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Congruence and quantum invariants of 3–manifolds

PATRICK M GILMER

Let f be an integer greater than one. We study three progressively finer equivalence
relations on closed 3–manifolds generated by Dehn surgery with denominator f :
weak f–congruence, f–congruence, and strong f–congruence. If f is odd, weak
f–congruence preserves the ring structure on cohomology with Zf –coefficients.
We show that strong f–congruence coincides with a relation previously studied by
Lackenby. Lackenby showed that the quantum SU.2/ invariants are well-behaved
under this congruence. We strengthen this result and extend it to the SO.3/ quantum
invariants. We also obtain some corresponding results for the coarser equivalence
relations, and for quantum invariants associated to more general modular categories.
We compare S3 , the Poincaré homology sphere, the Brieskorn homology sphere
†.2; 3; 7/ and their mirror images up to strong f–congruence. We distinguish the
weak f–congruence classes of some manifolds with the same Zf –cohomology ring
structure.

57M99; 57R56

1 Introduction

Weak type–f surgery is a kind of surgery along a knot in a 3–manifold which gen-
eralizes the notion of n=sf surgery in a homology sphere. Such surgeries preserves
the cohomology groups with Zf –coefficients. Weak type–f surgery generates an
equivalence relation on 3–manifolds which we call weak f–congruence. If f is odd,
we show that weak type–f surgery also preserves the cohomology ring structure with
Zf –coefficients.

Strong type–f surgery is a kind of surgery along a knot in a 3–manifold which
generalizes the notion of 1=sf surgery in a homology sphere. We call the equivalence
relation on 3–manifolds that it generates strong f–congruence. Motivated by Fox’s
notion of f–congruence for links [10], Lackenby defined an equivalence relation on
3–manifolds which he called congruence modulo f [20]. Congruence modulo f is
generated by a move which increments the framing on a component of framed link
description by f . We show that strong f–congruence coincides with congruence
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modulo f . We also consider a relation which we call f–congruence. It is coarser than
strong f–congruence and finer than weak f–congruence.

We refine a relation, due to Lackenby, between the SU.2/ quantum invariants of
manifolds which are congruent modulo f . We find relations reflecting congruence
and weak congruence. We also discuss quantum invariants associated to some modular
categories.

In this paper, p will denote an odd prime. We show that the quantum SO.3/ invariant
at a p th root of unity is preserved, up to phase, by p–congruence. We give finite lists
of the only possible f for which there might be strong f–congruences between S3 ,
the Brieskorn homology spheres ˙†.2; 3; 5/ and ˙†.2; 3; 7/. Moreover we realize
some of these strong congruences.

We also show that the quantum SO.3/ invariant at a p th root of unity has a very
simple surgery formula for weak type–p surgeries. As a corollary, we distinguish, up
to weak p–congruence for all p > 3, two 3–manifolds with the same cohomology
rings: 0–framed surgery to the Whitehead link and #2S1 �S2 . This can also be done
using work of Dabkowski and Przytycki [9, Theorem 2(i)] on Burnside groups of links.
We also distinguish another manifold from #2S1 �S2 up to weak p–congruence for
small p .

We strengthen a result of Masbaum and the author on the divisibility of certain quantum
invariants.

We thank Gregor Masbaum, Brendan Owens, Jozef Przytycki, Khaled Qazaqzeh and
several referees for comments, suggestions and/or discussions. This research was
partially supported by NSF-DMS-0604580.

2 Congruence

Our convention is that all manifolds are compact and oriented, unless they fail to be
compact by construction. We use a minus sign to indicate orientation reversal. We
use N , N 0 and M to denote closed connected 3–manifolds. In this paper, we let f
denote an integer greater than one.

Definition 2.1 (Lackenby) Two closed 3–manifolds are congruent modulo f if and
only if they possess framed link diagrams which are related by a sequence of moves:
the usual Kirby moves and also the move of changing the framings by adding multiples
of f .
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Suppose 
 is a simple closed curve in a closed connected 3–manifold N . Let �

denote a closed tubular neighborhood of 
 , and T
 the boundary of �
 . By a meridian
for 
 , we mean a simple closed curve � in T
 which is the boundary of a transverse
disk to 
 . By a longitude, we mean a simple closed curve � in T
 which meets a
meridian in a single point transversely. The process of removing �
 from N and
reattaching it so that a curve �0 that is homologous to `�C n� bounds a disk in the
reglued solid torus will be called an n=` surgery to 3–manifold N along 
 . Here n, `
are integers, and n is relatively prime to `: The denominator of the surgery is `. This is
well defined (that is, it does not depend on the choice of �) up to sign. The congruence
class of n modulo ` is well defined up to sign, and n is called the numerator for the
surgery.

Definition 2.2 A n=` surgery is called weak type–f surgery if `� 0 .mod f /. A
n=`–surgery is called type–f surgery if ` � 0 .mod f / and n � ˙1 .mod f /. A
n=`–surgery is called strong type–f surgery if `� 0 .mod f / and n�˙1 .mod `/.

If we may obtain N 0 from N by a strong, weak or plain type–f surgery, we may also
obtain N from N 0 by a type–f surgery of the same variety (simply by reversing the
process).

Definition 2.3 The equivalence relation generated by strong type–f surgeries is called
strong f–congruence. The equivalence relation generated by type–f surgeries is called
f–congruence. The even coarser equivalence relation generated by weak type–f
surgeries will be called weak f–congruence.

Proposition 2.4 Let m be a positive integer. If M is (respectively weakly, strongly)
fm–congruent to N , then M is (respectively weakly, strongly) f–congruent to N .

Theorem 2.5 Two 3–manifolds are congruent modulo f if and only if they are
strongly f–congruent.

Proof Suppose N is already described by surgery on a link L in S3 . We want to
see that the result of 1Csf n

sf
(for any s 2 Z) to N along a knot K in the complement

of L is strongly f–congruent to N . By a well-known trick (see Gompf and Stipsicz
[17, Proposition 5.1.4]) we can get another surgery description of N by including K

with framing n and a meridian of K framed zero. We can then change the framing
on the meridian from zero to �sf á la Lackenby, then we may do a slam dunk [17,
page 163]. See Figure 1. The result of �1Csf n

sf
to N can be realized similarly.
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Suppose now N is already described by surgery on a framed link S3 which includes a
component K framed, say n. If we perform �1=f surgery on a meridian of K , and
then do a Rolfsen twist [17, page 162], we will have changed the framing on K to
nCf . See Figure 2.

insert a surgery
curve with a

0–framed meridian

n

0

congruence
modulo f

move

n

�sf

slam dunk 1Csf n
sf

Figure 1: Strong f–congruence move generates 1=f surgery
�
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1Cf n
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�
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do
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n
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Rolfsen twist

nCf

Figure 2: 1=f surgery generates strong f–congruence move

We need the concept of an f–surface for the next proof. This concept is also required
to formulate some later results. The idea here is that of a generalized surface where a
number of sheets which is multiple of f are allowed to coalesce along circles. Note
that a non-orientable closed surface together with a selected one manifold dual to the
first Stiefel–Whitney class of the surface and a choice of orientation on the complement
of this one manifold is a simple example of a good 2–surface.

Definition 2.6 An f–surface F is the result of attaching, by a map q , the whole
boundary of an oriented surface yF to a collection of circles fSig by a map which when
restricted to the inverse image under q of each Si is a f ti –fold (possibly disconnected)
covering space of Si . If each component of each q�1Si is itself a covering space of Si

with degree divisible by f , we say F is a good f–surface. The image of the interior
of the surface is called the 2–strata. The image of the boundary is called the 1–strata. If
only part of the boundary of F is so attached, we call this a f–surface with boundary,
and the image of the unattached boundary is called the boundary.

Theorem 2.7 A weak f–congruence between N and N 0 induces a graded group
isomorphism between H�.N;Zf / and H�.N

0;Zf / and between H�.N;Zf / and
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H�.N 0;Zf /. If f is odd, this induced isomorphism preserves the ring structure.
If f is two, this induced isomorphism need not preserves the ring structure.

Proof Let 
 denote the curve in N that we perform the weak type–f surgery along.
Let 
 0 denote the core of the new solid tori in N 0 . Let X D N n 
 D N 0 n 
 0 . As
the maps H1.X;Zf /! H1.N;Zf / and H1.X;Zf /! H1.N

0;Zf / induced by the
inclusions are surjective and have the same kernel, it follows that the induced mappings
H 1.N;Zf /!H 1.X;Zf / and H 1.N 0;Zf /!H 1.X;Zf / are injective and have the
same image. Thus these maps induce isomorphisms on H 1.�;Zp/ and H1.�;Zp/.
Connectivity yields isomorphisms on H0.�;Zp/, and orientations yields isomorphisms
on H3.�;Zp/: The above isomorphisms and Poincaré duality yield the others.

Using Poincaré duality and the equation .a[ b/\ z D a\ .b\ z/, to see that the ring
structure is preserved it suffices to check that the isomorphism on H 1.�;Zf / preserves
the trilinear triple product .�1[�2[�3/\ ŒN �:

To verify this, we use f–surfaces to represent classes in H 1.�;Zf /. An f–surface has
a fundamental class H2.F;Zf / which is given by the sum of the oriented 2–simplices
in a triangulation of yF . Thus a f–surface F embedded in N represents an element
ŒF � 2 H2.N;Zf /: Poincaré dual to ŒF � is the cohomology class �F 2 H 1.N;Zf /

which may also be described by the (signed) intersection number of a loop which meets
F transversely in the 2–strata. Every cohomology class in H 1.N;Zf / may be realized
in this way by an f–surface.

Given an f–surface F in N , we may isotope F so it transversely intersects 
 in
the 2–strata. Each circle component of F \ T
 consists of a collection of meridians
of �
 . Viewing F \ T
 from the point of view of 
 0 we see a collection of parallel
torus knots. A component is homologous to a number of longitudes of 
 0 which is
divisible by f plus some number of meridians of 
 0 (necessarily prime to f ). Thus
F n .F \ �
 / maybe completed to an f–surface by adjoining the mapping cylinder of
the projection of .F \T
 / to 
 0: Let F 0 denote the new f–surfaces in N 0 constructed
in this manner. The induced isomorphism from H 1.N;Zf / to H 1.N 0;Zf / sends �F

to �0
F

. We could also complete F n .F \�
 / to form F 0 in some other way by adding
any f surface with boundary in �0
 with boundary .F \ T
 /. The class of ŒF 0� does
not depend on this choice, as H3.�

0

 ;Zf / is zero.

Any three f–surfaces F1 , F2 and F3 in N may be isotoped so that F1 \F2 \F3

lies in the intersection of the 2–strata of these surfaces and consists of a finite number
points and, in a neighborhood of these triple points, the three surfaces look locally
like the intersection of the three coordinate planes in 3–space. One has that the triple
product .�F1

[ �F2
[ �F3

/ \ ŒN � can be computed as the number of triple points
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as above counted according to sign in the usual manner, and denoted F1 � F2 � F3 .
This number only depends on the homology classes: ŒF1�, ŒF2�, ŒF3�. Note that
F1 �F3 �F2 D�F1 �F2 �F3:

Given F1 , F2 and F3 in N , we can isotope them so that the intersections of 
 with
the Fi are all grouped together as one travels along 
 , and that the intersections
are encountered first with (say) F1 , then with F2 , and finally with F3 . Let F 0i
denote the new f–surfaces in N 0 constructed in the manner above. The difference of
F 0

1
�F 0

2
�F 0

3
�F1 �F2 �F3 is the signed intersection number of the three f–surfaces

with boundary in �
 0 . This is .F1 � 
 /.F2 � 
 /.F3 � 
 / times � , where � is the signed
triple-intersection number of three F surfaces with boundary in �
 0 which meet the
boundary in three parallel curves which are meridians of �
 . However one may easily
imagine, in a collar of the boundary, three f–surfaces with boundary without any triple
intersections which rearrange the order of these three curves by a single permutation.
Since the triple intersection number is skew-symmetric, � must be zero under the
hypothesis that f is odd.

One may pass from S1 �S2 to the real projective 3–space by strong type–2 surgery.
Thus we see that the ring structure on H�.�;Z2/ is not preserved by strong 2–
congruence.

The f th Burnside group of a manifold M , denoted Bf .M /, is obtained by quotienting
the fundamental group of the manifold by the subgroup normally generated by all
the f th powers of all elements. Dabkowski and Przytycki have considered the f th
Burnside group of a double branched cover of a link (this is the f th Burnside group
of the link) as a tool in their study of local moves on links. They state in [9, proof of
Theorem (1.1)] that Bf .M / is preserved by n=f–surgeries. We note that it is also clear
that it is preserved by n=sf surgeries. Thus one has the following slight generalization
of the observation of Dabkowski and Przytycki.

Proposition 2.8 If M and N are weakly f –congruent, then Bf .M / and Bf .N /

are isomorphic.

Proposition 2.9 The double branched cover of S3 along a link with c components is
strongly 2–congruent to the connected sum of c � 1 copies of S1 �S2 .

This follows from the Montesinos trick (see Montesinos [27] and Lickorish [23]) that a
crossing change in a link in S3 corresponds to a strong type-2 surgery in the double
branched cover of a link. Thus the double branched cover of S3 along a link with c

components is strongly 2–congruent to the double branched cover of an unlink with c

components: the connected sum of c � 1 copies of S1 �S2 .
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More generally, Dabkowski and Przytycki consider ˛=ˇ–moves between links in S3 ,
where ˛ and ˇ are relatively prime integers. The ˛=ˇ–move replaces two parallel
strands by a rational tangle specified by ˛=ˇ . Such a move is covered by surgery with
numerator ˇ and denominator ˛ to the double branched covers of these links (see
Montesinos [27] and Dabkowski–Przytycki [9]). Thus a f s=n move between links is
covered by weak type–f surgery with numerator n and denominator f s between their
double branched covers. This is a type–f surgery if and only if n � ˙1 .mod f /
and is strong type–f surgery if and only if n�˙1 .mod f s/.

Definition 2.10 We will say that a link is rationally f–trivial if there is a sequence of
f s=n moves (for varying s and n) connecting the link to an unlink.

This notion of triviality is similar but a somewhat weaker than that considered in [9].

Proposition 2.11 If L is rationally f–trivial, then the double branched cover of S3

along a link with c components is weakly f–congruent to the connected sum of c � 1

copies of S1 �S2 .

Proposition 2.12 Let N (resp. N 0 ) be obtained by Dehn surgery along an ordered
link L (resp. L0 ) in S3 described by rational labels in the manner of Rolfsen. Suppose
that L0 is obtained from L by a sequence of isotopies and moves which insert f–full
twists between two parallel strands of the link. Moreover assume that the labels on
L and L0 agree modulo f , component by component. Then N and N 0 are strongly
f–congruent.

Proof Figure 2 which is also valid if n is a rational label, shows how to increment
the rational label by f . Thus we only need to see how to insert f twists between
two strands anywhere one wants by a strong type–f surgery. But this is by a similar
argument. Perform �1=f along a unknot encircling the two strands and perform a
Rolfsen twist to twist the strands. The surgery coefficient on the unknot is now �1=0,
and so it may be erased. The surgery coefficients on the two strands has gone up by f
but this can can be readjusted by a multiple of f .

Let P denote the Poincaré homology sphere, and † denote the Brieskorn homology
sphere †.2; 3; 7/.

Proposition 2.13 S3 , P , �P , † and �† are strongly f–congruent, for f = 2, 3,
and 4. P is strongly 5–congruent to �P . † is strongly 6–congruent to S3 .
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Figure 3: The 3–manifolds H.a; b; c; d/ , H.a; b; c/ , and H.a; b/

Proof To fix orientations, we take P to be �1 surgery on the left handed trefoil, and †
to be �1 surgery on the right handed trefoil. We use the notations of Figure 3. We have
that P DH.0;�2; 3; 5/ and †DH.0;�2; 3; 7/. Let Ðf denote strong f–congruence.
By Proposition 2.12, P DH.0;�2; 3; 5/Ð2 H.0; 0; 1;�1/DH.0; 0/D S3 , where
the equals comes from blowing down the 1 and �1. That †Ð2 S3 is proved similarly.
We have that P D H.0;�2; 3; 5/ Ð3 H.0; 1; 3;�1/ D H.0; 3/, where the equals
comes from blowing down the 1 and �1. We recognize H.0; 3/ as a genus one
homology sphere, that is, S3 . Similarly, † D H.0;�2; 3; 7/ Ð3 H.0; 1; 0; 1/ D

H.2; 0/D S3 . Also P DH.0;�2; 3; 5/Ð4 H.0;�2;�1; 1/DH.0;�2/D S3 , and
†DH.0;�2; 3; 7/Ð4 H.0; 2;�1; 3/DH.1; 2; 3/DH.1; 2/D S3 . As S3 D�S3 ,
we have obtained the claimed strong f–congruences for f D 2; 3; 4.

Next P DH.0;�2; 3; 5/Ð5H.0;�2;�2; 0/DL.2; 1/#L.2; 1/DL.2;�1/#L.2;�1/

DH.0; 2; 2; 0/Ð5H.0; 2;�3;�5/D�P . The identification of H.0;�2;�2; 0/ holds
as one may slide the two components that are framed �2 over the fourth component
labelled zero, and unlink them from the first component. A zero framed Hopf link
yields S3 , and an unknot framed �2 is the lens space L.2; 1/. Then we make use of
the fact that L.2; 1/D L.2;�1/, as �1� 1 .mod 2/. Then we slide back over one
of the components of the zero framed Hopf link.

Finally †DH.0;�2; 3; 7/Ð6 H.0;�2; 3; 1/DH.�1;�2; 3/DH.�1; 4/DU.5/Ð6

U.�1/D S3 . Here U.k/ denotes k framed surgery along an unknot.

Proposition 2.14 Let f be a prime. Each 3–manifold N is strongly f–congruent to
some 3–manifold N 0 with dim.H1.N

0;Q//D dim.H1.N
0;Zf //D dim.H1.N;Zf //:

Proof Suppose the N is described as surgery on a framed link L with n components.
Let W be the result of attaching 2–handles to the 4–ball according to L. Then N

is the boundary of W . One has that W is simply connected and H2.W /D Zn with
basis fhig given by the cores of the 2–handles capped off in the 4–ball. Similarly
H2.W;N /D Zn with basis fcig given by the co-cores of the 2–handles. The matrix
�L , associated to L, with linking numbers on the off-diagonal entries and framings on
diagonal entries, is the matrix for the map H2.W /!H2.W;N / with respect to the
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bases fhig and fcig: On the other hand, �L is the matrix for the intersection form �W
on H2.W / with respect to fhig. Consider the commutative diagram:

H2.N /
1�1
����! H2.W / ����! H2.W;N /??y �

??y ??y
H2.N;Zf /

1�1
����! H2.W;Zf /

j
����! H2.W;N;Zf /

The kernel of j has dimension dim.H2.N;Zf //D dim.H1.N;Zf //, which we will
denote by ˇ . We can pick a direct summand S of H2.W / of dimension ˇ which
maps to this kernel under � . Elements s 2S have the property that for all x 2H2.W /,
�w.x; s/� 0 .mod f /: Pick a basis for S , and extend it to a basis fzbig for H2.W /.
Replacing the first element of this basis by minus itself if necessary we may assume
that the change of basis matrix from fbig to fzbig is in SL.n;Z/ and thus this matrix
can be written as a product of elementary matrices: those with ones on the diagonal
and one ˙1 elsewhere. Changing the basis by an elementary matrix corresponds to
a handle slide. Perform a sequence of handle slides which corresponds to the above
product of elementary matrices, and obtain a new framed link zL description of N

such that � zL has every entry in the first ˇ rows and the first ˇ columns divisible by p .
Then by Proposition 2.12, N is strongly p–congruent to N 0 where N 0 is surgery on
a framed link L0 , and �L0 has zero for every entry in the first ˇ rows and the first ˇ
columns. By the above exact sequence, but now for N 0 , we have dim.H2.N

0;Q//�ˇ .
By Theorem 2.7, dim.H2.N

0;Zf // D ˇ . So by Poincaré duality and the universal
coefficients theorem, dim.H1.N

0;Q//DˇD dim.H1.N
0;Zf //D dim.H1.N;Zf //:

Definition 2.15 The f–cut number of a 3–manifold N , denoted cf .N /, is the maxi-
mum number of disjoint piecewise linearly embedded good f–surfaces that we can
place in N with a connected complement.

Recall the cut number, c.N /, is given by the same definition except the surfaces must
be oriented surfaces. One, of course, has cf .N /� c.N /:

Proposition 2.16 Each 3–manifold N is weakly f–congruent to some 3–manifold
N 0 with c.N 0/� cf .N /.

Proof Suppose we have cf .N / disjoint embedded good f–surfaces with a connected
complement. For each component 
 of the 1–strata of an f–surface F , let T
 be
the boundary of a small tubular neighborhood �
 of 
 with F \ �
 consisting of a
mapping cylinder for a covering map F \T
 ! 
 . A connected component of F \T

the represents a multiple of f times the generator for the first homology of �
 . Each
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component of F \ T
 represents the same homology class of T
 , say n�C f s�.
Thus we may perform a weak type–f surgery along 
 in such a way that F n 
 may
be completed with the addition of one annuli for each component of F \ T
 in the
surgered manifold. Thus we may perform weak type–f surgery along each component
of the 1–strata in such a way that each the f–surface minus a neighborhood of their
1–strata may be completed to an oriented surface. The complement of the resulting the
f–surfaces remains connected.

3 Quantum obstructions to congruence

In this paper, 3–manifolds come equipped with a possibly empty C–colored framed
link. Here C is some fixed modular category in the sense of Bakalov and Kirillov [2].
Specific manifolds like S3 , S1 �S2 , P , †, and W (below) should be assumed to
be equipped with the empty framed link unless otherwise stated. In the definition of
(strong,weak) type–f surgery to a 3–manifold N , the surgery curves should be chosen
away from N ’s framed link.

Let �C.N / 2 kC denote the Reshetikhin–Turaev quantum invariant associated to a
closed connected 3–manifold N and the modular category C as in [2, 4.1.6]. Here kC
is the ground field of C algebraically extended, if necessary, so that it contains D and
� [2, 3.1.15]. The set of isomorphism classes on non-zero simple objects is denoted IC .
The associated scalars �C , and �C i for i 2 IC are roots of unity [2, 3.1.19]. We let �C
denote �C3 . We say two elements of k whose quotient is a power of �C agree up to
phase for C . Sometimes we will say simply “up to phase”, if C is clear from context.
Let tC be the least positive integer t such that for some fixed j 2 Z, �C i

t
D �C

j for all
for i 2 IC . Changing the framing by tC of any component of a framed link description
of a manifold leaves the formula for �C unchanged up to phase. Thus we have:

Theorem 3.1 If M is strongly tC –congruent to N , then �C.M / and �C.N / agree up
to phase.

Let V.n/ denote the modular category described by Turaev using the Kauffman bracket
skein theory [31, 7.7.1], with A a primitive 4nth root of unity, with n > 3. Then
�V.n/.M / is also known as an SU.2/ invariant. It is the same as hM i2n in the
notation of Blanchet, Habegger, Masbaum and Vogel [5]. Moreover tC D 4n, and
�V.n/

2 DA�6�n.2nC1/:

Corollary 3.2 If M is strongly 4n–congruent to N , then hM i2n and hN i2n agree
up to phase for V.n/.
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With the above hypothesis and argument, Lackenby [20] observed the somewhat weaker
conclusion: jhM i2nj D jhN i2nj:

In this paper, r will always denote an odd integer greater than one. We now consider
the modular category V.r/e (see Turaev [31, 7.5]) where the colors of the labels are
restricted to be even integers from 0 to r�3 and A is taken to be a primitive 2r th root
of unity.1 Then �V.r/e .M /, also known as the SO.3/ invariant, is the same as hM ir
in the notation of [5]. Moreover mV.r/e D tV.r/e D r , and �V.r/e

2 DA�6�r.rC1/=2:

We obtain the following corollary by specializing Theorem 3.1 to the modular category
V.r/e .

Corollary 3.3 If M is strongly r –congruent to N , then hM ir and hN ir agree up to
phase for V.r/e .

Lemma 3.4 If there is a strong r –congruence among two of S3 , P , �P , † and �†,
then one of the following holds:

� r D 3,

� r D 5 and the strong congruence is between P and �P , or

� r D 7 the strong congruence is between † and �†.

Proof Let Ir .M / denote hS3ir
�1
hM ir

According to Le [21], letting a denote A4 which is a primitive r th root of unity,

Ir .P /D .1� a/�1

.r�3/=2X
nD0

an.1� anC1/.1� anC2/ : : : .1� a2nC1/

Le has a similar formula for Ir .†/.

For the case r > 3 is prime which we denote by p , we use some techniques of Chen
and Le [6, Section 6]. In fact, the argument there together with our Corollary 3.3 show
that the only possible strong p–congruence (for p � 5) between P and �P is for
pD 5 and that the only possible strong p–congruence (for p� 5) between † and �†
is for p D 7. We illustrate the method by showing that P and † cannot be strongly
p–congruent for p � 5. The other stated results are proved in exactly the same way.

1We make this choice to be consistent with Blanchet, Habegger, Masbaum and Vogel [5]. Note this
is a different choice of A than is made by Tureav. However the quantum invariants of 3–manifolds in
both cases are rational functions of A4 , and the fourth power of a primitive 4r th root of unity and of a
primitive 2r th root of unity are both primitive r th roots of unity, and are therefore Galois conjugates.
Thus the invariants of closed 3–manifolds so defined differ only by a fixed Galois automorphism.
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Let hD1�a. As is well known, ZŒa�=.p/ is the truncated polynomial ring Zp Œh�=.h
p�1/.

If we truncate aj times the above formula for Ip.P / by discarding the terms corre-
sponding to n> 3 in the index of summation ( which are clearly divisible by h4 ), and
substitute aD 1�h and then discard terms of order greater than three (in h), we obtain
a polynomial in h with Zp –coefficients which is congruent to the original expression
modulo h4 . Thus for primes p � 5, we have that aj Ip.P / is congruent modulo h4 to

1C .6� j /hC

�
j 2

2
�

13j

2
C 45

�
h2
C

�
�

j 3

6
C

7j 2

2
�

145j

3
C 464

�
h3

We used Mathematica [32] to work out this and similar expansions. Similarly, using
Le’s formula for Ip.†/, for primes p > 5, we have that Ip.†/ is congruent modulo
h4 to

1C 6hC 69h2
C 1064h3

If P is p–congruent to †, then, by Corollary 3.3, for some j , aj Ip.P /D˙Ip.†/:

However, noting that both Ip.P /, Ip.†/ are congruent to 1 modulo h, we my discard
the ˙. But this implies that the corresponding coefficients in the two displayed
polynomials in h above must be congruent modulo p . From the coefficients of h,
j � 0 .mod p/. Comparing the coefficients of h2 , we conclude that 69�45D 24� 0

.mod p/: Thus there are no strong p–congruences for p � 5:

Similarly one sees that there can be no strong p–congruences for p > 3, except
the strong 5–congruence between P and �P , and a possible strong 7–congruence
between † and �†: In some of the cases, one must take into account the coefficients
of h3 .

Now consider whether there can be a strong r –congruence between P and † where r

is composite. Using the contrapositive of Proposition 2.4, the only possibility is that
r has the form 3a: We used Mathematica to see that I9.P / and I9.†/ do not agree
up to phase. The higher powers of 3 are then excluded by Proposition 2.4. The same
procedure then works for all pairs of manifolds except the pair P and �P , and the
pair † and �†:

Proposition 2.4 implies the only possible strong r –congruences between P and �P

are with r of the form 3a � 5b . We used Mathematica to see that I9.P / and I9.†/

disagree up to phase, that I15.P / and I15.†/ disagree up to phase, and that I25.P /

and I25.†/ disagree up to phase. Then by Proposition 2.4, r must be 3, or 5.

The pair of † and �† is dealt with similarly.

Theorem 3.5 If P and S3 are strongly f–congruent, then f 2f2;3;4;6;8;12;16;24g.
If † and S3 are strongly f–congruent, then f 2 f2; 3; 4; 6; 8; 12; 16; 24; 32g. If P
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and † are strongly f–congruent, then f 2 f2; 3; 4; 6; 8; 12; 16; 24g. If P and �†
are strongly f–congruent, then f 2 f2; 3; 4; 6; 8; 12; 16; 24; 48g. If P and �P are
strongly f–congruent, then f 2 f2; 3; 4; 5; 6; 8; 10; 12; 16; 20; 24; 32; 40g. If † and
�† are strongly f–congruent, then f 2 f2; 3; 4; 6; 7; 8; 12; 14; 16; 24; 28; 32; 56g.

Proof Using recoupling theory, one has:

hP i2n D ��
2

n�2X
iD0

�2
i �i

min.i;n�2�i/X
jD0

�2j .�
i i
2j /

3

where �i D .�A/i.iC2/ , � and � are as in [5] with “p” set to 2n, and �i and �j k
i

are as in Kauffman and Lins [19]. Similarly

h†i2n D ��
2

n�2X
iD0

��4
i �i

min.i;n�2�i/X
jD0

�2j .�
i i
2j /
�3:

Using Mathematica, we see that hP i16 and h†i16 disagree up to phase. Similarly
hP i24 and h†i24 disagree up to phase. By Corollary 3.2, P and † cannot be strongly
32–congruent or strongly 48–congruent. By Lemma 3.4, there can be no strong r –
congruences for odd r > 3. Using the contrapositive of Proposition 2.4, we have the
result for P and †.

Using Mathematica, we see that hP i32 and h�P i32 disagree up to phase. Similarly
hP i24 and h�P i24 and also hP i40 and h�P i40 disagree up to phase. By Corollary
3.2, P and �P cannot be strongly 64–congruent, strongly 48–congruent or strongly
80–congruent. By Lemma 3.4, there can be no strong r –congruences for odd r > 5.
Using the contrapositive of Proposition 2.4, we have the result for P and �P .

The proofs for other pairs of manifolds are done similarly.

Recall that there is an associated projective SL.2;Z/ action �C on the kC vector space
with basis IC where the projective ambiguity is only up to phase, that is, powers of �C .

Definition 3.6 If the representation �C factors through SL.2;Zm/, and �
�

n�1 0
0 n

�
,

with respect to the basis IC , is given by a signed permutation matrix for every invertible
n 2 Zm , we will say C has the m–congruence property.

Theorem 3.7 Suppose that C satisfies the m–congruence property. If M is obtained
from N by a weak type–m surgery along 
 , then for some color c 2 IC , �C.M / and
�C.N with 
 colored c / agree up to phase and sign.
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Proof We use the associated TQFT. Our results follow from the observation that the
regluing map for the torus under weak type–m surgery can be factored in SL.2;Zm/

as a product of a power of a Dehn twist on the meridian and
�

n�1 0
0 n

�
(see the proof of

Theorem 3.8 below) and that the representation applied to such a product is particularly
simple: the product of a phased permutation matrix and a diagonal matrix which fixes
the unit object of IC . Note that this factorization cannot be done in SL.2;Z/.

According to Bantay [3, Theorem 3 and equation for G` on page 434], modular
categories associated to conformal field theories have the m–congruence property for
some m. See also Gannon [12, 6.1.7]. We are unsure what the precise mathematical
hypotheses are for this result.

In this paper, p will always denote an odd prime. In the last section, we study V.p/e

and see that it satisfies the p–congruence property. According Freedman–Kruskal [11]
and independently Larsen–Wang [22], the associated projective representation factors
through an irreducible component of the metaplectic representation of SL.2;Zp/. We
give the refined version of this result that we need. Our proof is along the lines of [11].
An earlier version of this paper was written only considering the SO.3/ theory at odd
primes. After learning of Lackenby’s earlier work, we placed the results in the context
of modular categories to highlight the relationship to [20].

In Theorem 3.8 below, we derive a more precise version of Theorem 3.7 specialized
to V.p/e where we specify the color c . Let d denote .p � 1/=2. Recall there are
d even colors for this theory. We allow links with odd colors as well now as they
are allowed in this theory. Recall an odd colored component may be traded for an
even colored component (see Blanchet, Habegger, Masbaum and Vogel [4, 6.3(iii)]).
We found Theorem 3.8 surprising as the effect of a general surgery on the quantum
invariant is the same as replacing the surgery curve by a specified linear combination
of colored curves where the coefficients have denominators.

We use the TQFT .Vp;Zp/ of [5] with AD�qd and �D�i.q�q�1/=
p

pD hS3ip ,
modified as in [14] with p1 –structures replaced by integral weights on 3–manifolds and
lagrangian subspaces of the first homology of surfaces. We use � to denote the root of
unity denoted by �3 in [5]. Our choice of A and � in section determines � according
to the equation [5, page 897]. Up to sign � is determined by �2 D A�6�p.pC1/=2 .
Note that A2 D q�1 and so the quantum integers are given by the familiar formula in
terms of q :

Œn�D
A2n�A�2n

A2�A�2
D

qn� q�n

q� q�1
:

We let Op denote the cyclotomic ring of integers ZŒA; �V.p/e �. If p D �1 mod 4,
Op is Z adjoined a primitive p th root of unity. If p D 1 mod 4, Op is Z adjoined a
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primitive 4p th root of unity. According to H Murakami [28] and Masbaum–Roberts
[25] Ip.M / 2Op . Moreover if ˇ1.M / > 0, hM ip 2Op [14]. If x=y is a unit from
Op , we write x � y: We have that D � .1� q/d�1 .

Theorem 3.8 Suppose that M is obtained from N by a weak type–p surgery along 

with numerator n. Let yn denote the integer in the range Œ1; d � with nyn�˙1 .mod p/,
and Ln denote yn� 1. Then for some m 2 Z,

hM ip D �
m
hN with 
 colored Lnip

Proof If pD 3, the quantum invariant for any closed 3–manifold is always ˙1. Thus
the result holds trivially when p D 3. So we may assume that p ¤ 3: M is obtained
from N by removing a tubular neighborhood of 
 and reglueing by a map R defined
by the matrix�

a ps

b n

�
�

�
n�1 0

0 n

� �
1 0

1 1

�n�1b

� U.n/T n�1b .mod p/:

Using the notation of [14] for vacuum states and pairings, by Theorem 5.2 and Lemma
5.1,

Z.R/Œ�
 �D �
mŒ�
 with 
 colored Ln�;

for some integer m. We have

hM ip D hZŒR�Œ�
 �; Œ�N n Int.�
 /�iT

D �m

hŒ�
with 
 colored Ln�; Œ�N n Int.�
 /�iT

D �m

hN with 
 colored Lnip;

as required.

In particular, if the numerator is ˙1 .mod p/, the color c is zero. Thus we have
the following corollary of Theorem 3.8 which overlaps with Corollary 3.3. Note that
Corollary 3.3 requires strong r –congruence for r an odd integer, while Corollary 3.9
requires p–congruence for p an odd prime.

Corollary 3.9 If M is p–congruent to N , then hM ip and hN ip agree up to phase
for V.p/e .

Corollary 3.10 If there is a p–congruence among two of S3 , P , �P , † and �†,
then one of the following holds:

� p D 3,

Algebraic & Geometric Topology, Volume 7 (2007)



1782 Patrick Gilmer

� p D 5 and the congruence is between P and �P , or

� p D 7 and the congruence is between † and �†.

Proof This is the same as the r prime case in the above proof except that one uses
Corollary 3.9 instead of Corollary 3.3.

Remark 3.11 One has h†i7 D a2h�†i7 . So † and �† satisfy the necessary condi-
tion of Corollary 3.9 to be 7–congruent. One also has hP i5 D a3h�P i5 . Moreover
hP i5 ¤ h�P i5 . Given that P and �P are strongly 5–congruent, This shows that
Corollaries 3.3 and 3.9 would not be correct if phase “ up to phase for etc. ” were
removed.

Proposition 3.12 Let W denote the 3–manifold given by 0–framed surgery along the
left handed Whitehead link. W may also be described as the double branched cover of
S3 along the .3; 6/ torus link or the Brieskorn manifold †.2; 3; 6/. The cohomology
ring of W is the same as that of #2S1 �S2 with any coefficients.

Proof The double branched cover of S3 along this link is the Brieskorn manifold
†.2; 3; 6/ (see Milnor [26, Lemma (1.1)]). Also by Milnor [26, Theorem(7.1)],
†.2; 3; 6/ is a circle bundle over a torus with Euler number �1. Then a framed
link description of a circle bundle over a torus with Euler number �1 is given by the
Borromean rings with two components framed zero and one component framed �1

[17, Figure 6.1]. Blowing down the �1, we discover that †.2; 3; 6/ is W .

W has the same integral cohomology as that of #2S1 �S2 . In particular, H 1.W /D

Z˚Z. Thus the trilinear alternating form on H 1.W / must vanish. The trilinear form
determines the rest of the cohomology ring structure using Poincaré duality. As there
is no torsion, the integral cohomology ring determines the cohomology ring with any
coefficients.

The following theorem follows from Dabkowski and Przytycki’s [9] study of the
Burnside group of the .3; 6/ torus link, and Propositions 2.8 and 3.12. We will give a
different proof using quantum invariants.

Theorem 3.13 For p � 5, W is not weakly p–congruent to #2S1 �S2 .

Proof Using fusion on link strands which meet the 2–sphere factors as well as those
that meet the separating 2–sphere (where the connected sum takes place), we have
that h#2S1�S2 with colored linkip must be a multiple of ��1 which up to phase and
units of O , is .1�q/d�1: Here we trade colors [4, Lemma 6.3(c)], if necessary, so that
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�
Pd�1

kD0.�1/k ŒkC 1�

!

k

Figure 4: Evaluation of Ip.W /

the link has only even colors before we perform the above fusion. By Theorem 3.8, if
W were weakly p–congruent to #2S1�S2 , hW ip would be divisible by .1�q/d�1 .
To complete the proof, we only need to see that this is not the case.

We wish to calculate first Ip.W / from Figure 1. Here we give W weight zero. We
apply fusion to the two k –colored strands going through the loop colored ! . Only the
term with the strand going through colored zero survives. Moreover the coefficient for
this term in the fusion expansion is .�1/k=ŒkC1�. Also the loop colored ! with nothing
going through it after the fusion contributes ��1 . The two positive curls contribute
.�A/k.kC2/ each, or q�k.kC2/ together. Recall that the evaluation of a Hopf link with
both components colored k is Œ.kC 1/2�. Shifting the index of summation, we obtain:

Ip.M /D

d�1X
kD0

q�k.kC2/Œ.kC1/2�D
q

q� q�1

dX
iD1

q�i2

.qi2

�q�i2

/D
1

1� a

dX
iD1

.1�ai2

/

where aD q�2 DA4: As �� .1� a/1�d , we have that

hW ip D �Ip.W /�
1

.1� a/d

dX
iD1

.1� ai2

/:

Thus, summing the same terms twice, adding a zero term, and using Gauss’s quadratic
sum,

2.1� a/d hW ip �

p�1X
iD1

.1� ai2

/D

p�1X
iD0

.1� ai2

/� pC˙idpp

As
p

p � .1� a/d , we see that hW ip is not a multiple of 1� a (or 1� q ).

We now give a strengthening of a result of Dabkowski and Przytycki [9, Theorem 2(i)].

Corollary 3.14 The .3; 6/ torus link is not rationally p–trivial for any prime p � 5:
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Proof If the .3; 6/ torus link is rationally p–trivial, then by Propositions 2.11 and
3.12, W would be weakly p–congruent to #cS1�S2; for some c . As H2.W /D Z2;

we have by Theorem 2.7, that c must be two. By Theorem 3.13, W cannot be weakly
p–congruent to #2S1 �S2 for p � 5:

b1 a
c b2

Figure 5: Labeling of curves on the boundary of a genus two handlebody

Recall that the double of a handlebody of genus two H2 is the connected sum of two
copies of S1�S2 . Let D.h/ be the result of gluing two copies of H2 by some element
h in the mapping class group of its boundary. If h is in the Torelli group, then D.h/

must have the same cohomology ring as S1 �S2 with any coefficients. Let

hD T .b1/ T .b2/ T .a/ T .c/ T .a/�1 T .b2/
�1 T .b1/

�1

where Tx denotes a Dehn twist in a neighborhood of a simple closed curve x . As h is
conjugate to a Dehn twist around the null-homologous curve c , h is in the Torelli group.
Actually, D.h/DW . This identification is an fun exercise in the Kirby calculus making
use of the description of the mapping cylinder of a Dehn twist given in Masbaum–
Roberts [24]. We can get variations of Theorem 3.13 by varying the above word in
Dehn twists. For instance, we have:

Theorem 3.15 Let

h0 D T .b1/ T .b2/ T .a/2 T .c/ T .a/�2 T .b2/
�1 T .b1/

�1:

The cohomology ring of D.h0/ is the same as that of #2S1 �S2 with any coefficients.
For p D 5, 7, 11, 13 and 17, D.f/ is not weakly p–congruent to #2S1 �S2 .

Proof Using A’Campo’s package TQFT [1] which is used with the computer program
Pari [30], we have calculated that hD.h0/ip 2Op is not divisible by 1�q for the listed
p . The rest of the proof is the same as the proof of Theorem 3.13.
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Some other equivalence relations on 3–manifolds which are generated by surgeries with
specified properties were studied by Cochran, Gerges and Orr [7]. The most prominent
of these equivalence relations is called integral homology surgery equivalence. These
equivalence relations are different than those considered here. In particular, L.f; 1/ is
strongly f–congruent to S1 �S2 but not integral homology surgery equivalent. On
the other hand, by [7, Corollary 3.6], W is integral homology surgery equivalent to
#2S1 �S2 but not weakly p–congruent to #2S1 �S2 for p � 5 by Theorem 3.13.

4 Quantum invariants

We now give some results on the integrality and divisibility of quantum invariants.

Theorem 4.1 If N is a closed connected 3–manifold with H1.N;Zp/ non-zero, then
hN ip 2Op:

Proof By Proposition 2.14 N is strongly p–congruent to a manifold M with positive
first Betti number. By Corollary 3.3 hN ip is, up to phase, the quantum invariant of
hM ip . But by [14, 2.12] hM ip must lie in Op:

For manifolds without colored links, this is a special case of a result of Cochran and
Melvin [8, Theorem 4.3]. This result now holds in the context of 3–manifolds with a
colored link. We also obtain the following strengthening of [15, Theorem 15.1]

Theorem 4.2 If N is a closed connected 3–manifold with cp.N / > 0, then

hN ip 2 .1�A2/
.p�3/.cp.N /�1/

2 Op:

Proof By Proposition 2.16, N is weakly f–congruent to N 0 with cp.N /� c.N 0/:

By repeated application of Theorem 3.8, we find that hN ip is given, up to phase, by

hN 0 with some colored linkip which lies in .1�A2/
.p�3/.c.N 0/�1/

2 Op by [15, Theorem
15.1].

5 SL.2/ representations

As is well-known, SL.2;Z/ is generated by

S D

�
0 1

�1 0

�
and T D

�
1 0

1 1

�
:

They also generate SL.2;Zp/ (see Lang [21, page 209]).
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5.1 Metaplectic representation of SL.2 ; Zp/

Let d D .p�1/=2 and qD e
2�i

p : We now wish to recall a description of the metaplectic
representation of SL.2;Zp/ which is given in Neuhauser [29], though the observations
about working over ZŒq; 1=p� are ours. Consider the C–vector space CZp , the set of
complex valued functions on Zp: It has a basis consisting of the point-characteristic
functions fıxjx 2 Zpg where ıx.y/D ı

y
x where x;y 2 Zp: Using [29, 4.1, 4.3, 5.6]

a true (rather than projective) representation W of SL.2;Zp/ acting on CZp can be
defined by

W .S/f .x/D
.�i/d
p

p

X
y2Zp

qxyf .y/ and W .T /f .x/D qdx2

f .x/:

One can see that the prefactor .�i/d
p

p
2 ZŒq; 1=p� using Gauss’s quadratic sum. Thus

we can and will view W as a representation on ZŒq; 1=p�Zp . For n 2 Zp
� , let U.n/D�

n�1 0
0 n

�
2SL.2;Zp/. By [29, 4.1, 4.3, 5.6], we have that W .U.n//f .x/D . n

p
/f .nx/:

Here . n
p
/ denotes the Legendre symbol, and so is ˙1:

The restriction of W to the space of odd functions

ZŒq; 1=p�
Zp

odd D ff 2 ZŒq; 1=p�Zp jf .x/D�f .�x/g

is an invariant irreducible summand [29, 4.2] which we denote Wodd . Define S � Zp

by S D f1; 2; 3; : : : ; dg: For x 2 S , define ı0x D ıx�ı�x : Then fı0xjx 2 Sg is a basis
for ZŒq; 1=p�

Zp

odd and

Wodd.S/ı
0
x D

.�i/d
p

p

X
y2S

.qxy
� q�xy/ı0y and Wodd.T /ı

0
x D qdx2

ı0x :

Lemma 5.1 We have that Wodd.U.n// sends ı0x to ˙ı0
˙n�1x

, where we choose the
plus or minus in ˙n�1x so that ˙n�1x 2 S .

5.2 Projective representation of SL.2 ; Z/ arising from TQFT

We use the TQFT .Vp;Zp/ of [5] with AD�qd and �D�i.q�q�1/=
p

p , modified
as in [14] with p1 –structure replaced by integral weights on 3–manifolds and lagrangian
subspaces of the first homology of surfaces.

We wish to study the projective representation of the mapping class group of the torus
T given by the TQFT .Vp;Zp/. This fails to be an actual representation only by
phase factors (powers of � ). We think of T as the boundary of a solid torus H and
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pick an ordered basis for the first homology: Œ��, Œ��, where � is a longitude and �
is a meridian. The induced map on homology then defines an isomorphism from the
mapping class group of T to SL.2;Z/. The map given by T extends to a full positive
twist of the handlebody H . We let S denote the map which is given by

�
0 1
�1 0

�
. This

map does not extend over H , but if two copies of H are glued together using this map
(reversing the orientation on the second copy of H), we obtain the 3–sphere with the
cores of these handlebodies forming a 0–framed Hopf link.

The module, Vp.T /, is free with basis fei j0 � i � d � 1g. Here ei is the closure of
the i th Jones–Wenzl idempotent in the skein of H: The basis bj D .�1/j�1ej�1 for
1� j � d is more convenient for us. Using skein theory, one sees that

Z.S/bi D �

dX
jD1

Œij �bj and Z.T /bi D .�A/i
2�1bi

See, [13, page 2487] for instance, where the analog is done in the case p is even. Thus

.�i/d�1Z.S/bi D
.�i/d
p

p

dX
jD1

.qij
� q�ij /bj and qdZ.T /bi D qdi2

bi

The factors .�i/d�1 and qd are powers of � , except if pD 3, when �D�1. Modified
by these factors Z.S/ and Z.T / are identical to Wodd.S/ and Wodd.T / under the
isomorphism which send bi to ı0i . This shows that the projective representation Z of
SL.2;Z/ can be corrected to an honest representation Z0 by rescaling using powers
of � .

Theorem 5.2 Suppose p ¤ 3. The representation Z0 of SL.2;Z/ factors through
a representation equivalent to the representation Wodd of SL.2;Zp/ on ZŒq; 1=p�

Zp

odd
under the isomorphism which send ı0i to bi . Thus Z agrees with Wodd via this
isomorphism, up to powers of � , that is, up to phase.

This refines the result of Freedman–Krushkal and Larsen–Wang that the projective
TQFT representation and the odd part of the projective metaplectic representation are
equivalent in PGL.d;C/:

Remark 5.3 The subgroup L of SL.2;Zp/ consisting of lower triangular matrices is
generated by T and the U.n/: Thus Wodd on this subgroup is represented by “phased”
permutation matrices. The inverse image of L in SL.2;Z/ consists of the possible
glueing matrices for weak type–p surgery.
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5.3 Integrality of the metaplectic representation

In [14] it is shown that the representation Z of a central extension of SL.2;Z/ on
V .T / lifts to a representation on a module S.T / over a cyclotomic ring of integers. In
Gilmer–Masbaum–van Wamelen [16], explicit bases are given in terms of the ei basis
of V .T /. These results suggest the following.

Let S be the ZŒq� submodule of ZŒq; 1=p�Zp generated by the finite set

fW .g/ıxjg 2 SL.2;Zp/;x 2 Zpg:

Proposition 5.4 S is a free finitely generated ZŒq� lattice in ZŒq; 1=p�Zp of rank p

preserved by SL.2;Zp/

Proof We have that ZŒq� is a Dedekind domain, S is torsion-free finitely generated
ZŒq�–module, so S is projective (see Jacobson [18]). This module becomes free when
localized by inverting p . By [14, Lemma 6.2], S is already free.

It would be interesting to find an explicit basis for S .

The corresponding results hold for Sodd and Seven; which are defined similarly. In fact
one has, by the same proof, the following proposition.

Proposition 5.5 Let G be a finite group acting on a free finitely generated ZŒq; 1=p�–
module with basis fb1; b2; : : : ; bng. Then the ZŒq� submodule generated by

fgbi jg 2G; 1� i � ng

is a free finitely generated ZŒq� lattice of rank n preserved by G .
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