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Chevalley p–local finite groups

CARLES BROTO

JESPER M MØLLER

We describe the spaces of homotopy fixed points of unstable Adams operations acting
on p–compact groups and also of unstable Adams operations twisted with a finite
order automorphism of the p–compact group. We obtain new exotic p–local finite
groups.

55R35, 55P15, 55P10; 55R40, 20D20

1 Introduction

The main purpose of this paper is the description of the structure of the spaces of
homotopy fixed points of unstable Adams operations  q acting on p–compact groups
and also of unstable Adams operations twisted by automorphisms of p–compact groups
� q .

In the classical case, for a prime number p , a prime power q , prime to p , a compact
connected Lie group G , and a finite order automorphism � of G , Friedlander showed
that there is a homotopy pullback diagram

B �G.q/^p
f //

f

��

BG^p

�
��

BG^p
.1;� q/ // BG^p �BG^p

where �G.q/ is the twisted Chevalley group over Fq of type G , � is the diagonal map,
and  q an unstable Adams operation of exponent q [33; 34]. Here and throughout,
p–completion is understood in the sense of Bousfield and Kan [11].

The concept of a p–compact group was introduced by Dwyer and Wilkerson in [25] as
a p–local homotopy theoretic analogue of a compact Lie group. A p–compact group
is a triple .X;BX; e/, where H�.X I Fp/ is finite, BX is a pointed p–complete space,
and e WX !�BX is a homotopy equivalence. We will usually refer to a p–compact
group simply as X . BX is then understood as its classifying space, a concrete loop
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space structure imposed in the underlying space X . If G is a compact connected Lie
group, then the p–completion of its classifying space BG^p is a p–compact group. A
p–compact group that cannot be obtained in this way is called exotic. We postpone till
Section 2 a more detailed description of the theory of p–compact groups.

Unstable Adams operations  q , for any p–adic unit q , can be defined for any connected
p–compact group X (see Section 2). Following the above pattern, if � q a twisted
Adams operation, then the space B �X.q/ is defined by the homotopy pullback square

(1) B �X.q/
f //

f

��

BX

�

��
BX

.1;� q/ // BX �BX .

Thus if X is obtained as the p–completion of a compact Lie group G , and � is a
finite order automorphism of G , B �X.q/ is homotopy equivalent to the p–completed
classifying space of the twisted Chevalley group �G.q/.

The concept of p–local finite group has been recently introduced by Broto, Levi and
Oliver [14] as algebraic objects that are modeled on the p–local structure of finite
groups and as such they have classifying spaces which are p–complete spaces. In turn,
the classifying space of a p–local finite group determines its algebraic structure. Every
finite group G determines a p–local finite group at a prime p with classifying space
BG^p . Like in the case of p–compact groups, p–local finite groups that do not arise in
this way for any finite group G are called exotic. We refer to Section 3 for the precise
definition and main properties of p–local finite groups. Our main result shows that
B �X.q/ is the classifying space of a p–local finite group. We will also determine the
cases in which they are exotic p–local finite groups.

Theorem A Let p be an odd prime. If X is a 1–connected p–compact group, q

is a prime power, prime to p , and � is an automorphism of X of finite order prime
to p , then the space of homotopy fixed points of BX by the action of � q , denoted
B �X.q/, is the classifying space of a p–local finite group.

By analogy with the classical case, we will call the p–local finite group X.q/ (�X.q/)
with classifying space BX.q/ (B �X.q/) obtained in Theorem A a (twisted) Chevalley
p–local finite group of type X .

Our arguments concentrate on the exotic p–compact groups at odd primes and break
into two separate steps. One deals with actions of finite groups of order not divisible
by p on p–compact groups and the results obtained have an independent interest. The
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other step deals with the action of unstable Adams operations  q where q � 1 mod p

and it is the one leading to the new exotic examples of p–local finite groups.

Group actions will be understood in the weak sense of proxy actions; that is, we will
say that an action of a group G on a space M is a fibration

M
i
�!MhG

pr
�! BG

(see Dwyer [25]). The total space MhG is referred to as the homotopy quotient space.
The space of homotopy fixed points is the space

M hG
D fBG

s
�!MhG j pr ı s D idBGg

of sections. Two actions will be considered equivalent if they are defined by fiber
homotopy equivalent fibrations. If M is a G–space in the usual sense then MhG is
the Borel construction and M hG is homeomorphic to the space MapG.EG;M / of
equivariant maps where EG is a contractible free G–space. When we specialize to
p–compact groups X , an outer action of G is a homomorphism �W G ! Out.X /,
where Out.X / is the group of outer automorphisms of the p–compact group X , in
other words, unpointed homotopy classes of self-equivalences of BX . By obstruction
theory, it turns out that if G has finite order prime to p , then an outer action on a
connected p–compact group X determines a unique action, up to equivalence, and the
space of homotopy fixed points is again a connected p–compact group.

The space B �X.q/ defined by pullback square (1) can also be viewed as a homotopy
fixed point space BX hh� qi for the action of the infinite cyclic group generated by
� q 2 Out.X /. More details are given in Section 6.

Theorem B Let X be a connected p–compact group. If G is a finite group of order
prime to p and �W G! Out.X / an outer action, then the following holds:

(1) � lifts to a unique action of G on X , up to equivalence.

(2) X hG is a connected p–compact group with

H�.BX hG
IQp/Š S ŒQH�.BX IQp/G �;

the symmetric algebra generated on the coinvariants QH�.BX IQp/G .

(3) (Harper splitting) X hG ! X is a p–compact group monomorphism, there is a
homotopy equivalence

X 'X hG
�X=X hG

and X=X hG is an H –space.
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(4) Assume that p is odd. If H�.BX I Fp/ is a polynomial ring, then H�.BX hG I Fp/

is also a polynomial ring.

Here and throughout, H�.�IQp/ stands for H�.�IZp/˝Q, and QH�.BX IQp/

denotes the module of the indecomposables in H�.BX IQp/.

Some interesting cases to which Theorem B applies are F4 at the prime 3 and E8 at the
prime 5, where the p–compact groups X12 , respectively, X31 split off (see Section 2
for notation). In the first case, Friedlander’s exceptional isogeny ' of F4 at the prime
3 gives rise to an automorphism of order 2 and the homotopy fixed point p–compact
group F4

hC2 is the p–compact group X12DDI2 whose cohomology realizes the rank
2 Dickson algebra H�.BX12I F3/Š F3Œx12;x16� (subscripts of cohomology classes
indicate degrees) over F3 . This case was already considered in our previous work [16].
In the second case, a cyclic group of order 4 generated by the unstable Adams operation
 i , i D

p
�1, acts on E8 . The homotopy fixed point p–compact group E

hC4

8
is the

p–compact group X31 corresponding to the reflection group number 31 on the Clark–
Ewing list, and its mod 5 cohomology ring is H�.BX31I F5/D F5Œx16;x24;x40;x48�

(see Section A.12).

It turns out that X12 and X31 are the two exotic p–compact groups originally con-
structed by Zabrodsky [71], and later included in the Aguadé family [2]. Zabrodsky
used the actions of these same automorphisms, ' and  i , on the homotopy groups of
BF4 and BE8 , respectively, and realized the invariant subgroups as homotopy groups
of new spaces, BX12 and BX31 .

The corresponding splittings are F4 'DI2 �F4=DI2 at the prime 3, first discovered
by Harper [36], and E8 ' X31 �E8=X31 at the prime 5, which was obtained by
Wilkerson [68]. Other examples appear in Example 5.4.

Our second step deals with the action of unstable Adams operations  q of exponent
q� 1 mod p , q¤ 1, on connected p–compact groups X . These automorphisms have
infinite order and the effect now is opposite in some sense to the case of finite groups of
order prime to p . The spaces of homotopy fixed points BX.q/ have the same p–rank
as the original p–compact groups X , but the maximal tori T n ' ..S1/n/^p are cut
down to finite maximal tori T n

`
Š .Z=p`/n , `D �p.1� q/, keeping the same Weyl

group (see Proposition 7.5 and Proposition 7.6).

We restrict our calculations in this part to p–compact groups for which the mod p

cohomology ring H�.BX I Fp/ is a polynomial ring. For simplicity, we will refer to
them as polynomial p–compact groups. At odd primes, these include all irreducible
exotic examples and will therefore suffice for our purposes.

Algebraic & Geometric Topology, Volume 7 (2007)



Chevalley p–local finite groups 1813

Theorem C Let q be a p–adic unit such that q � 1 mod p , q ¤ 1. If X is an
irreducible 1–connected polynomial p–compact group, then BX.q/ is the classifying
space of a p–local finite group.

The proof is based on the classification theorem for p–compact groups at odd primes [7];
see Section 2. The irreducible polynomial p–compact groups are

(1) BSU.n/^p (family 1 in the Clark–Ewing list),
(2) the generalized Grassmannians (family 2a in the Clark–Ewing list),
(3) the Clark–Ewing p–compact groups (p–compact groups with Weyl group of

order prime to p ), and
(4) the Aguadé family X12 , X29 , X31 , X34 at primes p D 3, 5, 5, and 7, respec-

tively, and of rank p�1. (The subscripts indicate the number of the Weyl group
in the Clark–Ewing list.)

Theorem C is proved by considering separately these four cases in Remark 11.1,
Theorem 11.4, Theorem 9.8, and Theorem 10.3, respectively.

In cases (1) and (3) we always obtain that BX.q/ is the p–completed classifying space
of a finite group. The other two families contain the new exotic examples of p–local
finite groups.

A complete description of the structure of the p–local finite groups Xi.q/, i D

12; 29; 31; 34, is obtained in Section 10. Fix q � 1 mod p and let �3.1C 22nC1/D

�3.1 � q/. For X12.q/, p D 3, we obtain that BX12.q/' B.2F4.2
2nC1//^

3
(see

Example 10.7). For X31.q/, p D 5, it turns out that if �5.1C 24mC2/ D �5.1� q/,
then BX31.q/ ' BE8.2

2mC1/^
5

(see Example 10.8). In particular, we can obtain
the p–compact groups X12 and X31 as telescopes of a sequence of p–completed
classifying spaces of finite groups (see Remark 10.9):

BX12 ' hocolim
m

B.2F4.2
3m

//^3 ;

BX31 ' hocolim
m

BE8.2
5m

/^5 :

The cases BX29.q/ and BX34.q/ at primes 5 and 7, respectively, are classifying
spaces of exotic p–local finite groups (Example 10.6).

Family 2a in the Clark–Ewing list consists of the reflection groups G.m; r; n/ with
r jmj.p � 1/ generated in GL.n;Zp/ by the permutation matrices together with the
diagonal matrices diag.a1; a2; : : : ; an/ with ai

m D 1 and .a1a2 : : : an/
m=r D 1. We

denote X.m; r; n/ the p–compact group of rank n with Weyl group G.m; r; n/. We
also prove that BX.m; r; n/.q/ is the classifying space of an exotic p–local finite
group provided n� p and r > 2 (Proposition 11.5).
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Theorem D For q � 1 mod p , q ¤ 1, the following are classifying spaces of exotic
p–local finite groups:

� BX29.q/ and BX34.q/ at primes p D 5 and p D 7, respectively, and

� BX.m; r; n/.q/ for n� p and r > 2.

Our next theorem provides the necessary arguments in order to deduce the general case
of Theorem A from the two steps.

Theorem E Let p be an odd prime and X a 1–connected p–compact group, � an
automorphism of X of order prime to p , and  q an unstable Adams operation of
exponent a p–adic unit.

(1) If q � 1 mod p , q ¤ 1, then B �X.q/' BX hh�i.q/.

(2) If q0 is another p–adic unit such that q and q0 have the same multiplicative
order mod p and such that �p.1� qr /D �p.1� q0

r
/, where r is the order of q

and q0 mod p , then BX.q/' BX.q0/.

Since we can decompose a p–adic unit q as q D �q0 where � is a .p� 1/–st root of
unity and q0 � 1 mod p , part (1) of Theorem E will reduce the question of computing
BX.q/ to the case where q� 1 mod p which turns out to be easier to handle in abstract
calculations and concrete examples. The second part of the theorem tells us that BX.q/

does only depend on the order r of q mod p and the p–adic valuation �p.1� qr /, so
we can change the exact value of q at our convenience if we keep those parameters
fixed.

Part (2) of Theorem E also explains the often observed fact that finite Chevalley groups
G.q/ and G.q0/ have same cohomology ring or identical p–local structure when q

and q0 are prime powers, with qr � q0
r
� 1 mod p and �p.1� qr / D �p.1� q0

r
/,

for some r , 1� r � p� 1. We plan to investigate this phenomenon closer in a future
paper.

Proof of Theorem A Consider B �X.q/ as the homotopy fixed point space BX hh� qi

for the action on BX of the group generated by � q .

If we write qD �q0 , where � is a .p�1/–th root of unity and q0� 1 mod p , q0¤ 1,
so that � q D � � q0 , then we have

B �X.q/D BX hh� qi
' BX hh� �i.q0/ ;

according to Theorem E.
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X hh� �i is a 1–connected p–compact group by Theorem B, hence it splits as a product
of irreducible 1–connected p–compact groups [27; 59]

BX hh� �i
' BX1 � � � � �BXs ;

and then also, BX hh� �i.q0/ ' BX1.q0/� � � � �BXs.q0/. It remains to show that
each BXi.q0/ is the classifying space of a p–local finite group.

If Xi is polynomial, Theorem C applies and BXi.q0/ is the classifying space of a
p–local finite group.

If Xi is the p–completion of a compact Lie group G , then we can find a prime
number q0

0
with q0

0
�q0�1 mod p and �p.1�q0/D�p.1�q0

0
/, and then BXi.q0/'

BXi.q
0
0
/ by Theorem E (cf Remark 6.6), and this last is the p–completed classifying

space of a finite Chevalley group of type G , by the classical result of Friedlander [34].

By the classification theorem of p–compact groups at odd primes [7] (see Section 2),
every irreducible, simply connected p–compact group is either polynomial or the
p–completion of a compact Lie group, hence the proof is complete.

Many authors have been interested in the cohomology rings of finite Chevalley groups
at primes different from the defining characteristic. Quillen [61, Theorem 4] shows that
for an odd prime p and a prime power q prime to p , if m is the order of q mod p

and `D �p.1� qm/, then

H�.BGL.n; q/I Fp/Š P Œx1; : : : ;xŒ n
m
��˝EŒy1; : : : ;yŒ n

m
��

where deg.xi/D 2mi and deg.yi/D 2mi � 1.

Fiedorowicz and Priddy [31; 30] computed the cohomology rings of Chevalley groups
of classical type. Kleinerman [39] has computed the cohomology of Chevalley groups
of exceptional Lie type at large primes. M Mimura, M Tezuka and S Tsukuda [45] have
recently approached the cohomology rings of finite Chevalley groups at torsion primes,
by newly constructing a spectral sequence of Eilenberg–Moore type.

The result that we include here is essentially due to L Smith; at least part (1) already
appears in [64]. We include it here for the convenience of the reader, as it is an important
step in our arguments.

Theorem F Let X be a polynomial p–compact group with

H�.BX I Fp/Š P Œx1; : : : ;xn�

and q a p–adic unit with q � 1 mod p , q ¤ 1. Then:
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(1) H�.BX.q/I Fp/ Š P Œx1; : : : ;xn�˝EŒy1; : : : ;yn� with higher Bockstein rela-
tions ˇ.`i /.yi/D xi , `i D �p.1� qdi /, 2di D deg xi , 2di � 1D deg yi , and

(2) the inclusion of the maximal finite torus i W BT n
`
! BX.q/, ` D �p.1 � q/,

induces a monomorphism i�W H�.BX.q/I Fp/!H�.BT n
`
I Fp/

WX .

The inclusion i�W H�.BX.q/I Fp/! H�.BT n
`
I Fp/

WX is an isomorphism in many
cases. This is checked by direct calculation of the relevant invariant rings. In cases in
which X is a Clark–Ewing p–compact group or a generalized Grassmannian, i� is
an isomorphism (see Section 9). It is also an isomorphism in the case of the Aguadé
p–compact groups Xi.q/, i D 29; 31; 34. However, i� is not an epimorphism in case
of X12.q/, for which we obtain H�.BX12.q/I F3/ŠP Œx12;x16�˝EŒy11;y15�, while

H�.BT 2
` I F3/

WX12

Š P Œx12;x16�˝EŒy10;y11;y15�=.y11y15�x16y10; y10y11; y10y15/

(see Example 9.7).

We have restricted our calculations at odd primes, although some of the results are also
valid at the prime two. The classification of 2–compact groups [54; 6] implies that the
Dwyer–Wilkerson 2–compact group DI4 is the only irreducible exotic 2–compact
group. The Chevalley 2–local finite groups of type DI4 , named BSol.q/, for odd
prime powers q , have been first considered by Benson [9] and then by Levi and Oliver
[40] who proved that they are classifying spaces of 2–local finite groups and their
2–local structure is in fact a system of fusion relations studied by Solomon [65] and
defined over the Sylow 2–subgroup of Spin.7; q/.

The paper is organized as follows. In Section 2 and Section 3 we review the definitions
and main results from the theory of p–compact groups and p–local finite groups.
In Section 4 we further develop some aspects of the theory of p–local finite groups
concerning the homotopy characterization of classifying spaces of p–local finite groups.
The main results in Sections 10 and 11 state that BX.q/ is the classifying space of a
p–local finite group if X is a p–compact group in the Aguadé family or a generalized
Grassmannian are based in this homotopy characterization of classifying spaces.

Section 5 deals with what we have called first step. We discuss different ways in which
we can understand an action of a group on a p–compact group and prove Theorem B.
This theorem states that a homotopy fixed point space X hG is again a p–compact
group if X was a connected p–compact group and G is a finite group of order prime
to p . Identifying X hG with a p–compact group in the classification list requires a
close look at the restriction of the action to the maximal torus normalizer. This will
be considered in Appendix A. In particular, Corollary A.6 contains a criterion for the

Algebraic & Geometric Topology, Volume 7 (2007)



Chevalley p–local finite groups 1817

recognition of the homotopy fixed point p–compact group by action of unstable Adams
operations of finite order. This is applied to many examples through the Clark–Ewing
list at the end of this appendix in Section A.7 through Section A.12.

Section 6 is devoted to the proof of Theorem E. It reduces the analysis of the structure
of a general homotopy fixed point space B �X.q/ to first analyzing a homotopy fixed
point p–compact group and then a homotopy fixed point space by the action of an
unstable Adams operation  q0 of exponent q0 � 1 mod p . This allows us to complete
the argument for the proof of Theorem A from steps one and two.

The second step starts in Sections 7, 8, and 9, where we analyze the general subgroup
structure of spaces BX.q/, where q � 1 mod p , q ¤ 1, and their cohomological
properties. Theorem F is proved in Section 8. Some technical results concerning
the Bousfield–Kan spectral sequence for the cohomology of a homotopy colimit are
postponed to Appendix B.

Finally, Section 10 and Section 11 are devoted to the more specific properties of the p–
compact groups in the Aguadé family and the generalized Grassmannians, respectively.
With them, we complete the proof of Theorem C and Theorem D.
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2 p–compact groups

A p–compact group is a triple .X;BX; e/ where X is a space, BX is a p–complete
connected pointed space, H�.X I Fp/ is finite, and eW X !�BX is a homotopy
equivalence from X to the space �BX of based loops in BX .

Throughout the paper, and when no confusion is possible, we will simply denote a
p–compact group .X;BX; e/ as X . We shall say that X is connected if �0.X / is a
point and simply connected if also �1.X / is trivial. These spaces were introduced by
Dwyer and Wilkerson in 1994 as p–local homotopy theoretic versions of compact Lie
groups [25]. We present here a short summary of the theory of p–compact groups and
refer to the surveys of the second author [48], Notbohm [57] and Dwyer [21] for more
information. Examples of p–compact groups include all simply connected p–complete
spaces with polynomial Fp –cohomology, and the p–completed classifying spaces of
all compact Lie groups G such that �0.G/ is a finite p–group. The p–compact group
obtained in this way from a torus is called a p–compact torus. Thus a p–compact torus
BT of rank n is simply a K.Zp; 2/

n and we have that H2.BT IZp/D Zn
p is a finitely

generated free Zp –module. A maximal torus of a p–compact group BX is a pointed
map BT !BX , satisfying an injectivity and a maximality condition, of a p–compact
torus into BX . The Weyl group W of the maximal torus BT ! BX , which we
may assume is a fibration, is the monoid of fiber homotopy classes BT !BT over
BX . It turns out that all elements of W are invertible so that W is actually a group.
Equivalently, the Weyl group is the group of components of the Weyl space which is the
associative topological monoid of self-maps of BT over BX . The Borel construction,
BN , for the action of the Weyl space on BT is called the normalizer of the maximal
torus. The monomorphism BT ! BX extends to a monomorphism BN ! BX [25,
9.2,9.8].

Theorem 2.1 (Existence of maximal tori [25, 9.7]) Any p–compact group X admits
a maximal torus BTX ! BX and a Weyl group WX . When X is connected, the
Weyl group WX acts faithfully on the finitely generated free Zp –module LX D

H2.BTX IZp/, the pair .WX ;LX / is a Zp –reflection group, and

H�.BX IZp/˝Q!
�
H�.BTX IZp/˝Q

�WX

is an isomorphism.

This theorem introduces a relationship between p–compact groups and Zp –reflection
groups as defined below.

An automorphism of a finitely generated free Zp –module is a reflection if it acts as
the identity on a hyperplane. A Zp –reflection group is a pair .W;L/ where L is a
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finitely generated free Zp –module and W a subgroup of AutZp
.L/DGL.L/ that is

generated by the reflections that it contains. A morphism between two Zp –reflection
groups, .W1;L1/ and .W2;L2/, is a pair .˛; �/ consisting of a group homomorphism
˛W W1!W2 and an ˛–linear Zp –module homomorphism � W L1!L2 [53, 4.1]. The
Zp –reflection group .W;L/ is irreducible if L˝Zp

Qp is an irreducible QpW –module.
Using the Shephard–Todd classification of irreducible complex reflection groups [63],
Clark and Ewing [19] produced the list of all finite irreducible Zp –reflection groups
[53, 11.18]. At odd primes the list is as follows:

� Family 1: .†nC1;S.Z
nC1
p // where the symmetric group †nC1 permutes the

nC 1 factors of ZnC1
p and S.ZnC1

p /D f.x1; : : : ;xnC1/ 2 ZnC1
p j

P
xi D 0g.

� Family 2a: Let r � 1 and m � 2 natural numbers such that r j m j p � 1.
The cyclic group Cm of order m is contained in the group of units Z�p for Zp .
The Zp –reflection group .G.m; r; n/;Zn

p/, n� 2, is the group generated by the
subgroup †n of all permutations of the n coordinates and the subgroup

A.m; r; n/D fdiag.�1; : : : ; �n/ 2 C n
m j .�1 � � � �n/

m=r
D 1g

consisting of diagonal matrices.

� Family 2b: .D2m;Z
2
p/, m> 2, when m�˙1 mod p or mD 3; 6 if p D 3 is

the dihedral group of order 2m, generated by matrices�
0 �1
1 �C��1

�
and

�
0 1
1 0

�
;

where � is a primitive m–th root of unity. It is also usual to call them G.m;m; 2/,
following the notation of Shephard and Todd [63].

� Family 3: .Cm;Zp/ when m j p� 1 and Cm is the order m cyclic subgroup of
Z�p .

� Sporadic groups: 34 sporadic Zp –reflection groups Gi , 4� i � 37.

See Andersen [5] for a more detailed description of this list of all irreducible Zp –
reflection groups.

The automorphism group of the Zp –reflection group .W ;L/ is isomorphic to the
group NGL.L/.W /. There is an obvious homomorphism from this group to the group
of trace preserving automorphisms of W . The kernel is the group AutZpW .L/ of
automorphisms of the ZpW –module L. Using this we get an exact sequence of groups
[53, 3.14–16]

(2) 1! AutZpW .L/=Z.W /!NGL.L/.W /=W ! Outtr.W /
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where the group to the right is the group

Outtr.W /D f˛ 2 Out.W / j 8w 2W W tr.˛.w//D tr.w/g

of trace preserving outer automorphisms of W <GL.L/. Observe that there is a group
homomorphism

 W Z�p !NGL.L/.W /=W

that takes the p–adic unit u 2 Z�p to scalar multiplication,  uW L!L, by u on L.
The kernel of  is the finite subgroup Z�p \Z.W / of W <GL.L/.

If .W;L/ is irreducible, AutZpW .L/ D Z�p consists only of the scalar matrices  u

according to Schur’s lemma so that (2) takes the form

(3) 1! Z�p =Z.W /
 
�!NGL.L/.W /=W ! Outtr.W / :

Moreover, an explicit case-by-case computation shows that the group Outtr.W / is
trivial for all irreducible Zp –reflection groups except for a few of the dihedral groups
G.m;m; 2/ and for the sporadic Zp –reflection groups G5 , G7 , and G28 DW .F4/,
and in these cases it consists of elements that lift to finite order elements � in
NGL.L/.W /=W . We conclude that if .W;L/ is irreducible then NGL.L/.W /=W

consists only of elements of the form � u where � has finite order.

Theorem 2.2 (Classification of p–compact groups at odd primes [53; 7]) Let p

be an odd prime. The assignment X  .WX ;LX / gives a bijective correspondence
between isomorphism classes of connected p–compact groups X and isomorphism
classes of Zp –reflection groups .W;L/. We have

Out.X /ŠNGL.L/.W /=W

where .W;L/ is the Zp –reflection group assigned to the connected p–compact group
X .

The irreducible p–compact groups, which are the p–compact groups corresponding
to the irreducible Zp –reflection groups of the Clark–Ewing classification table [19]
(see also Dwyer, Miller and Wilkerson [23, 1.5]) are as follows:

� Family 1: BSU.nC 1/^p (the special unitary groups)

� Family 2a: BX.m; r; n/, .m; r; n/¤ .m;m; 2/, (the generalized Grassmannians)

� Family 2b: BX.m;m; 2/, m� 3

� Family 3: B yS2m�1
p (the Sullivan spheres)

� Sporadic groups: 34 sporadic p–compact groups BXi , 4� i � 37.
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Among the generalized Grassmannians we find

BX.2; 1; n/D BSO.2nC 1/^p ; BX.2; 2; n/D BSO.2n/^p ;

in family 2b

BX.3; 3; 2/D BPU .3/^p ; BX.6; 6; 2/D .BG2/
^
p ;

and among the sporadic cases we find

BX28 D .BF4/
^
p ; BX35 D .BE6/

^
p ; BX36 D .BE7/

^
p ; BX37 D .BE8/

^
p :

Any simply connected p–compact group splits as a product of irreducible p–compact
groups [27; 59], and, in general, any connected p–compact group is locally isomorphic
to the product of finitely many irreducible simply connected p–compact groups and a
p–compact torus [50, 2.8].

If H�.BX I Fp/ is a polynomial Fp –algebra, we say that BX is a polynomial p–
compact group. Observe that all the irreducible p–compact groups are either polynomial
or of the form BG^p where G is an irreducible compact connected Lie group [53, 7.4].

The polynomial irreducible p–compact groups, which include all irreducible p–
compact groups that are exotic, can be constructed as homotopy colimits of diagrams
whose nodes are the p–subgroups of the Weyl group [53, 7.8]. We mention these
special cases for later reference:

� Clark–Ewing p–compact groups: The p–compact groups corresponding to the
Zp –reflection groups .W;L/ where the order of W is prime to p [19]. They
have the form

BX D .B. LT ÌW //^p

where LT ÌW is the semidirect product for the action of the Weyl group on the
discrete maximal torus LT D .L˝Zp

Qp/=LŠ .Z=p
1/r where r is the rank.

The Sullivan spheres (family 3)

B yS2m�1
p � B.Z=p1 ÌCm/

^
p ;

where mj.p�1/, are special cases of this construction. Also family 2b for p> 3

is included here.

� Aguadé p–compact groups: The four p–compact groups, X12 at p D 3, X29

at p D 5, X31 at p D 5, and X34 at p D 7 constructed by Aguadé [2] in a
uniform way as homotopy colimits of diagrams

BSU .r C 1/Z.W /op
99 BT W op

cc

†
op
rC1
nW op

oo
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with two nodes where r D 2; 4; 4; 6, respectively, is the rank and Z.W /, cyclic
of order 2; 4; 4; 6, respectively, is the center of the Weyl group W . In all four
cases p divides the order of the Weyl group exactly once. The two cases X12 ,
X31 had been constructed by Zabrodsky using different methods [71].

� Generalized Grassmannians: The p–compact groups X.m; r; n/ corresponding
to the Zp –reflection groups G.m; r; n/ where r jmj.p � 1/. The cases r D 1

where constructed by Quillen as p–completed classifying spaces of general
linear groups over suitable infinite fields for characteristic prime to p . The cases
with r > 1 were later obtained by Oliver; see Notbohm [58]. See also Møller
[53, 7.10].

Theorem 2.2 describes Out.X /, the group of invertible elements of the monoid
ŒBX;BX � of unpointed homotopy classes of self-maps of BX , in purely algebraic
terms as the “Weyl group of the Weyl group”, NGL.L/.W /=W . In particular, we may
regard the automorphism  u of .W;L/ as the homotopy class of a self-homotopy
equivalence of BX . The map  uW BX ! BX is called an unstable Adams operation
of exponent u 2 Z�p .

Classically, unstable Adams operations were first defined by Sullivan [67] on BU.n/,
for q 2 Z, .p; q/ D 1, q > n, as restrictions of Adams operations defined on BU .
Then extended by Wilkerson to all compact Lie groups [68]. In [38] the second author
showed that p–completed classifying spaces of compact connected Lie groups admit
unstable Adams operations  q of exponent a p–adic unit q 2 Z�p . This is extended to
p–compact groups for odd primes p in [53].

3 p–local finite groups

The concept of p–local finite group has been introduced by Broto, Levi and Oliver [14]
(see also their survey [15]). A p–local finite group is a triple .S;F ;L/ where S is a
finite p–group, F a saturated fusion system over S , and L a centric linking system
associated to F . We will state here again all necessary definitions for the convenience
of the reader.

A fusion system over a finite group S consists of a set HomF .P;Q/ of monomor-
phisms for every pair of subgroups P , Q of S , such that it contains at least those
monomorphisms induced by conjugation by elements of S and all together form a
category where every morphism factors as an isomorphism followed by an inclusion. A
fusion system is saturated if it satisfies certain additional axioms formulated by L Puig
[60] (see also Broto, Levi and Oliver [14, Section 1]). Two subgroups P , P 0 of S are
called F –conjugate if there is an isomorphism between them in F .

Algebraic & Geometric Topology, Volume 7 (2007)



Chevalley p–local finite groups 1823

Definition 3.1 Let F be a fusion system over a p–group S .

(1) A subgroup P � S is fully centralized in F if jCS .P /j � jCS .P
0/j for all

P 0 � S which is F –conjugate to P .

(2) A subgroup P � S is fully normalized in F if jNS .P /j � jNS .P
0/j for all

P 0 � S which is F –conjugate to P .

(3) F is a saturated fusion system if the following two conditions hold:

(i) For each P � S which is fully normalized in F , P is fully centralized in
F and AutS .P / is a Sylow p–subgroup of AutF .P /.

(ii) If P �S and ' 2HomF .P;S/ are such that 'P is fully centralized, and
if we set

N' D fg 2NS .P / j'cg'
�1
2 AutS .'P /g;

then there is x' 2 HomF .N' ;S/ such that x'jP D ' .

A subgroup P of S is F –centric if CS .P
0/�P 0 for every subgroup P 0 �S which is

F –conjugate to P . Fc denotes the full subcategory whose objects are the F –centric
subgroups of S .

A subgroup P � S is F –radical if OutF .P / D AutF .P /= Inn.P / is p–reduced,
namely, it does not contain nontrivial normal p–subgroups.

Definition 3.2 Let F be a fusion system over the p–group S . A centric linking
system associated to F is a category L whose objects are the F –centric subgroups of
S , together with a functor

� W L �! Fc ;

and distinguished monomorphisms ıP W P �! AutL.P / for each F –centric subgroup
P � S , which satisfy the following conditions.

(A) � is the identity on objects and surjective on morphisms. More precisely, for
each pair of objects P;Q2L, Z.P / acts freely on MorL.P;Q/ by composition
(upon identifying Z.P / with ıP .Z.P //�AutL.P /), and � induces a bijection

MorL.P;Q/=Z.P /
Š
�! HomF .P;Q/:

(B) For each F –centric subgroup P �S and each g2P , � sends ıP .g/2AutL.P /
to cg 2 AutF .P /.
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(C) For each f 2MorL.P;Q/ and each g 2 P , the following square commutes in
L:

P
f //

ıP .g/

��

Q

ıQ.�.f /.g//

��
P

f // Q .

The classifying space of the p–local finite group .S;F ;L/ is defined as the p–
completion jLj^p of the nerve of the category L. The classifying space determines
the p–local finite group in the sense that two p–local finite groups are isomorphic if
and only if they have homotopy equivalent classifying spaces. Actually, the complete
structure of a p–local finite group can be recovered from its classifying space by
homotopy theoretic methods.

Finite groups are the main source of examples and motivation for p–local finite group
theory.

Example 3.3 (The p–local finite group .S;FS .G/;Lc
S
.G// of a finite group G ) If

G is a finite group and S a Sylow p–subgroup, the monomorphisms from P � S

to Q� S induced by conjugation in G , HomG.P;Q/ŠNG.P;Q/=CG.P /, where
NG.P;Q/D

˚
x 2G

ˇ̌
xPx�1 �Q

	
, form a saturated fusion system over S , FS .G/.

The FS .G/–centric subgroups of S are the subgroups P � S which are p–centric in
G . A p–subgroup P �G is p–centric if its center, Z.P /, is the Sylow p–subgroup
of CG.P /, or, equivalently, if the centralizer splits as the product of the center of P

and a group C 0
G
.P / of order prime to p , CG.P /DZ.P /�C 0

G
.P /.

Now, we define Lc
S
.G/ as the category with objects all subgroups of S which are

p–centric in G , and morphisms MorL.P;Q/ Š NG.P;Q/=C 0
G
.P /, where C 0

G
.P /

is the p0–complement in CG.P / of the center of P , which is well defined be-
cause P is p–centric. Lc

S
.G/ is a centric linking system associated to FS .G/, and

.S;FS .G/;Lc
S
.G// is a p–local finite group with classifying space jLc

S
.G/j^p'BG^p

[13; 14].

A p–subgroup P of G is called p–radical if it is the maximal normal p–subgroup of
NG.P /, P DOp.NG.P //, or, equivalently, if NG.P /=P is p–reduced [35], whereas
being FS .G/–radical means that OutFS .G/.P / Š NG.P /=PCG.P / D OutG.P / is
p–reduced. However, if P � S is FS .G/–centric and FS .G/–radical, then it is
p–centric and p–radical in G : Assume that P is not p–radical in G , then there is
another p–subgroup Q with P GQ GNG.P / and Q ¤ P . Since P is p–centric,
CG.P / D Z.P / � C 0

G
.P /, where C 0

G
.P / is a p0–group, hence C 0

G
.P / \Q D 1.
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Therefore P GQGNG.P /=C 0
G
.P / and Q=P GNG.P /=PC 0

G
.P /DNG.P /=PCG.P /,

hence OutG.P / is not p–reduced. The converse it is not always true.

Alperin’s fusion theorem for saturated fusion systems [14, A.10] establishes that
morphisms in a saturated fusion system F are composites of automorphisms of fully
normalized, F –centric, and F –radical subgroups of the system, or restrictions of those.
Hence in order to describe a saturated fusion system F over a finite p–group S it is
enough to describe AutF .Qi/ for a set Q1; : : : ;Qr of fully normalized representatives
of F –conjugacy classes of F –centric, F –radical subgroups of S in F . This motivates
the next construction.

If F0 is a fusion system over S , and Q1; : : : ;Qr are subgroups of S , and �i a group
of automorphisms such that Inn.Qi/��i � Aut.Qi/, for each i , then we denote by
FQi

.�i/ the fusion system over Qi whose morphisms are restrictions of elements of
�i , and define

F D hF0IFQ1
.�1/; : : : ;FQr

.�r /i

the fusion system over S whose morphisms are composites of morphisms belonging
to any of the generating fusion systems (cf [14, Section 9]).

Thus, in particular, if F is a saturated fusion system over a finite p–group S and
Q1; : : : ;Qr is a set of fully normalized representatives of F –conjugacy classes of
F –centric, F –radical subgroups of S in F , then

F D hFS .AutF .S//IFQ1
.AutF .Q1//; : : : ;FQr

.AutF .Qr //i :

We now describe the fusion systems of GLp.q/ and SLp.q/ over the respective Sylow
p–subgroups, where p is a prime number and q is a prime power q � 1 mod p . This
will be useful in later sections.

Example 3.4 (The fusion system of GLp.q/, p odd) We will describe the fusion
system of GLp.q/ over a Sylow p–subgroup, for p a prime and q a prime power such
that q � 1 mod p . We can use the Alperin–Fong description of p–radical subgroups
of general linear groups [4]. The elements

B D diag.1; �; �2; : : : ; �p�1/; C D

0BBBBB@
0 0 : : : 1

1 0 0

0 1 0
:::

: : :
:::

0 0 : : : 1 0

1CCCCCA
where � be a primitive p–th root of unity in F�q , generate an extraspecial subgroup
�1 D hB;C i �GLp.q/ of order p3 and exponent p .
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R NGLp.q/.R/ OutGLp.q/.R/

Z` GLp.q/ 1

T
p

`
.F�q/

p Ì†p †p

xS .F�q/
p Ì .Z=p ÌZ=p� 1/ Z=p� 1

�` .F�q/ ��` �SL2.p/ SL2.p/

U`C1 F�qp ÌZ=p Z=p

Table 1: p–radical subgroups of GLp.q/ for q � 1 mod p

R OutGLp.q/.R/

T
p

`
†p

xS Z=p� 1

�` SL2.p/

Table 2: F –centric, F –radical subgroups in the fusion system of GLp.q/

The p–primary part of the multiplicative group of units F�q is isomorphic to Z=p`

where `D �p.1� q/. Let T
p

`
Š .Z=p`/p , the maximal finite torus, be the group of

diagonal matrices of p–power order. Then xS D T
p

`
Ì hC i Š Z=p` oZ=p is a Sylow

p–subgroup of GLp.q/.

Define the subgroup �` DZ` ı�1 �GLp.q/ to be the central product over the center
of �1 of the center Z` Š Z=p` of GLp.q/ and �1 .

There is an standard inclusion F�qp �GLp.q/, obtained by letting F�qp act on Fqp by
multiplication and considering Fqp as Fq –vector space. We define U`C1 as the image
in GLp.q/ of the cyclic group Z=p`C1 � F�qp of all roots of unity of p–power order
in Fqp .

With this notation and according to Alperin and Fong [4], if R is a p–radical subgroup
of GLp.q/ then R is conjugate to one of the subgroups displayed in Table 1.

It is now easy to extract from Table 1 the F –centric, F –radical subgroups of xS in the
fusion system F D F xS .GLp.q// of GLp.q/ over xS . Notice that Z` is clearly not
F –centric and U`C1 clearly not F –radical. This leads to Table 2.

Example 3.5 (The fusion system of SLp.q/, p odd) We proceed now by describing
the fusion system of SLp.q/ over a Sylow p–subgroup, for p a prime and q a prime
power such that q � 1 mod p . Let `D �p.1� q/ as in the previous example.
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P OutSLp.q/.P / Conditions
T
.p�1/

`
†p p > 3

S Z=p� 1

�1.�
r / SL2.p/ r D 0 if `D 1, p D 3;

r D 0; 1; : : : ;p�1 if `> 1 or p> 3,

Table 3: F –centric F –radical subgroups in the fusion system of SLp.q/

We first show that every p–radical subgroup of SLp.q/ is the intersection Q\SLp.q/

of a p–radical subgroup Q of GLp.q/ with SLp.q/. For a given p–radical p–
subgroup P of SLp.q/ define QDOp.NGLp.q/.P //. Q\SLp.q/ is a normal sub-
group of NSLp.q/.P / and since P is the maximal normal p–subgroup of NSLp.q/.P /,
we have Q\SLp.q/� P . Same argument with NGLp.q/.P / shows that P �Q and
therefore Q\SLp.q/� P .

Every element g 2 GLp.q/ normalizes SLp.q/, so if g normalizes Q it also nor-
malizes Q\SLp.q/ � P , so NGLp.q/.Q/ �NGLp.q/.P /. But, by definition of Q,
this is normal in NGLp.q/.P /, hence we actually have NGLp.q/.Q/DNGLp.q/.P /. So,
therefore, QDOp.NGLp.q/.Q// is p–radical.

Fix the Sylow p–subgroup S D xS\SLp.q/ of SLp.q/, and let F DFS .SLp.q// be
the fusion system of SLp.q/ over S . Assume that P �S is F –centric and F –radical.
Then P is p–centric and p–radical in SLp.q/. In particular P D Q \ SLp.q/

where Q is p–radical in GLp.q/, hence conjugate by an element g 2 GLp.q/ to
a p–subgroup in the Table 1. Among those intersections, only S D xS \ SLp.q/,
T
.p�1/

`
D S \T

p

`
, and �1 D S \ �` are also p–centric. Hence, the complete list

of conjugacy classes of p–centric and p–radical subgroups of SLp.q/, is obtained
by conjugating these three subgroups by elements g 2GLp.q/: where �1.�

r /, r D

0; 1; : : : ; .p�1/ are subgroups of SLp.q/, defined as the conjugates of �1 in GLp.q/,
�1.�

r /D xr�1x�1
r , where xr D diag.�r ; 1; : : : ; 1/ 2GLp.q/, � a .q� 1/–st root of

unity. Notice that for g 2GLp.q/, gSg�1 lies in S if and only if it is exactly S and
the same happens with T

.p�1/

`
. In the case of �1 we just need to check which of the

subgroups �1.�
r / are conjugate in SLp.q/. In fact, Alperin’s fusion theorem [14,

A.10], together with the list of p–radical p–centric subgroups that we have obtained
so far, tells us that if two subgroups �1.�

r / and �1.�
s/ are conjugate in SLp.q/ they

are already conjugate in NSLp.q/.S/, hence we obtain the Table 3 by direct calculation
as a list of p–centric and p–radical subgroups but, by inspection, this coincides with
the list of F –centric F –radical subgroups.
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An p–local finite group that is not of the form .S;FS .G/;Lc
S
.G// for any finite group

G is called exotic. Examples of exotic p–local finite groups are already shown in
[14]. Recently, Levi and Oliver have obtained a family of exotic 2–local finite groups,
B Sol.q/ [40], based on fusion systems originally described by Solomon [65].

Definition 3.6 (a) For any saturated fusion system F over a p–group S , and
any P � S , fully centralized in F , the centralizer fusion system CF .P / over
CS .P / is defined by setting

HomCF .P/.Q;Q
0/D

˚
.'jQ/

ˇ̌
' 2 HomF .PQ;PQ0/; '.Q/�Q0; 'jP D IdP

	
for all Q;Q0 � CS .P /.

(b) For a p–local finite group .S;F ;L/ and P �S fully centralized in F , we define
the category CL.P / whose objects are CF .P /–centric subgroups Q� CS .P /

and where

MorCL.P/.Q;Q
0/D

˚
' 2 HomL.PQ;PQ0/

ˇ̌
�.'/jP D IdP ; �.'/.Q/�Q0

	
:

It is proved in [14, Section 2] that if .S;F ;L/ is a p–local finite group and P � S is
fully centralized in F , then .CS .P /;CF .P /;CL.P // is a p–local finite group.

In [40] Levi and Oliver have obtained necessary and sufficient conditions for a fusion
system to be saturated. We reproduce here their result for the convenience of the reader.
We will write CF .x/D CF .hxi/ for x 2 S .

Proposition 3.7 [40] Let F be any fusion system over a p–group S . Then F is
saturated if and only if there is a set X of elements of order p in S such that the
following conditions hold:

(a) Each x 2 S of order p is F –conjugate to some element of X.

(b) If x and y are F –conjugate and y 2 X, then there is some homomorphism
 2 HomF .CS .x/;CS .y// such that  .x/D y .

(c) For each x 2 X, CF .x/ is a saturated fusion system over CS .x/.

4 Recognition of classifying spaces of p–local finite groups

In [14] it is shown that a p–local finite group can be completely recovered from its
classifying space by homotopy theoretic methods. Also, a recognition principle for
classifying spaces of p–local finite groups is provided in [14, Theorem 7.5]. We will
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briefly describe these methods and derive an inductive method that will be useful in
our situation.

We will first recall how a fusion system F.S;f /.X / and a linking system L.S;f /.X /
are attached to a space X equipped with a map f W BS ! X , where S is a finite
p–group.

If .S; f / is a p–subgroup of a space X we can define a fusion system over S ,
F.S;f /.X /, by declaring

HomF.S;f /.X /.P;Q/D
˚
' 2 Hom.P;Q/

ˇ̌
f jBP ' f jBQ ıB'

	
for all P;Q � S , where f jBP denotes the composition BP

BiP
���! BS

f
�! X . Next,

we define the category L.S;f /.X / that has objects the subgroups of S and

MorL.S;f /.X /.P;Q/D f.'; ŒH �/ j ' 2 Hom.P;Q/ and
ŒH � is the homotopy class of a homotopy
from f jBP to f jBQ ıB'g;

and the full subcategory Lc
.S;f /

.X / whose objects are F.S;f /.X /–centric subgroups
P � S .

The important question and the aim of the rest of this section is to find sufficient
conditions on a space X and a p–subgroup .S; f / under which

.S;F.S;f /.X /;Lc
.S;f /.X //

is a p–local finite group and X is its classifying space jLc
.S;f /

.X /j^p 'X .

One first important case is that of X D jLj^p , the classifying space itself of a given
p–local finite group .S;F ;L/. The distinguished homomorphism ıS W S ! AutL.S/
provides a functor BS ! L, where BS denotes the category that has one object and
its group of automorphisms is S . In turn, this functor induces a map between the
respective nerves jBS j ! jLj. Finally, composing with the p–completion of jLj we
obtain a canonical map for .S;F ;L/:

�S W jBS j ! jLj^p ;

where we can identify jBS j 'BS . It turns out that .S;F.S;�S /.jLj^p/;Lc
.S;�S /

.jLj^p//
is isomorphic to the original .S;F ;L/ [14, 7.3]. This is how a p–local finite group is
completely recovered from its classifying space.

The basic tool in order to show that these systems define a p–local finite group with
classifying space X is [14, Theorem 7.5]. In order to apply this theorem in our
situation we face two main difficulties, namely, to show that the p–completed nerve of
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L.S;f /.X / is homotopy equivalent to X and to show that F.S;f /.X / is a saturated
fusion system. In order to overcome these difficulties, we develop in this section an
inductive method mainly based on the centralizer decomposition of p–local finite
groups.

Definition 4.1 Given spaces X and Y , we say that a map ˛W X ! Y is a homotopy
monomorphism at p if the homotopy fiber of ˛ , F , over any connected component of
Y , is p–quasifinite; that is, the inclusion F !Map.BZ=p;F / as constant maps is a
weak homotopy equivalence.

Given two maps f W X ! Y and gW Y !Z , where g is a homotopy monomorphism
at p , it is not hard to prove f is also a homotopy monomorphism at p if and only if
the composition g ıf is so.

Definition 4.2 Let X be a space. A finite p–subgroup of X is a pair .P; f /, where
P is a finite p–group and f W BP ! X is a homotopy monomorphism at p . A p–
subgroup .S; f / of X is called a Sylow p–subgroup of X if for any other p–subgroup
.Q;g/ of X , gW BQ!X factors through f W BS !X , up to homotopy. If .P; f /
is a p–subgroup of X , then we denote BCX .P; f /DMap.BP;X /f .

Our basic example comes from p–local finite groups. If .S;F ;L/ is a p–local finite
group, then .S; �S / is a Sylow p–subgroup of jLj^p . The map �S W jBS j ! jLj^p
satisfies the required conditions by [14, Theorem 4.4].

We will need later the next technical lemma.

Lemma 4.3 Assume that X and Y are spaces for which Map.BZ=p;X /ct 'X and
Map.BZ=p;Y /ct ' Y . Let f W X ! Y be a homotopy monomorphism at p and
�W BP !X a finite p–subgroup of X , then each map in the diagram

(4) BCX .P; �/
ev //

f]
��

X

f

��
BCY .P; f ı�/ ev

// Y

is a homotopy monomorphism at p .

Proof Let F be the homotopy fiber of the evaluation map

BCX .P; �/DMap.BP;X /�
ev
�!X :
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There is an induced fibration

Map.BZ=p;F /!Map.BZ=p;Map.BP;X /�/�ct !Map.BZ=p;X /ct

where �ct stands for all components mapping down to the component of the constant
map in Map.BZ=p;X /. Since Map.BZ=p;X /ct 'X , also

Map.BZ=p;Map.BP;X /�/�ct 'Map.BP;Map.BZ=p;X /ct /z� 'Map.BP;X /� ;

and therefore Map.BZ=p;F /'F ; that is, F is p–quasifinite and evW CX .P; �/!X

is a homotopy monomorphism at p . Similarly, evW BCY .P; f ı�/!Y is a homotopy
monomorphism at p . Finally, since all other maps in diagram (4) are homotopy
monomorphisms at p , then also f] is a homotopy monomorphism at p .

The next is a useful result that provides conditions on the space X and a Sylow p–
subgroup .S; f / under which the fusion system F.S;f /.X / is saturated. An element
x 2 S of order p determines a homomorphism ix W Z=p ! S an then a map f ı
Bix W BZ=p!X . We write BCX .x/DMap.BZ=p;X /x , the connected component
that contains the map f ıBix , and fx W BCS .x/! BCX .x/ the map induced by f .

Proposition 4.4 Let X be a space, .S; f / a Sylow p–subgroup of X , and X a set of
elements of order p in S . Assume that:

(1) Map.BZ=p;X /ct 'X .

(2) For all x 2X, the natural map fx W BCS .x/!BCX .x/ is a Sylow p–subgroup
for BCX .x/.

(3) For all x 2 X, F.CS .x/;fx/.BCX .x// is a saturated fusion system over CS .x/.

(4) For all x 2S of order p , there is ' 2HomF.S;f /.X /.hxi;S/ such that '.x/2X.

Then F.S;f /.X / is a saturated fusion system over S and CF.S;f /.X /.x/ coincides with
F.CS .x/;fx/.BCX .x// as fusion systems over CS .x/, for all x 2 X.

Proof Write F D F.S;f /.X / for short. Clearly, F is a fusion system over S .
Condition (a) of Proposition 3.7 holds by (4); and it remains to show that conditions
(b) and (c) of Proposition 3.7 hold.

Condition (b) of Proposition 3.7 Fix x;y 2 S of order p such that y 2X, and such
that there is  0 2 HomF .hxi ; hyi/ with  0.x/D y . We must show that  0 extends
to some  2 HomF .CS .x/;CS .y//.

Since x and y are F –conjugate,

Œf ıBix �D Œf ıBiy � 2 ŒBZ=p;X �;
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so Map.BZ=p;X /x D Map.BZ=p;X /y . Since CS .y/ is a Sylow p–subgroup of
Map.BZ=p;X /y by (2), the natural map BCS .x/!Map.BZ=p;X /x factors through
BCS .y/. In other words, there is some  2 Hom.CS .x/;CS .y// such that the
following square commutes up to homotopy

(5) BCS .x/�BZ=p
f ıB.incl�ix/ //

B �Id
��

X

BCS .y/�BZ=p
f ıB.incl�iy/ // X .

Thus  2HomF .CS .x/;CS .y//. If �; �0 2Hom.CS .x/�Z=p;S/ denote the homo-
morphisms �.g; t/D gxt and �0.g; t/D  .g/yt , then f ıB�' f ıB�0 by (5), and
hence Ker.�/D Ker.�0/ by [14, Proposition 5.4(d)] (and point (1)). And this implies
that  .x/D y .

Condition (c) of Proposition 3.7 Fix some x 2 X; we must show that CF .x/ is
a saturated fusion system. By (3), the fusion system F 0 def

DF.CS .x/;fx/.BCX .x// is
saturated, so it suffices to show that these two fusion systems over CS .x/ are equal.

To see this, fix P;Q � CS .x/, and let ' 2 Hom.P;Q/ be any monomorphism. Set
xP DP � hxi and xQDQ� hxi. Let � 2Hom.P �Z=p;S/ and �0 2Hom.Q�Z=p;S/

be defined by �.g; t/D gxt and �0.g; t/D gxt . Then ' 2 HomF 0.P;Q/ if and only
if the following square commutes up to homotopy

(6) BP �BZ=p
f ıB� //

B'�Id
��

X

BQ�BZ=p
f ıB�0 // X .

This holds if and only if K
def
D Ker.�/DKer.�0 ı .' � Id// by (1) and [14, Proposition

5.4(d)], and the induced maps from B..P�Z=p/=K/ to X are homotopic. The kernels
are equal if and only if ' extends to a monomorphism x' from xP to xQ which sends x

to itself. And in this case, the induced maps on B..P �Z=p/=K/ are homotopic if
and only if f jB xP ' f jB xQ ıB x' , if and only if ' 2 HomCF .x/.P;Q/.

Now, Proposition 3.7 implies that F.S;f /.X / is a saturated fusion system over S and
the argument for condition (c) already contains the proof that CF .x/ coincides with
F 0 D F.CS .x/;fx/.BCX .x// as fusion systems over CS .x/.

We derive now another characterization that will be useful in the specific cases in which
we are interested or more generally in cases in which there is a good knowledge of
elementary abelian p–subgroups of X and of their centralizers.
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Theorem 4.5 Let X be a p–complete space and .S; f / a p–subgroup of X . Assume
the following conditions hold:

(1) Map.BZ=p;X /ct 'X .

(2) For each nontrivial element x 2 S of order p

(a) BCX .x/ is the classifying space of a p–local finite group, and
(b) if .H;g/ is a Sylow p–subgroup for BCX .x/, there is a group homomor-

phism �W H ! S that makes the diagram

BH

g

��

B� // BS

f

��
BCX .x/

ev // X

commutative up to homotopy,

Then .S; f / is a Sylow p–subgroup for X and

.S;F.S;f /.X /;Lc
.S;f /.X //

is a p–local finite group.

Furthermore, X ' jL.S;f /.X /j^p if and only if the natural map induced by evaluation

hocolim
Fe
.S;f /

.X /op
Map.BE;X /f jBE

�!X

is a mod p homology equivalence. Here Fe
.S;f /

.X / denotes the full subcategory of
F.S;f /.X / consisting of nontrivial fully centralized (Definition 3.1) elementary abelian
p–subgroups of S .

Proof The proof is divided in five steps. First, we prove that .S; f / is a Sylow
p–subgroup of X . Next, that the fusion system of X over .S; f /, F.S;f /.X / is
saturated. In the third step we show that for each F.S;f /.X /–centric subgroup P � S

the map f jBP is centric. A map gW BP !X is called centric if the induced map
f]W Map.BP;BP /Id!Map.BP;X /g is a weak homotopy equivalence.

These two last steps are the hypothesis (a) and (c) of [14, Theorem 7.5]. According to
the remarks after the proof of this theorem in [14], this suffices in order to conclude
that .S;F.S;f /.X /;Lc

.S;f /
.X // is a p–local finite group. This is the first part of the

theorem.
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The second part states that X ' jL.S;f /.X /j^p if and only if the natural map induced
by evaluation

hocolim
Fe
.S;f /

.X /op
Map.BE;X /f jBE

�!X

is a mod p homology equivalence. This is proved in steps 4 and 5. Notice that
X ' jL.S;f /.X /j^p is condition (b) in [14, Theorem 7.5].

Step 1 (.S; f / is a Sylow p–subgroup for X .) Let .P; �/ be a finite p–subgroup
of X . Choose a central element x of order p in P . It determines a homomorphism
ix W Z=p!P for which CP .Z=p/DP , and a map �ıBix W BZ=p!X . According to
our hypothesis, BCX .x/ is the classifying space of a p–local finite group, and if .H;g/
is its Sylow p–subgroup, there are homomorphisms �W H!S and 'W CP .Z=p/!H

that make the diagram

BCP .Z=p/

B'

((

' ev
��

�] // BCX .Z=p; � ıBix/

ev
��

BH

B�

��

goo

BP
� // X BS

foo

commutative up to homotopy. Hence, � ı'W P D CP .Z=p/! S provides the factor-
ization of .P; �/ through .S; f /.

Step 2 (The fusion system of X over .S; f /, F.S;f /.X / is saturated.) This part of
the proof will be based on Proposition 4.4. Define

XD
˚

x 2 S
ˇ̌
x of order p and fx W BCS .x/! BCX .x/

is a Sylow p–subgroup for BCX .x/
	
:

Notice now that conditions (1) and (2) of Proposition 4.4 are satisfied by our hypothesis
and by definition of the class X. Condition (3) is easily verified, too. In fact, by
hypothesis, for each x 2X, BCX .x/ is the classifying space of a p–local finite group
and since fx W BCS .x/!BCX .x/ is a Sylow p–subgroup for BCX .x/, the fusion
system F.CS .x/;fx/.BCX .x// is saturated.

It remains to verify condition (4); that is, that every element x 2 S of order p is
F.S;f /.X /–conjugate to an element of the class X.

Assume that x 2 S has order p . It gives a homomorphism ix W Z=p! S and a map
f ıBix W BZ=p! X . There is an evaluation map evW BZ=p �BCX .x/! X . Let
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.H;g/ be a Sylow p–subgroup of BCX .x/. Since .S; f / is a Sylow p–subgroup of
X , there is a homomorphism �W Z=p�H ! S making the diagram

BZ=p�BH
B� //

1�g

��

BS

f

��
BZ=p�BCX .x/

ev // X

commutative up to homotopy.

Let 'D�jZ=p the restriction of � to the first component Z=p . From the above diagram
we deduce that ' 2 HomF.S;f /.X /.Z=p;S/. Let y D '.x/.

Then, � induces

BH
Bz�
��! BCS .y/

fy

�! BCX .y/
ev
�!X

where all maps are homotopy monomorphisms at p . The first one because z� is a
monomorphism, the others by Lemma 4.3.

Now, ' induces a homotopy equivalence BCX .y/ ' BCX .x/, hence also an iso-
morphism between the respective Sylow p–subgroups. Since .H;g/ is a Sylow
p–subgroup for CX .x/, it follows from the above sequence of maps that .CS .y/; fy/

is a Sylow p–subgroup for CX .y/. Hence y D '.x/ 2 X.

Step 3 (f jBP is a p–centric map for each F.S;f /.X /–centric subgroup P � S .)
Suppose that P � S is F.S;f /.X /–centric. Choose a central element x 2 S or order
p . Since P is F.S;f /.X /–centric, x 2 P and we have a sequence of homotopy
monomorphisms at p

BP
B incl
���! BS

fx
��! BCX .x/

ev
�!X :

By hypothesis, BCX .x/ is the classifying space of a p–local finite group, and from
the above sequence of maps we easily obtain that .S; fx/ is a Sylow p–subgroup
for BCX .x/. Furthermore, P is also F.S;fx/.BCX .x//–centric, and then fxjBP is a
p–centric map. There is a sequence of equivalences

(7) Map.BP;BP /Id 'Map.BP;BCX .x//fx jBP

'Map.BP �BZ=p;X /f jBPıBm 'Map.BP;X /f jBP

where mW P �Z=p! P denotes multiplication by x , the generator of Z=p D hxi.
The last equivalence is implied by the Zabrodsky’s lemma (cf [20, Proposition 3.5])
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applied to the fibration BZ=p �!BP �BZ=p
Bm
��!BP . The homotopy equivalence

(7) shows that f jBP is a p–centric map.

Step 4 (There is a map �W jL.S;f /.X /j^p !X that induces homotopy equivalences

�P W Map.BP; jL.S;f /.X /j^p/jıS jjBP

'
�! Map.BP;X /f jBP

;

for each nontrivial subgroup P � S .) The construction of the map �W jLc
.S;f /

.X /j!

X requires some technical constructions and will be explained in Proposition 4.6.
Indeed, it will be shown that there is a homotopy commutative diagram

(8) BS
�S

yyssssssssss
f

  A
AA

AA
AA

A

jLc
.S;f /

.X /j � // X

where we have identified BS ' jBS j.

We will show that the induced map

(9) �P W Map.BP; jLc
.S;f /.X /j

^
p/�S jBP

�!Map.BP;X /f jBP
:

is a homotopy equivalence by induction on the order of the group P .

If P D hxi, for some x 2 S of order p , then BCX .x/ D Map.BP;X /f jBP
is

the classifying space of a finite p–local group, by hypothesis. According to Step
2 above, we can assume without loss of generality that x 2 X, and so, the induced
map fx W BCS .x/!BCX .x/ is the inclusion of a Sylow p–subgroup, and the fusion
system F.CS .x/;fx/.BCX .x// coincides with CF.S;f /.X /.x/ by Proposition 4.4.

Now, diagram (8) induces the new homotopy commutative diagram

(10) BCS .x/
�]

uukkkkkkkkkkkkkk
fx

%%KKKKKKKKKK

Map.BP; jLc
.S;f /

.X /j^p/� jBP �P

// BCX .x/

where, according to [14, 6.3], the map �] is the inclusion of a Sylow p–subgroup of
the mapping space Map.BP; jLc

.S;f /
.X /j^p/� jBP

which is the classifying space of a
centralizer p–local finite group with fusion system CF.S;f /.X /.x/. Furthermore, �P

induces an equivalence of fusion systems, and therefore a homotopy equivalence.
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For an arbitrary nontrivial subgroup P � S , we fix an element x of order p in the
center of P . Again, we can assume that x belongs to X. There is a diagram

Map.BP; jLc
.S;f /

.X /j/� jBP

�P

��

// Map.BP �Bhxi ; jLc
.S;f /

.X /j/� jBP ıBm

�P�hxi

��

//

Map.BP;X /f jBP
// Map.BP �Bhxi ;X /f jBP ıBm

//

// Map.BP;Map.Bhxi ; jLc
.S;f /

.X /j/B incl/� jBP

Map.1;�hxi/

��
// Map.BP;Map.Bhxi ;X /x/f jBP

where horizontal arrows are homotopy equivalences, by adjunction and by Zabrodsky’s
lemma (cf [20, Proposition 3.5]) applied to the fibration

BZ=p �! BP �Bhxi
Bm
��! BP;

where we identify Z=p with the kernel of multiplication mW P � hxi ! P . Also,
Map.1; �hxi/ is a homotopy equivalence. That concludes the proof that �P in Equation
(9) is a natural mod p homology equivalence for subgroups P � S .

Step 5 (X ' jL.S;f /.X /j^p if and only if the natural map

hocolim
Fe
.S;f /

.X /op
Map.BE;X /f jBE

�!X

induced by evaluation is a mod p homology equivalence.) Diagram (8) induces an
isomorphism of fusion systems over S : F.S;�/.jLc

.S;f /
.X /j/D F.S;f /.X /. We will

consider the full subcategories of nontrivial fully centralized elementary abelian p–
subgroups E � S . In order to simplify the notation, we will write Fe in place of
Fe
.S;�/

.jLc
.S;f /

.X /j/D Fe
.S;f /

.X /.

For every elementary abelian subgroup E � S , the map �E , as defined in step 4, fits
in a commutative diagram

Map.BE; jLc
.S;f /

.X /j/� jBE

�E //

ev
��

Map.BE;X /f jBE

ev
��

jLc
.S;f /

.X /j � // X

where vertical maps are induced by evaluation at the base point. As a consequence, we
obtain a map between the corresponding homotopy colimits together with compatible
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maps induced by evaluation:

(11) hocolim
.Fe/op

Map.BE; jLc
.S;f /.X /j

^
p/� jBE

ev
��

y� // hocolim
.Fe/op

Map.BE;X /f jBE

ev
��

jLc
.S;f /

.X /j^p
� // X

where y� D hocolim.Fe/op �E is the induced map between the respective homotopy
colimits. It turns out that y� is a homotopy equivalence because all �E are homo-
topy equivalences according to step 4. Also, the left vertical map of is a homotopy
equivalence by [14, 2.6 and 6.3].

Hence, the right vertical map ev in (11) is a homotopy equivalence if and only if � is
a homotopy equivalence. This proves step 5.

Notice also, that, reciprocally, if X is the classifying space of a p–local finite group
with Sylow p–subgroup .S; f /, then all conditions of Theorem 4.5 are satisfied
according to [14, Section 7].

There seems to be no natural way to construct a map between X and jLc
.S;f /

.X /j in
either direction. This problem was solved by Broto, Levi and Oliver [13] by means of
some auxiliary constructions. For the convenience of the reader we shall reproduce the
argument here. For this aim we will introduce a variation of the categories F.S;f /.X /
and L.S;f /.X /, independent of the choice of a Sylow p–subgroup.

For a space X , we denote Fp.X / the category in which the objects are finite p–
subgroups .P; f / of X , and the morphisms are defined

MorFp.X /..P; f /; .Q;g//D
˚
' 2 Hom.P;Q/

ˇ̌
f ' g ıB'

	
:

Similarly, Lp.X / is the category in which the objects are the p–subgroups .P; f / of
X and morphisms are defined as

MorLp.X /..P; f /; .Q;g//D
˚
.'; ŒH �/

ˇ̌
' 2 Hom.P;Q/ and
ŒH � is the homotopy class of
a homotopy from f to g ıB'

	
:

Note that if .S; f / is a p–subgroup of X , then there are obvious functors F.S;f /.X /!
Fp.X / and L.S;f /.X /! Lp.X /, sending and sending an object P of F.S;f /.X /
(resp. L.S;f /.X /) to the map f jBP W BP!X considered as an object of Fp.X / (resp.
Lp.X /). Furthermore, if .S; f / is a Sylow p–subgroup, then these are equivalences
of categories.
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Proposition 4.6 Let X be a space, S a finite p–group, and f W BS ! X a map.
Assume that .S; f / is a Sylow p–subgroup of X and that for each F.S;f /.X /–centric
subgroup P � S , f jBP is a centric map, then there is a homotopy equivalence
�S W jBS j ! BS and a map �X W jLc

.S;f /
.X /j !X such that the diagram

jBS j

�S

��

�S

'
// BS

f

��
jLc
.S;f /

.X /j
�X // X :

is homotopy commutative.

Proof We will sketch here the necessary constructions in order to obtain the map
�X W jLc

.S;f /
.X /j ! X . We refer to Broto, Levi and Oliver [13, Section 4] for full

details.

We denote Lc
p.X / the full subcategory of Lp.X / whose objects are the p–subgroups

.P; f / of X where f is a centric map. The hypothesis on .S; f / and on F.S;f /.X /–
centric subgroups imply that the functor L.S;f /.X /! Lp.X / defined above restricts
to an equivalence of categories

Lc
.S;f /.X /! Lc

p.X / :

In order to connect the nerve of Lc
p.X / and X , in [13], it is defined the simplicial

space M c
� .X / where n–simplices are maps �W �.P/!X , where

PD .P0

'1
! P1

'2
! � � �

'n
! Pn/

is a sequence of p–subgroups of S and monomorphisms, and �.P/ can be regarded
as the homotopy colimit of the sequence

BP0

B'1
�! BP1

B'2
�! � � �

B'n
�! BPn;

with the condition that the restriction of � to any BPi is a centric map.

The inclusion of base points in BPi provides a map �PW �n ! �.P/, and then an
evaluation map

evX W jM
c
� .X /j !X ;

where evX .t; �/D �.�P.t//.

For each i , the mapping cylinder of BPi�1

'i
��! BPi embeds naturally in �.P/

and the restriction of � to this mapping cylinder can be interpreted as a homotopy
between �jBPi�1

and �jBPi
ıB'i , thus, a morphism of Lc

p.X / from �jBPi�1
! X
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to �jBPi
!X . In this way, the n–simplex �W �.P/!X determines an n–simplex in

N�.Lc
p.X // and gives rise to a simplicial map from M c

� .X / to the nerve of Lc
p.X /,

and therefore a map between the respective geometric realizations:

�X W jM
c
� .X /j �! jLc

p.X /j :

Each object ˛W BP !X of Lc
p.X / is a centric map. In particular, Map.BP;X /˛ '

Map.BP;BP /Id 'BZ.P / is aspherical, and so, according to [13, Lemma 4.2] (see
its proof), �X W jM c

� .X /j ! jLc
p.X /j is a homotopy equivalence. Then, choosing a

homotopy inverse of �X we can define �X W jLc
.S;f /

.X /j !X as the composition

(12) jLc
.S;f /

.X /j ' // jLc
p.X /j jM c

� .X /j'

�Xoo evX // X :

In case X DBS , Proposition 2.7, Lemma 4.2 and Lemma 4.3 of [13] provide homotopy
equivalences

(13) jLc
p.S/j

' // jLc
p.BS/j jM c

� .BS/j
'oo ' // BS

hence, the key to finish the proof of the proposition lies in the naturality properties
of this construction with respect to f W BS ! X . However, in general, a subgroup
P � S which is centric in S , need not be centric when regarded as a p–subgroup of
X by considering the restriction f jBP WBP �!X of f to BP . For this reason, we
will have to restrict M c

� .BS/ to the subspace M S
� .BS/ of simplices �W �.P/!BS

of M c
� .BS/ where every group in the sequence P is S itself. Accordingly, we call

LS
p .BS/ the full subcategory of Lc

p.BS/ with objects the homotopy equivalences
gW BS ! BS . With this notation we have a diagram of homotopy equivalences

(14) jBS j
' //

'

��

jLS
p .BS/j

'

��

jM S
� .BS/j

evBS

'
//

'

��

'oo BS

jLc
p.S/j

' // jLc
p.BS/j jM c

� .BS/j
'oo evBS

'
// BS

where same arguments as in [13] for the sequence (13) are used.

Now, for every equivalence gW BS!BS , the composition BS
g
!BS

f
!X defines a

centric p–subgroup of X , and then f induces a well defined map of simplicial spaces
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M S
� .BS/!M c

� .X /, that makes commutative the diagram

(15) jBS j
' //

�S

��

jLS
p .BS/j

f]
��

jM S
� .BS/j

evBS

'
//

f]

��

'oo BS

f

��
jLc
.S;f /

.X /j ' // jLc
p.X /j jM c

� .X /j
�X

'
oo evX // X .

Then �S W jBS j
'
�! BS is the composite homotopy equivalence in the top row of the

above diagram, and this finishes proof.

5 Homotopy fixed point p–compact groups

Let M be a space and G a discrete group. An action of the group G on the space M

is group homomorphism
�W G! aut.M /

where aut.M / is the topological monoid of self-homotopy equivalences of M .

Dwyer and Wilkerson introduced [25, Section 10] the homotopy theoretic notion of
proxy actions. A proxy action of G on M is defined as a fibration

(16) M //MhG

p //BG:

Now, this is classified up to fiber homotopy equivalence by a map

BG! B aut.M / :

Any action �W G! aut.M / of G on M determines a proxy action by taking MhG D

M �G EG to be the Borel construction and the classifying map is B�W BG !

B aut.M /. Conversely, the proxy action (16) produces a rigid action of G on a
space homotopy equivalent to M by turning M !MhG into a covering space.

We will adopt the more flexible notion of proxy actions throughout this paper and by
abuse of language will call just an action to a proxy action. In this setting, the total
space MhG of (16) is called the homotopy quotient space and the homotopy fixed point
space is defined as the space M hG of sections of fibration (16). In this section we
use obstruction theory to develop some basic structure results for M hG , and we apply
them in the case where M D BX is the classifying space of a p–compact group and
to the proof of Theorem B.

We will show conditions under which M hG is nonempty, and if this is the case, a way
to describe the set of path-components. Fibration (16) induces an action of G on the
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set of path-components of M and �0.M /G denotes the set of path-components of
M that remain fixed under this action. Then, evaluation of a section at the base point
b 2 BG induces a map

(17) �0.M
hG/

�0.ev/
����! �0.M /G :

Thus, a necessary condition for M hG being nonempty is that �0.M /G is nonempty.

Fix now a point m 2M which represents a G –invariant path-component of M , then
there is a short exact sequence

(18) 1! �1.M;m/! �1.MhG ;m/! �1.BG; b/! 1

of fundamental groups, where b D p.m/. If m 2 �0.M /G happens to be in the image
of the evaluation map (17), then s.b/Dm for some homotopy fixed point s 2M hG

and then the exact sequence (18) does have a section, namely �1.s/.

Define H 1.GI�1.M;m// [62] to be the set (possibly empty) of �1.M;m/–conjugacy
classes of sections �1.BG; b/! �1.MhG ;m/ of the exact sequence (18). Then, the
argument in the previous paragraph produces a well defined map �0.ev/�1.Œm�/!

H 1.GI�1.M;m//. In next Lemma it will be shown that, under certain conditions, this
is a bijection for every Œm� 2 �0.M /G .

Since �1.MhG ;m/ acts on the homotopy groups �i.M;m/ of the fiber, also G D

�1.BG; b/ acts on �i.M;m/ through �1.s/, for a given element s 2M hG . We let
�i.M;m/s�G , i � 1, denote the fixed point group for this action.

Lemma 5.1 Suppose that G is a finite group of order prime to p and that �i.M;m/

is a module over the ring Z.p/ of p–local integers for all i � 2 and all base points
m 2 �0.M /G . Then the following hold:

(1) A class Œm� 2 �0.M /G is in the image of the evaluation map (17) if and only if
the exact sequence (18) splits.

(2) If Œm� 2 �0.M /G is in the image of the evaluation map (17), then there is an
exact sequence of pointed sets

�!H 1.GI�1.M;m// �! �0.M
hG/

�0.ev/
����! �0.M /G

where Œm� is the base point of �0.M /G .

(3) If s 2M hG is a homotopy fixed point with s.b/Dm then

�i.M
hG ; s/Š �i.M;m/s�G

for all i � 1.
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Proof The Postnikov functors Pr , defined as nullification with respect to Sr�1 (see
Farjoun [29]), determine a tower of fibrations

MhG! � � � ! Pr MhG! Pr�1MhG! � � � ! P1MhG! BG

so that M hG is the homotopy inverse limit of a sequence

� � � ! .Pr M /hG
! .Pr�1M /hG

! � � � ! .P1M /hG

of Postnikov homotopy fixed point spaces.

Note that �0.P1MhG/D�0.MhG/ and that each path-component of P1MhG is aspher-
ical with fundamental group �1.P1MhG ;m/D �1.MhG ;m/ for all m 2 P1M . It is
now easy to see that H 1.GI�1.M;m// is the fiber over Œm�2�0.P1M /G D�0.M /G

of the evaluation map �0.P1M hG/ ! �0.M /G and also that �1.P1M hG ; s/ D

�1.M;m/s�G for any s 2 P1M hG with s.b/ D m; cf [47, Section 6]. Obstruction
theory implies that �0.M

hG/D �0.P1M hG/. This proves the first two items.

For the third item, suppose that the homotopy fixed point space is nonempty and let
s 2M hG be a homotopy fixed point. Then the component

�
M hG ; s

�
containing s is

the homotopy inverse limits of the corresponding components

� � � !
�
Pr M hG ; sr

�
!
�
Pr�1M hG ; sr�1

�
! � � � !

�
P1M hG ; s1

�
of the Postnikov homotopy fixed point spaces. To finish the proof, observe [47, 3.1]
that the fiber of

�
Pr M hG ; sr

�
!
�
Pr�1M hG ; sr�1

�
is the Eilenberg–Mac Lane space

K.�r .M;m/s�G ; r/.

Theorem 5.2 Let M be any simply connected p–complete space, G a finite group
of order prime to p , and

M !MhG! BG

an action of G on M . Then the homotopy fixed point space M hG is nonempty,
�i.M

hG/D �i.M /G for all i � 0, and there is a homotopy equivalence

�M
'
�!�.M hG/�Fib.M hG

!M /:

In particular, the fiber Fib.M hG ! M / of the evaluation map M hG ! M is an
H –space.

Proof The space of sections M hG is nonempty, connected, and ��.M hG/D��.M /G

according to Lemma 5.1 since M is simply connected and p–complete. We will show
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first how to turn this action with a homotopy fixed point into an honest action of G on
a space homotopy equivalent to M and with a fixed point. The pullback diagram

M

��

// EG

��

oo_ _ _

MhG
// BGoo_ _ _

realizes M ! MhG as a regular covering space with G acting on M . Liftings
of sections BG !MhG provide G–equivariant maps EG !M . Let M=EG D

M [C.EG/ be the homotopy cofibre of any such G –map. Then M !M=EG is a
G –equivariant homotopy equivalence and the G –action on M=EG has a fixed point.

Now, we can assume that there is an honest G–action on M with a fixed point. Let
�M denote the loop space based at any G –fixed point. There is a fibration sequence

� � � !�M hG
!�M ! Fib.M hG

!M /!M hG
!M

and it suffices to construct a homotopy left inverse for �M hG!�M .

Define trW �M !�M to be the map that takes any loop ! to the product
Q

g! of
the loops g! where g runs through the elements of G in some fixed order. The image
of the induced map tr�W ��.�M /! ��.�M /, which takes a homotopy class ˛ toP

g2G g�˛ , is contained in the fixed group ��.�M /G and the composition

��.�M /G! ��.�M /
tr�
�! ��.�M /G

is an isomorphism. This implies that the composition �M hG!�M ! T , where T

is the mapping telescope of

�M
tr
�!�M

tr
�! � � � ;

is a (weak) homotopy equivalence and we have the left inverse we were looking for.

Let .X;BX; e/ be a p–compact group or, more generally, a loop space. The above
arguments suggest the following definition of a (proxy) action of a discrete group G

on X .

Definition 5.3 Let .X;BX; e/ be a loop space and G a group. A proxy action of G

on .X;BX; e/ is a fibration

(19) BX
i //BXhG

p //
BG

s
oo

with a section, fixed up to vertical homotopy.
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When it is clear from the context that we refer to an action in the sense of this definition,
we will simply say that G acts on the loop space X . The section in (19) guarantees an
induced action of G on the space X , compatible with the loop structure. In fact, the
homotopy quotient for this action on X is defined as the pullback space in the diagram

(20) XhG

xp

��

xp // BG

s

��
BG s

// BXhG .

This diagram turns out to be a diagram of spaces over BG . The homotopy fiber of xp
is X , and it has a canonical section xs defined by the pullback diagram (20) that we
can interpret as the homotopy constant loop

X
xi //XhG

xp //
BG .

xs
oo

The action of G on X depends on the section sW BG! BXhG , and for this action
we obtain that the homotopy fixed point space X hG is a loop space with classifying
space B.X hG/' .BX /hG

s , the connected component of .BX /hG with base point the
section s . Furthermore, the evaluation map X hG!X is seen to be the loop map of
the evaluation map .BX /hG

s ! BX , thus we have a sequence of fibrations

X hG ev //X //X=X hG //.BX /hG
s

ev //BX

where we write X=X hG for the homotopy fiber of the evaluation map .BX /hG
s !BX .

In Section 2 we have introduced Out.X / as the group of invertible elements of the
monoid ŒBX;BX � of unbased homotopy classes of unbased self-maps of BX . By
analogy with discrete group theory, we call outer action of G on X to a homomorphism
of groups �W G!Out.X /. Since Out.X / is well understood (see Theorem 2.2), outer
actions will be a source for group actions on p–compact groups provided we can lift
outer actions to actions in the sense of Definition 5.3. Theorem B solves the problem
in case of finite groups of order prime to p .

Proof of Theorem B Fix a finite group G of order prime to p and �W G! Out.X /
an outer action of G on a connected p–compact group X . Recall that we have a
fibration sequence

B2Z.X /! Baut.BX /! BOut.X /

and that the center of X , Z.X /, is p–local. By obstruction theory we obtain a unique
lifting of � to a map 'W BG!B aut.BX /, that determines an action BX!BXhG!
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BG . Furthermore, since �1.BX /D 1, Lemma 5.1.(2) implies that �0.BX hG/D �;
that is, there is a unique section

(21) BX //BXhG
//
BGoo

up to fiber homotopy equivalence; in other words, � lifts to a unique action of G on
X .

This is part (1) of the theorem. Theorem 5.2 provides the splitting X 'X hG�X=X hG .
It follows that X=X hG is an Fp –finite H –space, X hG is a loop space with classifying
space BX hG and it is also Fp –finite. Furthermore, BX hG is p–complete because
BX is p–complete [25, 11.13], hence X hG is a connected p–compact group.

The rational cohomology algebra H�.BY IQp/ is polynomial for any connected
p–compact group Y and it follows that the Hurewicz homomorphism induces an
isomorphism

QH�.BY IQp/! ��.BY /_˝Q

between the indecomposables and the rationalized dual (�_ D HomZp
.�;Zp/) of the

homotopy groups of the simply connected space BY [8, Theorem 3.2.3]. For the
connected fixed point p–compact group BX hG , in particular, we have

QH�.BX hG
IQp/Š ��.BX hG/_˝QŠ

�
��.BX /_˝Q

�
G
Š
�
QH�.BX IQp/

�
G

for ��.BX hG/D ��.BX /G as the order of G is prime to p . This proves points (2)
and (3).

We finish by proving point (4). Assume p is odd. If X is a polynomial p–compact
group

H�.X I Fp/ŠH�.X hG
I Fp/˝H�.X=X hG

I Fp/

is an exterior algebra, hence H�.X hG I Fp/ is an exterior algebra, too. Therefore,
H�.BX hG I Fp/ is a polynomial algebra.

Example 5.4 At any odd prime, let C2 act on E6 through the unstable Adams
operation  �1 . Since the fixed point p–compact group BE

hC2

6
is the p–compact

group BF4 (Section A.12), there is a splitting

E6 ' F4 �E6=F4

of homogeneous spaces. This splitting is due to Harris [37]. Also, BPE
hC2

6
'BF4 ,

where PE6 is the adjoint form of E6 (Section A.12) thus there is also a splitting
PE6 ' F4 �PE6=F4 .

Let p be an odd prime and m a divisor of p�1 so that the cyclic group Cm of order m

acts on BSU .mnC s/, 0 � s < m, through unstable Adams operations. Since the
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fixed point p–compact group BSU .mnC s/hCm is (Proposition A.9) the generalized
Grassmannian BX.m; 1; n/ with polynomial cohomology H�.BX.m; 1; n/I Fp/ D

Fp Œxm; : : : ;xnm�, jximj D 2im, there is a splitting

SU .mnC s/'X.m; 1; n/�SU .mnC s/=X.m; 1; n/

of homogeneous spaces. This splitting is originally due to Mimura, Nishida and Toda
[44]), although the recognition of X.m; 1; n/ as a loop space is due to Quillen [61]
(see also Stasheff [66], Zabrodsky [71] and Castellana [18]). The case mD 2 is the
classical splitting SU.2n/' Sp.n/�SU.2n/=Sp.n/. Similar splittings for central
quotients of SU.n/ can be worked out.

Similarly, at p D 5, let C4 act on BE8 through unstable Adams operations. The
fixed point p–compact group BE

hC4

8
is the p–compact group BX31 correspond-

ing to Zp –reflection group number 31 on the Clark–Ewing list (see Section A.12),
H�.BX31I Fp/D Fp Œx16;x24;x40;x48� where subscripts indicate degrees, there is a
splitting

E8 ' X31 �E8=X31

of homogeneous spaces, that was obtained in [68].

At p D 3, BF4 admits an exceptional isogeny of order 2 and (see [16]) the fixed
point group BF4

hC2 is the p–compact group BDI2 whose cohomology realizes the
Dickson algebra F3Œx12;x16�. The corresponding splitting

F4 'DI2 �F4=DI2

was first obtained by Harper [36]. Later proofs of this splitting were obtained inde-
pendently by Wilkerson and by Kono, using Friedlander’s exceptional isogeny of F4

localized away from two.

In these last two cases, it was Zabrodsky [71, 4.3], who first recognized the factors
X12 DDI2 and X31 as loop spaces. Later, Aguadé gave a nice uniform construction
of a family of modular p–compact groups including these cases [2].

6 Homotopy fixed point spaces of twisted unstable Adams op-
erations

In this section we prove Theorem E. Part (1) of follows from Proposition 6.2 and
Remark 6.3, while Part (2) is Proposition 6.5.
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Let X be a connected p–compact group and set ˛W X ! X a p–compact group
automorphism. The homotopy pullback diagram

(22) BX h˛

�

��

� // BX

�

��
BX

.1;˛/ // BX �BX

serves as the definition of the space BX h˛ . If ˛ is homotopic to ˛0 , then BX h˛ '

BX h˛0 .

In the special case where ˛D � q is a twisted unstable Adams operation with q 2 Zp ,
q¤ 1, and q 6� 0 mod p , we also write B�X.q/DBX h � q

, or just BX.q/, if � D 1.
For q D 1 we trivially obtain BX.1/'ƒ.BX /, the free loop space.

Assume that ˛ represents an element of finite order r in Out.X /, with r prime to
p , and X is a connected p–compact group. According to Theorem B, it defines an
action of the cyclic group Cr on X . The next proposition shows that the natural map
ƒ.BX hCr /! BX h˛ is a homotopy equivalence.

Proposition 6.1 Assume that X is a connected p–compact group. If ˇW BX ! BX

represents an element of Out.X / of finite order r , prime to p , then BX hˇ is homotopy
equivalent to the space of free loops on BX hCr , where the action of the cyclic group
Cr on BX is given by ˇ .

Proof According to Theorem B, ˇ defines an action of Cr on X ,

BX
i //BXhCr

p //
BCr :

s
oo

Evaluation at the base point of BCr induces a map evW BX hCr ! BXhCr
that makes

the triangle

BX

ˇ

��

BX hCr

ev
::vvvvvvvvv

ev
$$H

HH
HH

HH
HH

BX
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commutative up to homotopy. Therefore, we can form a homotopy commutative
diagram

(23) ƒ.BX hCr / //

��

((QQQQQQQQ BX hCr

��

�

))SSSSSSSSSS

BX hCr
� //

��

BX hCr �BX hCr

��

BX hˇ //

((RRRRRRRRRR BX
�

))TTTTTTTTTTTT

BX
.1;ˇ/ // BX �BX .

We will show that ƒ.BX hCr /! BX hˇ is a homotopy equivalence. According to
Theorem 5.2, BX hCr is the classifying space of a connected p–compact group and
by Lemma 5.1 the map evW BX hCr ! BX induces an identification of the homotopy
groups of BX hCr with the invariant elements in the homotopy groups of BX by the
action of Cr : �i.BX hCr /Š �i.BX /Cr ,! �i.BX /. There is a Mayer–Vietoris long
exact sequence for the homotopy groups of BX hˇ

: : : �! �i.BX hˇ/ �! �i.BX /
1�ˇ�
���! �i.BX / �! �i�1.BX hˇ/ �! : : :

and for the homotopy groups of the free loop space:

: : : �! �i.ƒ.BX hCr // �! �i.BX hCr /
0
�! �i.BX hCr / �! �i�1.ƒ.BX hCr // �! : : :

Both long exact sequences together give

0 // �iC1.BX /Cr //

��

�i.ƒ.BX hCr // //

��

�i.BX /Cr //

��

0

0 // Cokerf1�ˇ�g // �i.BX hˇ/ // Kerf1�ˇ�g // 0 .

Now, Ker.1 � ˇ�/ D �i.BX /Cr and Coker.1 � ˇ�/ D �iC1.BX /Cr
. Since r is

prime to p , and the homotopy groups �i.BX / are Z.p/–modules for every i � 2, the
composition �iC1.BX /Cr ! �iC1.BX /! �iC1.BX /Cr

is an isomorphism. Hence
also the middle vertical map �i.ƒ.BX hCr //! �i.BX hˇ/ is an isomorphism.

Our next result contains Proposition 6.1 as a special case and it will reduce, in many
cases, the question of describing BX h˛ to two separate steps. The computation of the
homotopy fixed point space BX hCr , for elements ˛ of order r prime to p , and the
case in which ˛ D  q is an unstable Adams operation of exponent q � 1 mod p (see
Theorem 2.2 and formula (3) in Section 2). It is one of the two claims of Theorem E.
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Proposition 6.2 Let X be a connected p–compact group. Suppose ˛ is an automor-
phism of X that factors ˛ D  qˇ satisfying

(1) q � 1 mod p , and . q/�W H�.X I Fp/!H�.X I Fp/ is the identity, and

(2) ˇ is an automorphism of X that represents an element of finite order r , prime
to p , in Out.X /.

Then BX h˛ ' BX hCr .q/ where Cr D hˇi � Out.X / is the cyclic group of order r

generated by the homotopy class of ˇ .

Proof Let BY D BX hCr denote the homotopy fixed point p–compact group for the
action of the cyclic group Cr D hˇi � Out.X / and i W BY ! BX the evaluation map.
Now, ˇ restricts trivially to BY , an in the proof of Proposition 6.1, and then since  q

commutes with ˇ , up to homotopy, we have a homotopy commutative diagram

BY

i
��

 q

// BY

i
��

BX
˛D qˇ // BX

that extends to

BY .q/ //

��

&&MMMMMMM BY

��

�

''PPPPPPPPP

BY
.1; q/ //

��

BY �BY

��

BX h˛ //

&&MMMMMMM BX
�

''PPPPPPPPP

BX
.1;˛/ // BX �BX

where the top and bottom faces are homotopy pullback diagrams, and the front face
commutes up to homotopy. Consequently, the homotopy fibres of the vertical maps
form another homotopy pullback diagram:

.X=Y /h˛ //

��

X=Y

�

��
X=Y

.1;˛/ // X=Y �X=Y

with .X=Y /h˛ ' hofib.BY .q/! BX h˛/, and where we still denote by ˛ the self-
equivalence of X=Y induced by ˛W BX ! BX . Theorem B says that X=Y is a
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connected H –space and then we can also describe .X=Y /h˛ as the homotopy fiber
of 1 � ˛W X=Y ! X=Y . It also implies that the map . q/�W H�.X=Y I Fp/ !

H�.X=Y I Fp/ can be read off the map . q/� defined on H�.X I Fp/, which by
hypothesis is the identity. This fact easily implies that .1 � ˛/� D .1 � ˇ/� on
H�.X=Y I Fp/.

According to Proposition 6.1, the homotopy fiber, .X=Y /hˇ , of 1�ˇ is contractible,
hence .1 � ˇ/� is an automorphism of H�.X=Y I Fp/. Thus, a spectral sequence
argument shows that .X=Y /h˛ is mod p acyclic. Finally, it is easy to see that .X=Y /h˛

is p–complete, hence contractible, and therefore BY .q/' BX h˛ .

Remark 6.3 If X polynomial, the effect of � q , q � 1 mod p , on mod p coho-
mology of X is determined by the effect of  q on H�.BX; Fp/ and this is in turn
determined by the effect of  q on H�.BTX I Fp/ which is multiplication by q , hence
the identity. For X D F4 , E6 , E7 , E8 at the prime 3 or X D E8 at the prime
5, we also obtain that � q , q � 1 mod p , acts trivially on H�.X I Fp/. In order
to check this, we can look at the Serre spectral sequence for the path–loop fibration
X ! PBX ! BX . It turns out that the generators for H�.X I Fp/ either transgress
to elements detected in the maximal torus of BX , or are linked to such elements by
Steenrod operations (cf [46, Chapter 7]). In particular, Proposition 6.2 applies to all
1–connected p–compact groups, p odd, according to the classification theorem [7].

In particular, BX.�q/ D BX hh�i.q/ when � is a .p � 1/–th root of unity and q �

1 mod p satisfies the conditions of Proposition 6.2. If q D 1 we obtain Proposition
6.1, BX.�/D BX hh�i.1/Dƒ.BX hh�i/, as a special case.

For the next result, we need to interpret BX h˛ as homotopy fixed point set by the
action of Z generated by ˛ 2 Out.X /. In fact, given ˛ 2 Out.X /, we denote again by
˛ a representative homotopy equivalence ˛W BX !BX . The mapping torus is defined
BXh˛ DBX �I=�, where I D Œ0; 1� is the unit interval and .x; 0/� .˛.x/; 1/. There
is a fibration, up to homotopy,

BX ! BXh˛! S1

given by projection onto the second component. This fibration is classified by a loop
!˛W S

1! B aut.BX / that represents ˛ 2 �1.B aut.BX //D Out.X /.

The space of sections for this fibration clearly coincides with BX h˛ as defined in
diagram (22), so we can interpret BXh˛ and BX h˛ as the homotopy quotient space
BXhZ and the homotopy fixed point space BX hZ , respectively, for the action of Z on
BX determined by ˛2Out.X /. Notice that since X is connected, so is BX h˛'BX hZ
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and therefore, there is a unique lifting, up to equivalence, of the action of Z on BX to
an action of Z on X , in the sense of Definition 5.3.

We will use this point of view in order to proof the second claim of Theorem E. We
will see that an action of Z on BX generated by an unstable Adams operation  q of
exponent q � 1 mod p , extends to an action of Zp on BX , and that this implies that
the homotopy type of the homotopy fixed point space BX.q/D BX hZ depends only
on the p–adic valuation �p.1� q/.

Lemma 6.4 Suppose that BXhZp
!BZp is a fibration over BZp with fiber BX . The

p–completion map `W BZ! BZp induces a homotopy equivalence BX hZp ! BX hZ

of spaces of sections.

Proof The maps BZ //BZp BXhZp
oo determine a commutative diagram

Map.BZp;BXhZp
/

��

// Map.BZ;BXhZp
/

��
Map.BZp;BZp/

'
// Map.BZ;BZp/

which is a pullback diagram since `W BZ! BZp is an Fp –equivalence [10, 12.2].
(To see that BXhZp

! BZp is an H�Fp –fibration observe that the action of Zp on
Hi.BX I Fp/, i � 0, is nilpotent because it factors through a finite quotient of Zp .)
Thus the fiber of the left fibration over the identity map of BZp , BX hZp , is homotopy
equivalent to the fiber of the right fibration over the p–completion map `W BZ!BZp ,
BX hZ .

Using the description of Out.X / in Section 2 we will see that actions of Z on connected
p–compact groups given by Adams operations  q extend to the p–adics precisely
when q � 1 mod p . The inclusion of Adams operations in Out.X /, described as
q 2 Z�p 7!  q 2 Out.X / induces a diagram of group homomorphisms

Hom.Zp;Z
�
p/

��

res // Hom.Z;Z�p/

��
Hom.Zp;Out.X // res // Hom.Z;Out.X //

where the horizontal homomorphisms are given by restriction.

Recall that, for an odd prime p , Z�p Š Z=p � 1� Zp , where Z=p � 1 corresponds
to the subgroup of Z�p of roots of unity and Zp is identified with the subgroup of
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elements q 2 Z�p , with q � 1 mod p , via the exponential map:

a 2 Zp 7! exp.pa/ 2 Z�p

(exp defined by the usual expansion exp.pa/ D 1C paC : : :). Since there are no
nontrivial homomorphisms Zp! Z=p� 1, an action of Z on BX determined by an
Adams operation  q can only be the restriction of an action of Zp if q � 1 mod p .
On the other hand, if q� 1 mod p , then we can write qD 1Cpmq (mq D

1
p

log.q/),
and the homomorphism !qW Z! Z�p that maps 1 to q is clearly the restriction to Z

of the homomorphism x!qW Zp! Z�p defined !q.x/D exp.xpmq/.

Now, we can prove the second claim of Theorem E.

Proposition 6.5 If q; q0 2 Z�p , both are of multiplicative order r mod p , and �p.1�
qr /D �p.1� q0

r
/, then BX.q/' BX.q0/, for any 1–connected p–compact group X.

Proof The proof is divided in two steps. First, we will consider the case q�q0�1 mod
p (r D 1). In these cases, the actions of Z given by  q and  q0 , respectively, extend
to actions of the p–adics described by mq D .1=p/ log.q/ and mq0 D .1=p/ log.q0/,
respectively. The homotopy fixed point space BX hZp depends only of the image of
the action Zp ! Out.X /. The image of the two actions are clearly the same if and
only if mq and mq0 differ by a p–adic unit; that is, if and only if �p.mq/D �p.mq0/,
if and only if �p.1� q/D �p.1� q0/, in which case, we have

BX.q/' BX h q

' BX hZp ' BX h q0

' BX.q0/ :

In the general case, we can decompose q D � � q0 and q0 D �0 � q0
0

, where � and �0 are
primitive r –th roots of unity and q0 � q0

0
� 1 mod p . Since � and �0 generate the

same subgroup of Z�p we have that

BX.q/' BX hh�i.q0/' BX hh�0i.q0/' BX hh�0i.q00/' BX.q0/ :

Remark 6.6 If q is a p–adic unit, we can find a prime number q0 such that q �

q0 mod p and �p.1� qr /D �p.1� qr
0
/, where r is the order of q mod p , and then

BX.q/' BX.q0/

by Proposition 6.5.

In fact, we can assume that q is an integer, otherwise change it by the sum of enough
first terms in its p–adic expansion. Then, by Dirichlet’s theorem there is a prime
number q0 of the form q0 D pN cC q , with N > �p.1� qr /, satisfying the above
conditions.
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7 General structure of Chevalley p–local finite groups

In this section we will study some general properties of the spaces BX.q/, obtained as
homotopy fixed point spaces for the action of unstable Adams operations on classifying
spaces of connected p–compact groups. The main results being the identification of
the maximal finite torus, the Weyl group, and the fusion category of elementary abelian
p–subgroups of BX.q/.

Proposition 7.1 Let X be a connected p–compact group and ˛ a self homotopy
equivalence of X . Then we have the following:

(1) BX h˛ is connected and p–complete.

(2) �W BX h˛! BX is a homotopy monomorphism at p .

(3) For any finite p–group P , Map.BP;BX h˛/c ' BX h˛ .

Proof From the definition we obtain a fibration X �! BX h˛ �
�! BX where X and

BX are p–complete, X is connected and BX is simply connected. It follows that
BX h˛ is connected and p–complete.

For any finite p–group P , Map.BP;BX /c 'BX , and Map�.BP;X /'X for any
choice of base point. It then follows that �W BX h˛!BX is a homotopy monomorphism
at p , and from the induced fibration

Map.BP;X /!Map.BP;BX h˛/c!Map.BP;BX /c

it follows that Map.BP;BX h˛/c ' BX h˛ .

Lemma 7.2 Let X be a p–compact group, ˛ a self homotopy equivalence of BX ,
and .P; �/ an object of Fp.BX / fixed by ˛ up to homotopy; that is, � ' ˛ ı � . If
CX .P; �/ is connected, then there is a unique lifting of �W BP ! BX to a homotopy
monomorphism gW BP ! BX h˛ , and

Map.BP;BX h˛/g

��

// Map.BP;BX /�

�

��
Map.BP;BX /�

1�˛] // Map.BP;BX /� �Map.BP;BX /�

is a homotopy pullback diagram.
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Proof Since (22) is a homotopy pullback diagram, there is at least a lifting of � ,
gW BP ! BX h˛ .

The homotopy fiber of

Map.BP;BX /�
�
�!Map.BP;BX /� �Map.BP;BX /�

isCX .P; �/D�Map.BP;BX /� , hence pulling back along 1�˛] we obtain a fibration,
up to homotopy,

CX .P; �/ �!Map.BP;BX h˛/y�
�]
�!Map.BP;BX /�

where Map.BP;BX h˛/y� consists of all possible liftings of � up to homotopy. The
base space consists of just one connected component, hence if we assume that the fiber
CX .P; �/ is also connected, then the total space must be connected, and therefore any
other lifting of � is homotopic to g .

The following lemma will help us determine the restriction of ˛ to the centralizers.

Lemma 7.3 Let X be a connected p–compact group and ˛ a self-equivalence of BX.
Let T .˛/ be a given restriction of ˛ to the maximal torus T D TX , and .P; �/ an
object of Fp.BX /.

Suppose that �W BP !BX admits a factorization �W BP !BT through the maximal
torus j W BT !BX . Then, the object .P; �/ is fixed by ˛ if and only if T .˛/�Dw�

for an element w of the Weyl group. If this is the case, the restriction to the maximal
torus of the induced self homotopy equivalence ˛jCX .P;�/ of the centralizer CX .P; �/

is T .˛jCX .P;�//D w
�1 ıT .˛/.

Proof .P; �/ is fixed by ˛ means that � ' ˛ ıB� , and if � factors as j ı�, that is
to say, j ıB�' ˛ ı j ı�' j ıT .˛/ ı�, and according to [55, 4.1; 50, 3.4] this is
equivalent to the existence of w , in the Weyl group of X , such that wı�'BT .˛/ı�.

Now assuming the existence of such element w , we read from the commutative diagram

BT
T .˛/ // BT BT

woo

Map.BP;BT /�

ev'

OO

j]'

��

T .˛/] // Map.BP;BT /w�

j]'

��

ev'

OO

Map.BP;BT /�
w]oo

j]

'

ttjjjjjjjjjjjjjjjj

ev'

OO

Map.BP;BX /�
˛] // Map.BP;BX /�
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that the restriction of ˛jCX .P;�/ D ˛] to the maximal torus of the centralizer CX .V; �/

is w�1 ıT .˛/.

If the centralizer CX .V; �/ is connected, this determines the restriction ˛jCX .V;�/ (see
Section 2).

Corollary 7.4 Let X be a p–compact group and �W BV ! BX a toral elementary
abelian p–subgroup such that its centralizer CX .V; �/ is connected. If  q is an
unstable Adams operation of exponent q � 1 mod p , q ¤ 1, then

(a) there is a unique lift of � to gW BV ! BX.q/,

(b)  qjCX .V;�/ is an unstable Adams operation of exponent q , and

(c) the centralizer of .V;g/ in X.q/ is CX .q/.V;g/Š CX .V; �/.q/.

Proof In particular, when �W BV ! BX is a toral elementary abelian p–group in
X and ˛ D  q is an Adams operation of exponent q � 1 mod p , then we can write
T . q/D  q , the q–th power map in the maximal torus T D TX and  q ı�' �,
where �W BV ! BT is a lift to BT of �W BV ! BX , so, by Lemma 7.3, there is a
commutative diagram

BT
T . q/D q

//

��

BT

��
BCX .V; �/

 q jCX .V;�/ //

��

BCX .V; �/

��
BX

 q

// BX :

This proves (b), namely,  qjBCX .V;�/ is, as well, an unstable Adams map  q .

Now, (a) and (c) follow from Lemma 7.2.

We will now restrict our attention to cases with q � 1 mod p , q ¤ 1. According to
Proposition 6.2, the general case can be reduced to this one, in the cases that are of
interest to us (see Remark 6.3). Hence, essentially, there will be no loss of generality
in our assumption.

Proposition 7.5 Let X be a connected p–compact group, p an odd prime, and  q

an unstable Adams operation of exponent q 2 Z�p , with q � 1 mod p , q ¤ 1. Then the
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inclusion �W BtX ! BX of the subgroup of elements of order p in the maximal torus
TX has a unique lift to gW BtX ! BX.q/ and its centralizer is

CX .q/.tX ;g/D TX .q/ :

Proof Since CX .tX ; �/D TX [50, 3.2] and  qjTX
D T . q/D q this follows from

Lemma 7.3 (see Corollary 7.4).

The group TX .q/ Š T n
`
Š .Z=p`/n , where n is the rank of X and ` D �p.q � 1/,

established in Proposition 7.5, embeds in BX.q/

i W BT n
` ! BX.q/

as a subgroup .T n
`
; i/ that will be referred to as the maximal finite torus of X.q/.

When no confusion is possible we will simply write T n
`

for the maximal finite torus
of BX.q/. Notice that T n

`
is self-centralizing in BX.q/. Then, we define the Weyl

group of BX.q/ as the automorphism group

WX .q/.T
n
` ; i/D AutFp.BX .q//.T

n
` /D

˚
' 2 aut.T n

` /
ˇ̌
i ' i ıB'

	
of .T n

`
; i/ in the category Fp.BX.q//. The group T n

`
affords a faithful representation

WX .q/.T
n
`
; i/!GLn.Z=p

`/.

The Weyl group of BX.q/ can also be interpreted as the set of connected components
of Map�.BT n

`
;BT n

`
/ that lie over the connected component of i W BT n

`
! BX.q/

through the map Map�.BT n
`
;BT n

`
/! Map.BT n

`
;BX.q//. The normalizer of the

maximal finite torus of BX.q/, BNX .q/.T
n
`
/, is defined by its classifying space, the

Borel construction for the action of WX .q/.T
n
`
/ on Map.BT n

`
;BX.q//i , together with

the inclusion

xi W BNX .q/.T
n
` /D

�
Map.BT n

` ;BX.q//i
�
hWX.q/.T

n
`
/
�! BX.q/

induced by evaluation at the base point of BT n
`

.

Proposition 7.6 Let X be a connected p–compact group, p an odd prime, and  q

an unstable Adams operation of exponent q 2Z�p , with q� 1 mod p , q¤ 1. If .T n
`
; i/

is the maximal finite torus of BX.q/, then its Weyl group is

WX .q/.T
n
` /ŠWX ;

the Weyl group of X , with action on T n
`

given by the mod p` reduction of the p–
adic representation of WX . The normalizer of the maximal finite torus is the split
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extension NX .q/.T
n
`
/D T n

`
ÌWX .q/.T

n
`
/, and its classifying space fits in a homotopy

commutative diagram

(24) BNX .q/.T
n
`
/
z� //

xi
��

BN

j

��
BX.q/

� // BX

where j W BN ! BX is the inclusion of the maximal torus normalizer of X .

Proof We will first see that the automorphism in Fp.BX / of T n
`

as a subgroup of
BX via the composition � ı i W BT n

`
! BX , WX .T

n
`
/, coincides with the Weyl group

WX . In fact, an element w 2WX is a homotopy equivalence of BT over BX . Its
restriction to BT n

`
, factors again to give a homotopy equivalence xw of BT n

`
and a

homotopy commutative diagram

(25) BT n
`

xw
��

// BT

w

��

j

!!C
CC

CC
CC

CC

BT n
`

// BT
j // BX

where BT 'K.Zn
p; 2/ and the map BT n

`
! BT classifies the extension class of the

exact sequence .Zp/
n

p`

��! .Zp/
n! .Z=p`/n . Hence, if w is represented by a certain

matrix in GLn.Zp/, then xw is represented by its mod p` reduction in GLn.Z=p
`/.

We have produced a homomorphism WX .T
n
`
/!WX which is injective because WX

is finite and mod p` reduction has torsion free kernel in GLn.Zp/. Furthermore,
since Map.BT n

`
;BX /�ıi ŠBT , it turns out that every homotopy equivalence of BT n

`

over BX can be extended to a diagram like (25) and therefore we actually have an
isomorphism WX .T

n
`
/ŠWX .

Next, we compare WX .q/.T
n
`
/ and WX .T

n
`
/. By composition with �W BX.q/! BX ,

every homotopy equivalence xw of BT n
`

over BX.q/ can also be considered over BX

BT n
`

xw
��

i

##G
GG

GG
GG

GG

BT n
`

i // BX.q/
� // BX

which gives an inclusion WX .q/.T
n
`
/ ,!WX .T

n
`
/. Now, Lemma 7.2 implies that this

is actually an isomorphism.
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Finally, the natural maps

Map.BT n
`
;BX.q//i

�] // Map.BT n
`
;BX.q//�ıi Map.BT n

`
;BX.q//j

'oo

induced by composition with �W BX.q/! BX and with the inclusion BT n
`
! BT ,

respectively, are equivariant for the respective actions of WX .q/.T
n
`
/, WX .T

n
`
/ and

WX , respectively, induced by the natural actions on the first component. Applying the
Borel construction, we obtain a map

BNX .q/.T
n
`
/
z� //

�
Map.BT n

`
;BX.q//�ıi

�
hWX .T

n
`
/
' BN

and diagram (24) is induced by evaluation at base points. Moreover this maps extends
the map between classifying spaces of tori to give a diagram of fibrations

T

��

' // T

��
BT n

`

��

// BNX .q/.T
n
`
/ //

z�

��

BWX .q/.T
n
`
/

'

��
BT // BN // BWX

where T '�BT 'K..Zp/
n; 1/. By [5, 1.2] the bottom row fibration has a section

and by [5, 3.3] this section lifts to a section of the fibration in the middle row. It follows
that NX .q/.T

n
`
/ is a split extension.

For X a p–compact group and ˛ a self equivalence, the inclusion �W BX h˛! BX

induces a functor between the respective fusion categories

�]W Fp.BX h˛/ �! Fp.BX /

and Lemma 7.2 above gives some useful information in order to compare the morphism
sets. Thus, for instance,

(26) MorFp.BX h˛/..P;g/; .Q; h// �!MorFp.BX /..P; � ıg/; .Q; � ı h//

is a bijection provided CX .P; �ıg/ is connected. It rarely happens that those centralizers
are connected for a general p–group P , but it is not so unusual if we restrict to some
particular classes of small groups. For a space Y , we denote Fe

p.Y / the full subcategory
of Fp.Y / whose objects are the elementary abelian subgroups of Y .
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Corollary 7.7 Let p be an odd prime. If X is a connected polynomial p–compact
group and ˛ a self homotopy equivalence, then the functor

�]W Fe
p.BX h˛/ �! Fe

p.BX /

is both full and faithful.

Proof If X is a connected polynomial p–compact group, then centralizers of el-
ementary abelian p–subgroups are connected and Lemma 7.2 applies. In fact, if
.E; �/ is an elementary abelian p–subgroup of X , then the centralizer CX .E; �/ is
also a polynomial p–compact group, hence H 1.BCX .E; �/I Fp/D 0 and therefore
CX .E; �/ is connected (see Dwyer and Wilkerson [28, 1.3]) and the map (26) is a
bijection for every elementary abelian p–subgroups .P;g/ and .Q; h/ of BX h˛ .

Corollary 7.8 Let p be an odd prime. If X is a connected polynomial p–compact
group and  q an unstable Adams operation of exponent q 2 Z�p , with q � 1 mod p ,
then

�]W Fe
p.BX.q// �! Fe

p.BX /

is an equivalence of categories.

Proof By Corollary 7.7 we only have to check that �] induces in this case a bijection
between isomorphism classes of objects, and this follows from Proposition 7.5, because
in a polynomial p–compact group every elementary abelian subgroup is toral.

Let X be a polynomial p–compact group with trivial center and q 2 Z�p a p–adic unit
with q� 1 mod p , q¤ 1. Putting BCX .q/.V;g/DMap.BV;BX.q//g for any object
.V;g/ of Fe

p.BX.q// we get a functor from Fe
p.BX.q//op to topological spaces.

There is natural map
hocolim

Fe
p.BX .q//op

BCX .q/! BX.q/

from the homotopy colimit of this functor. When CX .V;g/ is connected, we have

BCX .q/.V;g/' BCX .V; � ıg/.q/

according to Lemma 7.3 and Corollary 7.4.

Let TX be the maximal torus and WX the Weyl group of a p–compact group X , p

odd. As usually, we denote by tX the group of all elements of order p in TX , and
gW BtX ! X.q/ the inclusion. For any nontrivial elementary abelian p–subgroup
E � T , write WX .E/ for the pointwise stabilizer subgroup of E .
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Proposition 7.9 Let X be a polynomial p–compact group with trivial center, p odd,
and q 2 Z�p a p–adic unit with q � 1 mod p , q ¤ 1. Assume that

H�.BX.q/I Fp/ŠH�.BTX .q/I Fp/
WX

H�.BCX .q/.E;gjBE/I Fp/ŠH�.BTX .q/I Fp/
WX .E/and that

for any nontrivial, subgroup E of tX . Then, the natural map

(27) hocolim
Fe

p.BX .q//op
BCX .q/! BX.q/

is an Fp –equivalence.

A similar statement holds with Fe
p.BX.q// replaced by the full subcategory generated

by all objects of the form .tX /
P where P runs through the subgroups of a Sylow

p–subgroup of WX .

Proof The functor from Fe
p.BX.q//DFe

p.BX / to the category of Fp –vector spaces
that takes an object E to H�.BCX .q/.E/I Fp/DH�.BTX .q/I Fp/

WX .E/ is acyclic
in the sense that lim0

DH�.BTX .q/I Fp/
WX and the higher limits vanish [24, 8.1].

Therefore, the Bousfield–Kan spectral sequence for the cohomology of the homotopy
colimit

hocolim
Fe

p.BX .q//op
BCX .q/

[11, XII.4.5] collapses at E2 –term, and then it shows that (27) is an Fp –equivalence.
The same conclusion holds if we replace the category Fe

p.BX.q// by its full subcate-
gory generated by all objects of the form .tX /

P where P runs through the subgroups
of a Sylow p–subgroup of WX [53, 2.16].

This result motivates the research on the cohomology rings H�.BX.q/I Fp/ and on
the invariant rings H�.BTX .q/I Fp/

WX , in the next two sections.

8 Cohomology rings

This section is devoted to the proof of Theorem F. The Eilenberg–Moore spectral
sequence is used in order to get a hold of the cohomology rings of the spaces BX.q/

of fixed points of unstable Adams operations acting on polynomial p–compact groups
BX . We follow the arguments of Smith [64] that already contain the first part of the
theorem.
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Proof of Theorem F Part (1) is due to L Smith [64]. We will sketch his arguments
here and then will continue with the proof of the second part of the theorem.

There is an Eilenberg–Moore spectral sequence associated to the pullback diagram

(28) BX.q/
� //

�

��

BX

�

��
BX

1� q

// BX �BX .

This is a second quadrant spectral sequence with

E
s;t
2
Š Tors;t

H �.BX IFp/˝2.H
�.BX I Fp/;H

�.BX I Fp//H)H sCt .BX.q/I Fp/

converging to a graded ring associated of H�.BX.q/I Fp/.

For simplicity, we will write P Œxi � D P Œx1; : : : ;xn� Š H�.BX I Fp/. The Koszul
complex

E.xi/D P Œxi �˝P Œxi �˝EŒsx1; : : : sxn�

with bideg.sxi/ D .�1; 2di/ and d.sxi/ D xi ˝ 1� 1˝ xi , is a free resolution of
P Œxi � as .P Œxi �˝P Œxi �/–module, with module structure given by the multiplication
mD�� . Then, Tor��

P Œxi �˝P Œxi �
.P Œxi �;P Œxi �/ is the homology of the complex

P Œxi �˝P Œxi �˝P Œxi � E.xi/Š P Œxi �˝EŒsx1; : : : sxn�

where now the action of P Œxi �˝P Œxi � on the left hand side term P Œxi � in given by the
algebra map .1� q/� , hence one obtains the expression d.sxi/D xi � qdi xi for the
differential, but since q � 1 mod p , we actually have d.sxi/D 0 for all i D 1; : : : ; n.
This yields

E��2 Š Tor��P Œxi �˝P Œxi �
.P Œxi �;P Œxi �/Š P Œx1; : : : ;xn�˝EŒsx1; : : : ; sxn�

and, since the algebra generators appear in filtration degrees 0 and �1, the spectral
sequence collapses at the E2 –page and then we can find elements yi in H�.BX.q/I Fp/

representing sxi in the graded associated ring, with

H�.BX.q/I Fp/Š P Œx1; : : : ;xn�˝EŒy1; : : : ;yn� :

Let TX be the maximal torus of X and WX the Weyl group. Since X is polynomial,
the mod p cohomology ring of BX coincides with the invariants by the action of the
Weyl group on the mod p cohomology of BTX , H�.BTX I Fp/

WX ŠH�.BX I Fp/Š

P Œx1; : : : ;xn�.
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According to Corollary 7.4 and Proposition 7.5, the classifying space of maximal finite
torus of X.q/ is BT .q/Š BT n

`
and it is obtained from a pullback diagram

(29) BT n
`

� //

�

��

BT

�

��
BT

1� q

// BT �BT .

Furthermore, the Weyl group is WX by Proposition 7.6. Hence, the restriction map

i�W H�.BX.q/I Fp/!H�.BT n
` I Fp/

has image in the invariant subring by the action of the Weyl group, WX . It remains to
show that this restriction map is injective.

The pullback diagram (29) yields another Eilenberg–Moore spectral sequence:

xE
s;t
2
Š Tors;t

H �.BT IFp/˝2.H
�.BT I Fp/;H

�.BT I Fp//H)H sCt .BT n
` I Fp/ :

We will pay special attention to the map between the two spectral sequences i�W E��r !

xE��r induced by the natural map from diagram (29) to diagram (28) given by inclusion
of the maximal torus. In order to describe the induced map at the level of E2 –pages,
we need some elementary algebraic considerations.

Again for simplicity, we will write P Œti �D P Œt1; : : : ; tn�ŠH�.BTX I Fp/. The kernel
of the multiplication mW P Œti �˝P Œti �! P Œti � is a Borel ideal

Ker mD .t1˝ 1� 1˝ t1; : : : ; tn˝ 1� 1˝ tn/

and then we can define derivations

@i W P Œti �! P Œti �

for i D 1; : : : ; n, in the following way. For any homogeneous polynomial f 2 P Œti �,
f˝1�1˝f 2Ker m, hence we can find an expression f˝1�1˝f D

P
i ci.f /.ti˝1�

1˝ti/, with coefficients ci.f /2P Œti �˝P Œti �, and then define @i.f /Dm.ci.f //2P Œti �.
A routine calculation shows:

(1) @i is well defined and does not depend on the choice of coefficients c1.f /; : : : ;

cn.f /,

(2) @i is a derivation of P Œti �, and

(3) @i.ti/D 1 and @i.tj /D 0 if j ¤ i .
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These properties show that these are the partial derivatives:

@i.f /D
@f

@ti
:

After these considerations we can easily describe the map between the respective
E2 –pages and show that it is injective. In order to compute the xE��

2
, we define now

the Koszul complex

E.ti/D P Œti �˝P Œti �˝EŒst1; : : : stn�

with bideg.sti/D .�1; 2/ and d.sti/D ti ˝ 1� 1˝ ti . As before, we obtain that

xE��2 Š Tor��P Œti �˝P Œti �
.P Œti �;P Œti �/Š P Œti �˝P Œti �˝P Œti � E.ti/

Š P Œti �˝EŒst1; : : : stn�
(30)

since the differential in this complex turns out to be trivial, again, because q� 1 mod p .
Also as before, the algebra generators of xE��

2
appear in filtration degree 0 and �1 and

therefore the spectral sequence xE��r collapses at the E2 –page.

Now, the inclusion i�W P Œxi �! P Œti � extends to a map of Koszul complexes

i�W E.xi/! E.ti/

which is a P Œxi �˝P Œxi �–module map defined by

i�.sxi/D
X

j

ci.xi/˝ stj

on generators. Then the induced map

i�W Tor��P Œxi �˝P Œxi �
.P Œxi �;P Œxi �/Š P Œxi �˝EŒsx1; : : : sxn�

�! Tor��P Œti �˝P Œti �
.P Œti �;P Œti �/Š P Œti �˝EŒst1; : : : stn�

is determined by i�.sxi/D
X

j

@j .xi/˝ stj D
X

j

@xi

@tj
˝ stj :

Now, i� is injective because the Jacobian determinant is nontrivial,

J D det
�
@xi

@tj

�
¤ 0;

by [69]. Since both spectral sequences collapse at the E2 –page, it follows that the
induced homomorphism i�W H�.BX.q/I Fp/!H�.BT n

`
I Fp/ is also injective.
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Remark 8.1 The argument with the Eilenberg–Moore spectral sequence used in the
proof of part (1) of Theorem F applies more generally to the case of any unstable Adams
operation  q of arbitrary exponent q 2 Z�p acting on a polynomial p–compact group
[64]. Under these more general hypothesis we obtain that if H�.BX /ŠP Œx1; : : : ;xn�

then the cohomology of BX.q/ is

H�.BX.q/I Fp/Š P Œxi1
; : : : ;xik

�˝EŒyi1
; : : : ;yik

�

where the polynomial generators xij correspond to those xi with degree 2di D deg xi

where mjdi , if m is the order of q mod p , and 2di � 1D deg yi .

Notice that we can write q D �q0 where � is an m–th root of one in Zp and q0 �

1 mod p . Hence  q D  q0 ı  � , and  � has finite order m as automorphism of
the p–compact group X . It follows from Proposition 6.2 and Remark 6.3, that
BY .q0/'BX.q/ if BY DBX h � . Moreover, by Theorem B, Y DX h � is again a
polynomial p–compact group. According to Theorem F the cohomology of BY must
be

H�.BY I Fp/Š P Œxi1
; : : : ;xik

� :

9 Invariant theory

Let X be a polynomial p–compact group of rank n and let q be a p–adic unit,
q� 1 mod p , q¤ 1, and `D �p.1�q/. In the second part of Theorem F we obtained
a monomorphism i�W H�.BX.q/I Fp/ ,!H�.BT n

`
I Fp/

WX , where T n
`

is the maximal
finite torus of BX.q/ and WX the Weyl group (see Proposition 7.5 and Proposition
7.6). Whether or not i� is an isomorphism, H�.BX.q/I Fp/ŠH�.BT n

`
I Fp/

WX , is
now a question of invariant theory and this is the subject of this section.

We recollect the necessary results from invariant theory and apply that in a case by
case discussion, based on the Clark–Ewing list, and restricted to our cases of interest,
namely:

(1) Nonmodular groups: This consists of groups represented in a characteristic p

that does not divide the order of the group. (Example 9.2.)

(2) Family 1 in the Clark–Ewing list: These are the symmetric groups †nC1 repre-
sented as Weyl groups of SU.nC 1/. (Examples 9.3 and 9.4.)

(3) Family 2a en the Clark–Ewing list: The groups G.m; r; n/, r jmj.p�1/, m> 1,
.m; r; n/¤ .m;m; 2/. (Example 9.5.)

(4) Family 2b en the Clark–Ewing list: Dihedral groups D2mDG.m;m; 2/, m� 3.
(Example 9.6.)

Algebraic & Geometric Topology, Volume 7 (2007)



1866 Carles Broto and Jesper M Møller

(5) The Aguadé family: These are the groups G12 , G29 , G31 , and G34 in the
Clark–Ewing list (see Aguadé [2]). (Example 9.7.)

We obtain that i�W H�.BX.q/I Fp/ ,!H�.BT n
`
I Fp/

WX is an isomorphism in all cases
except for †3 at the prime 3 (included in class (2) above) and WG2

, the Weyl group
of G2 and G12 , at the prime 3. It is also excluded the case 2b with mD 3 and pD 3,
that corresponds to PU.3/ at prime 3.

From here one easily derives the structure of BX.q/ for Clark–Ewing p–compact
groups and this is done in Theorem 9.8. The Aguadé family and 2a family are our
cases of main interest and the discussion is postponed to Section 10 and Section 11,
respectively. All of the other cases correspond to compact Lie groups.

At the end of the section we illustrate this methods with some examples going from
Example 9.9 to Example 9.13.

Continuing with the notation of the preceding section we write V D tX for the elements
of order p in the maximal finite torus and identify the dual vector space with the two
dimensional primitive elements in the cohomology of BT n

`
, V � Š PH 2.BT n

`
I Fp/.

The Bockstein operations provide a vector space isomorphism PH 2.BT n
`
I Fp/ Š

H 1.BT n
`
I Fp/, that we will denote as d W V � ! dV � , of degree .�1/. If P .V �/

is the symmetric algebra on V � and E.dV �/ the exterior algebra on dV � , we can
describe the algebra structure of H�.BT n

`
I Fp/ as

K.V �/D P .V �/˝E.dV �/D P Œx1; : : : ;xn�˝EŒdx1; : : : ; dxn� ;

and d extends to an algebra derivation on K.V �/. Moreover, any subgroup G�GL.V /

of linear substitutions acts on K.V �/ in a natural way that commutes with the derivation
d , hence K.V �/G is still a differential algebra.

Assume that the ring of invariants, P .V �/G D P Œ�1; : : : ; �n� is a polynomial algebra;
in particular, G is a reflection group. Then d�1; : : : ; d�n are also invariant under
the action of G . The purpose of the next theorem is to establish the cases in which
f�1; : : : ; �n; d�1; : : : ; d�ng is a free system of generators for K.V �/G .

An element f of P .V �/ is invariant relative to det�1 if g � f D det�1.g/f for all
g 2G�GL.V /. The subspace of relative invariant elements, P .V �/Gdet�1 , is a module
over the invariant ring P .V �/G . In fact, P .V �/Gdet�1Dfdet�1 �P .V �/G is a free module
on one generator fdet�1 2 P .V �/, unique up to an invertible of Fp [17]. For instance,
if we write d�i D

Pn
jD1 aij dxj , then the Jacobian J D det.aij / 2 P .V �/, of degree

deg J D
Pn

iD1.deg �i � 2/, is invariant relative to det�1 . In particular, fdet�1 divides
J in P .V �/ and degfdet�1 �

Pn
iD1.deg �i � 2/.
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Theorem 9.1 [12] Let V be a vector space of dimension n over a field of charac-
teristic p ¤ 2. Assume that G � GL.V / is a group of linear substitutions such that
P .V �/G D P Œ�1; : : : ; �n� is a polynomial algebra, then

K.V �/G D P Œ�1; : : : ; �n�˝EŒd�1; : : : ; d�n�

if and only if fdet�1 has degree degfdet�1 D
Pn

iD1.deg �i � 2/.

Proof Since P .V �/GDP Œ�1; : : : ; �n� is a polynomial ring of invariants, the Jacobian
is nonzero, J ¤ 0 [69], and this implies that the homomorphism P Œ�1; : : : ;�n� ˝

EŒd�1; : : : ;d�n�!K.V �/ defined from the free anticommutative algebra to the subal-
gebra of K.V �/G by mapping the variable �i to the polynomial �i of P .V �/G and
d�i to the differential of �i in K.V �/ is injective.

If I D .i1; : : : ; ik/ is an ordered sequence of integers 1 � i1 < � � � < ik � n, we
write d�I D d�i1

d�i2
: : : d�ik

and also dxI D dxi1
dxi2

: : : dxik
. Let FP .V �/ be

the graded field of fractions of P .V �/. Then, FK.V �/D FP .V �/˝P.V �/K.V �/ is
a vector space over FP .V �/ spanned by fdxI gI . And then fd�I gI is also a base of
FK.V �/.

Assume that degfdet�1 D
Pn

iD1.deg �i � 2/. This is the degree of the Jacobian J ,
hence J D fdet�1 , up to an invertible of Fp . Let w 2K.V �/G be an arbitrary element.
We can write wD

P
I wId�I , with wI 2FP .V �/ and then we will show that actually,

for each index I , wI 2 P .V �/. We choose I0 of minimal length such that wI0
¤ 0.

Let I 0
0

be the complementary sequence, then

w d�I 0
0
D wI0

d�I0
d�I 0

0
D˙wI0

d�1 : : : d�n D˙wI0
Jdx1 : : : dxn

is an element of K.V �/G , and, since dx1 : : : dxn is invariant relative to det, wI0
J2

P .V �/Gdet�1Dfdet�1P .V �/G . So, our assumption implies that wI0
2 P .V �/G . Now

we can repeat the argument with w �wI0
d�I0

2 K.V �/G . It follows that each wI

belongs to P .V �/G and then w 2 P Œ�1; : : : ; �n�˝EŒd�1; : : : ; d�n�.

Assume otherwise that degfdet�1 ¤
Pn

iD1.deg �i � 2/; that is, J D �fdet�1 for some
element � 2 P .V �/G of positive degree, then

w D
d�1 : : : d�n

�
D fdet�1dx1 : : : dxn

is an element of the algebra K.V �/G which does not belong to P Œ�1; : : : ; �n� ˝

EŒd�1; : : : ; d�n�.

In the examples below, we explore the invariants K.V �/G for all groups G in the Clark–
Ewing list that have polynomial invariants. We proceed by looking at the different
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families, as they are listed at the beginning of this section, and we isolate the cases
G where K.V �/G is not a free graded anticommutative algebra; namely, †3 (from
Family 1 in the Clark–Ewing list), D12 (from Family 2b in the Clark–Ewing list), and
G12 , all of them at p D 3.

Example 9.2 (G a nonmodular group [3]) If G � GL.V / is a reflection group of
order not divisible by p , then it is known that P .V �/GDP Œ�1; : : : ; �n� is a polynomial
algebra and also that the degree of fdet�1 is twice the number of reflections in G .
On the other hand, the number of reflections in G is

Pn
iD1.deg �i=2� 1/. Hence

degfdet�1 D
Pn

iD1.deg �i � 2/ and then Theorem 9.1 implies

K.V �/G D P Œ�1; : : : ; �n�˝EŒd�1; : : : ; d�n� :

For a group G � GL.V / we denote Œx� D fgx jg 2 Gg the orbit of an element
x 2 V � . The coefficients ci of the polynomial

Q
y2Œx�.X � y/D X mC c1X m�1C

� � �C cm�1X C cm are the Chern classes of the orbit Œx� and belong to P .V �/G . The
element cm D

Q
y2Œx� y is also called the Euler element of Œx�. If we choose just one

element zL 2L\ Œx� for each 1–dimensional vector subspace L of V � that intersects
the orbit Œx� nontrivially, EŒx�D

Q
zL is the pre-Euler element of the orbit Œx�, defined

up to a nonzero scalar. This is a relative invariant respect a linear character � of G that
we can associate to the orbit Œx� by the equation g.EŒx�/D �.g/ �EŒx�, for all g 2G .
(See the articles by the first author [12] and the first author, Smith and Stong [17].)

Example 9.3 (Family 1 in the Clark–Ewing list: †nC1 , except †3 at p D 3) The
symmetric group †nC1 acts on the integral lattice of SU.nC 1/ that we can describe
as V D Zf.yt1�ytnC1/; .yt2�ytnC1/; : : : ; .ytn�ytnC1/g where †nC1 permutes the letters
yt1; : : : ytnC1 . Dually, V � is generated by classes t1; t2; : : : ; tn , and †nC1 permutes
t1; t2; : : : ; tn; tnC1 with the relation t1C t2C � � �C tnC tnC1 D 0.

The orbit of t1 is Œt1� D ft1; t2; : : : ; tn; tnC1g, and the Chern classes of this orbit,
obtained as the coefficients of the polynomial

QnC1
iD1 .X � ti/, are, up to a sign, the

generators ci of the invariant ring P .V �/†nC1 D P Œc2; : : : ; cnC1�.

The orbit of t1� t2 is

Œt1� t2�D f.ti � tj / j 1� i; j � nC 1; i ¤ j g

D f˙.ti � tj / j 1� i Œ j � nC 1g

D f˙.ti � tj / j 1� i Œ j � ng[ f˙.t1C � � �C 2ti C � � �C tn/ j 1� i � ng ;

thus the pre-Euler element associated to this orbit is

E DEŒt1� t2�D
Y

1�iŒj�n

.ti � tj /
Y

1�i�n

.t1C � � �C 2ti C � � �C tn/ :
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Notice here the exception nD 2 at pD 3, in which case EŒt1�t2�D .t1�t2/. With this
exception, we can check that the linear character associated to the pre-Euler element
is precisely the determinant (detD det�1 in this case) and also that the degree of E ,
n2Cn, coincides with the degree of the Jacobian J . Thus for .n;p/¤ .2; 3/, we have

K.V �/†nC1 D P Œc2; : : : ; cnC1�˝EŒdc2; : : : ; dcnC1� :

Example 9.4 (†3 at the prime 3) The integral lattice of SU.3/ is �2.TSU.3// D

Zf.yt1 � yt3/; .yt2 � yt3/g with the action of †3 that permutes yt1 , yt2 , and yt3 . If †3 is
generated by the 3–cycle � and the transposition � , the representation afforded by
�2.BTSU.3// is determined by

� 7!

�
�1 �1

1 0

�
; � 7!

�
0 1

1 0

�
:

The dual action in mod 3 cohomology V � D H 2.BTSU.3/I F3/ D F3ft1; t2g gives
P .V �/†3 Š P Œx4;x6�, where x4 D t1

2C t1t2C t2
2 and x6 D t1t2.t1C t2/. This is

the particular case of Example 9.3 with nD 2 at the prime 3.

The action extends to K.V �/ D P Œt1; t2�˝ EŒdt1; dt2� where we obtain invariant
elements

y3 D dx4 D .t2� t1/dt1C .t1� t2/dt2

y5 D dx6 D .t2
2
� t1t2/dt1C .t1

2
� t1t2/dt2

y4 D .t2� t1/dt1dt2

so that y3y5 D .t1
2
C t1t2C t2

2/.t2� t1/dt1dt2 D x4y4 :

These elements together with the polynomial invariants generate the invariant ring
K.V �/†3 :

(31) K.V �/†3 Š
P Œx4;x6�˝EŒy3;y4;y5�

.y3y5�x4y4; y3y4; y4y5/
:

The proof follows the method of Theorem 9.1. In this particular case 1; dt1; dt2; dt1dt2
is a basis of K.V �/ as a free P .V �/–module, while 1;y3;y5;y3y5 or 1;y3;y4;y5

are basis of FK.V �/ as graded FP .V �/ vector spaces.

Assume that w is an element of K.V �/†3 of even degree. We can write w D w0C

w1y4 , with w0; w1 2 FP .V �/. First, multiply the equality by y4 : wy4 2K.V �/†3

and wy4 D w0y4 D w0.t2� t1/dt1dt2 . Then

w0.t2� t1/ 2 P .V �/†3
det�1 D .t2� t1/P .V

�/†3 ;
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hence w0 2P .V �/†3 . Now, we also have w1y4 2K.V �/†3 , hence the same argument
implies that w1 2 P .V �/†3 .

Next, assume that w is an element of K.V �/†3 of odd degree. In this case, w D
w2y3Cw3y5 with w2; w3 2FP .V �/. If we multiply this equality by y5 2K.V �/†3

we get wy5 2K.V �/†3 and wy5 Dw2y3y5 Dw2x4y4 , and then again the equality
w2x4y4 D w2x4.t2 � t1/dt1dt2 2 K.V �/†3 implies that w2x4 2 P .V �/†3 . Since
P .V �/†3 D P Œx4;x6�, we can write w2 D q2 C �.x

r
6
=x4/, q2 2 P .V �/†3 and

� 2 F3 , r � 0. A similar argument, in which we multiply w by y3 , implies that
w3 D q3 C �.x

s
6
=x4/, q3 2 P .V �/†3 and � 2 F3 , s � 0. If we substitute these

expressions in w D w2y3 C w3y5 we can easily check that this element can only
belong to K.V �/ provided � D � D 0. It follows that w2 D q2 2 P .V �/†3 and
w3 D q3 2 P .V �/†3 . This proves the isomorphism (31).

Example 9.5 (Family 2a in the Clark–Ewing list: G D G.m; r; n/, r jmjp� 1 [12])
G.m; r; n/ is the subgroup of GLn.Zp/ generated by the permutation matrices and

the diagonal matrices diag.�1; : : : ; �n/, where �m
i D 1 and .�1 : : : �n/

m=r D 1. In
particular, G.m; 1; n/ is isomorphic to the semidirect product .Z=m/nÌ†n . In this case
we clearly have P .V �/G.m;1;n/DP Œ�1; : : : ; �n�, where 1C�1C� � �C�nD

Qn
iD1.1C

xm
i /, if we write P .V �/DP Œx1; : : : ;xn�. Now, �nD .x1 : : :xn/

m is the Euler element
associated to the orbit of x1 , Œx1�. The pre-Euler element is E1DEŒx1�Dx1 : : :xn . It
carries an associated linear character �1 , defined by �1.diag.�1; : : : ; �n//D �1 : : : �n

and �1.�/D 1 if � 2†n is a permutation matrix. Notice that G.m; r; n/D Ker�m=r
1

and

P .V �/G.m;r;n/ D P Œ�1; : : : ; �n�1;E
m=r
1

� :

The orbit of .x1 � x2/ is Œx1 � x2� D f �1xi � �2xj j �
m
1
D �m

2
D 1 ; i < j g and its

pre-Euler element is E2 D
Q

i<j .x
m
i � xm

j /. In this case the associated character
is �2 defined by �2.diag.�1; : : : ; �n// D 1 and �2.�/ D sg.�/ is the sign of the
permutation. We clearly have detD�1�2 and then det�1

D �
m=r�1
1

�2 . It follows that
fdet�1 DE

m=r�1
1

E2 . Counting degrees, we obtain
Pn�1

iD1.deg �i �2/Cdeg.Em=r
1

/�

2D
Pn�1

iD1.2im�2/C2n.m=r/�2D n.n�1/mC2n.m=r�1/D degfdet�1 . Hence,
Theorem 9.1 implies

K.V �/G.m;r;n/ D P Œ�1; : : : ; �n�1;E
m=r
1

�˝EŒd�1; : : : ; d�n�1; d.E
m=r
1

/� :

Example 9.6 (D12 at the prime 3) In family 2b there are two modular cases at odd
primes, namely, D6 and D12 at p D 3. The first one is the Weyl group of PU.3/

which is not polynomial at p D 3, the second case corresponds to the Weyl group of
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the exceptional Lie group G2 . The action of D12 on �2.BTG2
/ gives a representation

! 7!

�
0 �1

1 1

�
; � 7!

�
0 1

1 0

�
:

The dual action in mod 3 cohomology V � D H 2.BTG2
I F3/ D F3ft1; t2g gives

P .V �/D12 Š P Œx4;x12�, where x4 D t1
2C t1t2C t2

2 and x12 D .t1t2.t1C t2//
2 .

The extension of this action to K.V �/ gives now

(32) K.V �/D12 Š
P Œx4;x12�˝EŒy3;y10;y11�

.y3y11�x4y10; y3y10; y10y11/

with elements y3D dx4 and y11D dx12 , so that y3y11D .t1
2C t1t2C t2

2/t1t2.t1
2�

t2
2/dt1dt2 D x4y10 , which serves as definition for y10 . The isomorphism (32) is

proved with same arguments of Example 9.4.

Actually, the inclusion of SU.3/ as maximal subgroup of G2 , induces an inclusion
†3 ,! D12 , identifying the generator � and � with !2 . The induced inclusion
K.V �/D12 ,!K.V �/†3 identifies the generators x4 and y3 and maps x12 to x6

2 ,
y10 to �x6y4 and y11 to �x6y5 .

Example 9.7 (G12 , G29 , G31 , and G34 in the Clark–Ewing list at modular primes)
The groups G12 (rank 2, p=3), G29 (rank 4, p=5), G31 (rank 4, p=5), and G34

(rank 6, p=7), of the Clark–Ewing list have polynomial invariants [2; 1; 70].

We obtain by direct calculation that the generator of the det�1 –relative invariants fdet�1

has the same degree as the corresponding Jacobian in cases G29 , G31 , and G34 , and
then Theorem 9.1 applies.

The case G12 D GL.2; 3/ is special. Notice that all those groups contain a copy of
the symmetric group of the same rank affording the representation of Example 9.3.
G12 contains †3 as described in Example 9.4. The invariant ring K.V �/

GL.2;3/ was
computed by Mui [56] (alternatively, use the arguments in Example 9.4):

K.V �/
GL.2;3/

Š
P Œx12;x16�˝EŒy10;y11;y15�

.y11y15�x16y10; y10y11; y10y15/

where x12 D
.t1t2

9� t2t1
9/

.t1t23� t2t13/
; x16 D P1.x12/D

.t1
3t2

9� t2
3t1

9//

.t1t23� t2t13/
;

y11 D dx12 , y15 D dx16 , and y10 is defined by the relation y11y15 D x16y10 .

We can easily obtain the description of the inclusion

K.V �/
GL.2;3/

,!K.V �/
†3
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as RW
P Œx12;x16�˝EŒy10;y11;y15�

.y11y15�x16y10; y10y11; y10y15/
�!

P Œx4;x6�˝EŒy3;y4;y5�

.y3y5�x4y4; y3y4; y4y5/

x12 7! x4
3
Cx6

2 ;mapping

x16 7! x6
2x4 ;

y15 7! x6
2y3�x4x6y5 ;

y11 7! �x6y5 ;

y10 7! x6y4 :

Let X be a Clark–Ewing p–compact group; that is, a connected p–compact group for
which p does not divide the order of the Weyl group. Models for these p–compact
groups were constructed by Clark and Ewing [19]. If WX is the Weyl group of X , the
action of WX on the maximal torus TX is determined by the induced representation
�W WX ! GLn.Zp/, where n is the rank of X . This representation gives WX the
structure of a Zp –reflection group, thus product of irreducibles listed in [19]. It turns
out that BX ' .BThWX

/^p , where the action of WX on BT is given by � [23]. Our
next result is a similar description of X.q/, for q � 1 mod p .

Theorem 9.8 Let X be a Clark–Ewing p–compact group and q � 1 mod p , q ¤ 1,
then

BX.q/'
�
.BTX .q//hWX

�^
p
' B.T n

` ÌWX /
^
p

with T n
`
Š .Z=p`/n , where n is the rank of X and `D �p.q� 1/.

Proof In Proposition 7.5 we have obtained a map BT n
`

'
�!Map.BV;BX.q//Bi!

BX.q/ and according to Proposition 7.6 we have a factorization

BT n
`
'Map.BV;BX.q//Bi //

�
Map.BV;BX.q//Bi

�
hWX

// BX.q/ :

The induced maps in cohomology are

H�.BX.q/I Fp/ // H�..BT n
`
/hWX

/
Š // H�.BT n

`
/WX

where the second arrow is an isomorphism because the order of WX is prime to p and
the composition is a monomorphism by Theorem F.

According to Theorems F and 9.1, H�.BX.q/I Fp/ and H�.BT n
`
/WX has the same

Poincaré series, hence H�.BX.q/I Fp/ŠH�..BT n
`
/hWX

/ and the result follows.
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Example 9.9 (SU.2/ at odd primes) The Weyl group of SU.2/ is Z=2 acting on
the maximal torus S1 �C by sign change, that is, as  �1 . Then, Theorem 9.8 applies.
All spaces will be considered completed at p > 2.

Let  q be an Adams map of exponent q 2 Z�p , q ¤ 1. We have that BSU.2/.q/D

BSU.2/.�q/ as  �qD �1ı qD q because  �1 is the identity. For q�1 mod p ,
define `D �p.1� q/, and then BSU.2/.q/ has maximal finite torus Z=p` and Weyl
group Z=2, acting by sign change, so

BSU.2/.q/' .BZ=p`/hZ=2

is an equivalence at the prime p .

Notice that if q 6� ˙1 mod p , then we can write  q D  � ı  q0 , where � is a
.p� 1/–th root of 1, different than ˙1, and q0 � 1 mod p . Then by Proposition 6.2,
BSU.2/.q/ ' BSU.2/h 

�

.q0/, and according to Proposition A.5 (see Proposition
A.8), BSU.2/h 

�

is trivial, hence BSU.2/.q/^p is also trivial.

For q a prime power, prime to p , SU.2/.q/ is equivalent at p to the finite Chevalley
group SL2.q/ and SU.2/.�q/ to SU 2.q/. This agrees with the above calculations,
for in any case `D �p.1� q2/.

Example 9.10 (Sullivan spheres S2m�1 , m j p� 1) This generalizes the previous
example. When m� 2 divides p� 1, the cyclic group Cm of order m acts on Z=p1 .
The Sullivan sphere BS2m�1 is the p–completion of the classifying space of the
semidirect product Z=p1ÌCm for this action and H�.BS2m�1I Fp/DP Œx2m�. If u

is any p–adic unit then

BS2m�1.u/D

8̂<̂
:
ƒ.BS2m�1/ um D 1

B.Z=p` ÌCm/ um ¤ 1;um � 1 mod p; `D �p.u
m� 1/

� um 6� 1 mod p:

All spaces are understood to be completed at p . To see this, note that BS2m�1.u/

is contractible if um 6� 1 mod p by Theorem B. Otherwise, if um � 1 mod p , then
uD �q with � 2 Cm � Cp�1 , q � 1 mod p and BS2m�1.u/D .BS2m�1/hh�i.q/D

BS2m�1.q/D B.Z=p` ÌCm/ by Proposition 6.2, Proposition A.8, and Theorem 9.8,
because �p.q� 1/D �p.q

m� 1/D �p.u
m� 1/.

Example 9.11 (SU.3/.q/ at the prime 3) Fix q a 3–adic integer with 0 < ` D

�3.1� q/ <1. According to Theorem F

H�.SU.3/.q/I F3/Š P Œx4;x6�˝EŒy3;y5� ;
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with ˇ.`/.y3/D x4 and ˇ.`/.y5/D x6 .

According to Propositions 7.5 and 7.6, T 2
`
Š .Z=3`/2 is the maximal finite torus of

SU.3/.q/ with Weyl group †3 . Now, the invariant ring

H�.T 2
` I F3/

†3 Š
P Œx4;x6�˝EŒy3;y4;y5�

.y3y5�x4y4; y3y4; y4y5/

computed in Example 9.4 turns out to differ from H�.SU.3/.q/I F3/. The natural
map H�.SU.3/.q/I F3/ ,!H�.T 2

`
I F3/

†3 (see Theorem F) has cokernel isomorphic
to P Œx6�y4 .

Example 9.12 (G2 at the prime 3) The exceptional Lie group G2 has rank two and
the Weyl group is dihedral D12 Š †3 � C2 , listed in family 2b for m D 6 in the
Clark–Ewing list. The category Fe

3
.G2/ of nontrivial elementary abelian 3–subgroups

of G2 has an isomorphism class of rank two elementary abelian 3–subgroups with
automorphism group D12 , the Weyl group of G2 , and two classes of elementary abelian
3–subgroups of rank one, with automorphism group of order two. It is equivalent
to the category I.2/ of Appendix B, with G DD12 , H1 D †3 , and H2 D †2 . The
centralizer diagram for elementary abelian 3–subgroups is

BSU.3/C2 99 BT 2

.D12/
op

HH

.†3/
opn.D12/

op
oo

.†2/
opn.D12/

op
// BU.2/ C2ee :

By Corollary 7.8 the categories of nontrivial elementary abelian 3–subgroups of G2 and
G2.q/ coincide: Fe

3
.G2.q//Š Fe

3
.G2/, and furthermore, for every object .E; �/ of

Fe
p.G2/, BCG2.q/.E; �/'BCG2

.E; �/.q/, thus the centralizer diagram of elementary
abelian subgroups of G2.q/ is
(33)

BSU.3/.q/C2 99 BT 2
`

.D12/
op

KK

.†3/
opn.D12/

op
oo

.†2/
opn.D12/

op
//BU.2/.q/ C2ee

and there is a natural map hocolimFe
p.G2.q//op BCG2.q/! BG2.q/ which is a sharp

homology decomposition [22]; that is, the Bousfield–Kan spectral sequence for the
homotopy colimit collapses at the E2 –term and gives

H�.G2.q/I F3/Š lim
 �

0

Fe
p.G2.q//

H�.BCG2.q/I F3/Š P Œx4;x12�˝EŒy3;y11� :
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This result can also be obtained by direct calculation from Proposition B.1 using the
invariant theory calculations in Examples 9.4 and 9.6. Notice that Proposition 7.9 does
not apply to BG2.q/ at the prime 3 (see Example 9.11).

Example 9.13 (G2 at primes p > 3) Let p be a prime > 3. The compact Lie
group G2 , at the prime p , is a Clark–Ewing p–compact group and H�.BG2I Fp/D

P Œx4;x12�. The Weyl group has order jW .G2/j D 12 and the center is cyclic of order
two. Let u¤˙1 be a p–adic unit, and let r denote the order of u mod p . Then

BG2.u/D

8̂<̂
:

BG2.u
2/D B.T 2

`
ÌW .G2// r 2 f1; 2g; `D �p.u

2� 1/

BS11.u6/D B.Z=p` ÌC6/ r 2 f3; 6g; `D �p.u
6� 1/

� otherwise,

where it is understood that all spaces are completed at p . To see this, write uD�q where
� is a .p�1/–th root of unity and q� 1 mod p . Note first that BG2.u/DBG2.˙u/

as the Weyl group of G2 contains �1. In case u2 � 1 mod p (u2 ¤ 1), we have that
uD˙q so that BG2.u/DBG2.˙u/DBG2.u

2/DB.T 2
`
ÌW .G2// by Theorem 9.8

and Proposition 6.5. If u2 6� 1 mod p;u6 � 1 mod p , then uD ˙�q where �3 D 1

and BG2.u/ D BG2.˙�q/ D BG2.�q/ D BG
hh�i
2

.q/ D BS11.q/ D BS11.u6/

by Proposition 6.2 and Proposition A.10; the last equality follows from Proposition
6.5 since �p.u6 � 1/ D �p.q

6 � 1/ D �p.q � 1/. If u6 6� 1 mod p then BG2.u/ is
contractible by Theorem B. It follows that

H�.BG2.u/I Fp/D

8̂<̂
:

P Œx4;x12�˝E.y3;y11/ r 2 f1; 2g

P Œx12�˝E.y11/ r 2 f3; 6g

Fp otherwise

with higher order Bocksteins as explained in Theorem F. This provides the geometric
explanation of Kleinerman’s computation [39, Theorem 1-1] of cohomology rings of
finite Chevalley groups of type G2 .

10 Chevalley p–local finite groups from Aguadé p–compact
groups

In [2], Aguadé constructed the exotic p–compact groups Xi , i D 12; 29; 31; 34, with
Weyl groups the groups G12 (rank 2, p D 3), G29 (rank 4, p D 5), G31 (rank 4,
p D 5), and G34 (rank 6, p D 7), on the Sheppard–Todd and Clark–Ewing lists,
respectively. All four of them are obtained as the homotopy colimit of a diagram that
we proceed by describing.
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Write Gi to denote one of the groups G12 , G29 , G31 , or G34 , and Z its center,
namely, Z Š Z=2 for G12 , Z Š Z=4 for G29 , Z Š Z=4 for G31 , Z Š Z=6 for G34 ,
in all cases represented by diagonal matrices with entries p� 1 roots of unity. In all
four cases we also fix a subgroup isomorphic to †p . Then, the index category is the
opposite category of I.1/, with two objects 0 and 1, and

AutI.1/.0/DGi ;

AutI.1/.1/DNGi
.†p/=†p ŠZ ;

MorI.1/.1; 0/D†pnGi ;

MorI.1/.0; 1/D∅ :

The functor assigns BT p�1 to 0 and BSU.p/ to 1, up to homotopy, where the center
of Gi , Z , acts on BSU.p/ via unstable Adams operations. The diagram is described
in the following picture:

BSU.p/Z 99 BT p�1 .Gi /
op

ee

.†p/
opn.Gi /

op
oo :

Each Xi is a p–compact group with maximal torus TXi
D T p�1 and Weyl group

WXi
DGi . The respective cohomology rings coincide with the isomorphic invariant

rings H�.BXi I Fp/ŠH�.BTXi
I Fp/

Gi , and these are the polynomial rings [2; 1; 70]:

H�.BX12I F3/Š P Œx12;x16� ;

H�.BX29I F5/Š P Œx8;x16;x24;x40� ;

H�.BX31I F5/Š P Œx16;x24;x40;x48� ;

H�.BX34I F7/Š P Œx12;x24;x36;x48;x60;x84� :

Throughout this section we fix an unstable Adams operation  q of exponent q 2 Z�p
with q� 1 mod p , q¤ 1. We will describe the p–local structure of the spaces BXi.q/

and will show that they are classifying spaces of p–local finite groups. In particular,
cases i D 29; 34 provide new exotic examples of p–local finite groups.

The first results on the p–local structure of BXi.q/ are given by Propositions 7.5
and 7.6. Set ` D �p.1 � q/. The maximal elementary abelian p–subgroup of Xi ,
.tXi

; �/, factors as a p–subgroup .tXi
;g/ of Xi.q/, and the centralizer of this group

CXi .q/.tXi
;g/' T

p�1

`
Š .Z=p`/p�1

is the maximal finite torus of Xi.q/. All elementary abelian p–subgroups of Xi.q/

factor through this one. Moreover, the Weyl group is WXi .q/.T
p�1

`
/ D Gi , and the

normalizer NXi .q/.T
p�1

`
/DT

p�1

`
ÌGi sits in the maximal torus normalizer of Xi.q/,
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making homotopy commutative the diagram

BNXi .q/.T
p�1

`
/ //

��

BNXi
.T p�1/

��
BXi.q/ // BXi .

Now, we fix the Sylow p–subgroup S D .Z=p`/.p�1/ Ì Z=p of NXi .q/.T
p�1

`
/,

generated by T
p�1

`
and a p–cycle of †p �Gi . We will denote by f W BS!BXi.q/

the homotopy monomorphism obtained as the composition BS!BNXi .q/.T
p�1

`
/!

BXi.q/. Then .S; f / is a p–subgroup of BXi.q/, and it will play the role of a Sylow
p–subgroup.

Since Xi , iD12; 29; 31; 34, are polynomial p–compact groups, according to Corollary
7.8, �W BXi.q/! BXi induces an equivalence of categories

�]W Fe
p.BXi.q// �! Fe

p.BXi/ :

Thus, we obtain that every elementary abelian p–subgroup .E; �/ of BXi.q/ factors
as a subgroup of tXi

: E � tXi
and � ' �jBE . There is a distinguished subgroup

Z=pŠZ� tXi
such that, Z� tXi

�TXi
�SU.p/ŠCXi

.Z; �jBZ /. If E� tXi
is not

conjugate to Z in Xi , then the centralizer CXi
.E; �jBE/ is a p–compact group whose

Weyl group, the pointwise stabilizer of E � TXi
, WXi

.E/, has order not divisible by
p . In Xi.q/, we obtain:

Proposition 10.1 There is one conjugacy class of elements of order p in Xi.q/,
.Z;gjBZ /, such that the centralizer is

CXi .q/.Z;gjBZ /' SU.p/.q/

and contains .S; f /:

BS

B incl
��

f

''NNNNNNNNNNN

BSU.p/.q/ // BXi.q/

as Sylow p–subgroup of SU.p/.q/.

If E � tXi
represents another conjugacy class of elementary abelian p–subgroups, then

CXi .q/.E;gjBE/' T
p�1

`
ÌWXi

.E/
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where the order of WXi
.E/ is not divisible by p . Furthermore, the diagram

BT
.p�1/

`

B incl //

B incl
��

BS

f

��
BCXi .q/.E;gjBE/

j // BXi.q/

is commutative up to homotopy, where j W BCXi .q/.E;gjBE/!BXi.q/ is the natural
map induced by evaluation.

Proof For Z � tXi
, we have CXi .q/.Z;gjBZ /Š SU.p/.q/ by Corollary 7.4.

If E � tXi
be another subgroup, not conjugate to Z , then the centralizer in Xi is the

Clark–Ewing p–compact group BCXi
.E; �jBE/'B.TXi

ÌWXi
.E//^p , and then first,

Corollary 7.4 implies that BCXi .q/.E;gjBE/ ' BCXi
.E; �jBE/.q/, and secondly,

Theorem 9.8 gives BCXi
.E; �jBE/.q/' B.T

p�1

`
ÌWXi

.E//^p .

Finally, we use the inclusions BE! BtXi
! BS

f
�! BXi.q/ in order to compare

the centralizers of E and tXi
in S and Xi.q/:

BT
p�1

`
' BCS .tXi

/

' f]

��

' // BCS .E/

f]

��

// BS

f

��
BCXi .q/.tXi

;g/ // BCXi .q/.E;gjBE/ // BXi.q/:

The proof follows.

Proposition 10.2 For i D 12; 29; 31; 34, the natural map

(34) hocolim
Fe

p.BXi .q//op
BCXi .q/! BXi.q/

is a mod p homology equivalence.

Proof According to Theorem F the cohomology rings of BXi.q/ are:

H�.BX12.q/I F3/Š P Œx12;x16�˝EŒy11;y15� ;

H�.BX29.q/I F5/Š P Œx8;x16;x24;x40�˝EŒy7;y15;y23;y39� ;

H�.BX31.q/I F5/Š P Œx16;x24;x40;x48�˝EŒy15;y23;y39;y47� ;

H�.BX34.q/I F7/Š P Œx12;x24;x36;x48;x60;x84�

˝EŒy11;y23;y35;y47;y59;y83� ;
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and they embed in the invariant rings H�.BXi.q/I Fp/�H�.BT
p�1

`
I Fp/

Gi . These
invariant rings are described in the Example 9.7. It turns out that the above inclusion is
an isomorphism if i D 29; 31; 34, but it is not surjective when i D 12.

The centralizers of elementary abelian p–subgroups of BXi.q/ are described in Propo-
sition 10.1. The centralizer, CXi .q/.E;gjBE/, of an elementary abelian p–subgroup
E � tXi

in Xi.q/ is either SU.p/.q/ or C.q/ where C is a Clark–Ewing p–compact
group.

In cases i D 29; 31; 34, H�.CXi .q/.E;gjBE/I Fp/ŠH�.BTXi
I Fp/

W .E/ is satisfied
by Theorem F and Examples 9.2 and 9.3, hence we meet the conditions of Proposition
7.9 and the map (34) is a mod p homology equivalence.

In the case i D 12, Proposition 7.9 does not apply, so we will need a separate analysis.
The p–compact group X12 , p D 3, is also denoted DI2 , because G12 Š GL.2; 3/

and H�.BDI2I F3/ŠH�.BT 2I F3/
GL.2;3/ Š F3Œx12;x16� is the rank two Dickson

algebra at p D 3. It admits two conjugacy classes of elementary abelian p–subgroups,
one of rank one and another of rank two, hence so does BDI2.q/, as well. We have
equivalences of categories

Fe
p.BDI2/Š Fe

p.BDI2.q//Š I.1/

with AutI.1/.0/DGL.2; 3/, AutI.1/.1/DNGL.2;3/.†3/=†3ŠZ=2, where the group
NGL.2;3/.†3/D†3�Z=2, and MorI.1/.1; 0/D†3nGL.2; 3/ and MorI.1/.0; 1/D∅.
The centralizers diagram BCDI2.q/ is described in the picture

(35) BSU.3/.q/Z=2 99 BT 2
`

GL.2;3/op
kk

†
op
3
nGL.2;3/op

oo :

The Bousfield–Kan spectral sequence

E
i;j
2
Š lim
 �

i

I.1/

H j .BCDI2.q/I F3/H)H iCj .hocolim
I.1/op

BCDI2.q/I F3/

computes the cohomology of the homotopy colimit hocolimI.1/op BCDI2.q/ .

The computation of the E2 –term follows from Proposition B.1. Since NGL.2;3/.†3/Š

†3 � Z=2 and H�.GL.2; 3/IA/ Š H�.NGL.2;3/.†3/IA/ Š H�.†3IA/, for any
GL.2; 3/–module A, there is an exact sequence

(36) 0! lim
 �

0

I.1/

H�.BCDI2.q/I F3/!H�.BSU.3/.q/I F3/
Z=2
˚H�.BT 2

` I F3/
GL.2;3/

!H�.BT 2
` I F3/

†3�Z=2
! lim
 �

1

I.1/

H�.BCDI2.q/I F3/! 0 ;
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and lim
 �

i

I.1/
BCDI2.q/ D 0 if i � 2.

The invariant rings H�.BT 2
`
I F3/

GL.2;3/
and H�.BT 2

`
I F3/

†3 as well as the restric-
tion

RW H�.BT 2
` I F3/

GL.2;3/
,!H�.BT 2

` I F3/
†3

have been described in Examples 9.4 and 9.7. The cohomology of BSU.3/.q/ is
identified with the subalgebra P Œx4;x6�˝EŒy3;y5� of H�.BT 2

`
I F3/

†3 . The cokernel
of the inclusion is isomorphic to P Œx6�y4 , and then the exact sequence (36) is simplified
to

0! lim
 �

0

I.1/

H�.BCDI2.q/I F3/!
P Œx12;x16�˝EŒy10;y11;y15�

.y11y15�x16y10; y10y11; y10y15/

xR
�!

�
P Œx6�y4

�Z=2
! lim
 �

1

I.1/

H�.BCDI2.q/I F3/! 0 ;

and
�
P Œx6�y4

�Z=2
D P Œx6

2�.x6y4/ which is in the image of xR. It follows that

lim
 �

0

I.1/

H�.BCDI2.q/I F3/Š P Œx12;x16�˝EŒy11;y15�

and lim
 �

i

I.1/
BCDI2.q/D 0 if i � 1, so, therefore the Bousfield–Kan spectral sequence

collapses to an isomorphism

H�.hocolim
I.1/op

BCDI2.q/I F3/Š lim
 �

0

I.1/

H�.BCDI2.q/I F3/ŠP Œx12;x16�˝EŒy11;y15� I

that is, hocolimI.1/op BCDI2.q/! BG2.q/ is a sharp homology decomposition at the
prime 3 and

H�.DI2.q/I F3/Š lim
 �

0

I.1/

H�.BCDI2.q/I F3/Š P Œx12;x16�˝EŒy11;y15� :

Theorem 10.3 Fix q 2 Zp , 1¤ q � 1 mod p . Then, .S; f / is a Sylow p–subgroup
for BXi.q/, the fusion system F.S;f /.BXi.q// of the space BXi.q/ over the p–
subgroup .S; f / is saturated, and

.S;F.S;f /.BXi.q//;L.S;f /.BXi.q///

is a p–local finite group with classifying space

jL.S;f /.BXi.q//j
^
p ' BXi.q/ :

Proof It is a consequence of Theorem 4.5, using the Propositions 10.1 and 10.2.
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Now, we will go deeper into the structure of the fusion system F D F.S;f /.BXi.q//.
According to Remark 6.6 we may assume that q is an integer and a prime power. We
have seen that the fusion category of elementary abelian p–subgroups is equivalent to
that of the p–compact group Xi ; in particular, every elementary abelian p–subgroup
is toral; that is, F –conjugate to a subgroup of T

.p�1/

`
. If we denote Z DZ.S/ the

center of S , then 10.1 BCXi .q/.Z/DBSU.p/.q/^p 'BSLp.q/
^
p , so, the centralizer

fusion system CF .Z/ over CS .Z/D S coincides with the fusion system of SLp.q/

over S . Hence, we can identify S with the Sylow p–subgroup of SLp.q/ and then
use the notation of Example 3.5. Recall from Example 3.5 that any centric radical
subgroup of S in CF .Z/ is conjugate to either S , T

.p�1/

`
, or an extraspecial group

�1.�
r /, r D 0; : : : ;p� 1.

Proposition 10.4 Any centric radical subgroup of S in F D F.S;f /.BXi.q// is
conjugate to one of the groups in the table:

(37)

Q OutF .Q/ Conditions
T
.p�1/

`
Gi

S Z=.p� 1/�Z=.p� 1/

�1 GL2.p/

�1.�/ SL2.p/ if ` > 1 or p > 3.

Proof The proof is divided in four steps, where we first determine a set of representa-
tives for centric radical subgroups of S in F , and then refine it to a minimal set of
representatives and compute their automorphisms groups in F .

Step 1 (Toral and nontoral centric radical subgroups) T
p�1

`
is centric in F and

OutF .T
p�1

`
/ŠGi is p–reduced, hence T

p�1

`
is also radical in F . No other subgroup

of T
p�1

`
is centric, so for any other centric and radical subgroup Q� S in F , there

is a morphism of extensions

(38) Q0
//

��

Q //

��

Z=p

T
p�1

`
// S // Z=p

where Q0 D T
p�1

`
\Q.

We are assuming that Q is centric, hence the center ZŠZ=p of S should be contained
in Q0 . But if Q0DZ , then QŠZ=p�Z=p is elementary abelian and then toral in F ,
hence it would not be centric. Thus Z¤Q0 and the center of Q is Z.Q/DQ

Z=p
0
DZ .
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In particular, every automorphism of Q restricts to an automorphism of Z , so we obtain
a homomorphism AutF .Q/! AutF .Z/. The kernel is composed of automorphisms
of Q that restrict to the identity in Z ; that is, automorphisms of Q in the centralizer
fusion system CF .Z/, hence we have an exact sequence

(39) 1! AutCF .Z/.Q/! AutF .Q/! AutF .Z/

where AutF .Z/ � Z=p� 1 lifts to AutF .T
.p�1/

`
/ and AutF .S/ as unstable Adams

operations (the center of Gi ). Thus, if Q is radical in CF .Z/, then it is radical in F .

Step 2 (Nonabelian centric radical subgroups, all of which abelian characteristic
subgroups are cyclic) Assume that all abelian characteristic subgroups of Q are cyclic,
then a theorem of Hall implies that Q is the central product of an extraspecial group
� of exponent p and a cyclic group C , where the elements or order p in C , �1.C /,
coincide with the center Z.�/ of � (cf Gorenstein [35, Chapter 5, 4.9, 5.3]).

The faithful irreducible representations of the central product of an extraspecial group
� of order p1C2r and a cyclic group of order p` over the algebraic closure of a
field of q elements, .q;p/D 1, have degree pr , and there are exactly p`�1.p � 1/

inequivalent representations in this degree.

Hence, only the case rD1 can appear in GLp.q/. We denote �1 the extraspecial group
of order p3 and exponent p , and �k the central product Z=pk ı �1 . The different
irreducible faithful representations of �k in GLp.q/ are obtained by composing with
the extension to �k of the automorphisms of Z=pk , .Z=pk/� . Thus, there is at most
one subgroup isomorphic to �k in GLp.q/, up to conjugation. A subgroup of GLp.q/

isomorphic to �1 is described in Example 3.4. Since CGLp.q/.�1/DZ.GLp.q//Š

GL1.q/, �k is a subgroup of GLp.q/ if and only if Z=pk < GL1.q/. Hence �` ,
`D �p.1� q/, is the biggest one that can occur in GLp.q/ (see Example 3.4).

Finally, the intersection of �` with SLp.q/, and hence, of any conjugate of �` , is
isomorphic to �1 , and there are exactly p conjugacy classes of such subgroups �1.�

r /

(see Example 3.5). These are radical in CF .Z/, and so, therefore, they are also radical
in F .

Step 3 (Nonabelian centric radical subgroups having noncyclic abelian characteristic
subgroups) Assume now that Q contains a noncyclic abelian characteristic group. If
Q is radical in CF .Z/, then it is radical in F . Now, we assume also that Q is not
radical in CF .Z/.

We can view Q� S as subgroups of SLp.q/ and GLp.q/, for an appropriate prime
power q such that S is the Sylow p–subgroup of SLp.q/: ` D �p.1� q/. Write
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N DNGLp.q/.Q/. The arguments of [4, (4A)] show that (up to conjugacy in GLp.q/)

Q�N \ .Z=pk
oZ=p/CN

for some k � `, or, taking the intersection with SLp.q/

Q� xN \Sk C xN

where Sk D .Z=p
k oZ=p/\SLp.q/�S and xN DN \SLp.q/DNSLp.q/.Q/. Then

Inn Q� . xN \Sk/=Z.Q/C AutCF .Z/.Q/

where xN =CSLp.q/.Q/ D AutCF .Z/.Q/. We will see that . xN \ Sk/=Z.Q/ is still
normal in AutF .Q/.

Assume that ' 2 AutF .Q/ restricts to Z as the unstable Adams operation  � , �
a .p � 1/–st root of unity. If  1=�.Q/ D Q0 � S , then  1=� ı 'W Q ! Q0 is a
morphism of F , that restricted to Z is trivial, hence a morphism of CF .Z/. Since,
we have assumed that Q is not radical in CF .Z/,  1=� ı ' should be obtained as
composition of restrictions of automorphisms of centric radical subgroups of CF .Z/,
by Alperin fusion theorem [14, A.10]. This is the fusion system of SLp.q/, and
the Sylow p–subgroup S itself is the only centric radical that contains Q, hence,
there is � 2 AutCF .Z/.S/ with �jQ D  1=� ı ' , hence ' D  � ı�jQ extends to an
automorphism  � ı� of AutF .S/. Notice that  �.Sk/D Sk and also �.Sk/D Sk ,
hence, if g 2 Sk normalizes Q, we have ' ı cg ı'

�1 D c'.g/ , with '.g/ 2 xN \Sk .
This proves that we have

Inn Q� . xN \Sk/=Z.Q/C AutF .Q/

and since Q is radical in F , QD Sk .

We claim that only the case Sk D S is radical. First we compute the normal-
izer of Z=pk o Z=p in GLp.q/. The subgroup .Z=pk/p is a characteristic sub-
group of Z=pk o Z=p , for it is the only abelian subgroup of index p , hence we
have NGLp.q/.Z=p

k oZ=p/�NGLp.q/..Z=p
k/p/. It is not difficult to compute that

NGLp.q/..Z=p
k/p/ D GL1.q/ o†p , the group of invertible matrices with only one

nontrivial entry in each line and column. By direct computation one can obtain that
NGLp.q/.Z=p

k oZ=p/D GL1.q/ � .Z=p
k oN†p

.Z=p//, where GL1.q/ is identified
with the subgroup of all diagonal matrices of GLp.q/; that is, the center of GLp.q/.

Call Nk DNGLp.q/.Z=p
k oZ=p/\SLp.q/. We have Nk Š Bk ÌN†p

.Z=p/, with

Bk D
˚
.z �x1; : : : ; z �xp/ 2GL1.q/

p
ˇ̌
xi 2Z=pk ; zpx1 : : :xp D 1
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and NSLp.q/.Sk/ D Nk . Notice that, when k < `, Sk has index p in the Sylow
p–subgroup Bk Ì Z=p , and this is normal in Nk , hence only S D S` is radical in
SLp.q/.

The centralizer of Sk in SLp.q/ is CSLp.q/.Sk/DZ Š Z=p . So AutCF .Z/.Sk/Š

AutSLp.q/.Sk/ŠNk=Z . .Bk=Z/ÌZ=p is normal in Nk=Z , and, since the Adams
operations  � , � a .p� 1/–st root of unity, act internally in Bk , .Bk=Z/ÌZ=p is
also normal in AutF .Sk/

Inn Sk D Sk=Z=p C .Bk=Z=p/ÌZ=p C AutF .Sk/

thus, Sk is radical in the fusion system F if and only if k D `; that is, only the case
Sk DS is radical. In this case we have obtained AutF .S/ŠN`=ZÌZ=.p�1/, where
Z=.p� 1/ on the right is generated by the Adams operations of exponent a primitive
.p� 1/–st root of unity, and OutF .S/Š Z=.p� 1/�Z=.p� 1/, given by the Adams
operations and N†p

.Z=p/=Z=p .

Step 4 (Minimal set of representatives and automorphism groups) It remains to check
which of those are F –conjugate to one of the others in the list and also to compute
their F –automorphisms.

For Q D S the restriction AutF .Q/! AutF .Z/ is split because unstable Adams
operations extend to S . Moreover, since they are realized by the center of Gi , the
F –automorphisms of S are given by conjugation in the normalizer N`;i of the maximal
finite torus T

.p�1/

`
. We have seen already that the same is true for QD T

.p�1/

`
.

Finally, we analyze the case QD�1.�
r /, r D 0; : : : ;p�1. Assume that ' 2AutF .Q/

and that the restriction to the center Z is the unstable Adams operation  z . This extends
to an F –automorphism of S . Write Q0 D  z.Q/. Then �D  z ı '.�1/W Q!Q0

is a homomorphism of F that restricts to the identity in Z , hence it belongs to the
centralizer fusion system CF .Z/. In other words, every automorphism ' 2 AutF .Q/
is the composite of an isomorphism �W Q! Q0 of CF .Z/ and a unstable Adams
operation  z .

It is then enough to compute the effect of unstable Adams operations on the family of
subgroups �1.�

r /. It turns out that unstable Adams operations restrict to automorphisms
of �1D�1.�

0/ so that OutF .�1/DGLp.q/, while, for p> 3 or `> 1, they conjugate
�1.�

r / for r D 1; : : : ;p� 1 to each other and OutF .�1.�/D SLp.q/.

Corollary 10.5 The fusion system of BXi.q/ is

F.S;f /.BXi.q//D hFN`;i .S/ I F�1
.GL2.p// ;F�1.�/.SL2.p// i ;
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for p > 3 or ` > 1, and F.S;f /.BX12.q//D hFN1;i
.S/ I F�1

.GL2.p// i, for p D 3

and `D 1, where N`;i DNXi .q/.T
.p�1/

`
/Š T

.p�1/

`
ÌGi .

Proof It is a consequence of Proposition 10.4 and Alperin’s fusion theorem for
saturated fusion systems (see Section 3).

We end this section with a case by case study in order to determine which spaces BXi.q/

are p–completed classifying spaces of finite groups and which cases correspond to
exotic examples of p–local finite groups.

As we shall see, S contains no proper strongly closed subgroups in FDF.S;f /.BXi.q//

and so, according to [14, 9.2], if F is the p–completed classifying space of a finite
group, this group is almost simple.

In fact, a strongly closed subgroup of S in F is a normal subgroup P of S such that
no element of P is F –conjugate to any element in S nP . Now, if P is nontrivial
it contains at least an element of order p , and this is F –conjugate to an element of
order p in T

.p�1/

`
. Now, the maximal elementary abelian p–subgroup t of T

.p�1/

`

turns out to be an irreducible Gi –module, hence t � P and since the cycle of order p

generating S=T
.p�1/

`
is conjugate to an element of t , the extension of t by this cycle

is in P . Thus we have a diagram of extensions

PT

��

// P

��

// Z=p

T
.p�1/

`
// S // Z=p

where t � PT D P \T . Now S=P Š T
.p�1/

`
=PT is abelian. The abelianization of

S is seen to be Z=p �Z=p , and then we obtain that T
.p�1/

`
=PT is either trivial or

has order p . It follows that all elements of order up to p`�1 of T
.p�1/

`
belong to PT .

Taking the quotient by this subgroup we obtain an inclusion of Gi –modules

PT � T
.p�1/

`
;

but again, this last is an irreducible Gi –module, hence

PT D T
.p�1/

`
;

and then P D S .

Example 10.6 BX29.q/ at p D 5 and BX34.q/ at p D 7 are classifying spaces
of exotic p–local finite groups. We have seen that the Sylow subgroup does not
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contain any proper strongly closed subgroup in F.S;f /.BXi.q//, hence if this is the p–
completed classifying space of a finite group G , then G is almost simple [14, Lemma
9.2]. A complete list of almost simple groups with a Sylow subgroup isomorphic to
S is provided by [14, Proposition 9.5]. No group in the list contains G29 or G34 as
automorphisms of T

.p�1/

`
induced by conjugation in the group. Hence X29.q/ at

p D 5 and X34.q/ at p D 7 are exotic.

Example 10.7 BX12.q/ at p D 3 is the 3–completed classifying space of a twisted
Chevalley group of type F4 . More precisely, BX12.q/ D B.2F4.2

3`�1

//^
3

where
`D �3.q

2� 1/.

The 3–completed classifying space of the twisted Chevalley group 2F4.2
2nC1/ can

be described at p D 3 as B.2F4.2
2nC1// ' BF˛

4
, for ˛ D ' ı  2n

, where ' is
the Friedlander’s exceptional isogeny of F4 [32]. ' has the effect of reflecting the
Dynkin diagram of F4 by sending the short roots to the long roots and the long
roots to 2 times short roots. Furthermore, '2 '  2 , and then we can choose � a
square root of �2 in Z3 such that ˇ D ' ı  1=� is a self equivalence of BF4 at
p D 3 of order two and 2n� � 1 mod 3. We can write ˛ D ˇ ı 2n� , and then by
Proposition 6.2, BF˛

4
' .BF4/

hˇ.2n�/. In [16] it is shown that .BF4/
hˇ ' BX12 ,

hence BX12.2
n�/ ' B.2F4.2

2nC1//^
3

. Since  �1 belongs to the Weyl group of
X12 , BX12.q/' BX12.�q/, and then according to Theorem E, the homotopy type
of BX12.˙q/ does only depend on ` D �3.q

2 � 1/, thus, if we choose n with ` D
�3.q

2� 1/D �3.1� 2n�/D �3.1C 22nC1/, then we have

BX12.q/' BX12.2
n�/' B.2F4.2

2nC1//^3 :

In particular, BX12.q/' B.2F4.2
3`�1

//^
3

. The local structure of 2F4.2
2nC1/, also

called Ree groups of characteristic two, was studied by Malle [43].

Example 10.8 For any 5–adic unit, q 2 Z�
5

, BX31.q/ at p D 5 is the 5–completed
classifying space of a Chevalley group of type E8 , namely, BX31.q/'BE8.2

2mC1/^
5

if �5.q
4� 1/D �5.1C 24mC2/.

Let i D
p
�1 be a primitive 4th root of unity. Since  i belongs to the Weyl group

of X31 , we can assume that q � 1 mod 5 for otherwise we can multiply q by an
appropriate power of i and still have BX31.q/' BX31.i

r q/. Moreover, according to
Theorem E, the homotopy type of BX31.q/ will only depend on `D �5.q

4� 1/.

We fix a prime power q0 with q0�˙2 mod 5 and `D �5.˙iq0�1/D �5.q0
4�1/D

�5.q0
2C 1/, where we choose Ci or �i in order that the equality makes sense.
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We can write q0D i �.�i �q0/, where now �i �q0�˙1 mod p . Since  �1 belongs to the
Weyl group of E8 , we can apply Proposition 6.2 and get BE8.q0/' .BE8/

h i

.�iq0/.
Now we have seen in Section A.12(2), that .BE8/

h i

' BX31 , so, therefore

BE8.q0/' BX31.�iq0/' BX31.q0/ ;

and this last is homotopy equivalent to BX31.q/ by our choice of q0 with �5.q0
4�1/D

�5.q
4� 1/.

Similar considerations can be made, more generally, at any prime p such that p�1 mod
4; that is, any prime at which X31 can be defined, and then obtain that BE8.q0/'

BX31.q0/ for a prime power q0 with q0
2C 1� 0 mod p .

The local structure of E8.q/ was described in [41].

Remark 10.9 One can easily obtain natural maps BXi.q
pn

/! BXi.q
pnC1

/, that at
the level of maximal finite tori induce inclusions T

.p�1/

`Cn
� T

.p�1/

`CnC1
, and then obtain

that the p–compact group Xi can be reconstructed by means of a telescope construction

BXi ' hocolim
n

BXi.q
pn

/ :

In particular, we may obtain the p–compact groups BX12 (at p D 3) and BX31 (at
p D 5) as telescopes

BX12 D hocolim BX12.4
3n

/D hocolim B.2F4.2
3n

//

BX31 D hocolim BX31.165n

/D hocolim BE8.2
5n

/

of p–completed classifying spaces of finite Chevalley groups.

11 Chevalley p–local finite groups from generalized Grass-
mannians

We discuss here the Chevalley p–local finite groups of type X.m; r; n/. Let p be
an odd prime, m � 1, r � 1, and n � 1 with r jmj.p � 1/. The simply connected
polynomial irreducible p–compact group X.m; r; n/ has Weyl group G.m; r; n/ (see
Section 2) and its cohomology is the invariant ring

H�.BX.m; r; n/I Fp/DH�.BT .X.m; r; n//I Fp/
G.m;r;n/

Š P Œx1; : : : ;xn�1; e�

with deg.xi/D 2mi and deg.e/D 2mn
r

. See Quillen [61], Notbohm [58] and Møller
[53] for the construction of these spaces. We are here interested in the associated
spaces BX.m; r; n/.q/ defined by the pullback diagram (22) with ˛ D  q where q is
a p–adic unit.
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Remark 11.1 Many cases already appear in the literature; see Fiedorowicz and Priddy
[31], Friedlander [34] and Quillen [61]. We can extract the following equivalences, up
to p–completion, for a prime power q , prime to p :

(1) BSU.nC 1/.q/' BSLnC1.q/.

(2) BU.n/.q/' BX.1; 1; n/.q/' BGLn.q/.

(3) BX.m; 1; n/.q/' BGLmn.q/.

(4) BX.2; 2; n/.q/' BSO.2n/.q/' BSOC
2n
.q/.

By Remark 6.6, we have that, also for any p–adic unit q , the spaces BSU.nC 1/.q/,
BX.m; 1; n/.q/ and BX.2; 2; n/.q/ are homotopy equivalent to classifying spaces of
finite groups, up to p–completion.

These also include the cases BX.m; 2; n/.q/, that can be reduced to BX.2; 2; n/.q0/
using Propositions A.10 and 6.2, so they are also equivalent, up to p–completion, to
classifying spaces of orthogonal groups over finite fields.

The above observations will be used as the starting point of the induction arguments
that we will develop in the rest of this section in order to study the structure of
BX.m; r; n/.q/, for q � 1 mod p , q ¤ 1, and general values of m, r , and n.

Fix q � 1 mod p , q ¤ 1. The p–compact groups X.m; r; n/ are polynomial, hence
Proposition 7.5 and Proposition 7.6 apply. The maximal elementary abelian p–subgroup
of X.m; r; n/, .tX ; �/, factors as a p–subgroup, .tX ;g/, of X.m; r; n/.q/, and the
maximal finite torus of X.m; r; n/.q/ is

BT n
` ' BCX.m;r;n/.q/.tX ;g/

where ` D �p.q � 1/. The Weyl group is WX.m;r;n/.q/.T
n
`
/ Š G.m; r; n/, and the

extension NX.m;r;n/.q/.T
n
`
/Š T n

`
ÌG.m; r; n/ sits in the maximal torus normalizer of

X.m; r; n/, making the following diagram homotopy commutative:

BNX.m;r;n/.q/.T
n
`
/ //

��

BNX.m;r;n/.T
n/

��
BX.m; r; n/.q/ � // BX.m; r; n/ .

Corollary 7.7 implies that the functor

(40) �]W Fe
p.X.m; r; n/.q//! Fe

p.X.m; r; n//

is an equivalence of categories. The next result is a description of the centralizers of
elementary abelian p–subgroups.
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Proposition 11.2 [53, 7.11] Let p be an odd prime, m � 1, r � 1, n � 1 with
r jmj.p� 1/, and q � 1 mod p , q ¤ 1. Then

(1) any elementary abelian p–subgroup hW BE!BX.m; r; n/.q/, factors through
the maximal finite torus, and

(2) for any subgroup E � tx � T n
`

, the centralizer of .E;gjBE/ in X.m; r; n/.q/,

BCX.m;r;n/.q/.E;gjBE/' BX.m; r; n0/.q/�BU.n1/.q/� � � � �BU.ns/.q/ ;

nD n0C n1C � � �C ns , is determined by the pointwise stabilizer of E � T n
`

in
the Weyl group G.m; r; n/, G.m; r; n/.E/ŠG.m; r; n0/�†n1

� � � � �†ns
.

Proof All elementary abelian p–subgroups of X.m; r; n/ are toral, hence the same
is true for X.m; r; n/.q/ by the equivalence (40). If E � tX , by Corollary 7.4, the
restriction of  q to the centralizer of .E;gjBE/, is  q again,  qjCX.m;r;n/.q/.E;gjBE/D

 q , and
BCX.m;r;n/.q/.E;gjBE/' BCX.m;r;n/.E; �jBE/.q/ :

The centralizers CX.m;r;n/.E; �jBE/ are known to be connected p–compact groups of
maximal rank, with Weyl group G.m; r; n0/�†n1

�� � ��†ns
, the pointwise stabilizer

of E in T n by the action of the Weyl group G.m; r; n/:

BCX.m;r;n/.E; �jBE/' BX.m; r; n0/�BU.n1/� � � � �BU.ns/ ;

thus, BCX.m;r;n/.E; �jBE/.q/' BX.m; r; n0/.q/�BU.n1/.q/� � � � �BU.ns/.q/

contains the same maximal finite torus T n
`

as X.m; r; n/.q/, ` D �p.q � 1/, n D

n0Cn1C� � �Cns and the Weyl group is G.m; r; n0/�†n1
�� � ��†ns

(see Proposition
7.5 and Proposition 7.6).

Proposition 11.3 Let p be an odd prime, m� 1, r � 1, n� 1 with r jmj.p�1/, and
q � 1 mod p , q ¤ 1. The natural map

hocolim
Fe

p.X.m;r;n/.q//op
BCX.m;r;n/.q/ �! BX.m; r; n/.q/

is a mod p homology equivalence.

Proof According to Theorem F and Example 9.5,

H�.BX.m; r; n/.q/I Fp/ŠH�.BT n
` I Fp/

G.m;r;n/

Š P Œx1; : : : ;xn�1; e�˝EŒy1; : : : ;yn�1;u�

with deg.xi/D 2mi , deg.e/D 2mn
r

, deg.yi/D 2mi � 1, and deg.u/D 2mn
r
� 1.
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Since this is true for all values of m, r , n, we obtain from Proposition 11.2 that also,
for every elementary abelian p–subgroup E � tX ,

H�.BCX.m;r;n/.q/.E;gjBE/I Fp/ŠH�.BT n
` I Fp/

G.m;r;n/.E/

where G.m; r; n/.E/ is the pointwise stabilizer of E in T n
`

, by the action of the Weyl
group G.m; r; n/. So, then the result follows from Proposition 7.9.

Fix a Sylow p–subgroup of NX.m;r;n/.q/.T
n
`
/, Sn;` Š Z=p` o Sn , where Sn is the

Sylow p–subgroup of the symmetric group †n . Call f the composition BSn;`!

BNX.m;r;n/.q/.T
n
`
/! BX.m; r; n/.q/. Thus the group .Sn;`; f / is a p–subgroup of

BX.m; r; n/.q/.

We will denote by

F.m; r; n; q/D F.Sn;`;f /.BX.m; r; n/.q//

the fusion system of BX.m; r; n/.q/ over .Sn;`; f / and by

L.m; r; n; q/D L.Sn;`;f /.BX.m; r; n/.q// ;

the associated centric linking system. Recall that the underlying category of the system
F.m; r; n; q/ is equivalent to Fp.BX.m; n; r/.q//.

Theorem 11.4 If q is a p–adic unit such that q� 1 mod p , q¤ 1, and `D �p.1�q/,
then .Sn;`; f / is a Sylow p–subgroup for BX.m; r; n/.q/ and

.Sn;`;F.m; r; n; q/;L.m; r; n; q//

is a p–local finite group with classifying space

jL.m; r; n; q/j^p ' BX.m; r; n/.q/ :

Proof We proceed by induction on n, the p–rank of X.m; r; n/.q/. For n < p ,
X.m; r; n/ is a Clark–Ewing p–compact group, and then X.m; r; n/.q/ is the p–
completed classifying space of a finite group (see Theorem 9.8). Also, for BX.1; 1; n/'

BU.n/^p , Remark 11.1 characterizes BX.1; 1; n/.q/ as p–completed classifying
spaces of finite groups. In all that cases, the conclusion of the theorem is clearly
satisfied (see Section 3).

Assume that n is large and that the theorem holds for every n0 < n. That is, for every
n0 < n, the space BX.m; r; n0/.q/ is the classifying space of the p–local finite group
.Sn0;`;F.m; r; n0; q/;L.m; r; n0; q//. The result about BX.m; r; n/.q/ will follow
from Theorem 4.5. We will show that the space BX.m; r; n/.q/ and its p–subgroup
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.Sn;`; f / meet the conditions of Theorem 4.5. Condition (1) of Theorem 4.5 is satisfied
by Proposition 7.1.

Condition (2a) of Theorem 4.5 amounts to show that if E � tX , then the centralizer
BCX.m;r;n/.q/.E;gjBE/ is the classifying space of a p–local finite group. This follows
by the induction hypothesis. In fact, by Proposition 11.2, there is a homotopy equiv-
alence BCX.m;r;n/.q/.E;gjBE/' BX.m; r; n0/.q/�BU.n1/.q/� � � � �BU.ns/.q/,
for nD n0Cn1C : : : ns , a nontrivial decomposition of n into positive summands, and
by the induction hypothesis and [14, 1.4] this is the classifying space of the p–local
finite group defined as the product

.Sn0;`;F.m; r; n0; q/;L.m; r; n0; q//

� .Sn1;`;F.1; 1; n1; q/;L.1; 1; n1; q//� � � � � .Sns ;`;F.1; 1; ns; q/;L.1; 1; ns; q// :

Condition (2b) of Theorem 4.5 establishes that Sylow p–subgroups of centralizers
of elementary abelian subgroups of BX.m; r; n/.q/ factor through .Sn;`; f /. This is
proved by reducing the question to unitary groups, obtained as centralizers of the center
of Sn;` .

Let ZŠZ=p denote the diagonal elements of order p in T n
`
Š .Z=p`/n�Sn;` . Then,

the pointwise stabilizer of Z in T n
`

by the action of G.m; r; n/ is †n and therefore,
according to Proposition 11.2, BCBX.m;r;n/.q/.Z;gjBZ /' BU.n/.q/.

By naturality of the construction of the normalizer of the maximal finite torus, we
obtain a diagram

BNU.n/.q/.T
n
`
/ //

��

BNX.m;r;n/.q/.T
n
`
/

��
BU.n/.q/

Bjn // BX.m; r; n/.q/

hence a factorization of .Sn;`; f /:

(41) BSn;`

f 0

yyssssssssss
f

''NNNNNNNNNNN

BU.n/.q/
Bjn // BX.m; r; n/.q/ .

Choose any other subgroup E � tX � Sn;` . Assume that the pointwise stabilizer of E

in T n
`

by the action of G.m; r; n/ is G.m; r; n/.E/Š G.m; r; n0/�†n1
� � � � �†ns

.
Define E0 DZ �E � tX , then the pointwise stabilizer of E0 will be G.m; r; n/.E0/Š
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†n0
�†n1

� � � ��†ns
. The inclusions E �E0 �Z induce a commutative diagram of

centralizers

(42) BCX.m;r;n/.q/.E
0;gjBE0/

Bj
]
n //

��

BCX.m;r;n/.q/.E;gjBE/

��
BCX.m;r;n/.q/.Z;gjBZ /

Bjn // BX.m; r; n/.q/ .

Now,

BCX.m;r;n/.q/.E;gjBE/' BX.m; r; n0/.q/�BU.n1/.q/� � � � �BU.ns/.q/

with Sylow p–subgroup Sn0;` � � � � �Sns ;` while

BCX.m;r;n/.q/.E
0;gjBE0/' BU.n0/.q/�BU.n1/.q/� � � � �BU.ns/.q/;

and from the above discussion we have a factorization
(43)

B.Sn0;` � � � � �Sns ;`/
//

++XXXXXXXXXXXXXXXXXXXXXXX
BU.n0/.q/�BU.n1/.q/� � � � �BU.ns/.q/

Bj
]
n'Bjn0

�1�����1

��
BX.m; r; n0/.q/�BU.n1/.q/� � � � �BU.ns/.q/ .

Diagrams (41), (42), and (43) provide a homotopy commutative diagram

B.Sn0;` � � � � �Sns ;`/
**

//

B�

��

BCX.m;r;n/.q/.E
0;gjBE0/

Bj
]
n //

��

BCX.m;r;n/.q/.E;gjBE/

��
BSn;` 33

// BCX.m;r;n/.q/.Z;gjBZ /
Bjn // BX.m; r; n/.q/

where the existence of the homomorphism �W Sn0;` � � � � � Sns ;` ! Sn;` making
homotopy commutative the left square is obtained because Sn;` is a Sylow p–subgroup
of U.n/.q/.

We have proved that BX.m; r; n/.q/ and .Sn;`; f / satisfy the conditions (1) and (2) of
Theorem 4.5, and therefore, that .Sn;`; f / is a Sylow p–subgroup of BX.m; r; n/.q/
and .Sn;`;F.m; r; n; q/;L.m; r; n; q// is a p–local finite group.

Finally, BX.m; r; n/.q/ is the classifying space jL.m; r; n; q/j^p according to Proposi-
tion 11.3 and Theorem 4.5.
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Proposition 11.5 For q � 1 mod p , q ¤ 1, X.m; r; n/.q/ is a exotic p–local finite
group if r > 2, n� p .

Notice that in the above hypothesis r j.p� 1/, thus r > 2 can only occur with p � 5,
so that we are implicitly assuming also that p � 5.

Proof We will first reduce the question to the rank p–case. Then we classify the
centric radical subgroups in the fusion system of BX.m; r;p/.q/ and show that they
coincide with the p–local finite groups of [14, Example 9.4].

There is an elementary abelian p–subgroup E � tX , in X.m; r; n/.q/, of rank n�p

such that
CX.m;r;n/.q/.E;gjBE/Š X.m; r;p/.q/�U.1/^p.q/

n�p

(see Proposition 11.2). If we assume that there is a finite group G such that BG^p '

BX.m; r; n/.q/, then the map BgjBE W BE! BX.m; r; n/.q/' BG^p is induced by
a homomorphism 'W E!G , and

BCG.'.E//
^
p ' BX.m; r;p/.q/�BU.1/^p.q/

n�p :

Since BU.1/^p.q/' BZ=p` , the projection BCG.'.E//
^
p ! BU.1/^p.q/

n�p is the
p–completion of the map induced by a homomorphism �W CG.'.E//! .Z=p`/n�p .
It has a section, also induced by a homomorphisms � W .Z=p`/n�p!CG.'.E//, hence
� is an epimorphism. Therefore, we have a short exact sequence Ker �!CG.'.E//!

.Z=p`/n�p and an induced fibration B.Ker �/^p ! BCG.'.E//
^
p ! B.Z=p`/n�p ,

from which we obtain an equivalence B.Ker �/^p ' BX.m; r;p/.q/. This reduces the
question to showing that X.m; r;p/.q/ is an exotic p–local finite group.

We will show now that X.m; r;p/.q/ coincide with the p–local finite groups con-
structed in [14, Example 9.4] in purely algebraic terms. For this aim we will need to
describe the centric and radical p–subgroups of X.m; r;p/.q/.

Recall that T
p

`
Š .Z=p`/p is the maximal finite torus of X.m; r;p/.q/ with Weyl

group G.m; r;p/ and they form a split extension

T
p

`
!NX.m;r;p/.q/.T

p

`
/!G.m; r;p/

that contains Sp;` D T
p

`
ÌZ=p � NX.m;r;p/.q/.T

p

`
/, which is a Sylow p–subgroup

of X.m; r;p/.q/. For simplicity we will denote F D F.m; r;p; q/, the fusion system
of BX.m; r;p/.q/ over .Sp;`; f /.

The center of the Sylow p–subgroup is Z.Sp;`/ Š Z=p` embedded diagonally in
T

p

`
, and, if we write Z.tX / for the elements of order p in Z.Sp;`/, then we obtain

BCX.m;r;p/.q/.Z.Sp;`/'BCX.m;r;p/.q/.Z.tX //'BU.p/^p.q/ (see Proposition 11.2).
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We also know (see Remark 11.1) that BU.p/^p.q/'BGLp.q0/
^
p for a prime power

q0 with ` D �p.1� q/ D �p.1� q0/, hence we conclude that the centralizer fusion
system CF .Z.Sp;`// coincides with the fusion system of GLp.q0/, that has been
described in Example 3.4.

The Sylow p–subgroup Sp;` is clearly centric and radical. T
p

`
is centric and we have

OutF .T
p

`
/ D G.m; r;p/ hence it is also radical (p � 5). Proper subgroups of T

p

`

are not centric, so we will look at subgroups Q� Sp;` not contained in T
p

`
. such a

subgroup fits in an extension

Q0
//

��

Q //

��

Z=p

T
p

`
// Sp;`

// Z=p

where Q0 DQ\T n
`

, and since Q is centric, Z.Sp;`/�Q0 . It turns out that this is
actually a characteristic subgroup of Q, Hence there is an exact sequence of groups:

1! AutCF .Z.Sp;`//.Q/! AutF .Q/! AutF .Z.Sp;`//

where AutF .Z.Sp;`//Š Z=.m=r/ is given by the action of the Adams operations of
exponents a .m=r/–th root of unity.

Assume that Q is abelian. Then Q0 D Z.Sp;`/ and Q is either Z=p �Z.Sp;`/ or
cyclic Z=p`C1 . In the first case, Q is F –conjugate to a subgroup of T n

`
, hence it is

not centric while in the second case, it is conjugate to the group U`C1 described in
Example 3.4. Adams operations do not act internally in U`C1 , hence OutF .U`C1/Š

OutCF .Z.Sp;`//.U`C1/Š Z=p and then U`C1 is not radical in F .

Assume that Q is nonabelian. The same arguments as in Corollary 10.5 show that Q

is either Sp;` or �` , and both are radical in CF .Z.Sp;`//. Thus we obtain that they
complete the list of conjugacy classes of centric radical subgroups of Sp;` in F .

In order to complete the picture it remains to compute the F –automorphisms of �` .
We have OutCF .Z.Sp;`//.�`/Š SL2.p/. Now, the Adams operations act internally in
�` and we get OutF .�`/Š SL2.p/:.m=r/.

By Alperin’s fusion theorem, a fusion system over S is generated by the automorphisms
of its fully normalized centric radical subgroups in S . Since in our case all the
automorphisms of T

p

`
are induced by conjugation in NX.m;r;p/.q/.T

p

`
/, we can write

F.m; r;p; q/D hFNX.m;r;p//.q/.T
p

`
/.Sp;`/IF�`.SL2.p/:.m=r//i

(see Section 3) but this is precisely the definition of the fusion systems in [14, Exam-
ple 9.4].
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The cases BX.m; r; n/.q/ with r D 1; 2 or n < p , are homotopy equivalent to p–
completed classifying spaces of finite groups according to Theorem 9.8 and Remark
11.1.

Appendix A Recognition of homotopy fixed point p–
compact groups

The objective of this appendix is to obtain a recognition principle for the homotopy fixed
point p–compact group BX hG where p is an odd prime, X a connected p–compact
group, G a finite group of order prime to p , and �W G! Out.X / and outer action.

Let N ! X be the maximal torus normalizer for the p–compact group X . The short
exact sequence of topological monoids

BZ.N /D aut.BN /1! aut.BN /! Out.N /

induces a fibration sequence

B2Z.N /! Baut.BN /! BOut.N /

which shows that equivalence classes of fibrations over BG with fiber BN is in
one-to-one correspondence with

ŒBG;BOut.N /�D Hom.G;Out.N // :

Also, we know from Theorem B that equivalence classes of fibrations over BG with
fiber BX is in one-to-one correspondence with

ŒBG;BOut.X /�D Hom.G;Out.X // :

However, Out.X /Š Out.N / [53; 7] and therefore there is a bijective correspondence
between fibrations with fiber BX over BG and fibrations with fiber BN over BG .
We shall now make this correspondence more explicit.

Define the group-like topological monoid aut.Bj / to be the submonoid of aut.BN /�

aut.BX / consisting of all pairs .a; b/ 2 aut.BN /� aut.BX / such that the following
diagram commutes.

BN

Bj

��

a // BN

Bj

��
BX

b

// BX
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Lemma A.1 Assume that p is odd. The forgetful homomorphisms

aut.BN / aut.Bj /oo //aut.BX /

are homotopy equivalences.

Proof The group homomorphisms �0 aut.BN / �0 aut.Bj /! �0 aut.BX / are
injective because X has N –determined automorphisms [53; 7]. The group homomor-
phism to the left is surjective because X is N –determined and the one to the right
is surjective because any self-homotopy equivalence of BX lifts to a self-homotopy
equivalence of BN [51, Section 3]. The identity components fit into a map of fibrations
[26, 11.10]

autBX .Bj /1 // aut.Bj /1

��

// aut.BX /1

'

��
autBX .Bj /1 // aut.BN /1 // Map.BN;BX /Bj

where the right vertical map, defined by composition with Bj , is a homotopy equiv-
alence [26, 7.5, 1.3; 25, 9.1; 51, 3.4]. The fiber, consisting of the space of maps
BN ! BN over BX and vertically homotopic to the identity map of BN , is (one
component) of the space .X=N /hN which is contractible [50, 5.1].

Thus we have bijections

ŒB;Baut.BN /�D ŒB;Baut.Bj /�D ŒB;Baut.BX /�

for any space B and this means BN –fibrations and BX –fibrations over B are in
bijective correspondence.

Proposition A.2 Let X be a connected p–compact group with maximal torus nor-
malizer N ! X . If G is a finite group of order prime to p , then any outer action
�W G ! Out.X /, lifts to a unique G–action on BX and unique G–action on BN .
Moreover, these actions make the map BN ! BX G –equivariant; that is, the diagram

BN //

��

BNhG

��

// BG

BX // BXhG
// BG

is homotopy commutative.
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Proof Let us say that our input is an outer action

(44) �W G! Out.X /DW nNGL.L/.W /D Out.N /

of the finite group G on X and N . By Theorem B, � lifts to a unique action of G

on BX , and by Lemma A.1 the same is true for BN . In particular, � determines a
unique map, up to homotopy, �B�W BG �! Baut.Bj /

inducing � on fundamental groups.

Over Baut.Bj / there are two related fibrations

BNh aut.Bj/
//

''NNNNNNNNNNN
BXh aut.Bj/

xxppppppppppp

Baut.Bj /

with fiber BN and BX , respectively. Pull back these two related fibrations along the
map �B� to obtain the commutative diagram of the proposition.

Next, we need to lift the action of G on BN and BX to an action on the loop spaces
N and X (see Definition 5.3), such that the inclusion N !X is still equivariant.

Lemma 5.1 applies to show that the fibration BX ! BXhG ! BG admits a section,
unique up to vertical homotopy, when X is connected; that is, there is a unique lifting
of the action on BX to an action on X . However, BN is not simply connected as
�1.BN /ŠW and then Lemma 5.1 ensures neither the existence nor the uniqueness
of a lifting of the action of G on BN to an action of G on N . Instead, it leads to the
next description of the possible actions.

Proposition A.3 If a finite group G of order prime to p acts on BN with outer action
�W G!W nNGL.L/.W /ŠOut.N /, then there are natural one-to-one correspondences
between the sets:

(1) �0.BN hG/,

(2) W –conjugacy classes of lifts in the diagram

NGL.L/.W /

��
G �

//

88

W nNGL.L/.W / :
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If these sets are nonempty, then they are also in one-to-one correspondence with
H 1.GIW /.

Proof An action of G on BN is by definition a fibration

(45) BN ! BNhG! BG ;

and according to Proposition A.2 this action of G on BN is uniquely determined by
� .

Next, we map �0.BN hG/ directly to the set (2). Let 'W BG ! B aut.BN / be a
classifying map for the fibration (45). Thus, ' extends to a map of fibrations

BN // BNhG

��

// BG

B�

��
BN // Baut�.BN / // Baut.BN /

into the universal BN –fibration. Here, aut�.BN / is the topological monoid of based
self-homotopy equivalences of BN . On the level of fundamental groups we get an
induced morphism

(46) W // �0.NhG/

��

// G

�

��
W // NGL.L/.W / // W nNGL.L/.W /

of group extensions. Here we use the short exact sequence from [49, 5.2] in combination
with the vanishing results from [5, 3.3].

We have seen (Lemma 5.1) that the existence of an action of G on N lifting the action
on BN is equivalent to the existence of a section of the exact sequence on the top row
of (46), and the diagram shows that this is equivalent to the existence of a lifting of � to
a homomorphism � W G!NGL.L/.W /. This gives the bijection between �0.BN hG/

and the set (2).

Finally, if these sets are nonempty, then obstruction theory as in Lemma 5.1 shows that
they are in one-to-one correspondence with the set H 1.GIW /DH 1.GI�1.BN //.

Proposition A.4 Let X be a connected p–compact group with Weyl group W and
maximal torus normalizer N !X . If G is a finite group of order prime to p and

�W G! Out.X /ŠW nNGL.L/.W /
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is an outer action, then � lifts to a unique action of G on X , and each lift

� W G!NGL.L/.W /

determines a unique action of G on N such that the inclusion N!X is G –equivariant.

Proof The first part was proved in Proposition A.2. According to Proposition A.3, the
actions of G on N that lift the given outer action are in one-to-one correspondence
with lifts of � to NGL.L/.W /. If we view one of these actions as a sectioned fibration

BN // BNhG
//
BGoo

it clearly induces an action on X that makes N !X equivariant:

BNhG

##H
HH

HH
HH

HH
// BXhG

{{www
ww

ww
ww

BG .

cc ;;

The proposition follows because there is only one action of G on X inducing � .

Proposition A.5 Let p be an odd prime and G a finite group of order prime to p .
Assume that G acts on the connected p–compact group X and that

x�W G!NGL.L/.W /

is a lift of the given outer action. Suppose Y is a connected p–compact group that
satisfies the following conditions:

(1) W x�G contains a subgroup SW , complementary to the kernel of the map W x�G!

GL.Lx�G/, such that . SW ;L.X /x�G/ is a Zp –reflection group isomorphic to
.W .Y /;L.Y //.

(2) QH�.BY IQp/ŠQH�.BX IQp/G .

Then BY D BX hG .

Proof By the classification theorem for p–compact groups at odd primes [53; 7],
it suffices [52, 1.2] to find an map BN.Y /! BX hG that induces an isomorphism
on H�.�IQp/ and restricts to monomorphism on the p–normalizer Np.Y /, is a p–
monomorphism. The homomorphism x� corresponds (Proposition A.4) to compatible
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G–actions BG ! BN.X /hG ! BXhG on N.X / and X . Taking homotopy fixed
points we obtain a commutative diagram of loop space morphisms

N.X /hG

��

// X hG

��
N.X / // X

which shows that N.X /hG ! X hG is a p–monomorphism. Since the discrete ap-
proximation to N.X /, N.X /hG , and N.Y / are semidirect products [5], there is a
p–monomorphism N.Y /!N.X /hG for W .Y / is a subgroup W x�G D �0N.X /hG

by the first condition. By the second condition, H�.BY IQp/DH�.BN.Y /IQp/ and
H�.BX hG IQp/ are abstractly isomorphic graded vector spaces. Therefore, Y and
X hG have the same rank [25, 5.9] so that T .Y /!N.X /hG!X hG is a maximal torus
and H�.BX hG IQp/!H�.BN.Y /IQp/ is injective [25, 9.7], hence bijective.

A special case arises when G acts through unstable Adams operations so that the
action �0�W G! Out.N /! Out.W / is trivial. Then the image of G in Out.N /D

W nNGL.L/.W / is contained in the subgroup Z.W /nCGL.L/.W / [53, 3.16] and we
have a morphism

W // �0.NhG/

��

// G

B�
��

W // W:CGL.L/.W / // Z.W /nCGL.L/.W /

of group extensions. The possible extensions occurring in the upper line, realizing the
trivial action G! Out.W /, are classified by H 2.GIZ.W //; they are all isomorphic
to

W !Z.W /n.D �W /!G

for some central extension Z.W /!D! G [42, IV.Section 8]. If Z.W / is trivial,
�0.NhG/DG �W and H 1.GIW /D Rep.G;W /.

Assume that G D Cr is a cyclic group of order r , and the outer action of G on X ,
�W Cr ! Out.X /, is given by an Adams operation �.�/ D  � , where � 2 Z�p is a
p–adic unit of order r j.p� 1/. We can lift  � 2Z.W /nCGL.L/.W / to an element
� 2 CGL.L/.W /, such that �r 2 Z.W /. If there is a choice of � with �r D 1, then
x��D � provides a lifting of � .

Assume, otherwise, that �r has order s in Z.W /. Since p is odd, Z.W / has order
prime to p , hence s is prime to p . Now, even if there is no lift of the action of Cr
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on X to an action on N , we can reduce the problem by extending the action of Cr to
an action of Csr on X determined by �0.�/D  � 2Z.W /nCGL.L/.W /� Out.X /,
that now admits the lift x�0.�/D � . Notice that Cs D h�

r i acts trivially on X , so that
BX hCs ' BX , and then BX hCsr Š BX hCr , so we can still determine BX hCr by
analyzing the equivariant action of Csr on N and X .

Notice also, that if W is irreducible, then CGL.L/.W / consists of diagonal matrices
and therefore � is an Adams operation.

Corollary A.6 Let � 2 Z�p be a p–adic unit of order r j.p � 1/. Consider the outer
action �W Cr D h�i !W nNGL.L/.W / through unstable Adams operations given by
�.�/D  � . Then, if � admits a lift x�W Cr !NGL.L/.W /, then all possible lifts are
parameterized by H 1.Cr IW /D Rep.Cr ;W /, the set of conjugacy classes of order r

elements w of W , and

.W x�Cr ;Lx�Cr /D .CW .w/;L
h�wi/

for the lift x�.�/D �w corresponding to w .

Proof The lifts
W:CGL.L/.W /

��
Cr D h�i �

//

x�
66

Z.W /nCGL.L/.W /

are given by x�.�/D w � where w 2W is any element of order r .

We next apply the recognition principle Corollary A.6 in some concrete cases.

A.7 The three infinite families

We identify the fixed point p–compact groups for the actions of finite cyclic groups
of order prime to p through unstable Adams operations on the p–compact groups of
the three infinite families of irreducible p–compact groups, namely the projective or
special unitary groups, the generalized Grassmannians, and the Sullivan spheres (as
defined in Section 2).

Proposition A.8 (Sullivan spheres) Let p be an odd prime. Suppose that m and
r > 1 divide p � 1. Consider the outer action through unstable Adams operations
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 W Cr ! Out.S2m�1/Š Z�p =Cm of the cyclic group Cr � Z�p on the Sullivan sphere
S2m�1 . Then the homotopy fixed point group is

.S2m�1/hCr D

(
S2m�1 r jm

� otherwise,

Proof Let � be a primitive r –th root of unity, so that Cr D h�i � Z�p . According
to Theorem B, .S2m�1/hh�i is a connected polynomial p–compact group. If r does
not divide m, H 2m. �/ D �m is nontrivial, so that the vector space of covariants
QH�.BS2m�1IQp/h�i vanishes in positive degrees, and the fixed point p–compact
group is trivial. If r does divide m,  � acts trivially on S2m�1 , because the kernel of
 is Cm which contains Cr , and the fixed point p–compact group is again S2m�1 .

Proposition A.9 (Special unitary groups) Let p be an odd prime. Suppose that
m > 1 divides p � 1, and let Cm D h�i � Z�p be the cyclic group generated by a
primitive m–th root of unity acting through unstable Adams operations. Then

X.mnC s/hCm D U.mnC s/hCm D

(
X.m; 1; n/ n> 0

� nD 0

for any p–compact group X.mnC s/ locally isomorphic to SU .mnC s/, 0� s <m.

Proof In the rational cohomology algebras

H�.BU .mnC s/IQp/DQp Œc1; : : : ; cmnCs �

H�.BX.mnC s/IQp/DQp Œc2; : : : ; cmnCs �and

we have ci is preserved by H 2i. �/()mji

and therefore

QH�.BU .mnC s/IQp/Cm
DQpfcm; : : : ; cmng DQH�.BX.m; 1; n/IQp/

DQH�.BX.mnC s/IQp/Cm
:

The Weyl group W D†mnCs is the symmetric group in its natural representation on
LD ZmnCs

p . Let e1; : : : ; emnCs be the canonical basis vectors of L. The permutation

w D .1 � � �m/.mC 1 � � � 2m/ � � � .m.n� 1/C 1 � � �mn/ 2†mnCs

Algebraic & Geometric Topology, Volume 7 (2007)



Chevalley p–local finite groups 1903

has order m and

.C†mnCs
.w/;Lh�wi/

D .Cm o†n �†s;Zpf�e1C�
2e2C � � �C�

mem; : : : ; �em.n�1/C1C � � �C�
memng/

contains the Zp –reflection group G.m; 1; n/D Cm o†n as a subgroup complementary
to the kernel, †s , of the action of .C†mnCs

.w/ on Lh�wi . This means by Corollary
A.6 that the fixed point p–compact group U.mnC s/hCm DX.m; 1; n/.

From the two short exact sequences of Zp†mnCs –modules [53, Section 10]

0!Zp
�
�!L!LPU .mnCs/! 0; 0!LX.mnCs/!LPU .mnCs/! L�! 0

where � is the diagonal and L� a subgroup of �1.PU .mnC s//D Zp=Zp.mnC s/

(with trivial †mnCs –action), we get that

Lh�wi DLPU .mnC s/h�wi DLX.mnC s/h�wi

as ZpC†mnCs
.w/–modules.

The proof of Proposition A.10 will make use of the following elementary facts:

� For arbitrary natural numbers m and n we write mn for m= gcd.m; n/. Then
mnnD lcm.m; n/ and mnnm D lcm.m; n/= gcd.m; n/.

� Clcm.q;m/ D h�;�j�
q D 1; �m D 1; ��D ��; �qm D �mq i.

� Let A.a; t/ 2GL.Zp; t/ denote the linear automorphism

A.a; t/.x1; : : : ;xt /D .axt ;x1; : : : ;xt�1/

where a 2 Z�p is a unit. The i –th power A.a; t/i has characteristic polynomial
.xti � ait /t=ti and A.a; t/t D aE .

� If �2Z�p has order q , then A.��qm ; qm/ also has order q for A.��qm ; qm/
qmD

��qmE has order gcd.q;m/. The ��1 eigenspace of A.��qm ; qm/ has rank
one and A.��qm ; qm/

�1 acts on it as multiplication by �.

� In the exact sequence 1!Ahgi! CAÌG.a;g/! CG.g/ the image in CG.g/

consists of those h 2 CG.g/ that fix a 2A=.1�g/A.

Proposition A.10 (Generalized Grassmannians) Let X.m; r; n/, m�2, r �1, n�2,
r jm jp � 1, be the irreducible polynomial p–compact group corresponding to the
imprimitive Zp –reflection group G.m; r; n/. Suppose that the natural number ` divides
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p�1 and let the cyclic group C` � Clcm.`;m/ � Z�p act on X.m; r; n/ through unstable
Adams operations. The homotopy fixed point group for this action is

X.m; r; n/hC` D

8̂<̂
:

X.lcm.`;m/; r; n=`m/ r` jmn

X.lcm.`;m/; 1; n=`m� 1/ r` −mn ; ` jmn;

X.lcm.`;m/; 1;
�
n=`m

�
/ ` −mn

where `m D `= gcd.`;m/ and Œn=`m� is the biggest integer � n=`m . (By convention,
G.m; r; 1/ is cyclic of order m=r and G.m; r; 0/ is the trivial group.)

Proof Let �2Z�p be a primitive `–th root of unity. In the rational cohomology algebra
H�.BX.m; r; n/IQp/ŠQp Œx1; : : : ;xn�1; e� the degrees jxi j D 2im and jej D 2m

r
n

so that

xi is preserved by H 2im. �/D �im
, ` j im, `m j i

e is preserved by H 2 m
r

n. �/D �
m
r

n
, ` j nm=r , `m=r j n

and thus QH�.BX.m; r; n/IQp/C` is isomorphic to the indecomposables of the ra-
tional cohomology algebra of the p–compact group on the right hand side of the
equation.

We have r` jmn, `m=r j n, ` jmn, `m j n, and `m j `m=r j `jp� 1.
`m=r j n: The element

w D diag
�

A.��`m ; `m/; : : : ;A.�
�`m ; `m/„ ƒ‚ …

n=`m

�
2G.m; r; n/

has order `. Since ..��`m/n=`m/m=r D��mn=r D 1 because `j.mn=r/ by assumption,
w does indeed belong to the index r subgroup G.m; r; n/ of G.m; 1; n/D Cm o†n .
Let fe1; : : : ; eng be the canonical basis for the free Zp –module L D Zn

p on which
G.m; r; n/ acts. The free Zp –module

Lh�wi D
˝
e1C�e2C � � � C�

`m�1e`m
; : : : ; e.n�`m/C1

C�e.n�`m/C2C � � � C�
`m�1en

˛
has rank n=`m . We shall now compute the centralizer of w . Let � be a generator of
the cyclic group Clcm.`;m/ � Z�p so that Cm D h�i and C` D h�i with �D �`m and
� D �m` . The homomorphisms A.`; 1; n=`m/ //CG.m;1;n/.w/ A.m; 1; n=`m/oo
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defined by

�i �! diag
�

E; : : : ;E„ ƒ‚ …
i�1

;A.��`m ; `m/
�1;E; : : : ;E

�
;

diag
�

E; : : : ;E„ ƒ‚ …
i�1

; �E;E; : : : ;E/ � �i

combine to a homomorphism defined on A.lcm.`;m/; 1; n=`m/ since they agree on
their common domain A.gcd.`;m/; 1; n=`m/ D h�

m`i
n=`m D h�`min=`m , Observe

that .�a1 ; : : : ; �an=`m / 2A.`; 1; n=`m/ lies in the subgroup A.lcm.`;m/; r; n=`m/ if
and only if its image lies in G.m; r; n/ and that .�a1 ; : : : ; �an=`m / 2 A.m; 1; n=`m/

lies in the subgroup A.m; r; n=`m/ if and only if its image lies in G.m; r; n/. Together
with the diagonal �W †n=`m

!†n given by �.�/..i�1/`mCj /D .�.i/�1/`mCj ,
1� `i � n=`m , 1� j � `m , we obtain a group isomorphism

G.lcm.`;m/; 1; n=`m/
Š
�! CG.m;1;n/.w/

that restricts to a group isomorphism G.lcm.`;m/; r; n=`m/Š CG.m;r;n/.w/ between
index r subgroups. This isomorphism identifies the pair .CG.m;r;n/.w/;L

h�wi/ and
the imprimitive Zp –reflection group .G.lcm.`;m/; r; n=`m/;Z

n=`m
p /.

Case `m=r − n; `m j n It will suffice to consider the case of G.m;m; n/ where ` − n

and `m j n. The element

w D diag
�

A.��`m ; `m/; : : : ;A.�
�`m ; `m/„ ƒ‚ …

n=`m�1

;A.��`m ; `m/
1�n=`m

�
2G.m;m; n/

has order `. Note that ��1 is not an eigenvalue for A.��`m ; `m/
1�n=`m because

A.��`m ; `m/
1�n=`m has eigenvalue ��1

,A.��`m ; `m/
n=`m�1 has eigenvalue �

, �.`m/n=`m�1 D ��`m.n=`m�1/`m

, ` j .`m/n=`m�1C `m.n=`m� 1/`m

, ` j n=gcd.`m; n=`m� 1/

) ` j n) `m j n

which is not the case. Therefore the ��1 –eigenspace

Lh�wi DD
e1C�e2C � � �C�

`m�1e`m
; : : : ; e.n�2`m/C1C�e.n�2`m/C2C � � �C�

`m�1en�`m

E
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has rank n=`m�1. The two monomorphisms A.`; 1; n=`m�1/!CG.m;m;n/.w/ and
CG.m;m;n/.w/ A.m; 1; n=`m� 1/ given by

�i! diag
�

E; : : : ;E„ ƒ‚ …
i�1

;A.��`m ; `m/
�1;E; : : : ;E;A.��`m ; `m/

�
diag

�
E; : : : ;E„ ƒ‚ …

i�1

; �E;E; : : : ;E; ��1E
�
 �i

agree on their common domain A.gcd.`;m/; 1; n=`m�1/ and together with the mono-
morphism

†n=`m�1
� �� //†n�`m

� � //†m

they define a homomorphism on the group A.lcm.`;m/; 1; n=`m�1/Ì†n=`m�1 such
that the composition

A.lcm.`;m/; 1; n=`m� 1/Ì†n=`m�1 ,! CG.m;m;n/.w/

� Im
�
CG.m;m;n/.w/!GL.Lh�wi/

�
is an isomorphism whose image is isomorphic to G.lcm.`;m/; 1; n=`m � 1/ as a
Zp –reflection group.

Case `m − n It will suffice to consider the case of G.m;m; n/. The element

w D diag
�

A.��`m ; `m/; : : : ;A.�
�`m ; `m/„ ƒ‚ …

Œn=`m�

; �`mŒn=`m�; 1; : : : ; 1„ ƒ‚ …
n�`mŒn=`m�

�
2G.m;m; n/

has order `. Note that ��1 is not an eigenvalue for �`mŒn=`m� because

�`mŒn=`m� D ��1
, ` j `mŒn=`m�C 1, `m gcd.`;m/ j `mŒn=`m�C 1) `m j 1

which is not the case as `m > 1. Therefore the ��1 eigenspace Lh�wi has rank Œn=`m�.
The two monomorphisms A.`; 1; Œn=`m�/ //CG.m;m;n/.w/ A.m; 1; Œn=`m�/oo given
by

�i! diag
�

E; : : : ;E„ ƒ‚ …
.i�1/`m

;A.��`m ; `m/
�1;E; : : : ;E; ��`m ; 1; : : : ; 1„ ƒ‚ …

n�`mŒn=`m�

�
diag

�
E; : : : ;E„ ƒ‚ …
.i�1/`m

; �E;E; : : : ;E; ��`m ; 1; : : : ; 1„ ƒ‚ …
n�`mŒn=`m�

�
 �i

agree on their common domain A.gcd.`;m/; 1; Œn=`m�/ and together with the inclusion
of permutation groups

†Œn=`m�
� � � //†`mŒn=`m�

� � //†m ;
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they define a homomorphism on the group A.lcm.`;m/; 1; Œn=`m�/Ì†Œn=`m� such that
the composition

A.lcm.`;m/; 1; Œn=`m�/Ì†Œn=`m� ,! CG.m;m;n/.w/

� Im
�
CG.m;m;n/.w/!GL.Lh�wi/

�
is an isomorphism with image isomorphic to G.lcm.`;m/; 1; Œn=`m�/ as Zp –reflection
group.

The outer automorphism group of X.m; r; n/ is isomorphic to A.m; r; n/nZ�p A.m; 1; n/

except in the cases .m; r; n/2 f.2; 1; 2/; .4; 2; 2/; .3; 3; 3/; .2; 2; 4/g [58, Section 6; 53,
7.14]. The (exotic) homotopy action

�W Cm D h�i ! Out.X.m; r; n//ŠA.m; r; n/nZ�p A.m; 1; n/

that takes the generator � of Cm to A.m; r; n/.�; 1; : : : ; 1/ is distinct from the actions
through unstable Adams operations of Proposition A.10 when gcd.r; n/ > 1 [53, 7.14].

Proposition A.11 (Exotic actions on generalized Grassmannians) Assume that m�2,
r�1, n�2, and .m; r; n/ 62f.2; 1; 2/; .4; 2; 2/; .3; 3; 3/, .2; 2; 4/g. Then the homotopy
fixed point p–compact group

X.m; r; n/hCm D X.m; 1; n� 1/

for the above exotic homotopy action on X.m; r; n/.

Proof The second assumption of Proposition A.5 is clearly satisfied as the action
preserves the generators x1; : : : ;xn�1 but does not preserve the generator e . To verify
the first assumption, take x�W Cm!NGL.L/.G.m; r; n//D Z�p G.m; 1; n/ to be the
obvious choice x�.�/D .�; 1; : : : ; 1/. Then

G.m; r; n/x�Cm DA.m; r; n/Ì†n�1; Lx�Cm D Zn�1
p

and the composition

A.m; 1; n� 1/Ì†n�1
� � //G.m; r; n/x�Cm // //Im

�
G.m; r; n/x�Cm !GL.Lx�Cm/

�
where the first morphism is .�2; : : : ; �m/! ..�2 � � ��n/

�1; �2; : : : ; �n/, †n�1 ,!

†n , identifies the group to the right as the Zp –reflection group G.m; 1; n� 1/.

The results of Proposition A.9 and Proposition A.11 were obtained by Castellana [18]
using different methods.
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A.12 The sporadic p–compact groups

As in Section 2 we write Gi , 4 � i � 37, for the sporadic irreducible and simply
connected Zp –reflection group with number i in the Clark–Ewing classification table,
and Xi for the corresponding simply connected p–compact group. When Xi is defined
at the odd prime p and r divides p � 1, XhCr

i denotes the fixed point p–compact
group for the homotopy action  W Cr ! Out.Xi/ through unstable Adams operations
on the p–compact group Xi . We identify the fixed point p–compact groups for actions
through unstable Adams operations on the 34 sporadic irreducible p–compact groups.
We may summarize our results in the following diagrams:

S59 X32

4

""D
DD

DD
DD

D
5oo 5 // S59 S35

X16

3
<<zzzzzzzz

4 ""D
DD

DD
DD

D
X37

5oo

3
<<zzzzzzzz

4

""D
DD

DD
DD

D
X10

8
��

X34
4oo

9

OO

5
��

7 //

5
bbDDDDDDDD

S83

S39 X31
5
oo

3
<<zzzzzzzz

8
��

S47 S59

X9

3

<<zzzzzzzz

S35 X36
18oo

6

||zz
zz

zz
zz 4

""D
DD

DD
DD

D
14 //

10
��

S27 S9 X35

2

||zz
zz

zz
zz 3

""D
DD

DD
DD

D
5oo 9 // S17

X26

18

OO

12 ""D
DD

DD
DD

D S19 X8

12||zz
zz

zz
zz

8
��

X28
4oo

3 ""D
DD

DD
DD

D
X25

12
��2||zz

zz
zz

zz

S23 S15 X5
12
// S23

Here, for instance, X32
4
�! X10 means that XhC4

32
D X10 (when p � 1 mod 12) and

X32
5
!S59 means that XhC5

32
D S59 (when p � 1 mod 30). The relevant primes are

mentioned in the more detailed explanations below but not displayed in the above
diagrams. We use Corollary A.6 to identify the homotopy fixed point groups. With a
computer algebra program it is quite easy to find eigenspaces for the elements of these
Zp –reflection groups. We used the program MAGMA.
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(1) .G37 DW .E8/;C3;G32;p � 1 mod 3/ There is an element w 2G37 of order
3 and a primitive 3rd root of unity � 2 Z�p such that

.CG37
.w/;L

h�wi
37

/D .G32;L32/

meaning that E
hC3

8
D XhC3

37
D X32 .

(2) .G37 DW .E8/;C4;G31;p � 1 mod 4/ There is an element w 2G37 of order
4 such that

.CG37
.w/;L

hiwi
37

/D .G31;L31/

meaning that E
hC4

8
D XhC4

37
D X31 .

(3) .G37DW .E8/;C5;G16;p� 1 mod 15/ There is an element w 2G37 of order
5 and a primitive 5–th root of unity � 2 Z�p such that

.CG37
.w/;L

h�wi
37

/D .G16;L16/

meaning that E
hC5

8
D XhC5

37
D X16 .

(4) .G34;C4;G10;p � 1 mod 12/. There exists an element w 2G34 of order 4, a
(index 4) subgroup G of CG34

.w/, and a primitive 4–th root of unity � 2 Z�p
such that

.G;L
h�wi
34

/D .G10;L10/

meaning that XhC4

34
D X10 .

(5) .G32;C4;G10;p � 1 mod 12/ There is an element w 2 G32 of order 4 and a
primitive 4–th root of unity i 2 Z�p such that

.CG32
.w/;L

hiwi
32

/D .G10;L10/

which means that XhC4

32
D X10 .

(6) .G32;C30;C5;p � 1 mod 30/ There is an element w 2 G32 of order 5 and a
primitive 5–th root of unity � 2 Z�p such that

.CG32
.w/;L

h�wi
32

/D .C30;Zp/

which means that XhC5

32
D S59 .

(7) .G31;C3;G10;p � 1 mod 12/. There exists an element w 2 G31 of order 3

and a primitive 3rd root of unity � 2 Z�p such that

.CG31
.w/;L

h�wi
31

/D .G10;L10/ :
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This means that XhC3

31
D X10 . (The group that the computer finds is G10 and

not G15 (of the same rank and the same degrees) because the elements of order
8 square to central elements [63, p 281].)

(8) .G31;C8;G9;p� 1 mod 24/. There exists an element w 2G31 of order 8 and
a primitive 8–th root of unity � 2 Z�p such that the Zp –reflection group

.CG31
.w/;L

h�wi
31

/D .G9;L9/

which means that XhC8

31
D X9 .

(9) .G10;C8;C24;p � 1 mod 24/ There is an element w 2 G10 of order 8 and a
primitive 8–th root of unity � 2 Z�p such that

.CG10
.w/;L

h�wi
10

/D .C24;Zp/

which means that XhC8

10
D S47 .

(10) .G9;C3;C24;p � 1 mod 24/ There is an element w 2 G9 of order 3 and a
primitive 3rd root of unity � 2 Z�p such that

.CG9
.w/;L

h�wi
9

/D .C24;Zp/

which means that XhC3

9
D S47 .

(11) .G34;C9;C18;p � 1 mod 18/ There is an element w 2 G34 of order 9 and a
primitive 9–th root of unity � 2 Z�p such that

.CG34
.w/;L

h�wi
34

/D .C18;Zp/

which means that XhC9

34
D S37 .

(12) .G36 DW .E7/;C6;G26;p � 1 mod 6/ There is an element w 2G36 of order
6 and a primitive 6–th root of unity � 2 Z�p such that

.CG36
.w/;L

h�wi
36

/D .G26;L26/

which means that E
hC6

7
D XhC6

36
D X26 .

(13) .G36 DW .E7/;C4;G8;p � 1 mod 8/. There is an element w 2G36 of order
4, a subgroup SW < CG36

.w/ of index 8, faithfully represented in L
hiwi
36

, and a
primitive 4–th root of unity i 2 Z�p such that

. SW ;L
hiwi
36

/D .G8;L8/
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which means that E
hC4

7
D XhC4

36
DG8 . (The Zp –reflection group SW contains

elements of order 8 with central square so it is not isomorphic to G13 [63, p.
281].)

(14) .G36DW .E7/;C14;C14;p� 1 mod 14/ There is an element w 2G36 of order
14 and a primitive 14–th root of unity � 2 Z�p such that

.CG36
.w/;L

h�wi
36

/D .C14;Zp/

which means that E
hC14

7
D XhC14

36
D S27 .

(15) .G36DW .E7/;C18;C18;p� 1 mod 18/ There is an element w 2G36 of order
18 and a primitive 18–th root of unity � 2 Z�p such that

.CG36
.w/;L

h�wi
36

/D .C18;Zp/

which means that E
hC18

7
D XhC18

36
D S35 .

(16) .G26;C18;C18;p � 1 mod 18/ There is an element w 2G26 of order 18 and
a primitive 18–th root of unity � 2 Z�p such that

.CG26
.w/;L

h�wi
26

/D .C18;Zp/

which means that XhC18

26
D S35 .

(17) .G8;C12;C12;p � 1 mod 12/ There is an element w 2 G8 of order 12 and a
primitive 12–th root of unity � 2 Z�p such that

.CG8
.w/;L

h�wi
8

/D .C12;Zp/

which means that XhC12

8
D S23 .

(18) .G8;C8;C8;p � 1 mod 8/ There is an element w 2 G8 of order 8 and a
primitive 8–th root of unity � 2 Z�p such that

.CG8
.w/;L

h�wi
8

/D .C8;Zp/

which means that XhC8

8
D S15 .

(19) .G35DW .E6/;C2;G28DW .F4/;p� 1 mod 2/ There is an element w 2G35

of order 2 such that

.CG35
.w/;L

h�wi
35

/D .G28;L28/

which means that E
hC2

6
D XhC2

35
D F4 .
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(20) .G35 DW .E6/;C3;G25;p � 1 mod 3/ There is an element w 2G35 of order
3 and a primitive 3rd root of unity � 2 Z�p such that

.CG35
.w/;L

h�wi
35

/D .G25;L25/

which means that E
hC3

6
D XhC3

35
DG25 .

(21) .G35 DW .E6/;C5;G25;p � 1 mod 5/ There is an element w 2G35 of order
5 and a primitive 5–th root of unity � 2 Z�p such that

.CG35
.w/;L

h�wi
35

/D .C5;Zp/

which means that E
hC5

6
D XhC5

35
D S9 .

(22) .G35 DW .E6/;C4;G8;p � 1 mod 4/ There is an element w 2 G35 of order
4 and a primitive 4–th root of unity i 2 Z�p such that

.CG35
.w/;L

hiwi
35

/D .G8;L8/

which means that E
hC4

6
D XhC4

35
DG8 .

(23) .G25;C2;G5;p � 1 mod 6/ There is an element w 2G25 of order 2 such that

.CG25
.w/;L

h�wi
25

/D .G5;L5/

which means that XhC2

25
D X5 .

(24) .G28 DW .F4/;C3;G5;p � 1 mod 6/ There is an element w 2 G28 of order
3 and a primitive 3rd root of unity � 2 Z�p such that

.CG28
.w/;L

h�wi
28

/D .G5;L5/

which means that F4
hC3 D XhC3

28
D X5 .

(25) .G28 DW .F4/;C4;G4;p � 1 mod 4/ There is an element w 2 G28 of order
4 and a primitive 4–th root of unity i 2 Z�p such that

.CG28
.w/;L

hiwi
28

/D .G8;L8/

which means that F4
hC4 D XhC4

28
D X8 .

(26) .G25;C12;C12;p � 1 mod 12/ There is an element w 2G25 of order 12 and
a primitive 12–th root of unity � 2 Z�p such that

.CG25
.w/;L

h�wi
25

/D .C12;Zp/

which means that XhC12

25
D S23 .
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(27) .G25;C12;C12;p � 1 mod 12/ There is an element w 2G25 of order 12 and
a primitive 12–th root of unity � 2 Z�p such that

.CG5
.w/;L

h�wi
5

/D .C12;Zp/

which means that XhC12

25
D S23 .

Appendix B Derived functors of inverse limit functor

In this appendix we discuss higher limits over some finite categories of a special type.

Given a finite group G and subgroups H1;H2; : : : ;Hk �G , we define a finite cate-
gory I.k/ with objects f0; 1; 2; : : : ; kg, where G is the group of automorphisms of 0

and for each i > 0, HinG D HomI.k/.i; 0/ as G –sets and AutI.k/.i/DNG.Hi/=Hi ,
and other morphism sets are empty. Those categories appear in the context of the
Aguadé p–compact groups and other compact Lie groups, as categories of elementary
abelian subgroups. The next result is essentially contained in [2; 53].

Proposition B.1 Let M be a given diagram of Zp –modules index by the category
I.k/. Assume that

(a) restriction gives an isomorphism H j .GIA/ Š H j .H1IA/, for any Z.p/G–
module A and j � 1, and

(b) p − jNG.Hi/j and Mi DM
Hi

0
, for every i � 2.

Then there is an exact sequence

0! lim
 �

0

I.k/

M!M
NG.H1/=H1

1
˚M G

0 !M
NG.H1/
0

! lim
 �

1

I.k/

M! 0 ;

and lim
 �

j

I.k/
MD 0 if j � 2.

Proof We consider a star-shaped category I.k/ with kC 1 objects f0; 1; 2; : : : ; kg.
There is an exact sequence of the following form [53]:

0!lim0 M!M G
0 �

Y
i>0

M
NG.Hi /=Hi

i !

Y
i>0

M
NG.Hi /
0

!lim1 M!H 1.GIM0/�
Y
i>0

H 1.NG.Hi/=Hi IMi/!
Y
i>0

H 1.NG.Hi/IM0/

!lim2 M!H 2.GIM0/�
Y
i>0

H 2.NG.Hi/=Hi IMi/!
Y
i>0

H 2.NG.Hi/IM0/

!lim3 M! � � �
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Under condition (b) this exact sequence reduces to the exact sequence:

0!lim0 M!M G
0 �M

NG.H1/=H1

1
!M

NG.H1/
0

!lim1 M!H 1.GIM0/�H 1.NG.H1/=H1IM1/!H 1.NG.H1/IM0/

!lim2 M!H 2.GIM0/�H 2.NG.H1/=H1IM1/!H 2.NG.H1/IM0/

!lim3 M! � � �

Condition (a) implies that H1 and G have the same Sylow p–subgroup. Hence p does
not divide jNG.H1/=H1j and so therefore H�.NG.H1/IA/ŠH�.H1IA/

NG.H1/=H1 .
Now, in the diagram given by restrictions

H j .GIA/!H j .NG.H1/IA/!H j .H1IA/; j � 1;

the composition is an isomorphism and the second arrow is a monomorphism, hence
both arrows are isomorphisms

H j .GIA/ŠH j .NG.H1/IA/ŠH j .H1IA/ ; j � 1 ;

and the proposition follows.
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MR1397728

[21] W G Dwyer, Lie groups and p–compact groups, from: “Proceedings of the Interna-
tional Congress of Mathematicians, Vol. II (Berlin, 1998)”, Extra Vol. II (1998) 433–442
MR1648093

[22] W G Dwyer, Sharp homology decompositions for classifying spaces of finite groups,
from: “Group representations: cohomology, group actions and topology (Seattle, WA,
1996)”, (A Adem, J Carlson, S Priddy, P Webb, editors), Proc. Sympos. Pure Math. 63,
Amer. Math. Soc., Providence, RI (1998) 197–220 MR1603159

Algebraic & Geometric Topology, Volume 7 (2007)

http://www.ams.org/mathscinet-getitem?mr=1709949
http://dx.doi.org/10.1016/0040-9383(75)90023-3
http://www.ams.org/mathscinet-getitem?mr=0380779
http://www.ams.org/mathscinet-getitem?mr=0365573
http://www.ams.org/mathscinet-getitem?mr=1961340
http://dx.doi.org/10.1090/S0894-0347-03-00434-X
http://www.ams.org/mathscinet-getitem?mr=1992826
http://www.ams.org/mathscinet-getitem?mr=2066496
http://dx.doi.org/10.1090/S0002-9947-01-02781-7
http://www.ams.org/mathscinet-getitem?mr=1851179
http://dx.doi.org/10.1016/0022-4049(89)90104-7
http://www.ams.org/mathscinet-getitem?mr=1014604
http://dx.doi.org/10.1007/s00209-004-0665-9
http://www.ams.org/mathscinet-getitem?mr=2097370
http://projecteuclid.org/getRecord?id=euclid.pjm/1102913229
http://www.ams.org/mathscinet-getitem?mr=0367979
http://www.ams.org/mathscinet-getitem?mr=1397728
http://www.ams.org/mathscinet-getitem?mr=1648093
http://www.ams.org/mathscinet-getitem?mr=1603159


1916 Carles Broto and Jesper M Møller

[23] W G Dwyer, H R Miller, C W Wilkerson, Homotopical uniqueness of classifying
spaces, Topology 31 (1992) 29–45 MR1153237

[24] W G Dwyer, C W Wilkerson, A new finite loop space at the prime two, J. Amer. Math.
Soc. 6 (1993) 37–64 MR1161306

[25] W G Dwyer, C W Wilkerson, Homotopy fixed-point methods for Lie groups and finite
loop spaces, Ann. of Math. .2/ 139 (1994) 395–442 MR1274096

[26] W G Dwyer, C W Wilkerson, The center of a p–compact group, from: “The Čech
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