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The homotopy infinite symmetric product represents stable
homotopy

CHRISTIAN SCHLICHTKRULL

We modify the definition of the infinite symmetric product of a based space X by
applying the homotopy colimit instead of the colimit. This gives a topological monoid
SPh.X / and using formal properties of homotopy colimits, we prove that its group
completion represents the stable homotopy of X . In this way we get a streamlined
approach to the Barratt–Priddy–Quillen theorem.

55Q10; 55P42

1 Introduction

A classical theorem of Dold and Thom [4] states, that if X is a based connected
CW–complex, then the infinite symmetric product SP .X / represents the reduced
integral homology groups of X in the sense that these groups may be identified with
the homotopy groups of SP .X /. One way to formulate the definition of SP .X / is as
follows. Let ! be the set of natural numbers 1; 2; : : :, and let M be the monoid of
injective self maps of ! under composition. Given a based CW–complex X , let X1

be the colimit of the sequence of maps

�!X !X 2
! � � � !X n

!X nC1
! � � � ;

defined by including X n in X nC1 as the subspace of points whose last coordinate
equals the base point. We define a left M –action on X1 by letting an injective map
˛ act on an element xD .xi/ by ˛ � xD y, where

(1–1) yj D

(
xi ; if ˛.i/D j

�; if j 62 ˛.!/:

By definition, SP .X / is the associated orbit space X1
M

. Let now X1
hM

be the
corresponding homotopy orbit space, that is, the homotopy colimit of the M –diagram
X1 obtained by viewing M as a category with a single object in the usual way. We
shall relate this to the space

Q.X /D hocolimn�
n.†nX /
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that represents the stable homotopy groups of X .

Theorem 1.2 If X is connected, then there is a natural chain of homotopy equivalences
X1

hM
'Q.X /.

From this point of view, the canonical map X1
hM
! X1

M
represents the Hurewicz

homomorphism if X is connected. For general X , we may view Q.X / as a group
completion of X1

hM
. In order to make this precise, we reformulate the result as

follows. Let I be the category whose objects are the finite sets n D f1; : : : ; ng and
whose morphisms are the injective maps between such sets. The empty set 0 is an
initial object. The concatenation mt n defined by letting m correspond to the first
m elements and n to the last n elements of f1; : : : ;mC ng gives I the structure
of a symmetric monoidal category. The symmetric structure is given by the shuffle
permutations mtn! ntm. A based space X gives rise to an I–space X �W n 7!X n

by letting an injective map ˛W m! n act on an element x 2X m as in (1–1), replacing
˛.!/ by ˛.m/. The categorical colimit of this diagram may again be identified with
SP .X /. We write SPh.X / for the corresponding homotopy colimit,

SPh.X /D hocolimI X �:

Based on an argument by Jeff Smith, we prove in Proposition 3.7 that the spaces X1
hM

and SPh.X / are homotopy equivalent. The latter has the advantage that it inherits the
structure of a topological monoid from the monoidal structure of I , hence we may
define its group completion by

SP^h .X /D�B.SPh.X //:

If X is connected, then so is SPh.X / and the canonical map

SPh.X /! SP^h .X /

is therefore an equivalence in this case. Theorem 1.2 then follows from the following
more general result.

Theorem 1.3 If X is a based CW–complex, then there is a natural chain of homotopy
equivalences SP^

h
.X /'Q.X /.

More generally, if X is a well-based space (see below), then, since the functors in the
theorem preserve weak homotopy equivalences, there results a natural chain of weak
homotopy equivalences relating SP^

h
.X / and Q.X /.

Theorem 1.3 is of course closely related to the theorem of Barratt–Priddy–Quillen
relating Q.X / to the action of the symmetric groups on the spaces X n . In the case of
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a space of the form XC , that is, a space with a disjoint base point, Segal [13] defines
a symmetric monoidal topological category †.X / such that the group completion of
B†.X / is equivalent to Q.XC/. More generally, Barratt and Eccles [1] construct
a model of Q.X / for any CW–complex X . Using the by now standard properties
of homotopy colimits, we present in this paper a new streamlined approach to these
results.

1.1 Organization of the paper

In Section 2 we consider general I–spaces, that is, I–diagrams of spaces. There is a
symmetric monoidal product X � Y of I–spaces and the main result in this section is
Proposition 2.5, which states that under suitable cofibrancy conditions, this is equivalent
to the homotopy invariant version X �h Y . In Section 3 we specialize to SP .X / and
make the observation that if X and Y are based spaces, then the I–space X �� Y � is
isomorphic to .X _Y /� . Using this, the proof of Theorem 1.3 is based on standard
properties of homotopy colimits together with the fact that if X is .n� 1/–connected,
then the inclusion of X _X in X �X is .2n�1/–connected. (A map is k –connected
if its homotopy fibers are .k � 1/–connected). In Section 4 we compare SPh.X / to
the constructions by Segal and Barrett–Eccles mentioned above.

1.2 Notation and conventions

We shall work in the category U of compactly generated weak Hausdorff spaces.
By an equivalence in U we mean a homotopy equivalence and by a cofibration we
understand a map having the homotopy extension property in the usual sense (see,
for example, Steenrod [15, Section 7]). (The use of homotopy equivalences instead
of weak homotopy equivalences is not essential; we could have worked with weak
homotopy equivalences throughout the paper). We let T be the analogous category
of based spaces and say that an object of T is well-based if the inclusion of the base
point is a cofibration. Alternatively, one may interpret U and T as the categories of
unbased and based simplicial sets throughout the paper. In this setting some of the
arguments simplify since a cofibration is then simply an injective map.

1.3 Homotopy colimits

Given a small category C and a functor X W C! U , the homotopy colimit hocolimC X

is the realization of the simplicial space

Œk� 7�!
a

˚
C0

˛1
 ����

˛k
 ��Ck

	X.Ck/
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as defined by Bousfield and Kan [3, Section XII.5.1]. In the case of a diagram of based
spaces one modifies this definition by replacing the disjoint union by the wedge product.
Given a based space X , let UX denote the unbased space obtained by forgetting
the base point and if X is a C–diagram of based spaces, let UX be the associated
unbased diagram. Assuming that X is a diagram of well-based spaces, we then have a
cofibration sequence

BC! hocolimC UX ! U hocolimC X:

If furthermore BC is contractible, it follows that the second map is an equivalence.
In particular, this is the case if C has an initial object ∅. Notice that in this case, the
difference between a based and an unbased diagram amounts to a choice of base point
in X.∅/ and that the categorical colimit of the unbased diagram UX may be identified
with U colimC X .

1.4 Homotopy Kan extensions

Let F W A ! B be a functor between small categories A and B . Given a functor
X W A! U , the homotopy Kan extension is the functor LF

h
X W B! U defined by

LF
h X.b/D hocolimF=b X ı�b:

The homotopy colimit is over the comma category F=b whose objects are pairs .a; ˇ/
in which a is an object in A and ˇW F.a/ ! b a morphism in B . A morphism
.a; ˇ/! .a0; ˇ0/ is a morphism ˛W a! a0 in A such that ˇD ˇ0 ıF.˛/. The functor
�bW F=b!A is defined by .a; ˇ/ 7! a. We recall that the categorical Kan extension is
defined using the categorical colimit instead of the homotopy colimit, see Mac Lane [8,
Section X]. It will often be convenient to omit the functor �b from the notation when
writing such homotopy colimits. The result in the following lemma may be viewed
as a statement about the composition of two derived functors, see Hirschhorn [6]. We
include a direct proof here for completeness. Arguments of this sort goes back to
Quillen [11].

Lemma 1.4 Given functors F W A! B and X W A! U as above, there is a canonical
equivalence

� W hocolimB LF
h X

�
�! hocolimA X:

Proof The functors �b define a map of B–diagrams from LF
h

X to the constant
B–diagram hocolimA X and � is the induced map. Thus, � is induced by a map of
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bisimplicial spaces a
fb0 ��� bi g

a
na0 ��� aj

bi F.a0/

oX.aj / 7�!
a

fa0 ��� aj g

X.aj /;

where we view the target as a bisimplicial space which is constant in the i –direction.
If we fix j and form the realization of the resulting simplicial spaces, the domain
decomposes into a disjoint uniona

fa0 ��� aj g

B.F.a0/=B/�X.aj /:

The category F.a0/=B has an initial object and its classifying space is therefore
contractible. Consequently, the bisimplicial map is an equivalence for each fixed j

and since these are good simplicial spaces in the sense of Segal [13], it is itself an
equivalence.

2 The monoidal structure on I–spaces

We define an I–space to be a functor X W I ! U and let IU be the category of
I–spaces in which a morphism is a natural transformation. Given I–spaces X and Y ,
let X �Y be the I2 –diagram defined by

.n1;n2/ 7!X.n1/�Y .n2/:

Using the monoidal structure tW I � I! I , we internalize this by letting X � Y be
the I–space defined by the Kan extension

X � Y .n/D colimt=n X �Y:

In this way, IU inherits the structure of a symmetric monoidal category from that
of I . The unit is the constant diagram I.0; �/. We refer to Mandell, May, Schwede
and Shipley [9] for a general discussion of induced symmetric monoidal structures on
diagram categories. By the universal property of the Kan extension, the data defining a
monoid in IU amounts to an associative natural transformation

X.m/�X.n/!X.mtn/

of I2 –diagrams, together with a multiplicative unit 1X 2 X.0/. Given a monoid
X in IU , the categorical colimit XI has the structure of a topological monoid with
multiplication

XI �XI D colimI�I X.n1/�X.n2/! colimI�I X.n1 tn2/!XI :
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If X is commutative, then XI is a commutative topological monoid. Similarly, the
homotopy colimit XhI inherits the structure of a topological monoid, and in this case
commutativity of X implies that the group completion of XhI is an infinite loop
space, see [12, Section 5]. In the case of the constant diagram I.0; �/, this gives the
contractible topological monoid BI . Notice, that since the latter is not commutative,
XhI cannot be strictly commutative either.

Example 2.1 Let X be a based space and X � the I–space introduced in Section 1.
The identity maps X m �X n!X mCn make this a commutative monoid in IU and
the induced monoid structures on the colimit and the homotopy colimit are the monoid
structures on SP .X / and SPh.X / considered in Section 1.

Example 2.2 A symmetric spectrum E gives rise to an I–space n 7!�n.En/ (see,
for example, [12]). If E is a ring spectrum, then this inherits a monoid structure which
is commutative if E is. These I–spaces are used in Bökstedt’s definition of topological
Hochschild homology and play an important role in the theory of symmetric spectra,
see Shipley [14].

There also is a homotopy invariant version of the �–product, where we consider the
I–space X �h Y defined by the homotopy Kan extension

X �h Y .n/D hocolimt=n X �Y:

The canonical projection from the homotopy colimit to the colimit defines a map of
I–spaces X �h Y !X � Y . We shall now introduce a criterion on X and Y which
ensures that this map is a level-wise equivalence. Consider a commutative diagram in
I of the form

(2–3)

m
˛1
����! n1??y˛2

??yˇ1

n2

ˇ2
����! n;

and let  denote the composite ˇ1 ı˛1D ˇ2 ı˛2 . We say that an I–space X is flat if
for any diagram of the form (2–3), such that the intersection of the images of ˇ1 and
ˇ2 equals the image of  , the induced map

X.n1/[X .m/X.n2/!X.n/

is an cofibration. By Lillig’s union theorem [7], this is equivalent to the requirement
that (i) any morphism ˛W m! n in I induces an cofibration X.m/!X.n/, and (ii)
that the intersection of the images of X.n1/ and X.n2/ in X.n/ equals the image of
X.m/.
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Example 2.4 If X is well-based, then the I–space X � is flat.

Proposition 2.5 If X and Y are flat I–spaces, then the canonical map X �h Y !

X � Y is a level-wise equivalence.

Proof Let A.n/ be the full subcategory of t=n whose objects ˛W n1 t n2! n are
such that the restrictions to n1 and n2 are order preserving. Since this is a skeleton
subcategory in the sense of Mac Lane [8, Section IV.4], it suffices to show that the
canonical map

hocolimA.n/X.n1/�Y .n2/! colimA.n/X.n1/�Y .n2/

is an equivalence for each n. Notice, that A.n/ may be identified with the partially
ordered set of pairs .U;V / of disjoint subsets of n, so that we may write the diagram
in the form

.U;V / 7!X.U /�Y .V /

The categories A.n/ are very small in the sense of Dwyer and Spaliński [5, Sec-
tion 10.13]. Thus, using the Strøm model category structure on U [16] it follows from
the discussion in [5, Section 10] that it is sufficient to show that the canonical map

colim.U;V /¨.U0;V0/X.U /�Y .V /!X.U0/�Y .V0/

is a cofibration for each fixed object .U0;V0/. Since cofibrations are preserved under
products and are closed inclusions, we may view each of the spaces X.U /�Y .V / as
a closed subspace of X.U0/�Y .V0/. By the assumptions on X and Y we then have
the equality

X.U /�Y .V /\X.U 0/�Y .V 0/DX.U \U 0/�Y .V \V 0/

for each pair of objects .U;V / and .U 0;V 0/. Thus, it follows from the pasting lemma
for maps defined on a union of closed subspaces that the colimit in question may be
identified with the union of these subspaces. The conclusion now follows from an
inductive argument using Lillig’s union theorem for cofibrations [7].

In particular, we conclude from Lemma 1.4 that .X �Y /hI is equivalent to XhI �YhI
if X and Y are flat.

3 The homotopy infinite symmetric product

Given a based space X , let X � be the I–space n 7!X n introduced in Section 1 and
let SPh.X / be the corresponding unbased homotopy colimit. It is sometimes more
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convenient to view X � as a diagram of based spaces and we write SP�
h
.X / for the

corresponding based homotopy colimit. Recall from Section 1.3, that if X is well-
based, then SPh.X / and SP�

h
.X / are equivalent since I has an initial object. However,

SP�
h
.X / does not have a strictly associative multiplication, since homotopy colimits

only commute with products in the unbased setting. On the other hand, SP�
h
.X / has

the advantage that there is a natural based map

X ^SP�h .Y /! SP�h .X ^Y /

obtained by including the X –coordinate of a point in X ^Y n diagonally in .X ^Y /n .

Lemma 3.1 Given based spaces X and Y , there is an isomorphism of I–spaces
X �� Y � ' .X _Y /� .

Proof As in the proof of Proposition 2.5, we identify X ��Y �.n/ with the colimit of
the diagram X U �Y V , where U and V runs over all pairs of disjoint subsets of n.
Given x 2X U and y 2 Y V , let z be the element in .X _Y /n defined by

zi D xi if i 2 U ; zi D yi if i 2 V ; zi D � if i 62 U [V :

This defines a homeomorphism from X U � Y V to a closed subspace Z.U;V / of
.X _Y /n . Since

Z.U1;V1/\Z.U2;V2/DZ.U1\U2;V1\V2/;

these maps assemble to give the required homeomorphism.

Using the above lemma, we shall apply the analysis of the �–product in Section 2 to
the study of SPh.X /.

Lemma 3.2 The natural map

SPh.X _Y /! SPh.X /�SPh.Y /

is an equivalence for all based CW–complexes X and Y .

Proof Since X � and Y � are flat, we have by Proposition 2.5 and Lemma 3.1 a
level-wise equivalence

(3–3) X ��h Y �
�
�!X �� Y �

�
�! .X _Y /�:
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The left hand side is a homotopy Kan extension along the functor I � I! I and by
the formal property of homotopy Kan extensions recalled in Lemma 1.4, we thus get a
canonical equivalence

(3–4) hocolimI X ��h Y �
�
�! hocolimI�I X � �Y �:

Consider then the commutative diagram

hocolimI.X _Y /� ����! hocolimI X � � hocolimI Y �x??' x??'
hocolimI X ��h Y � ����! hocolimI.X

��h �/� hocolimI.��h Y �/;

where the vertical maps are equivalences by Proposition 2.5. Applying Lemma 1.4
to both sides of the bottom map and using that BI is contractible, we see that the
latter is an equivalence as well. The same then holds for the upper horizontal map as
claimed.

Consider now the based map X!SP�
h
.X / obtained by including X in the 0–skeleton

of the simplicial space defining the homotopy colimit.

Lemma 3.5 If X is a .n � 1/–connected CW–complex, then X ! SP�
h
.X / is

.2n� 1/–connected.

Proof Consider the based I–space n 7! _n
iD1

X and notice that since the inclusion
_n

iD1
X ! X n is at least .2n� 1/–connected, the same holds for the induced map of

based homotopy colimits

�
hocolimI n

�
C
^X ' hocolimI

n_
iD1

X ! hocolimI X n:

The first equivalence is the homeomorphism obtained by identifying _n
iD1

X with nC^
X in the obvious way. It follows from the definition that hocolimI n is homeomorphic
to the classifying space of the category 1=I , hence contractible since the latter has an
initial object. This concludes the proof.

Proof of Theorem 1.3 Let S1
� be the standard simplicial circle with k non-base

point simplices in degree k . Applying Lemma 3.2 for each k , we get a sequence of
equivalences

SPh.S
1
k ^X /

�
�! SPh.X /

k
D BkSPh.X /
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that gives a degree-wise equivalence of simplicial spaces, hence an equivalence of
the topological realizations. This fits into the following commutative diagram in the
homotopy category

S1 ^SP�
h
.X /

�
 ���� S1 ^SPh.X / S1 ^SPh.X /??y ??y ??y

SP�
h
.S1 ^X /

�
 ���� SPh.S

1 ^X /
�

����! BSPh.X /;

where we use the contractibility of BI to fill in the vertical map in the middle. Consider
now the following diagram

�SP�h .S
1
^X /

�
�! hocolimn�

nSP�h .S
n
^X /

�
 �Q.X /:

We claim that the maps are equivalences as indicated. For the left hand map this
follows by applying the above argument to Sn^X , using that the adjoint of the vertical
map on the right hand side, that is, the group completion map, is an equivalence for
connected X . As for the right hand map, it follows from Lemma 3.5 that it is a weak
homotopy equivalence, hence an equivalence since these spaces have the homotopy
types of CW–complexes by Milnor [10].

Remark 3.6 The above argument may be reformulated in terms of Segal’s � –spaces
[13]. Indeed, it follows from Lemma 3.2 that the functor that to a finite based set S

associates the space SP�
h
.X ^S/ is a � –space as defined in that paper (this is what is

called a special � –space in Bousfield and Friedlander [2]). By [13, Proposition 1.4]
the associated spectrum is then an �–spectrum in positive degrees and by Lemma 3.5,
this spectrum is equivalent to the suspension spectrum of X .

Recall the definition of X1
hM

from Section 1. Applying an argument by Jeff Smith,
we shall relate this to SPh.X /.

Proposition 3.7 The spaces X1
hM

and SPh.X / are equivalent for any based CW–
complex X .

Proof Consider more generally an I–space X . Let I! be the category whose objects
are the finite sets n in I together with the set ! . A morphisms is an injective map
between such sets. Let Li

h
X be the homotopy Kan extension of X along the inclusion

i W I! I! . Then M acts on Li
h
X.!/ from the left and it follows from Shipley [14,

Proposition 2.2.9] that the associated homotopy orbit space is equivalent to hocolimI X .
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Let T be the subcategory of I containing only the standard subset inclusions m! n
for m� n, and consider the commutative diagram

hocolimT X ����! hocolimi=! X??y ??y
colimT X ����! colimi=! X:

By definition, Li
h
X.!/ is the homotopy colimit in the upper right hand corner of the

diagram. The horizontal maps are induced by the functor t that takes an object n in T

to the standard inclusion of n in ! . This functor is final in the sense that the categories
u=t are contractible for each object u in i=! , hence the upper horizontal map is
an equivalence by the dual version of [3, Theorem XI.9.2] and the lower horizontal
map is a homeomorphism by [8, Theorem IX.3.1]. Suppose now that the maps in the
I–diagram X are cofibrations. Then the left hand vertical map is an equivalence and
therefore the same holds for the vertical map on the right hand side. Notice also that
the latter is M –equivariant. Applying this to the I–space X � associated to a based
CW–complex, we get an equivalence Li

h
X �.!/

�
�!X1 . Letting M act on X1 as

in Section 1, this is M –equivariant, hence the induced map of homotopy orbit spaces
is also an equivalence.

4 The Barratt–Priddy–Quillen Theorem

We begin by reformulating the definition of SPh.X /. Given a based space X , let
I.X / be the topological category whose objects have the form .m; x/ for x 2 X m ,
and in which a morphism .m; x/! .n; y/ is a morphism ˛W m! n in I such that
˛�xD y. It follows from the definition of the homotopy colimit, that SPh.X / may
be identified with the classifying space BI.X /. From this point of view, the monoid
structure on SPh.X / is induced by the symmetric strict monoidal structure of I.X /
inherited from I .

4.1 Segal’s construction

In Segal’s formulation of the Barratt–Priddy–Quillen Theorem, one associates to an
unbased space X the topological category †.X / whose objects have the form .m; x/
for x 2X m , and in which a morphism .m; x/! .n; y/ is an isomorphism ˛W m! n
in I such that ˛�xD y; thus mD n. We wish to compare this category to I.XC/,
where XC is the based space obtained by adjoining a disjoint base point. Given an
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object .n; x/ of the latter, consider the diagram

(4–1)

xn
�x
����! n??yxx ??yx

X ����! XC;

where �x is the unique order preserving morphism in I whose image equals x�1.X /.
Given a morphism .m; x/! .n; y/ in I.XC/ represented by a morphism ˛ in I , let
�.˛/ be the morphism in †.X / determined by the commutative diagram

.xm;xx/
�.˛/
����! .xn;xy/??y�x

??y�y

.m; x/
˛

����! .n; y/;

where xmD xn. In this way we get a functor

(4–2) � W I.XC/!†.X /; .n; x/ 7! .xn;xx/

that is natural with respect to the unbased space X . Furthermore, if we give †.X / the
symmetric strict monoidal structure induced by concatenation of permutations, then
this functor is symmetric monoidal.

Proposition 4.3 The functor � is an equivalence of symmetric monoidal categories
and gives rise to an equivalence

SP^h .XC/
�
�!�B.B†.X //

for any (unbased) CW–complex X .

Proof If we view †.X / as a subcategory of I.XC/ via the inclusion of X in XC ,
then the functor � provides a retraction. Furthermore, we may view the map �x in
Diagram (4–1) as a natural transformation relating the other composition to the identity
on I.XC/. It follows that B†.X / is a deformation retract of BI.XC/ and that the
retraction

B� W BI.XC/
�
�! B†.X /

is an equivalence. Applying the functor �B to this homomorphism, we get the required
equivalence.
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4.2 The Barratt–Eccles construction

Let †n denote the symmetric group on the set n. The correspondence n 7!†n defines
a contravariant I–diagram †� of sets as follows. Given an injective map ˛W m! n
and a permutation � 2†n , there is a unique factorization of the form

� ı˛ D ��.˛/ ı˛
�.�/

such that ˛�.�/ 2 †m and ��.˛/W m ! n is order preserving. The induced map
˛�W †n ! †m is then defined by � 7! ˛�.�/. Let z†n be the translation category
associated to †n . This has as its objects the elements of †n and a morphism �W �! �

is an element � 2†n such that �ı� D � . Notice, that since †n is a group, a morphism
is determined by its domain and target. It follows that in order to define a functor
C ! z†n from a category C , one needs only specify the behaviour on objects. In
particular, the I–diagram †� extends uniquely to an I–diagram of categories n 7! z†n ,
hence to an I–diagram of spaces B z†� . Given a based space X , the Barrett–Eccles
construction [1] is the coend

�C.X /D B z†�˝I X �;

that is, the quotient space� 1a
nD0

B z†n �X n

�.
.˛�.� /; x/� .� ; ˛�.x//;

where ˛ runs through the morphisms in I . We refer to Mac Lane [8, Section XI.6]
for a general discussion of coends. Using the functors z†m �

z†n!
z†mCn given by

concatenation of permutations, we define a monoid structure on �C.X / by

Œ�; x� � Œ�; y�D Œ� t �; .x; y/�:

Notice, that for a based space of the form XC , we have that

(4–4) �C.XC/D

1a
nD0

B z†n �†n
X n
Š B†.X /:

Proposition 4.5 There is an equivalence of topological monoids

� W SPh.X /
�
�! �C.X /

for any based CW–complex X .

It follows of course that SP^
h
.X / is equivalent to �B.�C.X //. The latter is equivalent

to the algebraic group completion �.X / introduced by Barratt and Eccles in the
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simplicial setting (see Barratt and Eccles [1]). The proof of Proposition 4.5 requires
yet another description of SPh.X /. Consider the contravariant functor B.�=I/ that to
an object n in I associates the classifying space of the category n=I of objects in I
under n. Then it follows from the definition of the homotopy colimit that SPh.X / is
homeomorphic to the coend B.�=I/˝I X � . For each object n in I we now define
a functor n=I! z†n by mapping an object ˛W n!m of the domain category to the
permutation ˛�.1m/ in †n . Letting n vary, this defines a natural transformation of
Io –diagrams of categories, hence we get a map of Io –diagrams

� W B.�=I/! B z†�:

The map � in Proposition 4.5 is the induced map

� W SPh.X /D B.�=I/˝I X �! B z†�˝I X � D �C.X /:

One checks that for a space of the form XC , this map agrees with that induced by the
functor � in Section 4.1 if we identify the right hand sides as in (4–4).

Proof of Proposition 4.5 Consider first the case, where X is a based discrete set.
Then we may view X as a space with a disjoint base point and the result follows from
the proof of Proposition 4.3. Consider then the case where X is the realization of a
based simplicial set X� . We then have a commutative diagram

SPh.X / ����! �C.X / 
jSPh.X�/j ����! j�

C.X�/j;

where the vertical maps are homeomorphisms and the bottom map is the realization
of a degree-wise equivalence, hence itself an equivalence. Thus, the result also holds
for X of this form. The general case now follows, since both functors are homotopy
functors and any CW–complex is equivalent to the realization of a simplicial set, for
example the total singular complex.

References
[1] M G Barratt, P J Eccles, �C–structures I: A free group functor for stable homotopy

theory, Topology 13 (1974) 25–45 MR0348737

[2] A K Bousfield, E M Friedlander, Homotopy theory of � –spaces, spectra and bisim-
plicial sets, from: “Geometric applications of homotopy theory (Proc. Conf., Evanston,
Ill., 1977), II”, Lecture Notes in Mathematics 658, Springer, Berlin (1978) 80–130
MR513569

Algebraic & Geometric Topology, Volume 7 (2007)



The homotopy infinite symmetric product represents stable homotopy 1977

[3] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture
Notes in Mathematics 304, Springer, Berlin (1972) MR0365573

[4] A Dold, R Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of
Math. .2/ 67 (1958) 239–281 MR0097062
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