e�.C; ‰/ is actually a strict Hopf algebra, ie, such that q Ind.‰/ is coassociative.
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Definition 2.12 The Alexander–Whitney category F is the full subcategory of wF
such that .C; ‰/ is an object of F if and only if q Ind.‰/ is coassociative. We call the
objects of F Alexander–Whitney coalgebras.

From Lemma 2.11, it is clear that e� restricts to a functor

(2–3) e�W F!H

where HDA–Hopf is the usual category of chain Hopf algebras.

We can now explain the topological importance of the category F.

Theorem 2.13 (Hess, Parent, Scott and Tonks [8]) There is a functor eC W sSet1! F
from the category of 1–reduced simplicial sets to the Alexander–Whitney category
such that the coassociative chain coalgebra underlying eC .K/ is C.K/, the normalized
chains on K . Furthermore, there is a natural quasi-isomorphism of chain algebras

e� eC .K/ '�! C.GK/

that is also itself a DCSH map.

3 Extended multiplicative naturality of Cotor

Let C be a chain coalgebra with comultiplication �. If .M; �/ and .M 0; �0/ are right
and left C –comodules, respectively, then their cotensor product over C is

M�C M 0
D ker.M ˝M 0 �˝1�1˝�0

�������!M ˝C ˝M 0/:

In particular, if we endow the ground ring R with its trivial left C –comodule structure,
then

M�C RŠ fx 2M j �.x/D x˝ 1g;

so that M�C R can be seen as a graded submodule of M , which we can think of as
the “cofixed points” of the coaction � .

In this section we study the derived functor of cotensor product, CotorC .M;M 0/. We
begin by recalling the formula for Cotor in terms of one-sided cobar constructions, from
which it is immediately clear that Cotor is natural in all three variables, with respect
to morphisms of comodules over a fixed coalgebra and with respect to morphisms
of coalgebras. In [5], Gugenheim and Munkholm proved an “extended naturality”
result for Cotor, ie, that Cotor is actually functorial with respect to a much larger class
of morphisms. In Section 3.2 we reformulate Gugenheim and Munkholm’s result in
operadic language.
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We show in Section 3.1 that if H is a chain Hopf algebra and B is a (left) H –comodule
algebra, then CotorH .R;B/ admits a graded multiplicative structure, which is natural
in both variables, with respect to morphisms of comodule algebras over fixed Hopf
algebras and with respect to morphisms of Hopf algebras. We then prove in Section
3.2 that there is a larger class of morphisms, the class of comodule-algebra maps up
to strong homotopy (CASH maps), with respect to which the multiplicative structure
of CotorH .R;B/ is natural, ie, we establish “extended multiplicative naturality” of
Cotor, which plays an important role in Section 5 and Section 6.

3.1 Cotor: definition and naturality

The derived functor of cotensor product, Cotor, can be calculated in terms of the
following complex.

Definition 3.1 Let C be a simply-connected chain coalgebra, and let M be a right
C –comodule. The one-sided cobar construction M ˝t� �C is the chain complex
with underlying graded R–module M ˝T s�1CC and with differential D� given by

D�.x˝w/D dx˝wC .�1/xx˝ d�wC .�1/xi xi ˝ .s
�1ci
�w/;

where x 2M , w 2 �C , d is the differential on M , d� is the cobar construction
differential (cf Notation and Conventions), �.x/D xi ˝ ci and s�11 WD 0.

There is an analogous definition of �C ˝t� N for any left C –comodule N .

Remark 3.2 If M D C or N D C , we obtain the usual acyclic cobar constructions:

C ˝t� �C and �C ˝t� C:

Remark 3.3 The formula in the definition above makes it clear that there are functors

�˝�C W ComodC ! ChR

and
�C ˝�W C Comod! ChR:

One-sided cobar constructions can be applied to calculations of Cotor, the derived
functor of the cotensor product. Let C be a connected coalgebra, and let M and N

be right and left comodules over C , respectively. Then, as shown in eg [3],

(3–1) CotorC .M;N /D H�
�
.M ˝t� �C /˝�C .�C ˝t� N /

�
:

It follows from the previous remark that Cotor is a bifunctor

CotorW ComodC � C Comod! grModR:
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We think of this as the linear naturality of Cotor.

Remark 3.4 We can also use the cobar construction to define the homotopy fiber of
a morphism of coaugmented chain coalgebras f W C 0! C . Consider the projection
� W C ˝t� �C ! C , which is a surjective morphism of chain complexes with con-
tractible source, and therefore an acceptable candidate for a fibrant replacement of the
coaugmentation �W R! C . Consequently, we can define the homotopy fiber of f to
be the pullback of

C ˝t� �C
�
�! C

f
 � C 0;

ie C 0˝t��C. The homology of the homotopy fiber of f is thus exactly CotorC .C 0;R/.

Let H be a chain Hopf algebra. Recall that a chain algebra B that is also an H –
comodule is an H –comodule algebra if the H –coaction map is a morphism of chain
algebras. In [12], Miller proved the existence of a natural chain algebra structure on
the one-sided cobar construction �H ˝t� B , for any commutative Hopf algebra H

and any left H –comodule algebra B . Here we dualize [4, Theorem 4.1], obtaining
a generalization of Miller’s result to any chain Hopf algebra H . As a consequence,
CotorH .R;B/ admits a natural multiplicative structure for any Hopf algebra H and
any H –comodule algebra B .

We begin by considering a special case: the acyclic cobar construction. Though it
would be possible to prove the next proposition and its corollaries by appealing to [4,
Theorem 4.1] and then dualizing, we prefer to give a direct, constructive proof, since
the explicit formulas we provide are much simpler than those in the dual case and prove
quite useful.

Proposition 3.5 If H is any chain Hopf algebra, then the free left �H –module
structure on �H ˝t� H can be extended to a chain algebra structure such that

.1˝c/.s�1a˝1/D .�1/.aC1/cs�1a˝cC.�1/cs�1.c�a/˝1C.�1/cCaci

s�1.ci �a/˝ci

for all a; c 2H , where x�.c/D ci ˝ ci and

.1˝ c/.1˝ e/D 1˝ c � e

for all c; e 2H .

Proof Given the multiplication as partially defined in the statement of the proposition,
we extend it to all of �H ˝t� H by associativity, which is possible since �H is free
as an algebra on s�1HC . Hence all that we must do is verify that D� is a derivation
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with respect to this product. We do the second case and leave the first, the proof of
which is quite similar, to the reader.

If image of c and e under the reduced comultiplication are ci ˝ ci and ej ˝ ej ,
respectively, then the image of c � e under the unreduced comultiplication is

.c � e/k ˝ .c � e/
k
Dc � e˝ 1C 1˝ c � e

C c˝ eC .�1/ece˝ c

C ci ˝ ci
� eC .�1/eci ci � e˝ ci

C c � ej ˝ ej
C .�1/ej cej ˝ c � ej

C .�1/ej ci

ci � ej ˝ ci
� ej :

Consequently,

D�.1˝ c � e/D1˝ d.c � e/� s�1.c � e/˝ 1

� s�1c˝ e� .�1/ecs�1e˝ c

� s�1ci ˝ ci
� e� .�1/eci s�1.ci � e/˝ ci

� s�1.c � ej /˝ ej
� .�1/ej cs�1ej ˝ c � ej

� .�1/ej ci

s�1.ci � ej /˝ ci
� ej :

On the other hand

D�.1˝ c/ � .1˝ e/D 1˝ dc � e� s�1c˝ e� s�1ci ˝ ci
� e;

while

.�1/c.1˝ c/ �D�.1˝ e/

D.�1/c1˝ c � deC .�1/c.1˝ c/ � .�s�1e˝ 1� s�1ej ˝ ej /

D� .�1/ces�1e˝ c � s�1.c � e/˝ 1

� .�1/eci

s�1.ci � e/˝ ci
� .�1/ej cs�1ej ˝ c � ej

� s�1.c � ej /˝ ej
� .�1/ej ci

s�1.ci � ej /˝ ci
˝ ej :

It is now obvious that

D�.1˝ c � e/DD�.1˝ c/ � .1˝ e/C .�1/c.1˝ c/ �D�.1˝ e/:

This proposition admits the following generalization, the proof of which is essentially
identical to that of the proposition.

Algebraic & Geometric Topology, Volume 7 (2007)



1724 Kathryn Hess and Ran Levi

Corollary 3.6 If H is any chain Hopf algebra and B is a left H –comodule algebra,
with coaction map � , then the free left �H –module structure on �H ˝t� B can be
extended to a chain algebra structure such that

.1˝b/.s�1a˝1/D .�1/.aC1/bs�1a˝bC.�1/cs�1.c�a/˝1C.�1/bCabi

s�1.ci �a/˝bi

for all a 2H , b 2 B , where �.b/D c˝ 1C 1˝ bC ci ˝ bi and

.1˝ b/.1˝ b0/D 1˝ b � b0

for all b; b0 2 B .

An analogous results clearly holds for right comodule algebras as well.

The multiplicative structure defined above is easily seen to be natural, in the following
sense. Let f W H !H 0 be a morphism of chain Hopf algebras. Let .B; �/ be a left
H –comodule algebra, and let .B0; �0/ be a left H 0–comodule algebra. Let gW B!B0

be morphism of chain algebras such that .f ˝g/� D �0g . It is easy to check that the
chain map

�f ˝gW �H ˝t� B!�H 0˝t� B0

respects the multiplicative structure defined in Corollary 3.6.

Let CA` denote the following category. Objects are pairs .H IB/, where H is a
chain Hopf algebra and B is a left H –comodule algebra, both over the fixed PID
R. A morphism from .H IB/ to .H 0IB0/ is a pair .f Ig/, where f W H ! H 0 is a
morphism of chain Hopf algebras and gW B! B0 is a chain algebra map such that
.f ˝ g/� D �0g , where � and �0 are the coactions on B and B0 , respectively. The
analogous category for right comodule algebras is denoted CAr .

Corollary 3.7 Let chA denote the category of chain algebras over R. There are
functors

�`.�I�/W CA`! chA
defined by �.H IB/D�H ˝t� B (with the multiplicative structure of Corollary 3.6)
and �.f Ig/D�f ˝g and

�r .�I�/W CAr
! chA

defined by �.H IB/D B˝t� �H (with the multiplicative structure analogous to that
of Corollary 3.6) and �.f Ig/D g˝�f .

We show in Section 3.2 that the algebra structure on �H˝t�B is actually natural with
respect to a bigger class of morphisms than those of the category CA` . This extended
naturality of the algebra structure of �H ˝t� B plays a crucial role in Section 6.
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Corollary 3.8 Let grA denote the category of graded algebras over R. The functor
Cotor restricts and corestricts to functors

Cotor.�/.RI �/W CA`! grA

and
Cotor.�/.�IR/W CAr

! grA:

This is the multiplicative naturality of Cotor.

Proof From the definition of Cotor (3–1), we see that if B is a left H –comodule
algebra, then

CotorH .R;B/D H�
�
�H ˝t� B/:

The previous corollary implies that there is a natural graded algebra structure on
H�

�
�H ˝t� B/: The right-comodule case works similarly.

Remark 3.9 As a consequence of Proposition 3.5, we obtain that �H ˝t� H is
itself an H –comodule algebra. To establish this fact, we must show that the following
diagram commutes.

.�H ˝t� H /˝2

.1˝�/˝2

��

� // �H ˝t� H

.1˝�/

���
�H ˝t� .H ˝H /

�˝2 � // �H ˝t� .H ˝H /

Here, � is the comultiplication on H and � denotes the multiplication defined in the
statements of Proposition 3.5 and Corollary 3.6. The left H –comodule structure on
H˝H is given by �˝1. It suffices to check that this diagram commutes on elements
of the form 1˝ c˝ s�1a˝1, which is not a difficult computation. The coassociativity
of � plays a crucial role in this verification.

Analagously, H ˝t� �H is also an H –comodule algebra.

3.2 Maps of comodules up to strong homotopy

In this article we need relative versions of the results from [8] cited in Section 1.3,
to establish conditions under which there is a multiplicative map between one-sided
cobar constructions of the sort considered in Corollary 3.6. As a consequence, we
obtain Proposition 3.19, which is both a multiplicative generalization of the extended
naturality of Cotor, due to Gugenheim and Munkholm [5] (Theorem 3.13 below), and
an extended version of the multiplicative naturality of Cotor (Corollary 3.8 above).
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Let C and C 0 be connected chain coalgebras. Recall from Section 1.3 that though
every chain coalgebra map f W C !C 0 induces a chain algebra map �f W �C !�C 0 ,
not all chain algebra maps 'W �C !�C 0 are so induced. In particular, the category
of chain coalgebras can be seen as a wide, but not full, subcategory of the category
DCSH, so that the morphisms in DCSH can be considered as “weak” chain coalgebra
morphisms.

In this section we consider an analogous weakening of the morphisms in the category
CAr defined in Section 3.1, for which we provide equivalent chain-level and operadic
definitions, both of which are quite useful. The operadic definition serves to facilitate
the proofs of the existence results (Proposition 3.16 and Proposition 3.18) that play a
key role in Section 5.

The reader who is not interested in the fine details of our constructions and existence
results can safely limit his perusal of this section only to the definition of the category
CASH (Definition 3.14) and to Proposition 3.18.

Let C denote either the category of graded R–modules or the category of chain
complexes over R. Let C†C denote the category of shifted symmetric sequences in
C. An object X of C†C is a family fX .n/ 2 C j n � 0g of objects in C such that
X .n/ admits a right action of the symmetric group †n�1 , for all n> 0 and such that
X .0/D 0. A morphism in C†C from X to Y consists of a family

f'n 2 C
�
X .n/;Y.n/

�
j 'n is †n�1 –equivariant; n� 1g:

There is a faithful functor

Tr W C�C! C†C

where, for all n, Tr .A;B/.n/ D A˝ B˝n�1 , where †n�1 acts by permuting the
factors of B .

The following useful operation on symmetric sequences in the image of Tr is a shifted
version of the notion of derivation of symmetric sequences in the image of T (Definition
1.4).

Definition 3.10 Let f; sW A! B and g; h; t W C ! D be homogenous linear maps
of graded R–modules, such that f , g and h are homogeneous of degree 0, and s

and t are homogeneous of degree m. The .f;g; h/–derivation of shifted symmetric
sequences induced by s and t is the morphism of symmetric sequences

D.f;g;h/.s; t/W Tr .A;C /! Tr .B;D/
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that is of degree m in each level and that is defined as follows in level n.

D.f;g;h/.s; t/n D s˝ h˝n�1
C

n�2X
jD0

f ˝g˝j
˝ t ˝ h˝n�j�2:

When ADB , C DD and f D IdA and gD IdC D h, we simplify notation and write
D.s; t/ for the .IdA; IdC ; IdC /–derivation induced by s and t .

It is obvious that there is again a level monoidal structure .C†C ;˝; C/, where .X ˝
Y/.n/ D X .n/˝Y.n/, endowed with the diagonal action of †n�1 , and C.n/ D R,
endowed with the trivial †n�1 –action. By proofs analogous to those in [10, section
II.1.8], we can show that the category C†C also admits a right action by the monoidal
category .C†;˘;J /, ie there is a bifunctor

C†C �C†! C†C W .X ;Y/ 7! X GY

defined by

.X GY/.n/D
a
k�1
E{2Ik;n

X .k/ ˝
†k�1

�
Y .i1/˝ � � �˝Y .ik/

�
˝

†E{�Ee1

RŒ†n�1�:

Here, †k�1 acts on Y .i1/˝ � � � ˝ Y .ik/ by permuting Y .i2/˝ � � � ˝ Y .ik/, while
E{�Ee1D .i1�1; i2; : : : ; ik/. Furthermore, there is a natural isomorphism X G.Y˘Z/Š
.X GY/GZ for all shifted symmetric sequences X and all symmetric sequences Y
and Z .

Let P be an operad, with multiplication map 
 W P ˘P! P , and let X be a shifted
symmetric sequence. We say that X is a shifted right P –module if there is a morphism
of shifted symmetric sequences �W X GP! X such that

�.� G 1/D �.1G 
 /W .X GP/GP Š X G .P ˘P/! X :

A morphism of shifted right P –modules is a morphism of the underlying shifted
symmetric sequences that commutes with the right action maps. We write ModCP
for the category of shifted right P –modules and their morphisms. Given a shifted
symmetric sequence X that is a shifted right P –module and a symmetric sequence
Y that is a left P –module (in the usual sense), we define X G

P
Y to be the obvious

coequalizer.

Definition 3.11 Let � 2 .A;F/–Coalg.C;C 0/, inducing Ind.�/2A–Alg.�C; �C 0/

and therefore the structure of a right �C –module on �C 0 . Suppose that M is a right
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C –comodule and M 0 is a right C 0–comodule. A map of right �C –modules

hW M ˝t� �C !M 0
˝t� �C 0;

is a comodule map up to strong homotopy with respect to � from M to M 0 .

Abusing terminology somewhat, we say that a chain map gW M !M 0 is a comodule
map up to strong homotopy if there is such an h satisfying

h.x˝ 1/�g.x/˝ 1 2M 0
<deg x˝�C 0

for all x 2M .

A “module” version of Theorem 1.14 holds for right comodules. The proof proceeds
by straightforward generalization of the absolute case. Before stating the theorem, we
remark that if C is a coassociative chain coalgebra and M is a right C –comodule, then
Tr .M;C / is naturally a shifted right A–module. Observe that there is an isomorphism
of graded R–modules

Tr .M;C /.k/ ˝
†k�1

A.i1/˝ � � �˝A.ik/

Š
�
M ˝A.i1/

�
˝
�
T .C /.k � 1/ ˝

†k�1

A.i2/˝ � � �˝A.ik/
�
:

To define a shifted right A–module structure on Tr .M;C /, we use the right A–module
structure on T .C / coming from its coalgebra structure, as well as the fact that for all
m� 1, the comodule map �W M !M ˝C induces a †m�1 –equivariant map

�.m/W M ˝A.m/!M ˝C˝m�1
W .x˝ ı.m// 7! .IdM ˝�

.m�2//�.x/:

In other words, Tr induces a functor from the category of pairs .M;C /, where C is a
coassociative coalgebra and M is a right C –comodule, to the category of shifted right
A–modules. We can now state the “module” version of Theorem 1.14.

Proposition 3.12 Let�2 .A;F/–Coalg.C;C 0/, inducing Ind.�/2A–Alg.�C; �C 0/.
If M is a right C –comodule and M 0 is a right C 0–comodule, then there is a natural
bijection

IndCW ModCA
�
Tr .M;C / G

A
F ; Tr .M

0;C 0/
�
!Mod�C

�
M ˝t� �C;M 0

˝t� �C 0
�

specified by

IndC.!/.x/D
X
k�1

�
IdM 0 ˝.s

�1/˝k�1
�
!.x˝ zk�1/

for all x 2M .
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To see why the formula above makes sense, note that

!.x˝ zk�1/ 2 Tr .M
0;C 0/.k/DM 0

˝ .C 0/˝k�1:

Furthermore, since M ˝t� �C is a free right �C –module, the specification in
Proposition 3.12 suffices to imply that IndC.!/.x˝ v/D IndC.!/.x/ � Ind.�/.v/ for
all x 2M and v 2�C .

A morphism ! 2ModCA
�
Tr .M;C / G

A
F ; Tr .M

0;C 0/
�

gives rise to a family

(3–2) FC.!/D f!k D !.�˝ zk/W M !M 0
˝ .C 0/˝k

j deg!k D k; k � 0g:

Specifying a family FC.!/ is equivalent to specifying a morphism of shifted symmetric
sequences L.M / G

A
F ! Tr .M

0;C 0/.

Maps of left comodules up to strong homotopy are defined analogously. A version of
the proposition above, expressed in terms of a functor T` , holds for left comodules as
well.

Comodule maps up to strong homotopy are interesting because of their role in extending
the linear naturality of Cotor (cf (3–1)), first established by Gugenheim and Munkholm
in [5] (dual of Theorem 3.5). This extended naturality can be expressed as follows in
the language we have developed above.

Theorem 3.13 (Gugenheim and Munkholm [5]) Let � 2 .A;F/–Coalg.C;C 0/,
where C and C 0 are simply connected chain coalgebras. Let gW M ! M 0 and
hW N !N 0 be maps of right and left comodules, respectively, up to strong homotopy
with respect to � , where M and N are C –comodules, and M 0 and N 0 are C 0–
comodules. Then there is a natural induced morphism of graded R–modules

Cotor� .g; h/W CotorC .M;N /! CotorC 0.M 0;N 0/:

Furthermore if all the underlying graded modules are R–flat and �.�˝ z0/, g , and h

are all quasi-isomorphisms, then Cotor� .g; h/ is an isomorphism.

We sketch a proof of Theorem 3.13, based on Proposition 3.12. Let

�W Tr .M;C / G
A
F ! T .M 0;C 0/ and �W Tr .N;C / G

A
F ! T .N 0;C 0/

be the morphisms of shifted A–modules of chain complexes, corresponding to g and
h. Thus, under the hypotheses of the theorem, we can set

Cotor� .g; h/D H�
�

IndC.�/˝�C IndC.�/
�
W CotorC .M;N /! CotorC 0.M 0;N 0/:
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A standard spectral sequence argument then shows that Cotor� .g; h/ is an isomorphism
if all modules are R–flat and if H�

�
�.�˝z0/

�
, H� g , and H� h are all isomorphisms.

We devote the remainder of this section to establishing a framework in which to
state and prove a multiplicative version of Theorem 3.13. Recall that if H is a Hopf
algebra, then an algebra B is an H –comodule algebra if it is an H –comodule and the
comodule structure maps are algebra maps. Furthermore, as seen in Corollary 3.6, a
right H –comodule algebra B naturally gives rise to a chain algebra, B˝t� �H .

We can now enlarge the category CAr by weakening the definition of morphisms, in
analogy with the passage from the category of chain coalgebras to the category DCSH.

Definition 3.14 Let CASH be the category specified as follows.

(1) Objects are pairs .H IB/, where H is a chain Hopf algebra and B is a right
H –comodule algebra.

(2) A morphism from an object .H IB/ to an object .H 0IB0/ is a pair .� I 
 /, where

� 2 .A;F/–PsHopf.H;H 0/

and

 W B˝t� �H ! B0˝t� �H 0

is a morphism of both chain algebras and �H –modules, where the right �H –
module structure on B0˝t� �H 0 is given by the algebra morphism

Ind.�/W �H !�H 0:

Composition and identities are defined in the obvious manner. The morphisms in
CASH are called comodule-algebra maps up to strong homotopy.

Given a morphism .� I 
 /W .H IB/! .H 0IB0/ in CASH, let 
0 denote the composite

B ,! B˝t� �H


�! B0˝t� �H 0

�
�! B0;

where � denotes the obvious projection. We say that a chain map gW B ! B0 is a
CASH map if there is a morphism .� I 
 /W .H IB/! .H 0IB0/ in CASH such that

0 D g .

Remark 3.15 Corollary 3.7 implies that the category CA embeds into CASH as a
wide, but not necessarily full, subcategory.

The following relative version of Proposition 2.7 is a crucial tool for construction of
CASH maps. The proof proceeds by direct, but somewhat cumbersome, generalization
of Proposition 2.5, the details of which we spare the reader. We use here the shifted
derivations of Definition 3.10.
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Proposition 3.16 Fix chain Hopf algebras H and H 0 and

� 2 .A;F/–PsHopf.H;H 0/

with F.�/ D f�k j k � 1g. Let B be a right H –comodule algebra and B0 a right
H 0–comodule algebra such that B is free as an algebra on an R–free graded module
V . Then any family of morphisms of graded R–modules

„D f�k W V ! B0˝ .H 0/˝k
j deg �k D k; k � 0g

naturally induces a unique morphism of shifted right A–modules of graded
R–modules b� W Tr .B;H / G

A
F ! Tr .B

0;H 0/

such that b� .v˝ zk/D �k.v/ for all v 2 V and such that

IndC.b� /W B˝t� �H ! B0˝t� �H 0

is a map of graded algebras and of �H –modules.

If, furthermore, for all k � 0 and for all v 2 V ,

(3–3) D.dB0 ; dH 0/kC1�k.v/�D.�0; x�0/k�k�1.v/Db� k.dv/�
X

iCjDk

.b� i˝�j /�.v/;

where FC.b� /D fb� k j k � 0g, then b� is a differential map.

The next proposition, which explains how to construct a CASH map as a sort of
coproduct of CASH maps when the underlying algebras of the sources are free, is
essential to the proof in Section 5 that our algebraic “homotopy fiber” has the right
homology. Before stating the proposition, we need one observation about coproducts
and tensor products of comodule algebras.

Remark 3.17 Suppose that A and A0 are right H –comodule algebras with coaction
maps �W A! A˝H and �0W A0 ! A0˝H . Let A

`
A0 denote the coproduct of

A and A0 in the category of chain algebras. Since � and �0 are algebra maps, they
together induce an algebra map

�00W A
a

A0! .A˝H /
a
.A0˝H /! .A

a
A0/˝H;

which satisfies the axioms of a coaction because � and �0 do. In other words, the
algebra coproduct of H –comodule algebras is naturally an H –comodule algebra.
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It is easy to check that the tensor product A˝A0 , with its usual algebra structure, also
admits a natural H –coaction

A˝A0
�˝�0

���! .A˝H /˝ .A0˝H /
Š
�! .A˝A0/˝ .H ˝H /

Id˝�
����! .A˝A0/˝H

that is an algebra map, where � denotes the multiplication in H .

Proposition 3.18 Let .� I 
 /W .H IA/! .KIB/ and .� I 
 0/W .H IA0/! .KIB0/ be
morphisms in CASH. Endow A

`
A0 and B˝B0 with their natural H –comodule

and K–comodule algebra structures. If the algebras underlying A and A0 are free on
free graded R–modules V and V 0 , respectively, then there exists a morphism

.� I 
 00/W .H IA
a

A0/! .KIB˝B0/

in CASH such that 
 00
0
.v/ D 
0.v/˝ 1 and 
 00.v0/ D 1˝ 
 0

0
.v0/ for all v 2 V and

v0 2 V 0 .

In the situation of the proposition above, we write


 000 D 
0 ? 

0
0:

Proof Let

�W Tr .A;H / G
A
F ! T .B;K/ and � 0W Tr .A

0;H / G
A
F ! T .B0;K/

be the morphisms of shifted A–modules of chain complexes, corresponding to g and
g0 , with corresponding families FC.�/D f�m jm� 0g and FC.� 0/D f� 0m jm� 0g.

Define a family of linear maps

„00 D f� 00mW V ˚V 0! .B˝B0/˝K˝m
jm� 0g

by � 00m.v/D �1 ı �m.v/ for all v 2 V and � 00m.v
0/D �2 ı �

0
m.v
0/ for all v0 2 V 0 , where

�1W B˝K˝m
! .B˝B0/˝K˝m

W x˝y1˝ � � �˝ym 7! x˝ 1˝y1˝ � � �˝ym

and

�2W B
0
˝K˝m

! .B˝B0/˝K˝m
W x0˝y1˝ � � �˝ym 7! 1˝x0˝y1˝ � � �˝ym:

Note that the algebra map induced by the linear map � 00
0

is indeed 
0 ? 

0
0

.

It is easy to check that the family „00 satisfies the conditions of Proposition 3.16, since
� and � 0 are morphisms of shifted A–modules of chain complexes.
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Inspired by the sketch of the proof of Theorem 3.13, we can easily verify the following
result, establishing extended multiplicative naturality of Cotor, generalizing both
Corollary 3.8 and Theorem 3.13.

Proposition 3.19 Let grA denote the category of graded algebras over R. The functor
Cotor.�/.�IR/ of Corollary 3.8 extends to a functor

Cotor.�/.�IR/W CASH! grA:

Proof Let H and H 0 be simply-connected chain Hopf algebras, and let

� 2 .A;F/–PsHopf.H;H 0/:

Let gW M !M 0 be a CASH map with respect to � , where M is a right H –comodule,
and M 0 is a right H 0–comodule. Recall the graded algebra structure on CotorH .M;R/

from Corollary 3.8 and its proof.

Let
�W Tr .M;H / G

A
F ! T .M 0;H 0/

be the morphism of shifted right A–modules corresponding to g . Since g is a CASH
map, IndC.�/ is a chain algebra map and hence Cotor� .g; Id/ is a map of graded
algebras.

4 Path objects and homotopy fibers in F

In this section we define a functor

PLW F //H ;

called the path-loop functor. For every .C; ‰/ in F, there is a natural surjection of chain
Hopf algebras PL.C; ‰/! e�.C; ‰/. The definition of PL is the first step towards
building a particularly nice chain algebra from which we can compute CotorH .R;R/,
when H is a chain Hopf algebra endowed with an Alexander–Whitney model, as defined
in Section 5. As we explain in Section 6, the terminology chosen is justified by the
fact that the homotopy fiber of the natural surjection PLeC .K/! e� eC .K/ is indeed
a model for G2K , where eC denotes the functor of Theorem 2.13.

We begin by more general considerations. Given any graded module X , let X denote
s�1X , and let xx denote an element s�1x . Let � W X!X˚X be defined by �.x/D xx ,
and let �W X !X ˚X denote the inclusion.
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Let .X; d/ be any chain complex. The based-path object on .X; d/, denoted P.X; d/,
is defined to be the acyclic chain complex .X ˚X ; ed /, where ed x D �dx � xx anded xx D�dx , ie,

(4–1) ed �D �d � � and ed � D��d:

There is an obvious factorization

0 //

' ##FF
FF

FF
FF

FF .X; d/

P.X; d/

�
99sssssssss

where � denotes the obvious projection, justifying the name we have given to the chain
complex P.X; d/.

The based-path construction is clearly natural, ie, there is a functor

PW ChR! ChR:

Furthermore, the functor P is comonoidal, where the natural transformation

jW P.�˝�/!P.�/˝P.�/

is defined for chain complexes X and Y to be the injection

jX ;Y W .X ˝Y /˚ .X ˝Y /Š .X ˝Y /˚ .X ˝Y /˚ .X ˝Y / ,! .X ˚X /˝ .Y ˚Y /:

In particular, if .X; d; �/ is a coassociative coalgebra, then
�
P.X; d/; e�� is also a

coassociative coalgebra, where e� D jX ;X P.�/. Note that the comultiplication on
P.X / is specified by e��D .�˝�/� and e�� D .�˝�C�˝�/� and that the projection
map � W P.X /!X is a morphism of coalgebras.

The morphisms of graded R–modules � and � induce a morphism of symmetric
sequences D�;�.�/W T .X /! T

�
P.X /

�
that is of degree �1 in each level (cf, Def-

inition 1.4), while the differentials d and ed induce D.d/W T .X / ! T .X / and
D.ed /W T �P.X /�! T

�
P.X /

�
. It is a matter of straightforward calculation to show

that (4–1) implies that

(4–2) D.ed /D�;�.�/D�D�;�.�/D.d/ and D.ed /T .�/D T .�/D.d/�D�;�.�/:
Proposition 4.1 Let C and C 0 be coassociative chain coalgebras. Any morphism

� W T .C /˘AF ! T .C 0/
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of right A–modules of chain complexes lifts naturally to a morphisme� W T �P.C /�˘AF ! T
�
P.C 0/

�
;

ie, there is a commuting diagram of morphisms in .A;F/–Coalg

P.C /
e� //

�

��

P.C 0/

�

��
C

� // C 0:

Here, the coalgebra morphisms denoted � are considered as morphisms in
.A;F/–Coalg via the inclusion functor.

Proof We remark first that since � is a differential map, the following equality holds.

(4–3) D.d 0/� D �
�
D.d/˘A1C 1˘A@F

�
:

Here, the composition rule applied is that of morphisms of right A–modules.

We now define a morphism of symmetric sequences of graded R–modules

� 0W L.C ˚C /˘S! T .C 0˚C /

by � 0.�.c/˝ zm�1/D �
˝m�.c˝ zm�1/ for all c 2 C , since e� should extend � , and

� 0.xc˝ zm�1/DD�;�.�/�.c˝ zm�1/. In other words,

(4–4) � 0.�˘ 1/D T .�/� and � 0.� ˘ 1/DD�;�.�/�:

Applying Lemma 2.3, we obtain another morphism of symmetric sequences

� 00W T .C ˚C /˘S! T .C 0˚C
0
/;

defined for all k and for all w1; : : : ; wk 2 C ˚C by

� 00
�
.w1˝� � �˝wk/˝.zn1�1˝� � �˝znk�1/

�
D˙� 0.w1˝zn1�1/˝� � �˝�

0.wk˝znk�1/;

where the sign is determined by the Koszul rule.

Now use the right A–module structure of T
�
P.C 0/

�
to extend � 00 to a morphism

e� W T .C ˚C /˘AF Š T .C ˚C /˘S ˘A! T .C 0˚C
0
/

of right A–modules of graded R–modules. As an easy consequence of (4–4), we have
that e� �T .�/˘A1/D T .�/� and e� �D�;�.�/�DD�;�.�/�:
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To complete the proof, we need to verify that e� is differential, ie, thate� .D.d/˘A1C 1˘A@F /DD.ed 0/e� :
It is enough to prove that the two sides of the equation are equal when precomposed
(as maps of right A–modules) with either L.�/˘ 1W L.C /˘F ! T

�
P.C /

�
˘AF or

L.�/˘ 1W L.C /˘F ! T
�
P.C /

�
˘AF .

Observe that

D.ed 0/e�.L.�/˘ 1/DD.ed 0/T .�/�
DD�;�.ed �/�
DD�;�.�d � �/�
D
�
T .�/D.d 0/�D�;�.�/

�
�;

while e��D.ed/˘A1
�
.L.�/˘ 1/De��T .�/D.d/˘A1�D�;�.�/˘A1

�
D T .�/�D.d/�e��D�;�.�/˘A1

�
:

Thus, �
D.ed 0/e� �e�.D.ed/˘A1/

�
.L.�/˘ 1/D T .�/

�
D.d 0/� � �D.d/

�
D T .�/�.1˘A@F /

De�.1˘A@F /.L.�/˘ 1/;

by equation (4–3).

Similarly,

D.ed 0/e� .L.�/˘ 1/DD.ed 0/D�;�.�/� D�D�;�.�/D.d 0/�;
ande� �D.ed /˘A1

�
.L.�/˘ 1/D�e� .D�;�.�/D.d/˘A1/D�.D�;�.�/�.D.d/˘A1/:

Thus, �
D.ed 0/e� �e�.D.ed/˘A1/

�
.L.�/˘ 1/D�.D�;�.�/�.1˘A@F /

D�e�.D�;�.�/˘A1/.1˘A@F /

De�.1˘A@F /.L.�/˘ 1/;

again by (4–3).
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Recall that IF W A–Coalg! .A;F/–Coalg denotes the “inclusion” functor (1–1).

Corollary 4.2 If .C; ‰/ is an object in F, then the based-path object P.C / admits a
natural Alexander–Whitney coalgebra structure map e‰ , extending ‰ . Furthermore,
the morphism of right A–modules

IF .�/D T .�/˘A"W T
�
P.C /

�
˘AF ! T .C /

induced by the natural projection map of chain complexes � W P.C /!C is a morphism
in F, ie,

‰IF .�/D
�
IF .�/f IF .�/

�e‰;
where the composition is calculated in .A;F/–Coalg.

Proof By Proposition 4.1 , the morphism of right A–modules

‰W T .C /˘AF ! T .C ˝C /

gives rise naturally to

e‰ W T �P.C /�˘AF ! T
�
P.C ˝C /

�
:

Since P.C ˝C / injects into P.C /˝P.C /, we can look at e‰ as a morphism with
target T

�
P.C /˝P.C /

�
.

To complete the proof that
�
P.C /; e‰/ is an Alexander–Whitney coalgebra, we need to

check that q Ind.e‰/ is coassociative. By naturality, however, this follows immediately
from the coassociativity of q Ind.‰/.

Verification that IF .�/ is a morphism in F is trivial.

Proposition 4.3 Let � W .C; ‰/! .C 0; ‰0/ be a morphism in F. Then

e� W �P.C /; e‰/! �
P.C 0/; e‰ 0�

is also a morphism in F, ie, .e� fe� /e‰ D e‰ 0e� , where the composition is performed in
.A;F/–Coalg.

Proof It suffices to check the desired equality holds when precomposed (as morphisms
of right A–modules) with either L.�/˘ 1 or L.�/˘ 1. To distinguish between com-
position as morphisms of right A–modules and as morphisms in .A;F/–Coalg, we
denote the first by simple concatentation of symbols and the second by ı.
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The definition of e‰ given in the proofs of Proposition 4.1 and Corollary 4.2 implies
that

.e� fe�/ ıe‰.L.�/˘ 1/D .e� fe�/ ı T .�/‰
D
�e�T .�/fe�T .�/� ı‰

D T .�/.� f �/ ı‰
D T .�/‰0 ı � since � is a morphism in F

D e‰0 ı T .�/�
D e‰0e�.L.�/˘ 1/:

On the other hand,

.e� fe�/ ıe‰.L.�/˘ 1/D .e� fe�/ ıD�;�.�/‰
D
�e�D�;�.�/fe�T .�/Ce�T .�/fe�D�;�.�/� ı‰

DD�;�.�/.� f �/ ı‰
DD�;�.�/‰0 ı � since � is a morphism in F

D e‰0 ıD�;�.�/�
D e‰0e�.L.�/˘ 1/:

This completes the proof.

Corollary 4.2 and Proposition 4.3 imply that the following definition makes sense.

Definition 4.4 The based-path functor ePW F!F is defined on objects by eP.C; ‰/D�
P.C /; e‰� and on morphisms by eP.�/D e� .

The second part of Corollary 4.2 implies that eP is augmented: the projection � serves
as a natural transformation � W eP! IdF .

For the constructions in the following sections, we need a relative version of the path
functor, ie, a notion of homotopy fiber in F. We consider first the notion of homotopy
fiber in ChR . Any morphism of chain complexes f W X ! Y can be factored as

X
f //

incl.

'

$$JJJJJJJJJJ Y

X ˚P.Y /
fC�

::tttttttttt

;
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so that it is reasonable to define the homotopy fiber HF.f / to be the pullback

HF.f /

��

// X ˚P.Y /

fC�

��
0 // Y;

or, more prosaically, HF.f / is the kernel of f C� .

Analogously, to define homotopy fibers in F, we first need to show that F admits
coproducts. It is easy to see, however, that if .C; ‰/ and .C 0; ‰0/ are Alexander–
Whitney coalgebras, then their coproduct .C; ‰/

`
.C 0; ‰0/ in F is .C ˚ C 0; ‰00/,

where
‰00W T

�
C ˚C 0

�
˘AF ! T

��
C ˚C 0

�˝2
�

is the morphism of A–modules specified (as in the proofs of Lemma 2.3 and Proposition
4.1) by

‰00.c˝ zk�1/D‰.c˝ zk�1/ and ‰00.c0˝ zk�1/D‰
0.c0˝ zk�1/

for all c 2 C , c0 2 C 0 and k > 0.

Let � W .C 0; ‰0/! .C; ‰/ be a morphism in F. There is an obvious factorization in F

(4–5) .C 0; ‰0/
� //

incl.

'

((QQQQQQQQQQQQ
.C; ‰/

.C 0; ‰0/
`

P.C; ‰/

�C�

66nnnnnnnnnnnn

:

Note that �C� , seen simply as a map of coalgebras, admits a (nondifferential) section,
the coalgebra map

jW C ! C 0˚ .C ˚C /;

which is just the natural inclusion. Moreover, ‰00.j.c/˝ zk�1/D j˝k‰.c˝ zk�1/ for
all k , so that the induced algebra map

�jW �C !�
�
C 0˚ .C ˚C /

�
commutes with the induced comultiplications, ie, �j is a Hopf algebra map, which is
a (nondifferential) section of �.� C�/.

Recall the functor e�W F!H from (2–3).

Definition 4.5 The algebraic path-loop functor

PLW F // H
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is the composite PLD e� ı eP . The induced comultiplication on PL.C; ‰/ is denotede .

We prefer the notation PL for this functor, instead of e� ı eP , as it reminds us that
PL.C; ‰/ plays the role of the paths on a loop space.

Observe that PL.C / is always acyclic, since eP.C / is acyclic and 1–connected.

Consider the natural right �C –comodule structure on PL.C / given by the coaction

� D .1˝��/e W �.C ˚C /!�.C ˚C /˝�C:

It is important for the proof of Theorem 5.6 to know that PL.C / is a cofree right
�C –comodule, which is an immediate consequence of the following more general
result.

Proposition 4.6 Let pW .H 0; d 0/! .H; d/ be a surjection of connected chain Hopf
algebras, which are free as graded R–modules. Let � D .1˝p/�0W H 0!H 0˝H

denote the right H –coaction on H 0 induced by p . If p admits a (nondifferential) Hopf
algebra section s , then

(1) H 0�H R is a sub chain algebra of H 0 , and

(2) .H 0; �/ is cofree as a nondifferential H –comodule, with cobasis H 0�H R.

Proof Let .B; dB/DH 0�H R. Milnor–Moore [13, Theorem 4.6], implies directly
that H 0�H R is a sub chain algebra of H 0 .

Consider the linear map

hD �.i ˝ s/W B˝H
Š
�!H 0;

where � denotes the multiplication on H 0 and i is the canonical inclusion. According
to [13, Theorem 4.7], h is an isomorphism of both right H –comodules and left B–
modules, since the underlying Hopf algebra of H is connected, while the underlying
algebra of H 0 is a connected H –comodule algebra, and all graded R–modules in
question are free. Since h is an isomorphism, we can use it to define a differential xd
on B˝H by

xd D h�1d 0h:

Then h becomes an isomorphism of differential right H –comodules and left B–
modules, ie, H 0 is cofree.
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Observe that for all x 2 B ,

xd.x˝ 1/D h�1d 0.i.x//

D h�1i.dBx/

D dBx˝ 1;

ie, the restriction of xd to B˝ 1 is simply dB˝ 1. In other words, the inclusion of B

into H 0 is a differential map.

Corollary 4.7 The path-loop construction PL.C; ‰/ on any Alexander–Whitney
coalgebra .C; ‰/ is cofree over e�.C; ‰/, with cobasis PL.C; ‰/�e�.C;‰/R; which
is a sub chain algebra of PL.C; ‰/.

More generally, for any� 2F
�
.C 0; ‰0/; .C; ‰/

�
, the coalgebra e��.C 0; ‰0/`P.C; ‰/

�
is cofree over e�.C; ‰/, with cobasis e��.C 0; ‰0/`P.C; ‰/

�
�e�.C;‰/R, which is a

sub chain algebra of e��.C 0; ‰0/`P.C; ‰/
�
.

Proof Since e�.�C�/W e��.C 0; ‰0/`P.C; ‰/
�
! e�.C; ‰/ admits a (nondifferen-

tial) Hopf algebra section �j, we can apply Proposition 4.6.

To conclude this section we analyze more precisely the nature of e , the comultiplication
on PL.C /, and � , the induced e�C –coaction. Let � denote the natural (nondifferential)
section �C ,!�.C ˚C / of �� . Let

�W �C !�.C ˚C /

denote the .�; �/–derivation of degree �1 specified by �.s�1c/ D �s�1xc , ie, �� D
�.�˝ �C �˝ �/.

Lemma 4.8 The derivation � satisfies the following properties.

(1) � is a differential map of degree �1, ie, �d� D�ed�� .

(2) � is a .�; �/–coderivation, ie,e � D .�˝ �C �˝ �/ W �C !�.C ˚C /˝�.C ˚C /:

(3) � is a map of right �C –comodules, ie, ��D .�˝1/ W �C!�.C˚C /˝�C .

Proof (1) Let c 2 C , and let ci˝ ci denote its reduced comultiplication. Then, using
the definitions of ed and e� from the beginning of Section 4 as well as the definition
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of the cobar construction differential from the introduction, we obtain

�d�.s
�1c/D �.�s�1dcC .�1/ci � s�1cis

�1ci/

D s�1dcC .�1/ci .�s�1
xci � s

�1ci
� .�1/ci s�1ci � s

�1
xci/

D ed�s�1
xc

D�ed��.s�1c/:

(2) We have defined e so that the desired equality obviously holds on the generators
s�1CC . Thus, to establish that the equality holds on all of �C , we must show thate ��D .�˝ �C �˝ �/ �W �C˝2

!�.C ˚C /˝2

where � denotes the multiplication map.

We verify this equality by induction on total length of elements in �C˝2 . By definition
of e , the equality holds for total length equal to 1. Suppose that it holds for all elements
of �C˝2 of total length less than n.

Let � denote the usual twisting isomorphism � W A˝B Š B ˝A. Observe that on
T ms�1CC˝T n�ms�1CC ,e ��D e �.�˝ �C �˝ �/

D .�˝�/.1˝ � ˝ 1/.e ˝ e /.�˝ �C �˝ �/
D .�˝�/.1˝ � ˝ 1/

��
.�˝ �C �˝ �/ 

�
˝ C ˝

�
.�˝ �C �˝ �/ 

��
D .�˝�/.�˝ �˝3

C �˝2
˝ �˝ �C �˝ �˝ �˝2

C �˝3
˝ �/.1˝ � ˝ 1/. ˝ /

D
��
�.�˝ �C �˝ �/

�
˝�C�˝

�
�.�˝ �C �˝ �/

��
.1˝ � ˝ 1/. ˝ /

D .��˝�C�˝ ��/.1˝ � ˝ 1/. ˝ /

D .�˝ �C �˝ �/ �:

The induction hypothesis assures that the third equality in this sequence holds.

The equality of part (2) of the lemma therefore holds for all elements of total length n.

(3) This is an immediate consequence of (2).

5 Homology of homotopy fibers in H

In this section we describe the homology of the homotopy fiber L2.C; ‰/ of the
path-loop map �� W PL.C; ‰/! e�.C; ‰/ on an object .C; ‰/ of F. We show in

Algebraic & Geometric Topology, Volume 7 (2007)



An algebraic model for the loop space homology of a homotopy fiber 1743

particular that when a chain Hopf algebra H is endowed with an Alexander–Whitney
model � W e�.C; ‰/!H (see below), then

H�
�
L2.C; ‰/

�
Š CotorH .R;R/

as graded algebras. We emphasize that this is a true isomorphism and not merely an
isomorphism of associated bigraded complexes: there are no extension problems to
solve. More generally, we apply the path-loop construction to building a model for
computation of the algebra structure of CotorH .H 0;R/, the homology of the homotopy
fiber of a map of chain Hopf algebras H 0!H , which endows H 0 with the structure of
an H –comodule algebra. In Section 6 we show that our terminology is fully justified
by its application to chain complexes of simplicial sets.

The chain Hopf algebras that we can study by the methods of this paper possess a
model of the following sort. We use here the notion of pseudo A–Hopf algebras of
Definition 2.2.

Definition 5.1 Let H be a chain Hopf algebra, seen as a pseudo A–Hopf algebra, via
the “inclusion” functor IF W H! .A;F/–PsHopf. An Alexander–Whitney model of
H consists of an object .C; ‰/ of F together with a morphism

‚ 2 .A;F/–PsHopf.e�.C; ‰/;H /

restricting to a quasi-isomorphism of chain algebras

� D‚.�˝ z0/W e�.C; ‰/ ' // H:

Unrolling the definition, we see that the existence of ‚ is equivalent to the existence
of a family of R–linear maps

F.‚/D f�n D‚.�˝ zn/W e�.C; ‰/!H˝nC1
g

satisfying certain conditions with respect to the differentials (cf, (1–5) and Proposition
2.5). Furthermore, it follows from the formula for the level comultiplication in F (cf
[8, page 854]) that for all a; b 2 e�.C; ‰/,
�n.ab/D

X
1�k�nC1
E{2Ik;nC1

˙
�
.�.i1/˝� � �˝�.ik//�k�1.a/

�
�
�
.�i1�1˝� � �˝�ik�1/�

.k/.b/
�
;

where � denotes the multiplication in H˝nC1 , � denotes the comultiplication ine�.C; ‰/ and in H and the signs follow from the Koszul rule.
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Throughout this section we assume that any chain Hopf algebra mentioned is endowed
with an Alexander–Whitney model, which we usually denote simply by � W e�.C; ‰/!
H .

Let H be a chain Hopf algebra, and consider the acyclicH –comodule algebra�H˝t�

H , as constructed in Proposition 3.5. Let

pW �H ˝t� H // H

denote the natural projection.

We explain first how to lift � ı e�� naturally to a quasi-isomorphism e� W PL.C; ‰/!

�H ˝t� H such that the following square commutes.

PL.C; ‰/
e� //

e��
��

�H ˝t� H

p

��e�.C; ‰/ � // H

We begin by defining and studying a certain section of p and a derivation homotopy
associated with it. Let �W H //H ˝H denote the comultiplication on H .

The proof of the following lemma is an immediate consequence of the definitions.

Lemma 5.2 Define sW H ! �H ˝t� H to be the linear map of degree 0 given by
s.w/D 1˝w . Then

(1) psD 1H ;

(2) .D�s� sd/.w/D�s�1wi ˝w
i for all w 2H , where �.w/D wi ˝w

i ;

(3) s is a map of graded algebras; and

(4) s is a map of right H –comodules.

Using this knowledge of s, we can build an important chain map from H to �H˝t�H ,
as explained in the next lemma.

Lemma 5.3 Let hDD�s� sd W H !�H ˝t� H . Then

(1) phD 0;

(2) h is a chain map of degree �1, ie, D�hD�hd ;

(3) h.a � b/ D h.a/ � s.b/C .�1/as.a/ � h.b/ for all a; b 2 H , ie, h is a derivation
homotopy from s to itself; and
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(4) h is a map of right H –comodules.

Proof We leave the trivial verifications of (1) and (2) to the reader.

(3) Observe that

h.a � b/DD�s.a � b/� sd.a � b/

DD�

�
s.a/ � s.b/

�
� s
�
da � bC .�1/aa � db

�
DD�s.a/ � s.b/C .�1/as.a/ �D�s.b/� sd.a/ � s.b/� .�1/as.a/ � sd.b/

D h.a/ � s.b/C .�1/as.a/ � h.b/:

(4) Observe that

.1˝�/hD .1˝�/.D�s� sd/

D .D�˝ 1C 1˝ d/.1˝�/s� .s˝ 1/�d

D .D�˝ 1C 1˝ d/.s˝ 1/�� .s˝ 1/.d ˝ 1C 1˝ d/�

D .h˝ 1/�:

This completes the proof.

We now apply s and h to the construction of the lift of e� .

Theorem 5.4 Let e� W T s�1.C ˚ C /C ! �H ˝t� H be the graded algebra map
specified by e� .s�1c/D s�.s�1c/ and e� .s�1xc/D h�.s�1c/.

(1) e� is a differential map, ie, e� ed� DD�
e� , and is therefore a quasi-isomorphism.

(2) e� W PL.C /!�H ˝t� H is a CASH map.

Proof (1) Let c 2 C and write x�.c/D ci ˝ ci . Then

D�
e�.s�1c/DD�s�.s�1c/

D sd�.s�1c/C h�.s�1c/

D s�d�.s
�1c/Ce�.s�1

xc/

D s�
�
� s�1.dc/C .�1/ci s�1cis

�1ci
�
Ce�.s�1

xc/

D�e��s�1.dc/
�
C .�1/ci s�.s�1ci/s�.s

�1ci/Ce�.s�1
xc/

D�e��s�1.dc/
�
C .�1/cie�.s�1ci/e�.s�1ci/Ce�.s�1

xc/

De��� s�1.dc/C s�1
xcC .�1/ci s�1cis

�1ci
�

De��� s�1.edc/C .�1/ci s�1cis
�1ci

�
De�ed�.s�1c/:
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Furthermore,

D�
e�.s�1

xc/DD�h�.s�1c/

D�hd�.s�1c/

D�h�d�.s
�1c/

D�h�
�
� s�1.dc/C .�1/ci s�1cis

�1ci
�

De�.s�1dc/� .�1/ci h
�
�.s�1ci/�.s

�1ci/
�

De�.�s�1edxc/
� .�1/ci

�
h�.s�1ci/ � s�.s

�1ci/C .�1/ciC1s�.s�1ci/ � h�.s
�1ci/

�
De�.�s�1edxc/
� .�1/ci

�e�.s�1
xci/ �e�.s�1ci/� .�1/cie�.s�1ci/ �e�.s�1

xci/
�

De��� s�1edxcC .�1/ciC1s�1
xcis
�1ci
C .�1/cs�1cis

�1
xci
�

De�ed�.s�1
xc/:

Observe that since e� is a differential map, it is necessarily a quasi-isomorphism, as
both PL.C / and �H ˝t� H are acyclic.

(2) Let ‚ 2 .A;F/–PsHopf
�e�.C; ‰/;H �

denote the pseudo A–Hopf algebra map
that � underlies. Let F.‚/D f�k W �C !H˝k j k � 1g, where �k D‚.�˝ zk�1/.
For k � 0, define e� k W s

�1.C ˚C /! .�H ˝t� H /˝H˝k

by e� k.s
�1c/D .s˝ 1˝k/�kC1.s

�1c/

and e� k.s
�1
xc/D .h˝ 1˝k/�kC1.s

�1c/;

where 1 denotes the identity on H .

We claim that

fe� k W s
�1.C ˚C /! .�H ˝t� H /˝H˝k

j k � 1g

satisfies the hypotheses of Proposition 3.16 and therefore induces a morphisme‚ 2 .A;F/–PsHopf
�
PL.C; ‰/;H ˝t� �H

�
;

ie, e� is a CASH map. We prove this claim by induction on k and on degree in the
Appendix.
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Note that e‚ lifts ‚, in the sense that p˝ne‚.n/D‚.n/.e�� ˘ 1F / for all n. This is
a necessary condition for e� to be a CASH map with respect to � .

Summary 5.5 Given an object H of H and an Alexander–Whitney model of H

� W e�.C; ‰/ ' // H;

there exists a commutative diagram

(5–1) PL.C; ‰/

e��
��

e� // �H ˝t� H

p

��e�.C; ‰/ � // H

such that

(1) e�� is a strict algebra and coalgebra map;

(2) p is a strict algebra and right H –comodule map;

(3) the natural right �C –comodule structure on PL.C; ‰/ is cofree on
PL.C; ‰/��C R; and

(4) e� is a quasi-isomorphism that is a strict algebra map and a CASH map.

Furthermore, this construction is natural in � .

The next theorem, which is the heart of this article, describes how we can use the path-
loop construction to compute the multiplicative structure of homotopy fiber homologies
in H. Recall from Corollary 3.8 that if H is a chain Hopf algebra and M is an
H –comodule algebra, then CotorH .M;R/D H�.M ˝t� �H / has a natural graded
algebra structure. Recall furthermore from Corollary 4.7 thate��.C 0; ‰0/aP.C; ‰/

�
�e�.C;‰/R

is a sub chain algebra of e��.C 0; ‰0/`P.C; ‰/
�

for all � 2 F
�
.C 0; ‰0/; .C; ‰/

�
.

Theorem 5.6 Let 'W H 0!H be a map of chain Hopf algebras. Suppose that there is
a a map !W .C 0; ‰0/! .C; ‰/ in F and a commutative diagram

(5–2) e�.C 0; ‰0/e�!
��

� 0

'
// H 0

'

��e�.C; ‰/ �

'
// H
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in which � 0 and � are Alexander–Whitney models. Let

LF.!/D e��C 0aP.C /
�
��C R:

Then there is a a zig-zag of quasi-isomorphisms of chain algebras

LF.!/
'
 � �

'
�! � � �

'
 � �

'
�!H 0˝t� �H:

In particular, H�
�
LF.!/

�
is isomorphic to CotorH .H 0;R/ as graded algebras.

It is not surprising that there is at least a linear isomorphism between H�
�
LF.!/

�
and

CotorH .H 0;R/. Since e��.C 0; ‰0/`P.C; ‰/
�

is a e�.C; ‰/–cofree resolution ofe�.C 0; ‰0/ and Cotor is the derived functor of the cotensor product,

Cotor
e�.C;‰/.e�.C 0; ‰0/;R/ should be the same as H�

�
LF.!/

�
. Naturality then

gives rise to the linear isomorphism H�
�
LF.!/

�
and CotorH .H 0;R/. The challenge

lies in showing that the isomorphism is multiplicative.

Proof The factorization of ! described in (4–5)

C 0

%%LLLLLLLLLLL
! // C

C 0˚ .C ˚C /

!C�

99sssssssssss

;

induces a factorization of e�!
�C 0

''OOOOOOOOOOO

e�! // �C

�
�
C 0˚ .C ˚C /

�e�.!C�/
77ppppppppppp

:

Note that e�.!C�/ admits a (nondifferential) Hopf algebra section �j, where j is
the natural section of !C� . We can therefore apply Proposition 4.6 to e�.!C�/.
From Proposition 4.6, we know that there is an injection of chain algebras

i W LF.!/ ,!�
�
C 0˚ .C ˚C /

�
and an isomorphism of left LF.!/–modules and right �C –comodules

hW LF.!/˝�C !�
�
C 0˚ .C ˚C /

�
defined by hD �.i ˝�j/.
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Next, using the right �C –comodule structure of �
�
C 0˚ .C ˚C /

�
, define the twisted

tensor product �
�
C 0˚ .C ˚C /

�
˝t� �

2C , and let

�W �
�
C 0˚ .C ˚C /

�
,!�

�
C 0˚ .C ˚C /

�
˝t� �

2C

denote the natural (nondifferential) injection of algebras such that �.w/D w˝ 1. We
claim that the composition

�i W LF.!/!�
�
C 0˚ .C ˚C /

�
˝t� �

2C

is a quasi-isomorphism of chain algebras.

Note that �i factors as a composite of chain maps

LF.!/
incl.
��! .LF.!/˝�C /˝t� �

2C
h˝1
���!�

�
C 0˚ .C ˚C /

�
˝t� �

2C:

The linear map h˝ 1 is a differential map because h is a map of differential �C –
comodules, while the inclusion LF.!/ ,! .LF.!/˝�C /˝t� �

2C is a differential
map since LF.!/˝�C is cofree. Since �C ˝t� �

2C is acyclic, the first, inclusion
map is a quasi-isomorphism. The second map is also a quasi-isomorphism, as h is an
isomorphism. Thus, �i is a quasi-isomorphism, as claimed.

Similarly, since there is a chain subalgebra inclusion

H 0˝t� �H ,!H 0˝t� .�H ˝t� H /˝t� �H;

which is a quasi-isomorphism since H ˝t� �H is acyclic.

The conditions on diagrams (5–1) and (5–2) imply that we have morphisms in CASH
(cf, Definition 3.14)

.� Ie� /W �e�.C; ‰/IPL.C; ‰/
�
!
�
H I�H ˝t� H

�
and

.� I � 0/W
�e�.C; ‰/I e�.C 0; ‰0/�! .H IH 0/:

Applying Proposition 3.18, we obtain a CASH map

� 0 ?e� W ��C 0˚ .C ˚C /
�
!H 0˝t� .�H ˝t� H /;

associated to a chain algebra map

�W �
�
C 0˚ .C ˚C /

�
˝t� �

2C �!H 0˝t� .�H ˝t� H /˝t� �H:
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Since �.C˚C / and �H˝t�H are acyclic, and �
�
C 0˚.C˚C /

�
Š�C 0

`
�.C˚

C /, the vertical arrows in the commuting diagram

�
�
C 0˚ .C ˚C /

� � 0?e� // H 0˝t� .�H ˝t� H /

1˝�'

��
�C 0

incl. '

OO

� 0

'
// H 0;

where � denotes the augmentation map, are both quasi-isomorphisms. Consequently,
� 0 ?e� is a quasi-isomorphism, which implies that � is also a quasi-isomorphism, since
the underlying graded modules of all objects involved are assumed to be free over R.

We have therefore a zig-zag of quasi-isomorphisms of chain algebras

LF.!/

'�i
��

H 0˝t� �H

'incl.
��

�
�
C 0˚ .C ˚C /

�
˝t� �

2C
�

'
// H 0˝t� .�H ˝t� H /˝t� �H:

Consequently,

H� LF.!/Š H�.H 0˝t� �H /D CotorH .H 0;R/

as graded algebras.

Corollary 5.7 Let � W e�.C; ‰/! H be an Alexander–Whitney model of a chain
Hopf algebra H . If

L2.C; ‰/DPL.C; ‰/�e�.C;‰/R;
with its natural chain algebra structure inherited from e�.C; ‰/, then H�

�
L2.C; ‰/

�
is isomorphic to CotorH .R;R/ as graded algebras.

Proof Apply Theorem 5.6 to the unit map R!H .

Definition 5.8 Given an object .C; ‰/ in F, the chain algebra L2.C; ‰/ is the double-
loop construction on C . Given a morphism !W .C 0; ‰0/! .C; ‰/ of F, the chain
algebra LF.!/ is the loop-homotopy fiber construction on ! .

Remark 5.9 Note that L2.C; ‰/ is a subalgebra of PL.C; ‰/D e�ıeP.C; ‰/, which
is free as a graded algebra on C ˚ C . In particular, if C admits an R–basis of n

elements, then L2.C; ‰/ is a subalgebra of a free algebra on 2n generators. On the
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other hand, �
�e�.C; ‰/�, which is connected by a zig-zag of quasi-isomorphisms of

chain algebras to L2.C; ‰/, is free on an infinite number of generators.

A similar comparison can be made between LF.!/ and �
�
C 0˚ .C ˚C /

�
˝t� �

2C .

Remark 5.10 Since the path-loop construction is functorial, the double-loop construc-
tion is as well, ie, a morphism hW .C; ‰/! .C 0; ‰0/ in F induces a chain algebra map
L2.h/W L2.C; ‰/! L2.C

0; ‰0/. It is evident that if h is a quasi-isomorphism in F,
then L2.h/ is a quasi-isomorphism of chain algebras.

Similarly, the loop-homotopy fiber construction is clearly defines a functor from the
category of morphisms in F to the category of chain algebras. Furthermore if

.C 0; ‰0/
! //

' h0

��

.C; ‰/

' h
��

.B0; ˆ0/
� // .B; ˆ/

is a commuting diagram in F, where h and h0 are quasi-isomorphisms, then the induced
map LF.!/! LF.�/ is a quasi-isomorphism of chain algebras.

6 The loops on a homotopy fiber

We are now ready to apply the purely algebraic results above to topology.

6.1 The loop-homotopy fiber model

Here we apply the constructions and theorems of the previous two sections to con-
structing a chain algebra, the homology of which is isomorphic as a graded algebra
to H�.GF /, where F is the homotopy fiber of a morphism gW K!L of 2–reduced
simplicial sets.

We begin by specifying our input data for the constructions of Section 4 and Section 5:
the canonical enriched Adams–Hilton model of [8].

Recall from Theorem 2.13 that there is a functor eC W sSet1! F. In [16], Szczarba
gave an explicit formula for a natural transformation between functors from sSet1 to
the category of associative chain algebras

� W �C.�/! C.G.�//

such that �K W �C.K/! C.GK/ is a quasi-isomorphism of chain algebras for every
1–reduced simplicial set K .
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Since � extends to a functor e�W F!H (see (1.5)), there is a natural transformation
 W �C.�/! �C.�/˝�C.�/ given for each 1–reduced simplicial set K by the
composition

�C.K/
Ind.‰K /
�����!�

�
C.K/˝C.K/

� q
�!�C.K/˝�C.K/;

where eC .K/D�C.K/; ‰K /. The comultiplication K W �C.K/!�C.K/˝�C.K/

is called the Alexander–Whitney cobar diagonal.

In [8] Hess, Parent, Scott and Tonks established that Szczarba’s equivalence �K un-
derlies a pseudo A–Hopf map with respect to  K and the usual comultiplication on
C.GK/. In other words, for all 1–reduced K ,

�K W
e� eC .K/ '�! C.GK/

is an Alexander–Whitney model, called the canonical enriched Adams–Hilton model of
K . Finally, they showed that  K agrees with the comultiplication on �C.K/ defined
in a purely combinatorial manner by Baues in [1].

We now apply the canonical enriched Adams–Hilton model to modelling the loop
homology of homotopy fibers.

Theorem 6.1 Let f W K!L be a morphism of 2–reduced simplicial sets, and let F

be the homotopy fiber of f . Then there is a zig-zag of quasi-isomorphisms of chain
algebras

LF.f /
'
 � �

'
�! � � �

'
 � �

'
�! C.GF /:

Thus,
H�

�
LF.eC .f //�Š H�.GF /

as graded algebras. In particular,

H�
�
L2.eC .L//�Š H�.G2L/

as graded algebras.

Proof Applying Theorem 5.6 to the commuting diagram

e�eC .K/ �K

'
//

e�eC .f /
��

C.GK/

C.Gf /

��e�eC .L/ �L

'
// C.GL/
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we obtain a zig-zag of quasi-isomorphisms of chain algebras

LF.f /
'
 � �

'
�! � � �

'
 � �

'
�! C.GK/˝t� �C.GL/:

By the dual of [4, Theorem 5.1], there is a quasi-isomorphism of chain algebras

C.GF /
'
�! C.GK/˝t� �C.GL/;

and so we can conclude.

6.2 Double suspensions and formal spaces

In this section we provide a more explicit description of L2.C; ‰/ for Alexander–
Whitney coalgebras .C; ‰/ such that e�.C; ‰/ is primitively generated. Since e� eC .K/
is primitively generated for all simplicial double suspensions K [7], we have good
control of the model L2.K/ for a large class of spaces K .

Our description of L2.C; ‰/ also applies to Alexander–Whitney coalgebras that are
“formal” in some appropriate sense. The chain coalgebras of numerous interesting spaces
satisfy our formality criteria, enabling us to give a more explicit and computationally
amenable formula for the model of their double loop spaces as well.

Our notion of formality is certainly closely related to that of Ndombol and Thomas
[14], but we do not know whether the two notions are actually equivalent.

Definition 6.2 A morphism � 2 F
�
.C; ‰/; .C 0; ‰0/

�
is an F–quasi-isomorphism

if �.� ˝ z0/W C ! C 0 is a quasi-isomorphism. Two Alexander–Whitney coalge-
bras .C; ‰/ and .C 0; ‰0/ are weakly equivalent if there is a zig-zag of F–quasi-
isomorphisms in F

.C; ‰/ �
'oo ' // � � � �

' //'oo .C 0; ‰0/ :

Let .C; ‰/ and .C 0; ‰0/ be weakly equivalent Alexander–Whitney coalgebras, with
underlying coalgebras .C; �/ and .C 0; �0/. It follows immediately from the definition
that H�.C; �/ŠH�.C

0; �0/ as cocommutative coalgebras and that H�
�e�.C; ‰/�Š

H�
�e�.C 0; ‰0/� as Hopf algebras.

Recall the “inclusion” functor IF W A–Coalg! .A;F/–Coalg from (1–1).

Definition 6.3 An Alexander–Whitney coalgebra .C; ‰/ is formal if it is weakly
equivalent to IF

�
H�.C /

�
. A simplicial set K is Alexander–Whitney formal if eC .K/

formal in F.
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Spheres are obviously Alexander–Whitney formal spaces. More generally, if K is
an r –reduced simplicial set such that all simplices of dimension greater than 2r are
degenerate, then K is clearly Alexander–Whitney formal for degree reasons.

We now recall algebraic notions and results from [2] and [17] that enable us to simplify
L2.C; ‰/ in the formal case. We work henceforth over any integral domain R in
which 2 is a unit or over a field R of characteristic 2.

Definition 6.4 (Cohen, Moore and Neisendorfer [2, Section 3]) A homology Hopf
algebra is a connected, cocommutative, graded Hopf algebra that is free as a graded R–

module. Given homology Hopf algebras H , H 0 and H 00 , a sequence H 0
i
�!H

p
�!H 00

of morphisms of Hopf algebras is a short exact sequence if

(1) the composite pi is equal to the composite H 0
"
�!R

�
�!H 00 ;

(2) i is injective, while p is surjective; and

(3) the canonical map x{W H 0!H�H 00R is an isomorphism.

Proposition 6.5 (Cohen, Moore and Neisendorfer [2, Proposition 3.7]) If L0 !

L! L00 is a short exact sequence of connected, graded Lie algebras over R, then
UL0! UL! UL00 is a short exact sequence of homology Hopf algebras, where U

denotes the universal enveloping algebra functor, from graded Lie algebras to graded
Hopf algebras.

Proposition 6.6 (Tanré [17, Proposition VI.2 (7)]) Let pW L.V ˚W /! L.V / be
the projection map of graded Lie algebras, determined by p.v/D v and p.w/D 0 for
all v 2 V and w 2W . There is then a short exact sequence of Lie algebras

L
�
AN.V /.W /

� i
�! L.V ˚W /

p
�! L.V /;

where

AN.V /.W / WD
˚
Œv1; Œv2; Œ: : : Œvk ; w� : : : ��� j w 2W; vi 2 V 8i; k 2 N

	
and Œ�;�� denotes a commutator.

We can now apply the results recalled above to determining the underlying graded
algebra of L2.C; ‰/ when e�.C; ‰/ is primitively generated.

Theorem 6.7 Let R be either an integral domain in which 2 is a unit or a field
of characteristic 2. If .C; ‰/ is an Alexander–Whitney coalgebra over R such thate�.C; ‰/ is primitively generated with respect to the naturally induced comultiplication
 , then the underlying graded algebra of L2.C; ‰/ is T

�
AN.s�1C /.s�1C /

�
.
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Proof Since the underlying graded Hopf algebra of e�.C; ‰/ is primitively generated
and therefore cocommutative, so is the underlying graded Hopf algebra of PL.C; ‰/.
It follows that there is a short exact sequence of homology Hopf algebras

(6–1) T s�1.CC˚CC/�T s�1CC
R! T s�1.CC˚CC/

��
��! T s�1CC;

where T s�1.CC˚CC/�T s�1CC
R is the graded Hopf algebra underlying L2.C; ‰/.

On the other hand, since each of the Hopf algebras above is primitively generated,
�� D Up , where pW Ls�1.CC ˚ CC/ ! Ls�1CC is the usual projection map of
graded Lie algebras. Combining Proposition 6.5 and Proposition 6.6, we obtain another
short exact sequence of homology Hopf algebras

T
�
AN.s�1C /.s�1C /

�
! T s�1.CC˚CC/

��
��! T s�1CC:

Comparing with sequence (6–1), we conclude that

T s�1.CC˚CC/�T s�1CC
RŠ T

�
AN.s�1C /.s�1C /

�
:

Corollary 6.8 Let R be either an integral domain in which 2 is a unit or a field of
characteristic 2. If KDE2L is a simplicial double suspension, then the graded algebra
underlying L2.K/ is T

�
AN.CCEL/.CCL/

�
.

Proof In [7] the authors proved that e� eC .E2L/ was primitively generated for all
simplicial sets L. To conclude, observe that s�1CCEX ŠCCX for all simplicial sets
X .

Corollary 6.9 Let R be either an integral domain in which 2 is a unit or is weakly
equivalent to a chain algebra with underlying graded algebra

Proof Writing I.H / D .H; ‰H /, we have by definition that ‰H D T .�H /˘A".
The induced comultiplication on e�.H; ‰H / is such that e�.H; ‰H / is primitively
generated. Now apply Theorem 6.7.

If .C; ‰/ is formal and all elements of H�.C / are primitive, then the differential ed�
on L2.H; ‰H / is given explicitly by

ed��Œs�1x1; Œs
�1x2; Œ: : : Œs

�1xm; s
�1
xy� : : : ���

�
D

X
1�i�m

˙Œs�1x1; Œs
�1x2; Œ: : : Œs

�1
xxi ; Œ: : : Œs

�1xm; s
�1
xy� : : : ���;
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for all x1; : : : ;xm;y 2H , where the sign is determined by the Koszul convention. It
is not too difficult to see in this case that if B is a basis of H�.C; F2/, then

H�
�
L2.C; ‰/I F2

�
Š F2Œad2k�1.x/.xx/ j x 2 B; k � 1�:

A similar result holds mod p .

Appendix A Technical proofs

A.1 Proof of Proposition 2.5

Since Q is free as a P –bimodule, there is a symmetric sequence X of graded R–
modules such that QŠ P ˘X ˘P in PModP .

The morphism � consists of a morphism of right P –modules

� W T .H /˘PQ! T .H 0/

such that
�IQ.�/D IQ.�

0/.� f �/W T .H ^H /˘PQ! T .H 0/;
where the P –coalgebra maps � and �0 are the multiplication maps on H and H 0 ,
respectively.

Let �W T .H
`

T v/˘P!T .H
`

T v/ be the right P –module structure corresponding
to the P –coalgebra structure of H

`
T v . Since H

`
T v is an extension of H , the

action � restricts to �W L.R � v/˘P! T .H ˚R � v/. In particular, the direct sum of
graded modules H ˚R � v underlies a sub P –coalgebra of H

`
T v .

Taken together, �W L.R � v/˘X ! T .H 0/ and the restriction � W L.H /˘X ! T .H 0/
give rise in the obvious way to a morphism of symmetric sequences from L.H ˚R �

v/˘X to T .H 0/, which we call � ��, and then, by Lemma 2.3, to

.� ��/MW T .H ˚R � v/˘X ! T .H 0/:

Furthermore, from .� ��/M and the restriction of � , we obtain a morphism �0W L.R �
v/˘Q! T .H 0/ of right P –modules as the composite

L.R � v/˘P ˘X ˘P
�˘1˘1
����! T .H ˚R � v/˘X ˘P

.���/M̆ 1
������! T .H 0/˘P

�0

�! T .H 0/;

where �0 is the right P –module structure map corresponding to the P –coalgebra
structure of H 0 .

We next recursively define a filtration of H
`

T v by sub P –coalgebras, then constructb� by induction on filtration degree. Set F0 DH and, for m> 0, Fm is the image of
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the iterated multiplication map restricted to Fm�1˝ .R˚R � v/˝H . By definition
of a free algebraic P –Hopf extension, each Fm is a sub P –coalgebra of H

`
T v .

Furthermore the multiplication � on H
`

T v restricts to a morphism of P –coalgebras

�k;mW F
k
˝Fm�k

! Fm;

for all 0� k �m and for all m� 0.

Let b� .0/ D � . Suppose that for some m� 0 and for all k �m, there exists

b� .k/W T .Fk/˘PQ! T .H 0/

such that for all j � k , b� .k/ agrees with b� .j/ on T .Fj /˘PQ and

(A–1) b� .k/I.�j ;k/D I.�0/
�b� .j/ fb� .k�j/�

W T .Fj
^Fk�j /˘PQ! T .H 0/:

To construct b� .mC1/
, we begin by defining a morphism � .mC1/ in Mod†R from

L.FmC1/˘X to T .H 0/, to which we then apply Lemma 2.3. The morphism � .mC1/

is defined to be the following composite.

L.FmC1/˘X

�.mC1/

��

//
�
L.Fm/^L.R � v/^L.H /

�
˘X

1˘�
.2/
Q

���
L.Fm/^L.R � v/^L.H /

�
˘Q^3

i
���

L.Fm/˘Q
�
^
�
L.R � v/˘Q

�
^
�
L.H /˘Q

�
b� .m/^�0^b���

T .H 0/ T
�
.H 0/˝3

�
Š T .H 0/^3

T
�
.�0/.2/

�
oo

:

Here b� .m/ is slightly abusive shorthand for the composite

L.Fm/˘Q ,! T .Fm/˘Q! T .Fm/˘PQ
b� .m/
���! T .H 0/:

Applying Lemma 2.3, we obtain M� .mC1/W T .FmC1/˘X ! T .H 0/. The composite

T .FmC1/˘QŠ T .FmC1/˘P ˘X ˘P
�˘1˘1
����! T .FmC1/˘X ˘P

M�.mC1/˘P
�������!

T .H 0/˘P
�0

�! T .H 0/
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then induces the desired map b� .mC1/
W T .FmC1/˘PQ! T .H 0/, since Q is a free

bimodule. By construction, equality (A–1) now holds for all k �mC 1 and j � k .

To complete the proof, set b� D colimm
b� .m/ .

A.2 Complete proof of Theorem 5.4(2)

Recall that we have fixed F.‚/D f�k W �C !H˝k j k � 1g: Furthermore, for k � 0,
we have defined e� k W s

�1.C ˚C /! .�H ˝t� H /˝H˝k

by e� k.s
�1c/D .s˝ 1˝k/�kC1.s

�1c/

and e� k.s
�1
xc/D .h˝ 1˝k/�kC1.s

�1c/;

where 1 denotes the identity on H .

We claim that

fe� k W s
�1.C ˚C /! .�H ˝t� H /˝H˝k

j k � 1g

satisfies the hypotheses of Proposition 3.16 and therefore induces a morphism

e‚ 2 .A;F/–PsHopf.PL.C; ‰/;H ˝t� �H /;

ie, e� is a CASH map. We have already dealt with the case k D 0, since e� 0 D
e� .

Suppose that the claim is true for all k <m and for e�m restricted to s�1.C ˚C /<n .

Before proving the claim for e�m applied to s�1.C ˚C /n , we establish some useful
notation. For all j 2 Jk;m , let

e� j D e�j0
˝ �j1

˝ � � �˝ �jk
and �j D �j0

˝ �j1
˝ � � �˝ �jk

as maps from �.C ˚C /˝�C˝k to
�
�H ˝t� H

�
˝H˝m and from �C˝kC1 to

H˝m . Furthermore, let

�j
D �j0 ˝�.j1�1/

˝ � � �˝�.jk�1/ and �j
D �.j0�1/

˝ � � �˝�.jk�1/

as maps from
�
�H ˝t� H

�
˝H˝k to

�
�H ˝t� H

�
˝H˝m and from H˝kC1 to

H˝m . Recall that � is the comultiplication on H and that � is the right �C –comodule
action on PL.C /.
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In terms of this notation e�m can be defined recursively by

e�m�D �

0BB@ X
0�k�m
j2Jk;m

�je� k ˝
e� j�

.k/

1CCA ;
where all multiplication maps are denoted � and all coactions are denoted � .

Observe that since s and h are maps of comodules, �.j/s D .s˝ 1˝j /�.j�1/ and
�.j/hD .h˝ 1˝j /�.j�1/ for all j .

Let s�1c 2 s�1.C ˚ C /n . Let ci ˝ ci denote the image of c under the reduced
comultiplication in C . Thene�md�.s

�1c/

De�m

�
� s�1.dc/C s�1

xcC .�1/ci s�1cis
�1ci

�
D� .s˝ 1˝m/�mC1.s

�1.dc//C .h˝ 1˝m/�mC1.s
�1c/

C .�1/ci�

� X
0�k�m
j2Jk;m

�je�k.s
�1ci/˝e� j�

.k/.s�1ci/

�

D� .s˝ 1˝m/�mC1.s
�1.dc//C .h˝ 1˝m/�mC1.s

�1c/

C .�1/ci�

� X
0�k�m
j2Jk;m

�j.s˝ 1˝k/�k.s
�1ci/˝e� j 

.k/.s�1ci/

�

D� .s˝ 1˝m/�mC1.s
�1.dc//C .h˝ 1˝m/�mC1.s

�1c/

C .�1/ci�

� X
0�k�m
j2Jk;m

.s˝ 1˝m/�j�k.s
�1ci/˝ .s˝ 1˝m/�j 

.k/.s�1ci/

�

D� .s˝ 1˝m/�mC1.s
�1.dc//C .h˝ 1˝m/�mC1.s

�1c/

C .�1/ci .s˝ 1˝m/�

� X
0�k�m
j2Jk;m

�j�k.s
�1ci/˝ �j 

.k/.s�1ci/

�

D� .s˝ 1˝m/�mC1.s
�1.dc//C .h˝ 1˝m/�mC1.s

�1c/

C .�1/ci .s˝ 1˝m/�mC1.s
�1ci � s

�1si/

D.s˝ 1˝m/�mC1d�.s
�1c/C .h˝ 1˝m/�mC1.s

�1c/:
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Next,

.D�˝ 1˝m/e�m.s
�1c/D.D�s˝ 1˝m/�mC1.s

�1c/

D.sd ˝ 1˝m/�mC1.s
�1c/C .h˝ 1˝m/�mC1.s

�1c/

D.s˝ 1˝m/.d ˝ 1˝m/�mC1.s
�1c/C.h˝ 1˝m/�mC1.s

�1c/

and �
1˝

X
rCsDm�1

1˝r
˝ d ˝ 1˝s

�e�m.s
�1c/

D

�
s˝

X
rCsDm�1

1˝r
˝ d ˝ 1˝s

�
�mC1.s

�1c/

D .s˝ 1˝m/

� X
rCsDm�1

.1˝rC1
˝ d ˝ 1˝s

�
�mC1.s

�1c/

�
:

On the other hand

.�˝ 1˝m�1/e�m�1.s
�1c/D .�s˝ 1˝m�1/�m.s

�1c/

D .s˝ 1˝m/.�˝ 1˝m�1/�m.s
�1c/

and�
1˝

X
rCsDm�2

1˝r
˝�˝ 1˝s

�e�m�1.s
�1c/

D
�
s˝

X
rCsDm�2

1˝r
˝�˝ 1˝s

�
�m.s

�1c/

D.s˝ 1˝m/

� X
rCsDm�1

.1˝r
˝�˝ 1˝s

�
�m.s

�1c/

�
:

Finally X
rCsDm

.e�r ˝ �s/�.s
�1c/D

X
rCsDm

.e�r ˝ �s/.1˝��/e .s�1c/

D

X
rCsDm

.e�r ˝ �s/.1˝��/ .s
�1c/

D

X
rCsDm

.e�r ˝ �s/ .s
�1c/

D

X
rCsDm

�
.s˝ 1˝r /�rC1˝ �s

�
 .s�1c/

D.s˝ 1˝m/

� X
rCsDm

�
�rC1˝ �s

�
 .s�1c/

�
:
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The sum of the terms above, with appropriate signs, yields s˝ 1˝m applied to the
difference of the two sides of equation (3–3) for �mC1 . The sum is therefore zero, as
desired, ie, the hypothesis of Proposition 3.16 holds for s�1c 2 s�1.C ˚C /n .

Before showing that the same condition holds for the remaining generators, we consider
the relation between the degree �1 map �W �C !�.C ˚C / of Lemma 4.8 and e� k .
Note that e� k has been defined precisely so thate� k ı � D .h˝ 1˝k/�kC1W s

�1C ! .�H ˝t� H /˝H˝k

for all k . We show now by induction on k and on wordlength in �C that this equality
holds in fact on all of �C , for all k .

Suppose that e� k� D .h ˝ 1˝k/�kC1 everywhere in �C for all k < m and thate�m� D .h˝ 1˝m/�mC1 on T <`s�1CC . Then on
L

aCbD` T as�1CC˝T bs�1CC
we have thate�m��De�m�.�˝ �C �˝ �/

D �

0BB@ X
1�k�m
j2Jk;m

.�je�k�˝e� j�
.k/�C �je�k �˝e� j�

.k/�/

1CCA
D �

� X
1�k�m
j2Jk;m

.�j.h˝ 1˝k/�kC1˝ .s˝ 1˝m/�j 
.k/

C .s˝ 1˝m/�j�kC1˝
e� j.�˝ 1˝k/ .k//

�
D �

� X
1�k�m
j2Jk;m

..h˝ 1˝m/�j�kC1˝ .s˝ 1˝m/�j 
.k/

C .s˝ 1˝m/�j�kC1˝ .h˝ 1˝m/�j 
.k//

�

D .h˝ 1˝m/�

0BB@ X
1�k�m
j2Jk;m

.�j�kC1˝ �j 
.k/
C�j�kC1˝ �j 

.k//

1CCA
D .h˝ 1˝m/�mC1�:

Thus e�m� D .h˝ 1˝m/�mC1 on T �`s�1CC .

We can therefore conclude by induction thate�m� D .h˝ 1˝m/�mC1W �C ! .�H ˝t� H /˝H˝m
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for all m.

Suppose now that s�1xc 2 s�1.C ˚C /n . Let ci ˝ ci denote the image of c under the
reduced comultiplication in C . Then

e�md�.s
�1
xc/De�m

�
s�1.dc/� .�1/ci s�1

xcis
�1ci
C s�1cis

�1
xci
�

D.h˝ 1˝m/�mC1.s
�1.dc//

� .�1/ci�

 X
0�k�m
j2Jk;m

�je�k.s
�1
xci/˝e� j�

.k/.s�1ci/

!

C�

 X
0�k�m
j2Jk;m

�je�k.s
�1ci/˝e� j�

.k/.s�1
xci/

!

D.h˝ 1˝m/�mC1.s
�1.dc//

� .�1/ci�

 X
0�k�m
j2Jk;m

�j.h˝ 1˝k/�k.s
�1ci/˝e� j 

.k/.s�1ci/

!

C�

 X
0�k�m
j2Jk;m

�j.s˝ 1˝k/�k.s
�1ci/˝e� j.�˝ 1˝k/ .k/.s�1ci/

!

D.h˝ 1˝m/�mC1.s
�1.dc//

� .�1/ci�

 X
0�k�m
j2Jk;m

.h˝1˝m/�j�k.s
�1ci/˝.s˝1˝m/�j 

.k/.s�1ci/

!

C�

 X
0�k�m
j2Jk;m

.s˝ 1˝m/�j�k.s
�1ci/˝ .h˝ 1˝m/�j 

.k/.s�1ci/

!

D.h˝ 1˝m/�mC1.s
�1.dc//

C .h˝ 1˝m/�

 X
0�k�m
j2Jk;m

�j�k.s
�1ci/˝ �j 

.k/.s�1ci/

!

D.h˝ 1˝m/�mC1.s
�1.dc//C .h˝ 1˝m/�mC1.s

�1cis
�1ci/

D.h˝ 1˝m/�mC1d�.s
�1c/:
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Next,

.D�˝ 1˝m/e�m.s
�1
xc/D.D�h˝ 1˝m/�mC1.s

�1c/

D� .hd ˝ 1˝m/�mC1.s
�1c/

D� .h˝ 1˝m/.d ˝ 1˝m/�mC1.s
�1c/

and�
1˝

X
rCsDm�1

1˝r
˝ d ˝ 1˝s

�e�m.s
�1
xc/

D

 
h˝

X
rCsDm�1

1˝r
˝ d ˝ 1˝s

!
�mC1.s

�1c/

D .h˝ 1˝m/

 X
rCsDm�1

.1˝rC1
˝ d ˝ 1˝s

�
�mC1.s

�1c/

!
:

On the other hand,

.�˝ 1˝m�1/e�m�1.s
�1
xc/D .�h˝ 1˝m�1/�m.s

�1c/

D .h˝ 1˝m/.�˝ 1˝m�1/�m.s
�1c/

and �
1˝

X
rCsDm�2

1˝r
˝�˝ 1˝s

�e�m�1.s
�1
xc/

D

 
h˝

X
rCsDm�2

1˝r
˝�˝ 1˝s

!
�m.s

�1c/

D.h˝ 1˝m/

 X
rCsDm�1

.1˝r
˝�˝ 1˝s

�
�m.s

�1c/

!
:

Finally X
rCsDm

.e�r ˝ �s/�.s
�1
xc/D

X
rCsDm

.e�r ˝ �s/��.s
�1c/

D

X
rCsDm

.e�r ˝ �s/.�˝ 1/ .s�1c/

D

X
rCsDm

�
.h˝ 1˝r /�rC1˝ �s

�
 .s�1c/

D.h˝ 1˝m/

 X
rCsDm

�
�rC1˝ �s

�
 .s�1c/

!
:
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The sum of the above terms, with appropriate signs, yields h˝ 1˝m applied to the
difference of the two sides of equation (3–3) for �mC1 . The sum is therefore zero, as
desired, ie, the hypothesis of Proposition 3.16 holds for s�1xc 2 s�1.C ˚C /n .

Since we can prove by induction that (3–3) holds for all m, we can conclude that e� is
indeed a CASH map. .
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