Non-finiteness results for Nil-groups

JOACHIM GRUNEWALD

Generalizing an idea of Farrell we prove that for a ring Λ and a ring automorphism α of finite order the groups Nil₀(Λ ; α) and all of its *p*-primary subgroups are either trivial or not finitely generated as an abelian group. We also prove that if β and γ are ring automorphisms such that $\beta \circ \gamma$ is of finite order then Nil₀(Λ ; $\Lambda_{\beta}, \Lambda_{\gamma}$) and all of its *p*-primary subgroups are either trivial or not finitely generated as an abelian group. These Nil-groups include the Nil-groups appearing in the decomposition of K_i of virtually cyclic groups for $i \leq 1$.

18F25; 19B28, 19D35

1 Introduction

Let Λ be a unital ring and α a ring automorphism. Farrell defined in his PhD thesis [2] twisted Nil-groups, Nil_i($\Lambda; \alpha$) for $i \in \mathbb{N}$. We denote the twisted polynomial ring by $\Lambda_{\alpha}[t]$. The Nil-group Nil_i($\Lambda; \alpha$) is the kernel of the map ϵ : $K_{i+1}(\Lambda_{\alpha}[t]) \rightarrow K_{i+1}(\Lambda)$ which is induced by the augmentation map. Farrell–Hsiang [4] and Grayson [6] generalized the *fundamental lemma of algebraic* K-theory to twisted Laurent polynomial rings. They proved the exactness of the following sequence, relating the K-theory of the twisted Laurent polynomial ring $\Lambda_{\alpha}[t, t^{-1}]$ to the K-theory of Λ :

$$\cdots \longrightarrow K_{i+1}(\Lambda) \xrightarrow{1-\alpha_*} K_{i+1}(\Lambda) \longrightarrow$$
$$K_{i+1}(\Lambda_{\alpha}[t, t^{-1}]) / (\operatorname{Nil}_i(\Lambda, \alpha) \oplus \operatorname{Nil}_i(\Lambda, \alpha^{-1})) \longrightarrow K_i(\Lambda) \longrightarrow \cdots$$

Let A, B and C be rings and let $\alpha: C \to A$ and $\beta: C \to B$ be inclusions which are *pure* and *free* (for a definition of pure and free see Waldhausen [10]). Let R be the push-out of the diagram

$$\begin{array}{ccc} C & \xrightarrow{\alpha} & A \\ \beta & & \\ \beta & & \\ B & & \\ \end{array}$$

in the category of rings. Waldhausen proved that there is a Mayer-Vietoris sequence for algebraic K-theory, which is exact up to Nil-groups Nil_i(C; A', B'), where A' is

Published: 18 December 2007

DOI: 10.2140/agt.2007.7.1979

defined to be the *C*-bimodule such that $A = \alpha(C) \oplus A'$ and B' is defined similarly [10; 11]. More precisely he proved that the following sequence is exact:

In the article at hand we use an idea which goes back to Farrell [3] to prove that Nil-groups and its *p*-primary subgroups have the mysterious property of being either trivial or not finitely generated as an abelian group. For a ring automorphism $\alpha: \Lambda \to \Lambda$ we denote the Λ -bimodule Λ with Λ -action from the left via the identity and from the right via α by Λ_{α} . For an abelian group *G* and a prime *p*, define

 $G_p = \{x \in G : p^n x = 0 \text{ for some } n \ge 0\}.$

 G_p is called the *p*-primary subgroup of G.

Theorem 1.1 Let Λ be a ring, p a prime and α a ring automorphism of finite order. The groups Nil₀(Λ ; α) and Nil₀(Λ ; α)_p are either trivial or not finitely generated as an abelian group. If β and γ are ring automorphisms such that $\beta \circ \gamma$ is of finite order then Nil₀(Λ ; Λ_{β} , Λ_{γ}) and Nil₀(Λ ; Λ_{β} , Λ_{γ})_p are either trivial or not finitely generated as an abelian group.

The non-finiteness of Nil₀($\Lambda; \alpha$) for α = id was already known [3] and the non-finiteness of Nil₀($\mathbb{Z}G; \alpha$) for a finite group *G* was independently proven by Ramos [9].

For topology the K-theory of group rings is of special importance and the Farrell-Jones conjecture, which is known to be true for a large class of groups, predicts that the building blocks of the K-theory of a group ring is the K-theory of virtually cyclic groups. There are two types of infinite virtually cyclic groups:

- (i) the semidirect product $G \rtimes \mathbb{Z}$ of a finite group G and the infinite cyclic group;
- (ii) the amalgamated product $G_1 *_H G_2$ of two finite groups G_1 and G_2 over a subgroup H such that $[G_1 : H] = 2 = [G_2 : H]$;

If one decomposes the K-theory of infinite virtually cyclic groups the Nil-groups of finite groups appear. Since for a finite group all automorphisms are of finite order we obtain the following corollary about Nil-groups of finite groups.

Corollary 1.2 Let *R* be a ring, *G* a finite group, *p* a prime and α and β group automorphisms. The groups Nil_i(*RG*; α), Nil_i(*RG*; α)_{*p*}, Nil_i(*RG*; *RG*_{α}, *RG*_{β}) and Nil_i(*RG*; *RG*_{α}, *RG*_{β})_{*p*} are either trivial or not finitely generated as an abelian group for $i \leq 0$.

For $R = \mathbb{Z}$ the considered Nil-groups are known to vanish for $i \leq -2$ (see Farrell and Jones [5]) and are known to be *n*-torsion for an arbitrary group of finite order *n* (see Kuku and Tang [8]).

2 Non-finiteness results for Nil-groups

In the following Λ will always be a unital ring and α a ring automorphism of finite order *n*, that is, $\alpha^n = id$.

For $m \in \mathbb{N}$ we have canonical inclusion maps

$$\sigma_m \colon \Lambda_{\alpha^{nm+1}}[t^{nm+1}] \to \Lambda_{\alpha}[t].$$

Those maps induce transfer and induction maps

$$\sigma_*^m \colon K_1(\Lambda_{\alpha^{nm+1}}[t^{nm+1}]) \to K_1(\Lambda_{\alpha}[t])$$
$$\sigma_m^* \colon K_1(\Lambda_{\alpha}[t]) \to K_1(\Lambda_{\alpha^{nm+1}}[t^{nm+1}]).$$

Since $\operatorname{Nil}_0(\Lambda; \alpha) = \operatorname{Nil}_0(\Lambda; \alpha^{nm+1})$ we have an embedding

 $\iota': \operatorname{Nil}_0(\Lambda; \alpha) \hookrightarrow K_1(\Lambda_{\alpha^{nm+1}}[t^{nm+1}]).$

The proof of the non-finiteness result is based on the following diagram:

The idea is to choose, for a finitely generated Nil-group, m such that $\sigma_m^* \sigma_*^m \iota'$ is a monomorphism (Lemma 2.1) and trivial (Proposition 2.3). Thus every finitely generated Nil-group is trivial.

Lemma 2.1 Let *G* be a finitely generated subgroup of $K_1(\Lambda_{\alpha^{nm+1}}[t^{nm+1}])$. For every $K \in \mathbb{N}$ there is an $m \ge K$ such that $\sigma_m^* \sigma_*^m$ is a monomorphism on *G*.

Proof Let *T* be the exponent of the torsion subgroup of *G* and let *F* be the rank of a maximal torsion free subgroup. Choose $\ell \in \mathbb{N}$ such that $\ell \cdot T \geq K$. For $x \in$

 $K_1(\Lambda_{\alpha^{nm+1}}[t^{nm+1}])$ we have

$$\sigma_{\ell \cdot T}^* \sigma_*^{\ell \cdot T}(x) = \sum_{i=0}^{n \cdot \ell \cdot T} \alpha_*^i(x) = x + \ell \cdot T \sum_{i=1}^n \alpha_*^i(x)$$

where $\alpha_*: K_1(\Lambda_{\alpha^{nm+1}}[t^{nm+1}]) \to K_1(\Lambda_{\alpha^{nm+1}}[t^{nm+1}])$ is the map which is induced by the ring automorphism on $\Lambda_{\alpha^{nm+1}}[t^{nm+1}]$ which sends an element $\sum r_i t^i$ to the element $\sum \alpha(r_i)t^i$. The automorphism α_* restricts to an automorphism of $A := \bigcup_{i=1}^n \alpha^i(\mathbb{Z}^F)$ where \mathbb{Z}^F is a maximal torsion free subgroup of G. The map $\alpha_*|_A$ is conjugate to a diagonal matrix, that is,

$$g\alpha_*|_A g^{-1} = \begin{pmatrix} \zeta_1 & & \\ & \ddots & \\ & & \zeta_r \end{pmatrix}$$

where $g \in GL_r(\mathbb{C})$ and $\zeta_1, \ldots, \zeta_r \in \mathbb{C}$ are *n*th roots of unity. We can find $k \in \mathbb{N}$ such that $\sum_{i=1}^{k \cdot \ell \cdot T} \zeta_j^i \neq -1$ for all $j \in \{1, \ldots, r\}$. One verifies easily that $\sigma_{k \cdot \ell \cdot T}^* \sigma_*^{k \cdot \ell \cdot T}(x)$ is a monomorphism.

Lemma 2.2 The image of ι' is mapped into the image of ι by every σ_*^m .

Proof The result follows since the diagram

$$\begin{array}{c|c} K_1(\Lambda_{\alpha^{nm+1}}[t^{nm+1}]) \xrightarrow{\epsilon} K_1(\Lambda) \\ \sigma^m_* & & & \downarrow^{\mathrm{id}} \\ K_1(\Lambda_{\alpha}[t]) \xrightarrow{\epsilon} K_1(\Lambda) \end{array}$$

commutes. We denote the maps which are induced by the augmentation map by ϵ . \Box

Proposition 2.3 For every $x \in Nil_0(\Lambda; \alpha)$, there exists an integer K(x) such that $\sigma_m^*(x) = 0$ for all integers $m \ge K(x)$.

For the proof of Proposition 2.3 we need the following lemma. We denote by $GL_n(\Lambda)$ the group of invertible $n \times n$ matrices, by $GL(\Lambda)$ the colimit over $GL_n(\Lambda)$ and by $E(\Lambda_{\alpha}[t])$ the subgroup of $GL(\Lambda_{\alpha}[t])$ generated by all elementary matrices. For a matrix N we denote by $\alpha(N)$ the matrix obtained for N by applying α to each component.

Lemma 2.4 Every matrix $B \in GL(\Lambda_{\alpha}[t])$ can be reduced, modulo $GL(\Lambda)$ and $E(\Lambda_{\alpha}[t])$, to a matrix of the from 1 + Nt, where

$$\prod_{j=0}^{M} \alpha^{-j}(N) = 0$$

for some $M \in \mathbb{N}$.

Proof We have

$$B = B_0 + B_1 t + \ldots + B_n t^n$$

with $B_i \in Mat_m(\Lambda)$. In $GL(\Lambda_{\alpha}[t])$ we have

$$B = \left(\begin{array}{cc} B & 0\\ 0 & \mathrm{id} \end{array}\right).$$

Modulo $E(\Lambda_{\alpha}[t])$ we have:

$$\begin{pmatrix} B & 0 \\ 0 & \text{id} \end{pmatrix} = \begin{pmatrix} B & B_n t^n \\ 0 & \text{id} \end{pmatrix} = \begin{pmatrix} B - B_n t^n & B_n t^n \\ -t & \text{id} \end{pmatrix}.$$

This implies by induction that

$$B = \tilde{B}_0 + \tilde{B}_1 t.$$

Since $B \in GL_k(\Lambda_{\alpha}[t])$ there exists B^{-1} with

$$B^{-1} = C_0 + C_1 t + \dots + C_m t^m.$$

where $C_i \in Mat_k(\Lambda)$. We have

$$1 = BB^{-1} = B_0C_0 + B_1tC_0 + \dots + B_1tC_mt^m.$$

Thus $B_0C_0 = 1$ and therefore B = 1 + Nt module $GL(\Lambda)$. Let $L = L_0 + L_1t + ... + L_mt^m$ be the inverse of (1 + Nt). We have

$$1 = (1 + Nt)(L_0 + L_1t + \dots + L_mt^m)$$

= $L_0 + NtL_0 + L_1t + NtL_1t + \dots + L_mt^m + NtL_mt^m$
= $L_0 + \sum_{i=0}^{m-1} (N\alpha^{-1}(L_i) + L_{i+1})t^{i+1} + N\alpha^{-1}(L_m)t^{m+1}$

This implies the following identities:

$$L_0 = 1$$

$$N\alpha^{-1}(L_0) + L_1 = 0$$

$$\vdots$$

$$N\alpha^{-1}(L_i) + L_{i+1} = 0$$

$$\vdots$$

$$N\alpha^{-1}(L_{m-1}) + L_m = 0$$

$$N\alpha^{-1}(L_m) = 0.$$

•

Thus

$$\prod_{j=0}^{m-1} \alpha^{-j}(N) = 0.$$

Proof of Proposition 2.3 By Lemma 2.4 we have

x = 1 + Nt

with

$$\prod_{i=0}^{M} \alpha^{-i}(N) = 0$$

The element $\sigma_*^m(x)$ is represented by the matrix

$$\begin{pmatrix} \text{id} & \alpha^{-nm}(N)t^{nm+1} \\ N & \text{id} & & \\ & \alpha^{-1}(N) & \ddots & & \\ & & \ddots & \text{id} & & \\ & & & \alpha^{-nm+1}(N) & \text{id} \end{pmatrix}$$

Thus $\sigma_*^m(x)$ is also represented by the following matrix:

This implies that for *m* such that $n \cdot m \ge M$ we have $\sigma_*^m(x) = 0$.

Theorem 2.5 Let Λ be a ring, p a prime and α a ring automorphism of finite order. The groups Nil₀($\Lambda; \alpha$) and Nil₀($\Lambda; \alpha$)_p are either trivial or not finitely generated as an abelian group.

Proof Assume Nil₀($\Lambda; \alpha$) to be a finitely generated abelian group. By Lemma 2.2 and Proposition 2.3 we can find K such that $\sigma_m^* \sigma_*^m \iota'(x) = 0$ for all $x \in \text{Nil}(\Lambda; \alpha)$ and $m \ge K$. By Lemma 2.1 we can find an $m \ge K$ such that $\sigma_m^* \sigma_*^m \iota'$ is a monomorphism. Thus Nil₀($\Lambda; \alpha$) is the trivial group. The proof for Nil($\Lambda; \alpha$)_p goes in exactly the same way.

Algebraic & Geometric Topology, Volume 7 (2007)

1984

Corollary 2.6 Let Λ be a ring, p be a prime and α and β be ring automorphisms such that $\alpha \circ \beta$ is of finite order. The groups Nil₀(Λ ; Λ_{α} , Λ_{β}) and Nil₀(Λ ; Λ_{α} , Λ_{β})_p are either trivial or not finitely generated as an abelian group.

Proof It is a result of Kuku and Tang [8] that Nil₀($\Lambda; \Lambda_{\alpha}, \Lambda_{\beta}$) can also be described as a Nil-group of type Nil₀($\Lambda \times \Lambda; \gamma$) where γ is the ring automorphism defined by

$$\gamma: (a, b) \mapsto (\beta(b), \alpha(a)). \qquad \Box$$

Corollary 2.7 Let *R* be a ring, *G* a finite group, *p* a prime and α and β group automorphisms. The groups Nil_i(*RG*; α), Nil_i(*RG*; α)_{*p*}, Nil_i(*RG*; *RG*_{α}, *RG*_{β}) and Nil_i(*RG*; *RG*_{α}, *RG*_{β})_{*p*} are either trivial or not finitely generated as an abelian group for $i \leq 0$.

Proof Using the suspension ring construction as explained by Bartels and Lück [1] and by the author [7], one gets that the considered Nil-groups are covered by Theorem 2.5 and Corollary 2.6.

References

- [1] A Bartels, W Lück, *Isomorphism conjecture for homotopy K-theory and groups acting on trees*, J. Pure Appl. Algebra 205 (2006) 660–696 MR2210223
- FT Farrell, The obstruction to fibering a manifold over a circle, Indiana Univ. Math. J. 21 (1971/1972) 315–346 MR0290397
- [3] FT Farrell, *The nonfiniteness of Nil*, Proc. Amer. Math. Soc. 65 (1977) 215–216 MR0450328
- [4] **F T Farrell**, **W-C Hsiang**, *A formula for* $K_1 R_{\alpha}[T]$, from: "Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968)", Amer. Math. Soc., Providence, R.I. (1970) 192–218 MR0260836
- [5] FT Farrell, LE Jones, The lower algebraic K-theory of virtually infinite cyclic groups, K-Theory 9 (1995) 13–30 MR1340838
- [6] DR Grayson, The K-theory of semilinear endomorphisms, J. Algebra 113 (1988) 358–372 MR929766
- J Grunewald, The Behavior of Nil-Groups under Localization and the Relative Assembly Map, Preprintreihe SFB 478–Geometrische Strukturen in der Mathematik, Münster, Heft 429 (2006)
- [8] A O Kuku, G Tang, Higher K-theory of group-rings of virtually infinite cyclic groups, Math. Ann. 325 (2003) 711–726 MR1974565
- [9] **R Ramos**, Non Finiteness of twisted Nils, preprint (2006)

- [10] F Waldhausen, Algebraic K-theory of generalized free products I, II, Ann. of Math.
 (2) 108 (1978) 135–204 MR0498807
- [11] F Waldhausen, Algebraic K-theory of generalized free products III, IV, Ann. of Math.
 (2) 108 (1978) 205–256 MR0498808

Fachbereich Mathematik und Informatik, Westfälische Wilhelms-Universität Münster Einsteinstrasse 62, D-48149 Münster, Germany

grunewal@math.uni-muenster.de

Received: 6 May 2006