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The homotopy Lie algebra of the complements of subspace
arrangements with geometric lattices

GERY DEBONGNIE

A subspace arrangement in Cl is a finite set A of subspaces of Cl . The complement
space M.A/ is Cl n [x2Ax . If M.A/ is elliptic, then the homotopy Lie algebra
�?.�M.A//˝Q is finitely generated. In this paper, we prove that if A is a geometric
arrangement such that M.A/ is a hyperbolic 1–connected space, then there exists an
injective map L.u; v/! �?.�M.A//˝Q where L.u; v/ denotes a free Lie algebra
on two generators.
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1 Introduction

A subspace arrangement in Cl is a finite set A D fx1; : : : ;xng of subspaces of Cl .
If every xi 2 A is an hyperplane, it is called an arrangement of hyperplanes. The
complement space is the topological space M.A/D Cl n[x2Ax . To every subspace
arrangement, we can associate the lattice L.A/ of intersections, ordered by reverse
inclusions. In this paper, we are mainly interested in the (rational) homotopy Lie
algebra �?�M.A/˝Q. In general, the homotopy Lie algebra can be defined for any
commutative graded algebra.

Definition 1.1 Let A be a commutative graded algebra. The algebra ExtA.Q;Q/ is
the universal enveloping algebra U.LA/ of a Lie algebra LA . This Lie algebra is
called the homotopy Lie algebra of A.

An important tool for the study of arrangements of hyperplanes is the Orlik–Solomon
algebra A.A/. This algebra, which is constructed using only L.A/, is the quotient of
an exterior algebra by a homogeneous ideal. Orlik and Solomon [5] showed that there
is an isomorphism of graded algebras H?.M.A/;Q/'A.A/.

If A is an arrangement of hyperplanes, the homotopy Lie algebra LA.A/ can be
complicated. For example, J Roos [6] showed the existence of arrangements such
that LA.A/ is not finitely generated. In some cases, LA.A/ can be described more
precisely. Denham and Suciu [2] showed that if A is an hypersolvable arrangement of
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hyperplanes (with an additional technical condition), then LA.A/ splits as a semi-direct
product of a Lie algebra and a free Lie algebra.

These results show that the Lie algebra LA.A/ can be difficult to grasp. In this pa-
per, we will study the more general case of subspace arrangements. For subspace
arrangements, we cannot use the Orlik–Solomon algebra. Instead, we will use a
rational model described by Yuzvinsky and Feichtner (see Section 2). It is a differential
algebra .DA; d/ generalizing the Orlik–Solomon algebra whose cohomology satisfies
H?.DA; d/'H?.M.A/;Q/.

It is known that if A is a subspace arrangement with a geometric lattice L.A/, then the
topological space M.A/ is formal (see Yuzvinsky [7]). If A is also such that M.A/
is 1–connected (if codim.x/ � 2 for all x 2 A), then the homotopy Lie algebra of
H?.DA; d/ has a topological interpretation:

LH ?.DA;d/ D �?.�M.A//˝Q:

Using their results for arrangements of hyperplanes, Denham and Suciu described LA.A/
for a very particular class of subspace arrangements (these subspace arrangements have
a geometric lattice). This description shows that LA.A/ contains a free Lie algebra.

Let ADfx1; : : : ;xng be a subspace arrangement with a geometric lattice and such that
M.A/ is 1–connected. The sum x?

1
C � � �Cx?n is a direct sum if and only if M.A/

is elliptic (see Debongnie [1]). In that case, �?.�M.A//˝Q is finitely generated and
abelian. Otherwise, M.A/ is hyperbolic and �?.�M.A//˝Q is more complicated.
The main result of this paper is the following theorem.

Theorem Let A be a geometric arrangement such that for every x 2 A, we have
codim.x/ � 2. If M.A/ is rationally hyperbolic, then there exists an injective map
L.u; v/! �?.�M.A//˝Q.

Note that this is a particular case of a conjecture by Avramov–Félix.

Conjecture If X is finite dimensional, not Q–elliptic, then the homotopy Lie algebra
�?.�X //˝Q contain a free Lie subalgebra on two generators.

The rational model of the space M.A/ given by Yuzvinsky and Feichtner is described
in Section 2. In Section 3, the general situation is set up : a map 'W ƒ.e1; : : : ; en/!

H?.M.A/;Q/I ei 7! Œfxig� is defined and studied. This map and its kernel will play
an important role in the proof. Finally, the last two sections contain the proof of the
main theorem.

I would like to thank the referee for his/her comments.
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The homotopy Lie algebra of geometric arrangements 2009

2 The rational model of subspace arrangements

Let A be a central arrangement of subspace in Cl . It is known that, with the appropriate
choice of the operations _ and ^, the set L.A/ of non empty intersections of elements
of A is a lattice with a rank function. Yuzvinsky and Feichtner [3] defined the relative
atomic differential graded algebra .DA; d/ associated with an arrangement as follows.
Choose a linear order on A. The graded vector space DA has a basis given by all
subsets � �A. For � D fx1; : : : ;xng, we define the differential by the formula

d� D
X

j W_.�nfxj g/D_�

.�1/j .� n fxj g/

where the indexing of the elements in � follows the linear order imposed on A.
With deg.�/D 2 codim_� � j� j, .DA; d/ is a cochain complex. Finally, we need a
multiplication on .DA; d/. For �; � �A,

� � � D

(
.�1/sgn �.�;�/� [ � if codim_� C codim_� D codim_.� [ �/

0 otherwise;

where �.�; �/ is the permutation that, applied to � [ � with the induced linear order,
places elements of � after elements of � , both in the induced linear order.

A subset � �A is said to be independent if rank._�/D j� j. When A is a a subspace
arrangement with a geometric lattice, then H?.M.A// is generated by the classes Œ� �,
with � independent (see [3]).

3 General situation

Let AD fx1; : : : ;xng be a subspace arrangement with a geometric lattice such that
every x 2A has codim.x/� 2. We will suppose that no element xi is contained in
another one, because otherwise, we can omit it when we consider M.A/. We consider
the morphism of graded algebras

'W ƒ.e1; : : : ; en/!H?.M.A/;Q/I ei 7! Œfxig�:

As we will see, in some sense, the kernel of this map measure the non-ellipticity of the
space M.A/. The following proposition shows a clear connection between ker' and
ellipticity.

Proposition 3.1 If the map ' is injective, then the space M.A/ is rationally elliptic.
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Proof If this map is injective then, for each sequence 1 � i1 < i2 < � � � < is � n,
we have fxi1

g � fxi2
g � � � fxis

g ¤ 0 because their product is non zero in cohomol-
ogy. Therefore, for an appropriate choice of sign, we have the following equalityQs

jD1fxij g D ˙fxi1
;xi2

; : : : ;xis
g and Œfxi1

; : : : ;xis
g� ¤ 0 (in cohomology). This

implies that ' is surjective because, for each independent set fxi1
; : : : ;xis

g (which
generates H?.M.A//), we have Œfxi1

; : : : ;xis
g� D ˙

Qs
iDj Œfxij g�, which is in the

image of ' . It means that ' is an isomorphism. Therefore, M.A/ has the rational
homotopy type of a product of odd dimensional spheres and [1, Theorem 5.1] implies
that M.A/ is rationally elliptic.

Now, assume that the map ' is not injective. In that case, we can define the natural
number r Dmaxfs j ker' �ƒ�seig. It is clear that 2 � r � n. The bigger r is, the
smaller ker' is. Also, we understand quite well '.ƒ�r ei/�DA .

Lemma 3.2 If � 2DA with j� j � r , then d� D 0 and rank_� D j� j.

Proof We use induction on s to prove that for 1 � s < r and for each sequence
1� i1 < i2 < � � �< is � n,

(1) dfxi1
; : : : ;xis

g D 0,

(2) '.ei1
� � � eis

/D Œfxi1
; : : : ;xis

g�¤ 0.

It is true for s D 1. Now suppose that it is true for s� 1. If dfxi1
; : : : ;xis

g ¤ 0, then
dfxi1

; : : : ;xis
g is a non zero linear combination

P
�j fxj1

; : : : ;xjs�1
g and

0D
hX

�j fxj1
; : : : ;xjs�1

g

i
D '

�X
�j ej1

� � � ejs�1

�
which is impossible because ' restricted to ƒ<r .e1; : : : ; en/ is injective. This shows
that dfxi1

; : : : ;xis
g D 0.

The map ' is extended in a multiplicative way, therefore, by the induction hypothesis,
we have:

'.ei1
� � � eis

/D '.ei1
/'.ei2

� � � eis
/D Œfxi1

g�Œfxi2
� � �xis

g�:

But s < r , so '.ei1
� � � eis

/ ¤ 0 and we have '.ei1
� � � eis

/ D Œfxi1
; : : : ;xis

g�. This
proves the assertion (2). This proof by induction showed that d� D 0 if j� j< r . But
the exact same reasoning can be done for j� j D r . So, d� D 0 if j� j � r .

In order to prove that rank_� D j� j, let’s prove by induction that if 1 � s � r ,
then for each sequence 1 � i1 < i2 < � � � < is � n, rank_fxi1

; : : : ;xis
g D s . It is

obviously true for s D 1. Assume that it is true until s � 1 < r . By the induction
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hypothesis, _fxi1
; : : : ;xis�2

g < _fxi1
; : : : ;xis�2

;xis
g is a maximal chain (if s D 2,

then _fxi1
; : : : ;xis�2

g D _∅D Cl ). But the lattice L.A/ is geometric. So,

_fxi1
; : : : ;xis�2

g _xis�1
� _fxi1

; : : : ;xis�2
;xis
g _xis�1

is also a maximal chain. The first part of this lemma shows that dfxi1
; : : : ;xis

g D 0,
which implies that

_fxi1
; : : : ;xis�1

g ¤ _fxi1
; : : : ;xis�2

;xis�1
;xis
g:

Hence, rank_fxi1
; : : : ;xis

g D rank_fxi1
; : : : ;xis�1

gC 1D s .

To make the next sections easier to read, we will use the following notations. For a
commutative differential graded algebra .A; d/, let us denote by L.A;d/ the homotopy
Lie algebra associated to its Sullivan minimal model. And for every 1 � i1 < i2 <

� � �< irC1 � n, let us denote by Œei1
; : : : ; eirC1

� the element

rC1X
jD1

.�1/j ei1
� � �ceij � � � eirC1

:

4 Main result

We will study the situation described in Section 3 with ker' ¤ 0 (if ker' D 0,
Proposition 3.1 shows that we are in the elliptic case, which is studied in [1]). There are
two slightly different cases that can arise : either ker' contains a monomial ei1

� � � eir

or ker' does not contain such a monomial. The next two propositions shows the
existence of an injective map L.u; v/! �?�M.A/˝Q in these two cases. Then, the
main Theorem 4.3 is proved.

Proposition 4.1 If ker' contains a monomial ei1
� � � eir

with 1 � i1 < � � � < ir � n,
then there exists an injective map

L.u; v/! �?�M.A/˝Q:

Proof We define .A4; 0/D
�
ƒ.ei1

;:::;eir /

ei1
���eir

; 0
�

and we construct the map  W .DA; d/!
.A4; 0/ in the following way: if fk1; : : : ; ktg � fi1; : : : ; ir g and k1 < � � � < kt , then
 .fk1; : : : ; ktg/ D Œek1

� � � ekt
�. Otherwise,  .fk1; : : : ; ktg/ D 0. Since ker' \

ƒ<r .e1; : : : ; en/ D 0, a simple check shows that  is multiplicative. Lemma 3.2
shows that  .d�/ D  .0/ D 0 D d .�/. Hence,  is a morphism of differential
graded algebras.
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Since ei1
� � � eir

2 ker' , we can define another map �W .A4; 0/!H?..DA; d/;Q/ by
letting �.Œeis

�/D Œfxis
g�. This is a morphism of graded algebras. Now, we have the

following maps :

A4

�
�!H?..DA; d/;Q/

H ? 
�! A4:

Those maps verify the following property: .H? /ı�D id, which means that H? is
a retraction of � . Since M.A/ is a formal space (proved in [3]), the Lemma 5.6 implies
then the existence of an injective map hW L.A4;0/! �?�M.A/˝Q. By Lemma 5.4,
there is an injective map L.u; v/!L.A4;0/ . The composition of these two maps gives
us the needed map.

Proposition 4.2 If ker' does not contain a monomial ei1
� � � eir

, then there exists an
injective map

L.u; v/! �?�M.A/˝Q:

Proof Since ker' \ƒr .e1; : : : ; en/¤∅, there exists a non zero linear combinationP
�i1;:::;ir

ei1
: : : eir

such that '.
P
�i1;:::;ir

ei1
� � � eir

/D 0. So,hX
�i1;:::;ir

fxi1
; : : : ;xir

g

i
D 0

in H?.DA; d/ and there exists a � 2DA such that d� D
P
�i1;:::;ir

fxi1
; : : : ;xir

g ¤

0. From this, we deduce that there exists 1 � i1 < � � � < irC1 � n such that
dfxi1

; : : : ;xirC1
g ¤ 0.

Let X D xi1
_ xi2

_ � � � _ xirC1
and B D fx 2A j x < X g D fxj1

; : : : ;xjm
g. Using

Lemma 3.2 and the fact that dfxi1
; : : : ;xirC1

g¤ 0, we observe that rank X D r . Also,
Lemma 3.2 shows that for any subset � �B with r elements, rank_� D r D rank X ,
so _� DX . It implies that any rC1 product

QrC1
iD1 fxki

g D 0 for xki
in B . It allows

us to define the following map :

�W
ƒ.ej1

; : : : ; ejm
/

ƒ�rC1.ej1
; : : : ; ejm

/
!H?.DA; d/I ej 7! Œfxj g�:

Let us prove that ker � � ƒr .ej1
; : : : ; ejm

/ is generated by the Œei1
; : : : ; eirC1

� with
fi1; : : : ; irC1g � fj1; : : : ; jmg:

� It is clear that �Œei1
; : : : ; eirC1

�D dfxi1
; : : : ;xirC1

g (because rank X D r , ker'
does not contain any monomial of degree r and by Lemma 3.2,
rank_fxi1

; : : : ;bx ij ; : : : ;xirC1
g D r/.

� If fi1; : : : ; ir g � fj1; : : : ; jmg and y 2A nB , then dfxi1
; : : : ;xir

;yg is a sum
with no term equal to fxi1

; : : : ;xir
g. Therefore, if u2ker � , then �uDd� where

� is a linear combination of fxi1
; : : : ;xirC1

g with fi1; : : : ; irC1g�fj1; : : : ; jmg.
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In other words, since ker' does not contain any monomial of degree r , u is a
linear combination of Œei1

; : : : ; eirC1
�, as required.

Let A5 D
ƒ.ej1

;:::;ejm /

ƒ�rC1.ej1
;:::;ejm /˚ker� . The map � induces an injective map x� , and we

define a map  in the opposite direction

A5

x�
!H?.DA; d/

 
!A5

by sending fxig to Œei � if i 2 fj1; : : : ; jmg and zero if i 62 fj1; : : : ; jmg. These two
maps are morphisms of graded algebras and verify the following property:  ı x�D id.
Finally Lemma 5.5 and Lemma 5.6 give us two injective maps L.u; v/!L.A5;0/!

�?�M.A/˝Q:

With the two previous propositions, the next theorem is almost completely proved. We
just need to put everything in place.

Theorem 4.3 Let A be a geometric arrangement such that everyx2A hascodim.x/�
2. Then M.A/ is rationally hyperbolic if and only if there is an injective map L.u; v/!

�?.�M.A//˝Q.

Proof Suppose that M.A/ is rationally hyperbolic. As shown at the beginning of this
section, the map 'W ƒ.e1; : : : ; en/!H?.M.A/;Q/ can not be injective, otherwise
M.A/ would be elliptic. Therefore ker' ¤ 0 and Proposition 4.1 and Proposition 4.2
show that there exists an injective map L.u; v/! �?.�M.A//˝Q.

Now, assume that such a map exists. In that case, the dimension of �?.�M.A//˝Q,
as a graded rational vector space, is not finite. Hence, the same is true for �?M.A/˝Q

and M.A/ is rationally hyperbolic.

5 Technical results

This section contains the technical lemmas concerning A4 and A5 used in Section 4.
The aim is to prove the Lemma 5.4, Lemma 5.5 and Lemma 5.6. With that in mind,
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we consider the following differential graded algebras:

.A1; 0/D

�
ƒ.ei2

; : : : ; eir
/˚ .˚s�1Qus/; 0

�
; jusj D

Xr

iD1
jeir
jC .s� 1/jei1

j � s;

.A2; d/D

�
ƒ.ei1

; : : : ; eir
; t; a/

tei1
; : : : ; teir

; t2
; d

�
with deij D 0; dt D ei1

� � � eir
; daD ei1

;

.A3; d/D

�
ƒ.ei1

; : : : ; eir
; t/

tei1
; : : : ; teir

; t2
; d

�
with deij D 0; dt D ei1

� � � eir
;

.A4; 0/D

�
ƒ.ei1

; : : : ; eir
/

ei1
ei2
: : : eir

; 0

�
;

.A5; 0/D

�
ƒ.ej1

; : : : ; ejm
/

I
; 0

�
:

where I is the ideal of ƒ.ej1
; : : : ; ejm

/ generated by the elements ei1
� � � eirC1

and
Œei1
; : : : ; eirC1

�. In .A1; 0/, the products useij D 0 and usus0 D 0 for all s; s0 and j .
Remark: .A2; d/ is equal to .A3˝ƒa; d/ with daD ei1

.

In order to reach our goal, we will need to understand a few properties of these algebras.
The proofs make heavy use of rational homotopy theory (especially Sullivan minimal
models). The theory and notations are explained in Felix–Halperin–Thomas [4].

Lemma 5.1 There exists two quasi-isomorphisms .A1; 0/
'
! .A2; d/ and .A4; 0/

'
!

.A3; d/.

Proof It is clear that the inclusion .A4; 0/! .A3; d/ is a quasi-isomorphism, because,
as a vector space, A3 DA4˚V where V admits ei1

� � � eir
and t as basis elements.

Let us prove that there exists a quasi-isomorphism � W .A1; 0/! .A2; d/. Consider
the subalgebra .B; d/ D .ƒ.ei1

; : : : ; eir
; a/; d/ of .A2; d/. Since d.A2/ � B , the

differential in A2=B is zero. Therefore, we have a short exact sequence of complexes:

0! .B; d/! .A2; d/! .A2=B; 0/! 0;

and a long exact sequence in cohomology with A2=BD˚s�0Qtas . By the connecting
map, an element tas of H?.A2=B; 0/ is sent on the cohomology class of d.tas/D

ei1
� � � eir

as in B . But d
�

1
sC1

ei2
� � � eir

asC1
�
D ei1

� � � eir
as . Therefore, the connecting

map is zero. It means that we have a short exact sequence of the cohomology algebras:

0!H?.B; d/!H?.A2; d/!H?.A2=B; 0/! 0:

The cohomology of.B; d/ is obviouslyƒ.ei2
; : : : ; eir

/ and the cohomology of.A2=B; 0/

is A2=B . Consider the map � W .A1; 0/! .A2; 0/ defined by �.eij /Deij , j D2; : : : ; n
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and �.us/ D
as

s
ei2
: : : eir

� as�1t . It is a morphism of differential graded algebras.
This gives us the following commutative diagram:

0 // ƒ.ei2
; : : : ; eir

/ //

'

��

ƒ.ei2
; : : : ; eir

/˚˚s�1Qus
//

H ?�
��

˚s�1Qus

'

��

// 0

0 // H?.B; d/ // H?.A2; d/ // H?.A2=B; 0/ // 0

The 5–lemma proves that H?� is an isomorphism, or, in other words, that � is a
quasi-isomorphism.

Lemma 5.2 Let mW .ƒV; d/! .A3; d/ and m0W .ƒW; d/! .A2; d/ be the Sullivan
minimal models of .A3; d/ and .A2; d/, and f W .ƒV; d/! .ƒW; d/ a minimal model
of the injection .A3; d/! .A2; d/. Then Qf W V !W is surjective.

Proof Let .v1; v2; : : : / be a basis of V . Since dei1
D 0, rational homotopy theory

shows that we can construct the map m with the property that m.v1/ D ei1
. We

form then the relative Sullivan model: .ƒV ˝ ƒa; d/ with da D v1 . The map
m˝ idW .ƒV ˝ƒa; d/! .A3˝ƒa; d/ extends the map m and makes commutative
the following diagram.

.ƒV; d/
� � i //

m

��

.ƒV ˝ƒa; d/

m˝id
��

.A3; d/
� � j// .A3˝ƒa; d/D .A2; d/

Since m is a quasi-isomorphism, m˝ id is also a quasi- isomorphism (see [4, Lemma
14.2]). This shows that m˝ id is a Sullivan model of the map j ım.

The relative Sullivan algebra .ƒV ˝ƒa; d/ is a Sullivan algebra, and almost minimal:
to make it minimal, we only need to divide by the ideal generated by a and v1 . The
projection map pW .ƒV ˝ƒa; d/! .ƒ.v2; v3; : : : /; d/ is such a quasi-isomorphism.
So, .ƒ.v2; v3; : : : /; d/ is a minimal model of .A2; d/. We conclude by letting f Dpıi .
The map f is such that the linear map Qf is simply the projection V ! V =v1 , which
is surjective.

Lemma 5.3 Let .ƒV; d/ be a minimal algebra and f W .ƒV; d/! .E; d/ be a quasi-
isomorphism of differential graded algebras. If there exists x;y 2 V such that x and
y are linearly independent, dx D dy D 0 and f .xy/ D f .x2/ D f .y2/ D 0, then

there exists two morphisms of Lie algebras L.u; v/
i
! L.ƒV;d/

p
! L.u; v/ such that

p ı i D id. In particular, i is injective.
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Proof Let us consider the differential graded algebra .B; 0/D .Q˚Qx0˚Qy0; 0/

with all products equal to zero and jx0j D jxj; jy0j D jyj. We can define a morphism of
differential graded algebras � W .B; 0/! .E; d/ with �.x0/D f .x/ and �.y0/D f .y/.

Notice that .B; 0/ is a model of a wedge of two spheres. Its minimal Sullivan model
�W .ƒW; d/! .B; 0/ is such that L.ƒW ;d/ D L.u; v/ with juj D jx0j � 1 and jvj D
jy0j � 1. Without loss of generality, we can assume that jx0j � jy0j.

The existence of the Sullivan minimal model is proved by an inductive process. Looking
closely at this construction, we can easily (in low degree) construct a basis for W .

� If jx0j is odd or if jx0j D jy0j, then ƒW Dƒ.x0;y0; t; : : : / with dt D x0y0 . In
degree less than jy0j, W has only two generators : x0;y0 .

� If jx0j is even and if jx0j< jy0j, then ƒW Dƒ.x0;y0; t1; t2; : : : / with dt1Dx02

and dt2 D x0y0 .

Let us construct a map  W .ƒW; d/! .ƒV; d/. By the lifting lemma, such a map
can be obtained by lifting � ı � along f . But we can have more: the lift  can
be constructed inductively along a basis of W , so we can choose  .x0/ D x and
 .y0/D y .

.ƒV; d/

f

��
.ƒW; d/

�ı�

//

 
99r

r
r

r
r

.E; d/

Now, let’s see what happens for the induced map L.ƒV;d/! L.u; v/.

� If jx0j is odd or if jx0j D jy0j, then the linear map Q W W ! V is injective in
degree � jy0j (it is completely described by Q .x0/Dx and Q .y0/Dy ). So,
the dual map is surjective. It implies that L W L.ƒV;d/! L.u; v/ is surjective
in degree � jvj, which means that u and v are in the image of L .

� If jx0j is even and if jx0j < jy0j, then we can do exactly the same reasoning
if jt1j > jy0j. If jt1j � jy0j, then there is a slight difference. In that case,
x2 D  .x02/ D  .dt1/ D d .t1/. So, x2 is a boundary. There is a z 2 V

such that x2 D dz . The map Q in degree � jy0j is completely described by
Q .x0/D x;Q .y0/D y and Q .t1/D z . It is injective in degree � jy0j. So,
the dual map is surjective in degree � jvj, which also means that u and v are in
the image of L .

In both cases, the map L W L.ƒV;d/! L.u; v/ has u and v in its image. Therefore,
we can choose a; b 2 L.ƒV;d/ such that L .a/D u and L .b/D v . Let p D L 
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and consider the map i W L.u; v/!L.ƒV;d/ defined by i.u/D a and i.v/D b . These
two maps verify p ı i D id.

Now, the preliminary work is done. The main lemmas of this section can be proved.

Lemma 5.4 There exists an injective map L.u; v/!L.A4;0/ .

Proof Let L1 DL.A1;0/ and L2 DL.A4;0/ . The proof will be done by showing the
existence of two injective maps

L.u; v/
g1
�!L1

g2
�!L2:

Step 1: constructing the map g2 By Lemma 5.1, .A1; 0/
'
! .A2; d/ and .A4; 0/

'
!

.A3; d/, so L1 D L.A2;0/ and L2 D L.A3;d/ . The Lemma 5.2 gives us a map
f W .ƒV; d/! .ƒW; d/ between the Sullivan minimal models of .A3; d/ and .A2; d/.
Applying the homotopy Lie algebra functor to the map gives a map Lf W L1!L2 . The
surjectivity of Qf implies that Lf is injective (see [4, Chapter 21]). Now, g2 DLf

is the required map.

Step 2: constructing the map g1 By Lemma 5.3, we only need to show that if
mW .ƒV; d/! .A1; 0/ is a Sullivan minimal model, then there exists x;y 2 V such
that x;y are linearly independent, dx D dy D 0 and m.xy/Dm.x2/Dm.y2/D 0.

Since m is a quasi-isomorphism, H?mW H?.ƒV; d/! .A1; 0/ is surjective. So, there
exists Œx� and Œy� in H?.ƒV; d/ such that H?m.Œx�/D ei2

and H?m.Œy�/D u1 . It
gives us x and y in .ƒV; d/ such that dx D dy D 0, m.x/ D ei2

and m.y/ D u1 .
But x and y can not be in ƒ�2V because, otherwise, ei2

D m.x/ would be in
ƒ�2.ei2

; : : : ; eir
/ and u1 Dm.y/ would be in ƒ�2.u1/=u

2
1

. Therefore, x and y are
in V . Finally, the Lemma 5.3 gives us the map g1 .

Lemma 5.5 There exists an injective map L.u; v/!L.A5;0/ .

Proof Recall that A5 is the quotient of ƒ.ej1
; : : : ; ejm

/ by the ideal I generated
by the elements ei1

� � � eirC1
and Œei1

; : : : ; eirC1
�. It is clear that A>r

5
D 0. Let us

prove that a basis of Ar
5

is given by the classes of the elements e1ej2
� � � ejr

with
1< j2 < � � �< jr �m.

� Let ei1
� � � eir

2Ar
5

, with i1< � � �< ir . If i1D1, then it is trivially a linear combi-
nation of elements e1ej2

� � � ejr
. If i1>1, then we know that Œe1; ei1

; : : : ; eir
�D0.

So, it is also a linear combination of such elements. It shows that these elements
generate Ar

5
.
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� If 1< i1 < � � �< irC1 �m, then

rC1X
jD1

.�1/jC1Œe1; ei1
; : : : ; yeij ; : : : ; eirC1

�D

rC1X
jD1

.�1/jC1

�
�ei1
� � � yeij � � � eirC1

C

j�1X
kD1

.�1/kC1e1ei1
� � � yeik

� � � yeij � � � eirC1

C

rC1X
kDjC1

.�1/ke1ei1
� � � yeij � � � yeik

� � � eirC1

�

D

rC1X
jD1

.�1/j ei1
� � � yeij � � � eirC1

D Œei1
; : : : ; eirC1

�:

It shows that the vector space generated by every Œei1
; : : : ; eirC1

� is equal to the
vector space generated by the elements Œe1; ei2

; : : : ; eirC1
� with 1< i2 < � � �<

irC1 .

� Let us consider the following short exact sequence

0! hŒei1
; : : : ; eirC1

�i !ƒr .ej1
; : : : ; ejm

/!Ar
5! 0:

Let d1 be the dimension of the vector space generated by the elements
e1ei2

� � � eir
, with 1< i2< � � �< ir , in ƒr .ej1

; : : : ; ejm
/ and d2 be the dimension

of the vector space generated by the elements ei1
ei2
� � � eir

with 1< i1< � � �< ir .
We have: dimƒr .ej1

; : : : ; ejm
/Dd1Cd2 , dim Ar

5
�d1 , dimhŒei1

; : : : ; eirC1
�i�

d2 . So, dim Ar
5
D d1 , and the elements e1ej2

� � � ejr
form a basis of Ar

5
.

Let I be the set of every sequence 1 < i1 < � � � < irC1 and .B; d/ the differential
graded algebra defined by

B D
ƒ.ej1

; : : : ; ejm
/

ƒ>r .ej1
; : : : ; ejm

/
˚ .˚i2I ai/

and d.ai/D Œe1; ei2
; : : : ; eirC1

�. The product in B is defined by ai � aj D ai � ej D 0.
The ideal generated by the ai et the dai is acyclic, and the quotient map is a quasi-
isomorphism: 'W .B; d/! .A5; 0/.

Therefore, the differential graded algebras .A5; 0/ and .B; d/ have the same minimal
model. Let us consider the minimal model of .B;D/ given by � W .ƒW; d/! .B; d/.
The vector space W is generated in low degree by e1; : : : ; em and .ai/i2I with
�.ei/ D ei , �.ai/ D ai . Because �.e2

i / D �.eiaj / D �.a
2
j / D 0, Lemma 5.3 shows

that L.ƒW ;d/ DL.A5;0/ contains a Lie subalgebra L.u; v/.
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Lemma 5.6 If .A; 0/ is a 1–connected differential graded algebra, X is a formal
space and if there exists two maps f W A!H?.X;Q/ and gW H?.X;Q/! A such
that g ı f D idA , then there exists two morphisms of Lie algebras zf W LX ! L.A;0/

and zgW L.A;0/!LX such that zf ı zg is an isomorphism. In particular, zg is an injective
map.

Proof Let .ƒV; d/
m
! .A; 0/ and .ƒV 0; d 0/

m0

! .H?.X;Q/; 0/ be the minimal Sullivan
models of .A; 0/ and X respectively (the map m0 exists because X is a formal space).
Since these maps are quasi-isomorphisms, they are surjective. The lifting lemma shows
that there exists maps xf and xg such that m0 ı xf D f ım and m ı xg D g ım0 .

.A; 0/ .H?.X;Q/; 0/
f

// .H?.X;Q/; 0/ .A; 0/
g

//

.ƒV; d/ .ƒV 0; d 0/
xf //.ƒV; d/

.A; 0/

m

��

.ƒV 0; d 0/ .ƒV; d/
xg //.ƒV 0; d 0/

.H?.X;Q/; 0/

m0

��

.ƒV; d/

.A; 0/

m

��

The maps xf and xg verify mı.xgı xf /D .gıf /ımDm. Since gıf is an isomorphism,
xg ı xf is a quasi-isomorphism between 1–connected minimal Sullivan algebras. It
implies that it is an isomorphism.

Applying the homotopy Lie algebra functor to .ƒV; d/
xf
! .ƒV 0; d 0/

xg
! .ƒV; d/ gives

us the maps zf DL xf and zg DLxg .

L.A;0/
zf
 �LX

zg
 �L.A;0/:

Since L is a functor, zf ı zg D .L xf / ı .Lxg/DL.xg ı xf / is an isomorphism.
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