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A parametrized Borsuk–Ulam theorem for a product of
spheres with free Zp –action and free S 1–action

DENISE DE MATTOS

EDIVALDO L DOS SANTOS

In this paper, we prove parametrized Borsuk–Ulam theorems for bundles whose
fibre has the same cohomology (mod p ) as a product of spheres with any free Zp –
action and for bundles whose fibre has rational cohomology ring isomorphic to the
rational cohomology ring of a product of spheres with any free S1 –action. These
theorems extend the result proved by Koikara and Mukerjee in [7]. Further, in the
particular case where G D Zp , we estimate the “size” of the Zp –coincidence set of a
fibre-preserving map.

55M20; 55R91, 55R25

1 Introduction

The classical Borsuk–Ulam Theorem gives information about maps Sm! Rk where
Sm has a free action of either the cyclic group Z2 or the cyclic group Zp when m is
odd. In particular, the sphere Sm has a free Z2 –action and, in this case, the classical
theorem states that there is at least one orbit which is sent to a single point in Rk if
m� k . Munkholm [9] and others gave methods to estimate the dimension of the space
of orbits in Sm which have the property that each orbit is sent to a single point.

Dold [3] and others extended this problem to a fibrewise setting, by considering maps
f W S.E/!E0 which preserve fibres; here, S.E/ denotes the total space of the sphere
bundle associated over B to a vector bundle E! B , and E0 is another vector bundle
over the B . This problem is the parametrized version of the Borsuk–Ulam theorem,
whose general formulation is the following:

Parametrized version of Borsuk–Ulam theorem Consider a bundle � W E!B and
a vector bundle � 0W E0! B such that G is fibre-preserving and acts freely on E and
E0�0 where 0 stands for the zero section of the bundle � 0W E0!B . For f W E!E0

a fibre-preserving G –equivariant map, the parametrized version of the Borsuk–Ulam
theorem estimates the cohomological dimension of the set

Zf D fx 2EIf .x/D 0g:
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Such theorems appeared first in the paper of Dold [3] (for vector bundles with free
Z2 –action) and Nakaoka [10] (for vector bundles with Zp –action, for p prime, and
S1 –action).

Characteristic polynomials for vector bundles with free G –actions (G DZp or G D

S1 ) were introduced by Dold and Nakaoka, and these are useful tools in studying
parametrized Borsuk–Ulam type problems. More specifically, Dold proved in [3] that
if G D Z2 and if m and k are the dimensions of the fibres of E and E0 , respectively,
where m> k , then

cohom: dim Zf � cohom: dim.B/Cm� k � 1;

where cohom: dim denotes the cohomological dimension.

Other papers closely related to the Dold [3] and Nakaoka [10] articles are the papers
of Izydorek and Rybicki [5], Jaworowski [6] (for G DZp ) and Volovikov [13] (for a
p–torus action, GDZp�� � ��Zp ; in this paper a simple interpretation of characteristic
polynomials as equivariant Euler classes of the bundles in question is given).

The technique introduced by Dold to solve the parametrized problem by using character-
istic polynomials was also used by Koikara and Mukerjee in [7] to show a parametrized
version of the Borsuk–Ulam theorem for bundles whose fibre is a product of spheres,
with the free Z2 –action given by the product of the antipodal actions. The goal of
this paper is to extend this result of Koikara and Mukerjee to all free Zp –actions,
p > 2, and to all free S1 –actions. Specifically, we obtain parametrized Borsuk–Ulam
theorems for bundles whose fibre has the same cohomology (mod p ) as a product of
spheres with any free Zp –action and for bundles whose fibre has rational cohomology
ring isomorphic to the rational cohomology ring of a product of spheres with any free
S1 –action. Further, in the particular case where G D Zp , we estimate the “size” of
the Zp –coincidence set of a fibre-preserving map. When the base B of the involved
bundles is a single point, such an estimate coincides with Munkholm’s estimate given
in the classical Borsuk–Ulam theorem for Zp –actions.

The paper is organized as follows. In Section 2, we recall definitions, fix notation
and state results needed. In Section 3, we state the main theorems of the work. In
Section 4, we characterize the cohomology ring of orbit space X=G , where X has the
same cohomology as a product of spheres. In Section 5, we define the characteristic
polynomials associated to the involved fiber bundles. In Section 6, we prove the main
theorems. Finally, in Section 7, we estimate the “size” of the Zp –coincidence set of a
fibre-preserving map.
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2 Preliminaries

We start by introducing some basic notions and notation. We assume that all spaces
under consideration are paracompact Hausdorff spaces. H� denotes Čech cohomology,
unless otherwise indicated. The symbol Š denotes an appropriate isomorphism between
algebraic objects. The mod p Bockstein cohomology operation associated with the
coefficient sequence 0! Zp! Zp2 ! Zp! 0 will be denoted by ˇ .

Let U D fU�g�2ƒ be a collection of subsets of a space X . The order of U , denoted
by ordU , is the largest number n such that there is a subcollection fU�i

g
n
iD1 of U

satisfying
Tn

iD1 U�i
6D∅. Equivalently, ordU D n if and only if some point of X lies

in n elements of U and no point of X lies in more than n elements of U . We say that
a collection U has finite order if ordU D n, for some natural number n.

A space X is said to be finitistic1 if every open cover of X has an open refinement
with finite order. By the definition, all compact spaces and all finite dimensional (in
the sense of the covering dimension ) paracompact spaces are finitistic spaces, where
the covering dimension of space X , denoted by dim X , is defined as follows: for each
integer n� 0, dim X � n if every finite open cover of X can be refined by an open
cover of order � nC1. If dim X � n and the statement dim X � n�1 is false, we say
dim X D n. If the statement dim X � n is false for all n, then we say dim X D1.
For the empty set, dim ∅D�1.

We denote by X �p Sm�Sn a finitistic space with mod p cohomology ring isomorphic
to a product of spheres Sm �Sn admitting a free action of the cyclic group G D Zp

and by X �Q Sm �Sn a finitistic space with rational cohomology ring isomorphic to
a product of spheres Sm �Sn admitting a free action of the circle group G D S1 .

If G is a compact Lie group which acts freely on a paracompact Hausdorff space X ,
then X ! X=G is a principal G–bundle [1, Chapter II, Theorem 5.8] and one can
take

hW X=G! BG

a classifying map for the G –bundle X !X=G .

The cases of main interest for us in this paper are G D Zp , p an odd prime, and
G D S1 . Recall that for G D Zp , p an odd prime, we have that

(2–1) H�.BZpIZp/Š Zp Œs; t �=.s
2/

with deg sD 1, deg t D 2 and t D ˇ.s/, where ˇ is the mod p Bockstein cohomology
operation.

1The concept of finitistic spaces was introduced by Swan [12] for working in fixed point theory.
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For G D S1 , we have that

(2–2) H�.BS1
IQ/ŠQŒt �

with deg t D 2.

3 Main theorems

Given a topological space X �p Sm�Sn (resp. X �Q Sm�Sn ), where 0<m�n and
m is odd, let � W X ,!E!B be a fibre bundle with the fibrewise free Zp –action (resp.
free S1 –action) such that the quotient bundle x� W xE!B has the cohomology extension
property, in the sense of [11, Chapter 5, Section 7]. Let us consider � 0W E0! B a
k –dimensional vector bundle with fibrewise G –action on E0 which is free on E0=0,
with k even. If f W E ! E0 is a fibre-preserving G–equivariant map, denote by
Zf D f

�1.0/ and SZf the quotient by the free G-action induced on Zf .

Let H�.B/Œx;y; z� be the polynomial ring over H�.B/ in the indeterminates x ,
y and z . If G D Zp , in Section 5, we will define the characteristic polynomials
W1.x;y; z/ and W2.x;y; z/ in H�.B/Œx;y; z� and we will show that H�. xE/ and
H�.B/Œx;y; z�=.x2;W1.x;y; z/;W2.x;y; z// are isomorphic as H�.B/-modules. As
a result, each polynomial q.x;y; z/ in H�.B/Œx;y; z� defines an element of H�. xE/

which we will denote by q.x;y; z/j xE . We will denote by q.x;y; z/jSZf
the image

of q.x;y; z/j xE by the H�.B/–homomorphism i�W H�. xE/! H�.SZf /, where i�

denotes the induced by the natural inclusion.

Similarly if GDS1 , we will show that H�.B/Œy; z�=.W1.y; z/;W2.y; z// and H�. xE/

are isomorphic as H�.B/–modules, where W1.y; z/ and W2.y; z// are characteris-
tic polynomials. Thus, each polynomial q.y; z/ in H�.B/Œy; z� defines elements
q.y; z/j xE and q.y; z/jSZf

in H�. xE/ and H�.SZf /, respectively.

Under these conditions, we have the following result:

Theorem 3.1 (Case G D Zp , p an odd prime) Suppose that q.x;y; z/ in the ring
H�.B/Œx;y; z� is a polynomial such that q.x;y; z/jSZf

D0. Then there are polynomials
r1.x;y; z/; r2.x;y; z/ in H�.B/Œx;y; z� such that

q.x;y; z/W 0.x;y/D r1.x;y; z/W1.x;y; z/C r2.x;y; z/W2.x;y; z/

in the ring H�.B/Œx;y; z�=.x2/, where W 0.x;y/;W1.x;y; z/ and W2.x;y; z/ are
characteristic polynomials. 2

2Characteristic polynomials will be defined in Section 5.
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As a consequence, we have the following corollary, which is a parametrized version of
the Borsuk–Ulam theorem.

Corollary 3.2 Suppose that the fibre dimension of E0 ! B is equal to k . Then
q.x;y; z/jSZf

6D 0, for all nonzero polynomials in H�.B/Œx;y; z� whose degree in x;y

and z is less than m� kC 1. In other words, the H�.B/–homomorphism

.m�k�1/=2X
iD0

H�.B/:x:yi
˚

.m�k�1/=2X
iD0

H�.B/:yi
!H�.SZf /;

defined by x 7! xjSZf
and yi 7! yi jSZf

is a monomorphism. In particular, if m> k

cohom: dim SZf � cohom: dim.B/Cm� k:

Theorem 3.3 (Case G D S1 ) Suppose that q.y; z/ 2 H�.B/Œy; z� is a polyno-
mial such that q.y; z/jSZf

D 0. Then there are polynomials r1.y; z/ and r2.y; z/ in
H�.B/Œy; z� such that

q.y; z/W 0.y/D r1.y; z/W1.y; z/C r2.y; z/W2.y; z/;

where W 0.y/, W1.y; z/ and W2.y; z/ are characteristic polynomials in H�.B/Œy; z�.

We have the following corollary:

Corollary 3.4 Suppose that the fibre dimension of E0 ! B is equal to k . Then
q.y; z/jSZf

6D 0, for all nonzero polynomials in H�.B/Œy; z�, whose degree in y and z

is less than m� kC 1. In other words, the H�.B/–homomorphism

.m�k�1/=2X
iD0

H�.B/:yi
!H�.SZf /

defined by yi 7! yi jSZf
is a monomorphism. In particular, if m> k

cohom: dim SZf � cohom: dim.B/Cm� k � 1:

Remark 3.5 Suppose that in Corollary 3.2 (resp. Corollary 3.4) B is a point. Then
for any Zp –equivariant map (resp. S1 –equivariant map) f W X �p Sm �Sn! Rk ,
we have that cohom: dim SZf �m� k (resp. cohom: dim SZf �m� k � 1).

Remark 3.6 Theorem 3.3 and Corollary 3.4 extend the result proved by Nakaoka
[10, Theorem 1(ii) and its corollary] for bundles whose fibre has rational cohomology
ring isomorphic to rational cohomology ring of a product of spheres, in case of free
S1 –action.
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4 The cohomology rings of the orbit space X=G

The results of this section are based upon work of Dotzel et al [4]. Using as main
tool the Leray–Serre spectral sequence, they determined the possible cohomology
algebra of the orbit space X=G , where X and G satisfy the properties required in
Section 2. In the same conditions on X and G , we have the following lemmas, which
are consequences of [4, Theorems 1 and 3].

Lemma 4.1 (Case G D Zp , p an odd prime) Let X �p Sm �Sn be a topological
space, where 0<m� n and m is odd. Suppose that H�.X IZ/ is of finite type. Then
H�.X=GIZp/ is a free graded module generated by the elements

1; a; b; ab; : : : ; b.m�1/=2; ab.m�1/=2; d; ad; abd; : : : ; ab.m�1/=2d

subject to the relations a2 D 0, b.mC1/=2 D 0 and d2 D 0, where a 2H 1.X=GIZp/,
b D ˇ.a/ 2H 2.X=GIZp/ and d 2H n.X=GIZp/.

Proof It follows from [4, Theorem 1(i)] that the cohomology ring H�.X=GIZp/ is
isomorphic to Zp Œx;y; z�=.x

2;y.mC1/=2; z2/ as a graded commutative algebra, where
m is odd, deg x D 1, y D ˇ.x/ and deg z D n. Therefore, the homomorphism

Zp Œx;y; z�=.x
2;y.mC1/=2; z2/!H�.X=GIZp/ given by .x;y; z/ 7! .a; b; d/

is an isomorphism of Zp –algebras.

Lemma 4.2 (Case G D S1 ) Let X �Q Sm � Sn be a topological space, where
0 <m � n and m is odd. Then H�.X=GIQ/ is a free graded module generated by
the elements

1; b; b2; : : : ; b.m�1/=2; d; db; db2 : : : ; db.m�1/=2

subject to the relations b.mC1/=2 D 0 and d2 D 0, where b 2 H 2.X=GIQ/ and
d 2H n.X=GIQ/.

Proof By [4, Theorem 3(i)], H�.X=GIQ/ is isomorphic to QŒy; z�=.y.mC1/=2; z2/

as a graded commutative algebra, where m is odd, deg y D 2 and deg z D n. Thus,
the homomorphism

QŒy; z�=.y.mC1/=2; z2/!H�.X=GIQ/ given by .y; z/ 7! .b; d/

is an isomorphism of Q–algebras.
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5 Characteristic polynomials

Using the technique introduced by Dold, in this section we define the characteristic
polynomials associated to the fibre bundle .X;E; �;B ). As in [7], we need to assume
that the quotient bundle .X=G; xE; x�;B/, where G is Zp or S1 , has the cohomology
extension property and then the Leray–Hirsch theorem can be applied. There are two
cases to consider, as follows.

5.1 Case G D Zp , p an odd prime

Let .X �p Sm�Sn;E; �;B/ be a fibre bundle with the same hypotheses of Section 3
and let us consider the quotient bundle .X=G; xE; x�;B/. It follows from the Leray–
Hirsch theorem that there exist elements a 2 H 1. xE/, b 2 H 2. xE/ and d 2 H n. xE/

such that the natural homomorphism j �W H�. xE/! H�.X=G/ maps a to a, b to
b and d to d , where a; b and d are as in Lemma 4.1. Furthermore, H�. xE/ is a
H�.B/–module, via the induced homomorphism x�� , generated by

1; a;b; ab; : : : ;b.m�1/=2; ab.m�1/=2;d; ad; abd; : : : ; ab.m�1/=2d:(5–1)

Let us first consider natural numbers m and n satisfying 1<m< n. We can express
the elements

b.mC1/=2
2H mC1. xE/ and d2

2H 2n. xE/

in terms of the basis (5–1), that is, there exist unique elements !i ; �i 2H i.B/ such
that

b.mC1/=2
D !mC1C!maC!m�1abC � � �C!2b.m�1/=2

C!1ab.m�1/=2
C˛d;

where ˛ 2 Zp , with ˛ D 0 if n>mC 1 and

d2
D �2nC�2n�1aC� � �C�2n�mab.m�1/=2

C�ndC�n�1adC� � �C�n�mab.m�1/=2d:

Definition 5.1 The characteristic polynomials in the indeterminates x;y and z of
degrees respectively 1; 2 and n associated to the fibre bundle .X �p Sm�Sn;E; �;B/

are defined as follows:

W1.x;y; z/D !mC1C!mxC � � �C!1xy.m�1/=2
Cy.mC1/=2

C˛z;

W2.x;y; z/D �2nC �2n�1xC � � �C �2n�mxy.m�1/=2
C �nzC � � �

C �n�mxy.m�1/=2zC z2;

where !i ; �i 2H i.B/ and 1<m< n. If we consider natural numbers m and n such
that 1<mD n, we can express the elements

b.mC1/=2
2H mC1. xE/ and d2

2H 2m. xE/
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in terms of the basis (5–1), as follows:

b.mC1/=2
D !mC1C!maC � � �C!1ab.m�1/=2

C x!1dC˛ad

d2
D �2mC �2m�1aC � � �C �mab.m�1/=2

Cx�mdC �m�1adC � � �and

C 
ab.m�1/=2d;

for unique elements !i ; x!i ; �i ; x�i 2H i.B/ and ˛; 
 2Zp . In this case, the characteristic
polynomials are given by

W1.x;y; z/D !mC1C!mxC � � �C!1xy.m�1/=2
Cy.mC1/=2

C x!1zC˛xz;

W2.x;y; z/D �2mC �2m�1xC � � �C �mxy.m�1/=2
Cx�mzC �m�1xzC � � �

C 
xy.m�1/=2zC z2; for 1<mD n:

We can substitute these elements for the indeterminates x;y and z respectively and
obtain the homomorphism of H�.B/–algebras

(5–2) � W H�.B/Œx;y; z�!H�. xE/ given by .x;y; z/ 7! .a;b;d/:

We have that Ker.�/ is an ideal generated by the characteristic polynomials x2 ,
W1.x;y; z/ and W2.x;y; z/ and consequently,

(5–3)
H�.B/Œx;y; z�

.x2;W1.x;y; z/;W2.x;y; z//
ŠH�. xE/:

Now, given a polynomial q.x;y; z/ 2H�.B/Œx;y; z� we will denote by q.x;y; z/j xE
the image of q.x;y; z/ by the map � defined in (5–2) and q.x;y; z/jSZf

the image of
q.x;y; z/ by the composite

H�.B/Œx;y; z�!H�. xE/!H�.SZf /

given by .x;y; z/ 7! .a;b;d/ 7! .i�a; i�b; i�d/, where i� denotes the induced by the
natural inclusion.

Next, we need to define the characteristic polynomials associated to the k –dimensional
vector bundle � 0W E0!B with fibrewise Zp –action on E0 which is free on E0=0, with
k even. For this, let us denote by SE0 the total space of sphere bundle of � 0W E0!B .
Since Zp acts freely on SE0 we obtain the lens-bundle .Lk�1

p ;SE0; � 0;B/ and the
principal Zp –bundle SE0 ! SE0 , where Lk�1

p denotes the .k � 1/–dimensional
lens space. We have that H�.Lk�1

p IZp/ Š Zp Œa
0; b0�=..a0/2; .b0/k=2/, with a0 D

.i 0/�.s/ 2 H 1.Lk�1
p IZp/ and b0 D .i 0/�.t/ 2 H 2.Lk�1

p IZp/, where s 2 H 1.BZp/

and t 2H 2.BZp/ are defined in (2–1) and i 0W Lk�1
p !BZp is a classifying map for the

principal Zp –bundle Sk�1!Lk�1
p . Let us consider the classes a0Dh�.s/2H 1.SE0/
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and b0 D h�.t/ 2H 2.SE0/, where hW SE0!BZp is a classifying map for the princi-
pal Zp –bundle SE0! SE0 . The Zp -module homomorphism � W H�.Lk�1

p IZp/!

H�.SE0IZp/ defined by a0 7! a0 and b0 7! b0 is a cohomology extension of the fibre.
Then, it follows from Leray–Hirsch theorem that H�.SE0/ is a H�.B/–module, via
the induced homomorphism .� 0/� , generated by the elements

1; a0; b0; a0 b0; : : : ; a0 .b0/.k�2/=2:

We can express .b0/k=2 2H k.SE0/ as follows:

.b0/k=2 D !0k C!
0
k�1a0C � � �C!01a0.b0/.k�2/=2;

for unique elements !0i 2H i.B/.

Definition 5.2 The characteristic polynomial in the indeterminates x and y of degrees
respectively 1 and 2, associated to the vector bundle E0! B is defined as follows:

W 0.x;y/D !0k C!
0
k�1xC � � �C!01xy.k�2/=2

Cyk=2;

where !0i 2H i.B/.

From similar arguments to those used above, we have the following isomorphism of
H�.B/–algebras:

H�.B/Œx;y�

.x2;W 0.x;y//
ŠH�.SE0/ defined byx 7! a0 and y 7! b0:

5.2 Case G D S 1

Let .X �Q Sm�Sn;E; �;B/ be a fibre bundle as in Section 3 and consider the quotient
bundle .X=G; xE; x�;B/. It follows from the Leray–Hirsch theorem and Lemma 4.2
that

H�.B/Œy; z�

.W1.y; z/;W2.y; z//
ŠH�. xE/(5–4)

where, for 1<m< n,

W1.y; z/D !mC11C!m�1yC � � �C!2y.m�1/=2
Cy.mC1/=2

C˛z

W2.y; z/D �2nC �2n�2yC � � �C �2n�.m�1/y
.m�1/=2

C �nzC �n�2yzC � � �and

C �n�.m�1/y
.m�1/=2zC z2

are the characteristic polynomials associated to .X �Q Sm � Sn;E; �;B/, where
!i ; �i 2H i.B/, ˛ 2Q, and ˛ D 0 if n>mC 1.
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In case that 1<mD n, we have the characteristic polynomials

W1.y; z/D !mC1C!m�1yC � � �C!2y.m�1/=2
Cy.mC1/=2

C x!1z

W2.y; z/D �2mC �2m�2yC � � �C �2m�.m�1/y
.m�1/=2

C �mzCand

�m�2yzC � � �C �1y.m�1/=2zC 
 z;

where !i ; x!i 2H i.B/ and 
 2Q.

Now, let us consider the k –dimensional vector bundle � 0W E0 ! B with fibrewise
S1 –action on E0 which is free on E0=0, with k even. Let us denote by SE0 the total
space of sphere bundle of � 0W E0! B . Since S1 acts freely on SE0 we obtain the
complex projective-bundle .P.k�2/=2.C/;SE0; � 0;B/ and the principal S1 –bundle
SE0! SE0 , where P.k�2/=2.C/D Sk�1=S1 denotes the .k � 2/–dimensional com-
plex projective space . We have that H�.P.k�2/=2.C/IQ/ ŠQŒb0�=..b0/k=2/, with
b0 D i�.t/ 2 H 2.P.k�2/=2.C/IQ/, where t 2 H 2.BS1IQ/ is defined in (2–2) and
i W P.k�2/=2.C/! BS1 is a classifying map for the principal S1 –bundle Sk�1 !

P.k�2/=2.C/.

Following the same argument of the previous case, we have that

H�.B/Œy�

.W 0.y//
ŠH�.SE0/; where W 0.y/D!0mC11C!0m�1yC� � �C!02y.k�2/=2

Cyk=2

is the characteristic polynomial associated to vector bundle E0! B .

6 Proof of the main theorems

Proof of Theorem 3.1 Let q.x;y; z/ be a polynomial in H�.B/Œx;y; z� such that
q.x;y; z/jSZf

D 0. It follows from the continuity of the cohomology theory, that there
is an open subset V in xE , with V � SZf such that q.x;y; z/jV D 0. One has that
from the exact sequence

� � � // H�. xE;V /
j�

1 // H�. xE/ // H�.V / // � � �

there exists � 2H�. xE;V / such that j �
1
.�/D q.x;y; z/j xE , where the map j1W

xE!

. xE;V / denotes the natural inclusion. One can take the map of the orbit spaces xf W xE�
SZf ! SE0 � f0g induced by the equivariant map f W E ! E0 . Since the induced
cohomology homomorphism xf � is a H�.B/–homomorphism and W 0.a0;b0/D 0, we
have that

W 0.x;y/j xE�SZf
DW 0.a;b/DW 0. xf �.a0/; xf �.b0//D xf �.W 0.a0;b0//D 0:
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On the other hand, from the exact sequence

� � � // H�. xE; xE � SZf /
j�

2 // H�. xE/ // H�. xE � SZf /
// � � �

there exists � 2H�. xE; xE� SZf / satisfying the condition j �
2
.�/DW 0.x;y/j xE , where

j2W
xE! . xE; xE � SZf / is the natural inclusion. Hence,

q.x;y; z/W 0.x;y/j xE D j �1 .�/j
�
2 .�/D j �.�^ �/

by naturality of cup product. Let us observe that

�^ � 2H�. xE;V [ . xE � SZf //DH�. xE; xE/

which implies �^� D 0. Thus, q.x;y; z/W 0.x;y/j xE D 0 and by (5–3) we conclude
that there exist polynomials r1.x;y; z/ and r2.x;y; z/ in H�.B/Œx;y; z� such that

q.x;y; z/W 0.x;y/D r1.x;y; z/W1.x;y; z/C r2.x;y; z/W2.x;y; z/

in the ring H�.B/Œx;y; z�=.x2/. This completes the proof.

Proof of Corollary 3.2 Let q.x;y; z/ 2 H�.B/Œx;y; z� be a nonzero polynomial
satisfying the condition deg q.x;y; z/ <m� kC 1 and suppose by contradiction that
q.x;y; z/jZf

D 0. One then has, by Theorem 3.1 that

q.x;y; z/W 0.x;y/D r1.x;y; z/W1.x;y; z/C r2.x;y; z/W2.x;y; z/

in H�.B/Œx;y; z�=.x2/. Note that deg W 0.x;y/D k , deg W1.x;y; z/DmC 1 and
deg W2.x;y; z/D 2n, implies deg q.x;y; z/�mC 1� k , which is impossible.

Proof of Theorem 3.3 Let q.y; z/ be a polynomial in the ring H�.B/Œy; z� such that
q.y; z/jSZf

D 0. By similar arguments used in the proof of Theorem 3.1, we conclude
that q.y; z/W 0.y/j xE D 0. Therefore, by (5–4) we have that there are polynomials
r1.y; z/ and r2.y; z/ in H�.B/Œy; z� such that

q.y; z/W 0.y/D r1.y; z/W1.y; z/C r2.y; z/W2.y; z/:

Proof of Corollary 3.4 Let q.y; z/2H�.B/Œy; z� be a nonzero polynomial such that
deg q.y; z/ <m� kC 1. If q.y; z/jSZf

D 0, by Theorem 3.3

q.y; z/W 0.y/D r1.y; z/W1.y; z/C r2.y; z/W2.y; z/;

where deg W 0.y/ D k , deg W1.y; z/ D mC 1 and deg W2.y; z/ D 2n. Thus, we
conclude that deg q.y; z/�mC 1� k , which is a contradiction.
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7 Estimating the size of the Zp –coincidence set

Let .X �p Sm�Sn;E; �;B/ be a fibre bundle as in Section 3. Now consider E00!B

a vector bundle of dimension l and let f W E!E00 be a fibre-preserving map (here,
we do not assume that E00 has a Zp –action). Suppose that T W E!E is a generator
of the free Zp –action in E . The Zp –coincidence set A.f / is the set of points x in E

such that f maps the entire Zp –orbit of x to a single point, that is,

A.f /D fx 2EIf .T i.x//D f .x/; 8i D 1; : : : ;p� 1g:

In the above conditions, one has the following:

Theorem 7.1 cohom: dim A.f /� cohom: dim.B/Cm� .p� 1/l:

Proof Consider a vector bundle M ! B , which is the Whitney sum of p copies of
the l –dimensional vector bundle E00! B . One then has that M D E00˚ : : :˚E00

admits an action of the cyclic group Zp , generated by a periodic homeomorphism
tM W M !M of period p given by

tM .m1; : : : ;mp�1;mp/D .mp;m1; : : : ;mp�1/;

for each .m1; : : : ;mp/ 2M .

Denote by � the subspace of M consisting of the all points .m1; : : : ;mp/ in M such
that m1 D � � � Dmp . Therefore �! B is a subbundle of M ! B , which is called
diagonal bundle. Each fibre Mb of M can be represented as a direct sum �b˚�

?
b

,
where �?

b
is the orthogonal complement of �b . The bundle M ! B is the Whitney

sum of the bundles �! B and �?! B . Observe that �? is a Zp –subspace of M

and Zp acts freely on the sphere bundle S�?��? . Since �!B is a l –dimensional
bundle, the fibre dimension of �? ! B is equal to k D .p � 1/l , which is even.
Consider the fibre-preserving Zp –equivariant map F W E!M defined by

F.x/D .f .x/; f .T x/; : : : ; f .T p�1x//:

The linear projection along of the diagonal defines an equivariant fibre-preserving map
r W .M;M ��/! .�?; �?� 0/, where 0 is the zero section of �? . Let hD F ı r

be the composition given by

.E;E �A.f //! .M;M ��/! .�?; �?� 0/

with Zh D h�1.0/ D .F ı r/�1.0/ D F�1.�/ D A.f /. Since hW E ! �? is an
equivariant fibre-preserving map, it follows from Corollary 3.2 that

cohom: dim SZh D cohom: dim A.f /� cohom: dim.B/Cm� .p� 1/l;
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Remark 7.2 In the particular case where B is a single point and f W X �p Sm�Sn!

Rl is a continuous map, with m> .p� 1/l , one has that A.f / 6D∅. Moreover,

cohom: dim A.f /�m� .p� 1/l:

This result extends to spaces which have the same cohomology (mod p ) as a product
of spheres the classical version of the Borsuk–Ulam theorem for Zp –actions proved by
Munkholm in [9].

Remark 7.3 Koikara and Mukerjee [8] obtained an estimate of the “size” of the Zp –
coincidence set A.f / for maps of fibre bundles, with closed orientable differentiable
manifolds as fibres, under certain conditions. Observe that the estimate determined
by Theorem 7.1 and Remark 7.2 cannot be obtained from [8], since in Theorem 7.1
the fibres of the bundles are, respectively, X �p Sm �Sn (which in general is not a
differentiable manifold) and Rl (which is an open manifold).

Remark 7.4 Consider a bundle � W E!B whose fibre is either a sphere or a product
of spheres, and a vector bundle � 00W E00!B such that Zp is fibre-preserving and acts
freely on E (here, we do not assume that E00 has a Zp –action). Let f W E!E00 be a
fibre-preserving map. Suppose that T W E!E is a generator of the free Zp –action on
E and define the following set:

A.f; q/D fx 2Ej there exist i1; i2; : : : ; iq with 0< i1 < i2 < � � �< iq � p

and f .T i1x/D f .T i2x/D � � � D f .T iq x/g

An interesting question, raised by the referee, is to estimate the cohomological dimen-
sion of the set A.f; q/. Note that if q D p , we have that A.f; q/ D A.f / and the
question is answered by Theorem 7.1. Estimates of the above type are given by Cohen
and Lusk [2] in the nonparametrized case.
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