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Period three actions on lens spaces

JOSEPH MAHER

We prove that a free Z3 action on a lens space is standard. This extends to lens
spaces earlier work of Maher and Rubinstein on Z3 actions on S3 . It follows using
previously known results that a free action of a group of order 2a3b on S3 is standard.

57N10, 57M50, 57M60; 57M40

1 Introduction

In this paper we prove the following theorem:

Theorem 1.1 A free Z3 action on a lens space is standard.

An immediate corollary of this is that a free Z3k action on S3 is standard. Together
with earlier work of Milnor [4], Livesay [2], Myers [6], Rubinstein [7] and Thomas [8]
this implies that:

Corollary 1.2 A free action of a group of order 2a3b on S3 is standard.

This is a special case of the spherical spaceform conjecture, which has now been
resolved by Perelman’s proof of Thurston’s geometrization conjecture [5].

This paper is an extension of Maher and Rubinstein [3], which dealt with free period-
three actions on the three sphere, and is not self contained. The basic strategy is the
same as the three sphere case. We first explain the strategy, and indicate the extra work
we need to do to make it work for lens spaces. We then prove the extra results, but do
not repeat parts that we can quote directly from [3].

Remark 1.3 We show that the quotient is Seifert fibered, but in fact it is always a lens
space. Given the list of fundamental groups of elliptic 3–manifolds, it is an elementary
but tedious exercise to check that none of these groups have an index three normal
cyclic subgroup, unless the initial group was in fact cyclic.
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1.2 Outline

An action of Z3 on a lens space L is given by a diffeomorphism gW L!L, which is
free, and which is period three. This means that g generates a group G Š Z3 , and as
g is free, the quotient L=G is a manifold. We will give L the round metric coming
from its description as a cyclic quotient of the round three-sphere. We say g is linear,
if it is covered by a linear map on S3 , namely an element of SO.4/. If g is linear
then the quotient of L by G is again a lens space. We say the action of G is standard
if g is conjugate by a diffeomorphism to a linear map.

We can show that the action is standard by finding an invariant Seifert fibering of L.
We will find an invariant Seifert fibering by studying sweepouts of L. A sweepout
of L is a family of surfaces which “fill up” the manifold. A simple example is the
foliation of L by tori with two singular leaves which are circles, coming from a genus
one Heegaard splitting of L. Think of the leaves as parameterised by time, starting
with one singular leaf at t D 0 and ending with the other one at t D 1. At a non-singular
time t , the sweepout consists of a single torus St . We can think of the union of the
leaves as a 3–manifold, in this case a lens space, with a height function for which
each level set is a torus. The map from the leaf space to L is degree one, and is an
embedding on each level set of the height function.

For our purposes, we require a more general definition, in which the sweepout surfaces
at non-singular times may be finitely many spheres, together with at most one Heegaard
torus. We say a generalised sweepout is a 3–manifold M , with a height function h on
it, so that the level sets at regular values are at most one torus, together with a union of
2–spheres, and a degree one map f W M !L, which is an embedding on each level
set of the height function. We shall think of the height function on M as time. The
3–manifold M is in fact a connect sum of lens spaces and copies of S2 �S1 .

We can look at the three images of the sweepout surfaces under the group G . Generically,
they will intersect in double curves and triple points. In order to distinguish the three
images of the surfaces under G , we colour them using the same colour conventions
as [3], which we now explain. The initial images of the surfaces h�1.t/ in L will be
labelled red. The images of the red surfaces under g will be labelled green, and the
images of the red surfaces under g2 will be labelled blue. If two surfaces intersect in
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a double curve, we will label the double curve by the complementary colour, ie, the
colour of the surface not involved in the intersection. For example, if a red surface
intersects a green surface in a double curve, we will label that double curve blue.

By general position, we can arrange that the sweepout surfaces intersect transversely
for all but finitely many times, and that the non-transverse intersections all come from
a finite list of possibilities, corresponding to critical points of the height function, on
either M itself, or on the double or triple point sets of M . Critical points of the height
function on M change the surfaces, either by increasing or decreasing the number of
2–spheres, or by splitting the torus into a 2–sphere, or the reverse operation. Critical
points of the height function on the double set change the number of double curves, by
either creating or destroying a double curve, or by saddling curves together. Critical
points of the height function on the triple set change the number of triple points. In
fact the number of triple points is always a multiple of six, as every triple point has
three images under G , and there must also be an even number of triple points.

We call these non-transverse intersections moves, and we can describe a sweepout by
drawing the configurations in L in between the critical times. Each neighbouring pair
of pictures will differ by one of the moves described above. We look for a sweepout
that is “simple”, by defining a complexity for sweepouts, and showing how to change
the sweepout to reduce complexity. We say that the complexity of the sweepout at a
generic time t is the ordered pair .n; d/, where n is the number of triple points, and
d is the number of inessential simple closed double curves, ie, those double curves
without triple points which bound discs in a sweepout surface. We order the pairs
.n; d/ lexicographically. We say that the complexity of a sweepout is the maximum
complexity that occurs over all generic times. We say that a sweepout is a minimax
sweepout if it has minimal complexity.

The double curves form an equivariant graph in the lens space. If this graph contains an
invariant knot or link, which is isotopic to a knot or non-trivial link lying on a Heegaard
torus, then the quotient manifold is Seifert fibered, so the action is standard. The basic
strategy is to show that a minimax sweepout has a local maximum which contains such
an invariant knot or link.

We can change a sweepout by using a procedure we call a modification. This involves
taking an equivariant neighbourhood N � L, and a time interval I , so that the
intersection of @N with the sweepout only changes by an isotopy during the time
interval I . We can replace the sweepout surfaces inside N during the time interval I

with some new set of sweepout surfaces with the same boundary. This does not change
the degree of the sweepout map f W M !L, but we need to make sure that the new
sweepout surfaces are still spheres, together with at most one Heegaard torus. We may
change the moves that occur in N during the time interval I .
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We can use modifications to remove innermost inessential double curves for short time
intervals, by “pinching them off” at the beginning of the time interval I , and then
putting them back at the end of the time interval. Similarly, we can remove bigons
that contain no double curves in their interiors for a short time interval, by pushing the
double curves forming the boundary across the bigon, and then putting them back at
the end of the interval. These modifications are described in detail in [3, Section 2.6].
We call the moves that we insert in the new sweepout, at the beginning and end of the
time interval I , compound moves.

This means that if some local maximum occurs for which there is a disjoint inessential
innermost double curve or bigon with no double curves in its interior, then we can
reduce the complexity of the local maximum by removing the double curve or bigon
for the duration of the local maximum. We call this undermining the local maximum.

The main argument in the proof works by changing all the local maxima to local
maxima consisting of compound local maxima, and then showing that we can either
undermine the compound local maxima, or find an invariant knot or non-trivial link
that lies on a Heegaard torus, thus showing that the action is standard. There are three
main steps in doing this, and this is where the main differences from [3] occur. The
three main steps are:

4.1 Every sweepout contains triple points, or is standard.

5.1 There are disjoint bigons for non-triple point moves.

3.2 Local maxima consisting of compound moves can be undermined, or else the
action is standard.

In Lemma 4.1, we show a sweepout contains triple points, or else the action is standard.
This argument is similar in spirit to the argument in Section 4 of [3], and only minor
changes are needed to deal with the fact that there may be sweepout surfaces that are
tori as well as spheres.

In order to convert all local maxima into compound local maxima, we need to show
that there are disjoint bigons for non-triple point moves, which we do in Lemma 5.1.
This argument is more complicated than in the 3–sphere case, and takes up the bulk of
this paper. One reason for this is that on a 2–sphere any pair of intersecting curves
create at least four bigons, whereas on a torus, curves may intersect without creating
any bigons. We break the proof into two main parts. First we show that a configuration
with triple points contains at least three bigons. This suffices to show that there are
disjoint bigons for all the non-triple point moves except for saddle moves. We then
show there are disjoint bigons for saddle moves, by using the fact that there are at least
three bigons in the configuration before and after the saddle move.
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To show there are at least three bigons, first we show in Section 5.2 there can’t be too
many parallel curves in a configuration with only two bigons. If there are few bigons,
but many parallel curves, then there must be many pairs of curves which bound annuli
which only contain parallel essential double arcs. We call these annuli strips. The
red Heegaard torus divides the lens space into two solid tori, which contain properly
embedded subsurfaces of the blue and green surfaces. We show that if there are only
two bigons, there cannot be intersecting strips on the same side of the red torus, and so
this restricts the number of parallel double curves that may occur.

If there are at most two bigons, then there may be at most one innermost inessential
double curve of each colour, so the double curves of a given colour divide the torus up
into one of three configurations. There may be a punctured torus component, a pair
of pants component, or all components may be annuli. The blue and green double
curves may divide the torus up in different ways. As there may not be too many parallel
curves, there are a limited number of cases that may arise, and we go through each
one in turn, and show that configurations with two bigons may not occur, usually by
showing that the number of triple points in the configuration is not a multiple of six.
We give a more detailed outline of this at the beginning of Section 5.

Finally, we need to show Lemma 3.2, we can either undermine local maxima with
compound triple point moves at each end, or else the action is standard. This is straight
forward, as there are only a few extra cases to consider that are not dealt with in Section
6 of [3], so in fact we deal with this lemma first out of the three lemmas, in Section 3.

2 The main argument

2.1 Preliminaries

Our definitions are the same as in [3, Section 2], except we now use a sweepout which
may contain tori, as well as spheres. At any given time during the sweepout, there will
be at most one torus, which will be a Heegaard torus.

Definition 2.1 A generalised sweepout is a triple .M; f; h/, where

� M is a closed, orientable 3–manifold.

� The smooth map hW M ! R is a height function, such that for all but finitely
many t 2R , the inverse image, h�1.t/ consists of a finite collection of 2–spheres,
union at most one torus. The map h should be a Morse function away from the
first and last singular sets, which should each consist of a single circle.

� The smooth map f W M !L is degree one.

Algebraic & Geometric Topology, Volume 7 (2007)



2026 Joseph Maher

� The map f jh�1.t/ is an embedding on the level set h�1.t/ for every t . If h�1.t/

contains a torus, the image of this in L is a Heegaard torus.

We will often write a sweepout as .M; �/, where � denotes the map .f � h/W M !

L�R. We will think of t 2 R as the time coordinate.

Remark 2.2 The manifold M is homeomorphic to a connect sum of lens spaces, and
copies of S2 �S1 .

Convention 2.3 As we are dealing with tori, we will often need to draw diagrams of
tori. All red squares in the diagrams we draw will be assumed to have opposite sides
identified to make tori.

The following well known definitions are additional to those in [3].

Definition 2.4 (Lens space) A lens space L is a quotient of S3 by a cyclic subgroup
of SO.4/ which acts freely.

Definition 2.5 (Free action) We say that a free action of the group G Š Z3 on
the lens space L is generated by the diffeomorphism gW L! L if g has no fixed
points, and g3 is the identity. Therefore g generates a cyclic group of order three,
G D hgi Š Z3 .

We start with some free action of Z3 on a lens space. The lens space L, and the
diffeomorphism g are fixed for the duration of this paper, and do not change.

Definition 2.6 (Standard action) The action of G is standard if G is conjugate by a
diffeomorphism of L to an action by isometries.

This is equivalent to the quotient space being Seifert fibered. We now give some
conditions which suffice to show that the action is standard. The arguments below are
well known, see [6] for example.

Lemma 2.7 If there is a smooth invariant curve in L which bounds an embedded disc,
then the action of G is standard.

Proof Let N be an invariant regular neighbourhood for the smooth invariant curve.
The complement L�N has a compressing disc, as the curve bounds an embedded
disc, so by the loop theorem the quotient .L�N /=G also has a compressing disc.
Cutting the torus along this disc creates a 2–sphere, which bounds a 3–ball as L, and

Algebraic & Geometric Topology, Volume 7 (2007)



Period three actions on lens spaces 2027

hence L=G , is irreducible. The invariant loop cannot be contained in the 3–ball, as
the 3–ball lifts to three disjoint 3–balls in L, so the 2–sphere bounds a 3–ball on the
other side. This means the complement is a 3–ball union a 1–handle, which is a solid
torus, so L=G is the union of two solid tori, namely a lens space.

Lemma 2.8 If there is a smooth invariant curve in L which lies on a Heegaard torus,
then the action of G is standard.

Proof By Lemma 2.7, we may assume that the curve does not bound a disc in the
Heegaard torus, and is not meridional on either side. Then L�N is Seifert fibered,
with base orbifold a disc, and at most two singular fibers. By [1], the quotient is also a
Seifert fibered space with base orbifold a disc. If the meridian of N=G is not isotopic
to a fiber of .L�N /=G then we can extend the Seifert fibering to all of L=G , so the
action of G is standard. If the meridian of N is isotopic to a fiber, then if .L�N /=G

has two or more singular fibers, then �1.L=G/ is a non-trivial free product, which
can’t be a finite quotient of S3 . This means .L�N /=G may have at most one singular
fiber, so is a solid torus, so L=G is in fact a lens space.

Definition 2.9 A link in L is trivial if all components of the link bound discs which
are all disjoint.

Lemma 2.10 If there is an invariant non-trivial link in L which lies on a Heegaard
torus, then the action of G is standard.

Proof Suppose no component of L is an essential non-meridional slope on the
Heegaard torus H . Then every component of L bounds a disc, either in the Heegaard
torus H , or in one of the solid torus complements of H . If components of L bound
meridional discs, then we may choose these meridional discs to be disjoint from each
other, and from all the other components of L. If components of L are inessential
in the Heegaard torus H then they bound discs in H . If these discs are nested, then
we can make them disjoint by pushing them off to one side of H , so in fact all the
components of L bound disjoint discs, and so the link is trivial. So we may assume that
L has at least one component which is an essential non-meridional disc. By passing to
an invariant sublink, we may assume that all the components of the link are parallel
to some non-meridional slope on the Heegaard torus. The complement of a regular
neighbourhood of the link is Seifert fibered, with base orbifold a pair of pants, and two
singular fibers. By [1], the quotient .L�N /=G is also Seifert fibered, so as the fibers
are not meridional, we can extend the Seifert fibering to all of L=G , so the action is
standard.
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We now show that if there are essential double curves on the torus component of the
sweepout surfaces, and no triple points, then the action is standard.

Lemma 2.11 If all double curves are essential in the torus component of the sweepout
surfaces, and there are no triple points, then the action of G is standard.

Proof If the double curves are not meridians on either side of one of the Heegaard tori,
then we can apply Lemma 2.10, so we may assume that the curves have meridional
slope on one side of the Heegaard torus.

Each torus is divided up into annuli by the essential curves. So each side of the red
torus contains blue and green annuli with parallel boundaries, and these annuli intersect
only in double curves which are also parallel to their boundaries. This divides each
solid torus up into regions which are solid tori. All of these solid tori have meridional
discs that intersect each double curve exactly once, except for one on each side of
the Heegaard torus. The number of times a meridional disc intersects each double
curve is preserved under G , so the solid tori with meridional discs with intersection
numbers different from one are invariant under G . However, these regions are regular
neighbourhoods of the core of the Heegaard tori, and either one gives an invariant
Heegaard splitting, so the action is standard.

2.2 The main argument

The argument from [3, Section 3] goes through unchanged, assuming the following
three lemmas for sweepouts of tori, which are the analogues of Lemmas 4.1, 5.1 and
6.1 from [3].

The three lemmas are:

Lemma 4.1 Every sweepout contains triple points, or else the action is standard.

Lemma 5.1 There are disjoint bigons for non-triple point moves

Lemma 3.2 We can either undermine local maxima with compound triple point moves
at each end, or else the action is standard.

We now give an extremely brief summary of the main argument from [3, Section 3].
Lemma 5.1 implies that we can undermine non-triple point moves. We can then use
the genuine triple point move trick from [3, 3.2, step 2] to replace the top layer of
local maxima with compound local maxima. The local maxima with compound double
curve moves can be undermined as in [3, 3.2, step 3]. This leaves the special case
local maxima, namely local maxima which have compound triple point moves at each

Algebraic & Geometric Topology, Volume 7 (2007)



Period three actions on lens spaces 2029

end, and no other moves in the middle. These can be either undermined, or we can
find an invariant Seifert fibering by Lemma 3.2. Finally, Lemma 4.1 shows that if we
can undermine all special local maxima with triple points, then the action is standard,
completing the proof.

3 Special cases

Recall that a special case local maximum is a local maximum consisting of two
compound triple point moves. All the cases which are dealt with in [3, Section 6] arise
as before, and we do not repeat this material here. We only show how to deal with the
extra cases that arise when some of the sweepout surfaces are tori. We will need the
following definition from [3].

Definition 3.1 (Special case modification neighbourhood) Suppose .M; �/ is a
sweepout containing a special case local maximum. Suppose that NI is a modification
neighbourhood with the following properties:

� NI contains the move neighbourhoods for the compound triple point moves
in its interior, and is disjoint from all the other move neighbourhoods of the
sweepout.

� Nt is a tubular neighbourhood for the union of the two bigons in the compound
moves, for the times t in between the compound triple point moves.

Then we say that NI is a special case modification neighbourhood for the special case
local maximum.

Lemma 3.2 A special case local maximum can be undermined, or else the action of
G is standard.

Proof Let NI be the special case modification neighbourhood. If the components
of Nt are all 3–balls, then the argument of [3] goes through as before. We need to
deal with the case that Nt has components which are not 3–balls. If the bigons have
only three vertices in common, then the components are all 3–balls. If the bigons have
six vertices in common, and an edge in common, then the components of Nt are still
3–balls. The remaining cases are when the bigons have six vertices in common, and
no edges in common. There are two cases, depending on whether Nt is connected, or
whether it has three connected components.

Case 1 Nt is connected.
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In this case Nt is an invariant solid torus in which the bigons share all six vertices
in common, for times during the local maximum between the compound moves. The
orbit of the green edges from the red bigons is an invariant curve. The green and blue
edges lie in the red torus, and the red edges can be isotoped into the red torus across
the blue bigons, so the invariant curve is isotopic to a curve that lies on a Heegaard
torus. So by Lemma 2.8 the action of G is standard. Case 1

Case 2 Nt has three components.

The intersection of the modification neighbourhood with the red surfaces is a subsurface
of the red surfaces, whose boundary consists of simple closed curves. We first show
that if any of these simple closed curves in @Nt \St bound a disc in a red surface, then
we can undermine the local maximum. We have done all the cases previously in [3,
Section 6.2.2], except the following one, in which the bigons involved in the compound
triple points are coplanar, and the component of Nt containing the red bigons intersects
the red surface in a subsurface which has a boundary component which bounds a disc,
D say, in the red surface.

N

A B

Boundary pattern

Figure 1: The red bigons A and B are coplanar and share common vertices.

If either of the other components of Nt intersect the disc D , then they intersect the
disc D in subsurfaces, which have at least one boundary component which also bounds
a disc, and we have dealt with these cases already in [3, Section 6.2.2]. There may
be no triple points or simple closed curves inside the disc, as we could use them to
undermine the local maximum, so Nt union a regular neighbourhood of the disc is a
ball with saddle reducible-boundary pattern, so we may undermine the local maximum
by Lemma [3, Lemma 6.11]

This means that all three components of Nt intersect the red torus in essential annuli.
If these annuli are not meridional on either side, then the action of G is standard,
by Lemma 2.10. The remaining case to consider is when the slope of the annuli is
meridional on one side of the Heegaard torus.
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c gc
A

B

gb bgaa

Figure 2: The neighbourhood Nt intersects the red torus in essential annuli.

Figure 2 above shows the double curves that lie inside the meridional annuli. There
may be no other triple points, though there may be other double curves. As the essential
curves have the same slope, each pair of curves intersects in an even number of points,
so the images of the triple points lie on a common curve, which we shall call c .

Consider the configuration after the bigon has been removed. There must be some
essential curves, as the double curves that originally formed the boundary of the red
bigons will both be essential. If a green double curve and its blue image are both
inessential in the red torus, then we can pinch off the curve without cutting the torus
into a sphere. If a curve is inessential in the red torus, but has an image which is
essential, then the essential curve must bound a meridian disc which contains no double
curves in its interior. So there is a meridian disc parallel to this one, whose boundary is
disjoint from the double curves on the red sphere, and whose interior is disjoint from
the sweepout surfaces, and which is disjoint from its images under G . If we surger
along this disc for a time interval longer than the local maximum, we have changed the
local maximum to one happening on spheres, which we can undermine. So we may
assume that all of the curves are essential, and so the action is standard by Lemma
2.11. Case 2

This completes the proof of Lemma 3.2.

4 Every sweepout contains triple points

In this section we prove the following lemma.

Lemma 4.1 If there is a sweepout without triple points then the action is standard.
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At the beginning of the sweepout there is a clear connected invariant region, which
we will call an initial region. At the end of the sweepout, there are no clear regions.
We will show that if there are no triple points, then a move which breaks up the initial
region occurs in a configuration which contains curves which are essential in the torus,
and in which we can remove the inessential curves without cutting the torus into a
sphere. This enables us to apply Lemma 2.11 to show that the action is standard.

Definition 4.2 (An initial region) We say that a region is initial if it is clear, connected
and invariant under G .

We now prove Lemma 4.1.

Proof At the beginning of the sweepout, there is an initial region. This is because
before the first appear move, there are no sweepout surfaces, and so all of L is a clear
connected invariant region, and so is an initial region.

We now consider each type of move in turn, and show that if the move breaks up an
initial region, then the action is standard. A single move is supported in the orbit of a
3–ball which is disjoint from its images, so a single move cannot eliminate an initial
region by shrinking it down to a point. However a single move might eliminate an
initial region by disconnecting it.

Case 1 Appear and vanish moves

If a double curve free 2–sphere orbit appears inside an initial region, then the interior
of the 2–sphere orbit is a new region, namely a 3–ball orbit coloured by the same
colour as the sphere. The region on the outside of the 2–sphere orbit is still connected,
and so is still an initial region. Therefore appear and vanish moves may not eliminate
an initial region. Case 1

Case 2 Cut and paste moves

A paste move does not disconnect any region, so we need only consider cut moves. If
a cut move disconnects an initial region C , then the cut disc D is contained inside C .
The images of D also lie inside C , so we can find a path 
 between two images of
D , which does not intersect any other sweepout surface, and which does not hit the
third image of D . Some image of this path under G is an arc 
 from D to gD . There
are two cases, depending on whether or not the curve G ˘ 
 intersects the cut discs
transversely.

In the non-transverse case the region containing G ˘ 
 is still an initial region after the
cut move. In the transverse case, the boundary of the disc D is either inessential, or
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D







Transverse Non-transverse

Figure 3: A cut move

essential in the red torus. If the boundary of D bounds a disc D0 in the red sweepout
surfaces, then D[D0 is a sphere. As the simple closed curve G ˘ 
 lies in the clear
region it is disjoint from the red surfaces, so it intersects this 2–sphere precisely once
transversely, a contradiction, as L is irreducible, so this case cannot occur.

So we may assume that the boundary of D is essential in the red torus. If there are any
inessential double curves, then they bound discs in the sweepout surfaces disjoint from
the orbits of the cut disc, so we can use cut and death moves to remove these without
disconnecting the initial region. Therefore we may assume that there are no double
curves that bound discs in any sweepout surface. If there are only essential curves, then
the the action is standard by Lemma 2.11. If there are no double curves, then the cut
move does not disconnect the initial region, as there is a path from one side of the cut
disc to the other, parallel to the red torus. Case 2

Case 3 Double curve births and deaths

Figure 4: Birth/death of a blue double curve
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The region that is created or destroyed in the move cannot be invariant. The other
regions that intersect the move neighbourhood are not disconnected by the move.

Case 3

Case 4 Saddle moves

D

Figure 5: A saddle move

The only region which could become disconnected as a result of a saddle move is the
region containing the saddle disc D in the diagram above. If the disc D intersects two
distinct green circles, then as there are no triple points, we can choose a path from one
side of D to the other, in the interior of the initial region, parallel to either one of the
green double curves. So in this case, the saddle move does not disconnect the initial
region.

Now suppose that the disc D intersects a single green double curve, ˛ say. The disc
D has three disjoint images under G . The initial region is connected, so we can find a
path between two of the images of D which does not hit the third image of D . Some
image of this path under G is a path from D to gD , which only intersects the discs
in its endpoints, and is disjoint from all the sweepout surfaces. Label this path 
 .
Then G ˘ 
 is a simple closed curve that connects the three discs in one of two ways,
illustrated in Figure 6 below. In the non-transverse case, the region containing G ˘ 
 is
still an initial region after the saddle move, so we may assume we are in the transverse
case.

The saddle arc in the red surface meeting the green double curve ˛ is either essential
or inessential in the complement of ˛ .

First, suppose the saddle arc is inessential, so the saddle arc, union some green arc of
˛ , bounds a disc D0 in the red surface. This is illustrated below in Figure 7.

If the saddle arc in the red surface which meets the blue double curve is contained in
the red disc D0 , then this saddle arc is also inessential, so we may choose to work
with this one instead, so we may assume we have chosen an inessential saddle arc that
bounds an innermost disc.
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gD

D˛
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Figure 6: The invariant curve G ˘ 


@D00

˛

Saddle disc D

Red disc D00

Figure 7: The saddle arc is inessential.

The union of D and D0 forms a disc whose boundary lies in one of the blue surfaces.
Let D00 be a disc parallel to D[D0 . We may choose this disc so that it is disjoint from
the double curves, and from G ˘D , so it intersects the sweepout surfaces in simple
closed curves only. Cut moves do not disconnect the initial region, by Case 2, so we
may remove the intersections of the sweepout surfaces with D00 . We may need to
change the path 
 if it passes through a cut disc, however we may always choose a
new path from D to gD , which we shall also call 
 , as cut moves do not disconnect
the initial region. The boundary of D[D0 is a simple closed curve in the blue surface
which bounds a disc D00 disjoint from any other sweepout surface. If the curve is
essential in the blue surface then do a cut move along D00 . This turns the blue surface
into a union of spheres, and does not disconnect the initial region, by the previous case.
So we may assume the boundary of D[D0 bounds a blue disc with no double curves
in its interior. However, the union of this blue disc with the red disc D0 , and the saddle
disc D , is a 2–sphere, which the curve G ˘ 
 intersects precisely once transversely, a
contradiction.
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If the saddle arc is essential, then the green double curve it intersects must be inessential
in the red torus. This is because if the green double curve were essential, then the
essential saddle arc in the red torus would go from one side of the green essential curve
to the other, and this can only happen if there is exactly one essential green curve on
the red torus. This is a contradiction, as the union of all the green curves bounds the
subsurface of the red torus lying inside the blue surfaces, and hence there must be an
even number of essential green curves.

If either of the saddle arcs in the red surface is inessential, we can apply the argument
above, so we may assume that both saddle arcs are essential, and intersect inessential
double curves. We can remove all the other inessential double curves without discon-
necting the initial region. If this cuts the torus into spheres, then the saddle arcs are
now inessential, and we can apply the arguments above, or else they are both still
essential, and now all double curves in the torus are essential, and the action is standard
by Lemma 2.11. Case 4

This completes the proof of Lemma 4.1.

5 Disjoint bigons for non-triple point moves

The aim of this section is to prove the following lemma:

Lemma 5.1 If the configuration contains triple points, then for any non-triple point
move the configuration contains a bigon disjoint from the move.

On a sphere, any pair of intersecting curves creates at least four disjoint bigons. On a
torus, a pair of essential curves may intersect without bigons. Even a pair of curves
which are both inessential may intersect in only two bigons.

Figure 8: Not many bigons
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The aim of this section is to prove Lemma 5.1, and show that in spite of the fact that
there are “fewer” bigons on a torus, every non-triple point move has a disjoint bigon.

If there are any triple points on the sphere components of the sweepout surfaces, then
there are disjoint bigon-orbits by [3, Lemma 5.1], so we may assume that all triple
points lie on the torus components of the sweepout surfaces. We prove the result in
two main steps. The main technical result is to show that there must be at least three
bigons. This immediately gives disjoint bigons for all of the non-triple point moves,
except saddle moves, by the arguments in cases 1–3 in the proof of Lemma 5.1 from
[3]. The case of saddle moves is handled by applying the fact that there are at least
three bigons to the configuration before and after the saddle move, and doing some
elementary combinatorics. We now give a brief overview of this section.

The red torus divides the blue and green tori into subsurfaces properly embedded in
the solid tori on either side of the red Heegaard torus. The green surfaces in one solid
torus component of the complement of the red torus have boundary consisting of blue
double curves, and are images of the subsurfaces of the red torus divided along the
green double curves. Similarly, the blue surfaces have boundary consisting of green
double curves, and are images of the subsurfaces of the red torus divided along the
blue double curves. If there are many double curves, but few bigons, then there must
be many parallel double curves, which bound annuli containing essential arcs only,
which we shall call strips. The double curves with triple points divide the surface into
complementary regions. We shall call the closures of the connected components of
these regions faces. The boundary of a face is composed of double arcs of alternating
colours, and need not be connected.

In Section 5.2 we assume that there are only two bigons, and then show that there are
restrictions on the number of intersections between discs and strips of different colours
on a given side of one of the Heegaard tori. If a green and a blue subsurface intersect
on the same side of the red Heegaard torus, then the green surface divides the solid
torus bounded by the red Heegaard torus into pieces with boundary consisting of red
and green surfaces. The blue faces are properly embedded in these pieces, with the
green double arcs in the boundary of the blue faces lying in the red surfaces, and the
red double arcs lying in the green surfaces. An Euler count argument shows that if
there are only two bigons then a face can have at most eight arcs in its boundary, so
we can construct the different ways in which a face can be embedded in a particular
piece with green and red boundary. The faces fit together to form the original blue
surface, and we show that there are only finitely many ways in which this can happen.
In particular, we show that if there are only two bigons, then a green strip and a blue
strip may not intersect on the same side of the red torus. This puts an upper bound on
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the number of parallel double curves that may arise in a configuration with only two
bigons.

In Section 5.3 we show that there are at least three bigons. If there are at most two
bigons, then all simple closed curves that bound discs of a given colour are parallel, so
there are three different ways in which the green curves divide the red torus up into
subsurfaces. If there are no essential curves, then the subsurfaces consist of a punctured
torus, together with some inessential annuli and a single disc. If there are both essential
and inessential curves, then the subsurfaces consist of a pair of pants, together with
some annuli, which may be either essential or inessential, and a disc. If there are only
essential curves, then all subsurfaces are annuli. The green and blue curves may divide
the red torus up in different ways. Furthermore the results of the Section 5.2 mean that
if there are only two bigons, there may not be more than three parallel double curves,
as parallel double curves create strips that lie on alternating sides of the tori. We go
through each case in turn, and show that configurations with two bigons may not arise,
usually by counting the number of triple points, which must be divisible by six.

This means that there are disjoint bigons for all non-triple point moves, except for
saddle moves. Finally, in Section 5.4 we show that there are disjoint bigons for saddle
moves. If there is a configuration in which a saddle move intersects all the bigons,
then before and after the saddle move there are at least three bigons, none of which is
disjoint from the saddle move. This puts strong restrictions on the configurations which
may occur, and we are able to eliminate them by elementary combinatorial arguments.

5.1 Definitions and preliminary combinatorics

Definition 5.2 (Annuli types) Let A be a properly embedded annulus in a solid torus.
Then A has precisely one of the following properties.

(1) Both boundary components are inessential, and bound disjoint discs in the
boundary of the solid torus.

(2) Both boundary components are inessential and parallel.

(3) One boundary component is inessential, and the other is essential, in fact a
meridian.

(4) Both boundary components are essential and parallel.

These four cases are illustrated below.

Remark 5.3 In the first three cases, the green annuli may be knotted inside the red
torus.
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Case 1 Case 2 Case 3 Case 4

Figure 9: Properly embedded annuli in a solid torus

Definition 5.4 (Inner and outer solid tori) An annulus with parallel essential boundary
components divides the solid torus into two solid tori. At least one of these has
meridional discs that intersect each boundary curve once, call one of these the inner
solid torus, and the other solid torus the outer solid torus.

Definition 5.5 (Faces, squares, hexagons, etc) The complementary components of
the double curves with triple points in the sweepout surfaces are called faces. If a face
is a disc, we say it is an n–gon if its closure contains n triple points in its boundary. In
particular, a 4–gon is a square, a 6–gon is a hexagon, and an 8–gon is an octagon. A
face need not have connected boundary.

A face may contain an arbitrary collection of simple closed double curves without
triple points. When we draw pictures of faces we will omit these simple closed curves
without triple points.

Definition 5.6 (Strips, 1bigons and 2bigons) Let A be an annulus bounded by a pair
of double curves of the same colour in one of the sweepout tori, which contains no
simple closed curves or triple points in its interior. We say that the annulus A is a strip,
if all double arcs it contains are essential. We include the degenerate case in which
there are no double arcs in the annulus. We say A is a 1bigon if all faces in A are
squares, except for precisely one bigon, and one hexagon. We say A is a 2bigon if all
faces in A are squares, except for precisely two bigons, and either an octagon, or a
pair of hexagons.

We will make extensive use of the following facts about the configuration. The union
of the green curves on the red torus represents a zero homology class in the red torus,
as it bounds the subsurface of the red torus which lies on one side of the separating
blue surfaces. Similarly, the blue curves represent a zero homology class in the red
torus. Double curves come in multiples of three, one of each colour. In particular, in
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Strip 1bigon 2bigon

Figure 10: Examples of strips, 1bigons and 2bigons

each blue-green diagram the set of green curves gets mapped to the set of blue curves,
so there are the same number of blue and green curves, and furthermore, the number
of green curves with n triple points is the same as the number of blue curves with n

triple points, for each n.

Triple points come in multiples of six, so the total number of triple points must be
divisible by six. Triple points also come with an orientation, which is preserved by G ,
so in particular, each triple point has three images under G , none of which may be
adjacent.

Lemma 5.7 Let D be a green disc with blue boundary, which bounds a disc D0 in
the red torus, so that D[D0 is a 2–sphere. Furthermore, suppose that all double arcs
in D are parallel, and all double arcs in D0 are parallel. Then all the blue faces in
the 3–ball bounded by D and D0 contain the same number of triple points in each
boundary component.

Proof If we imagine the triple points on the boundary of the disc as equally spaced
points on the unit circle, then the parallel arc identifications act as a reflection. The
length of the orbits of the points under these maps corresponds to the number of arcs
in each boundary curve in the union of the two inessential discs. If the reflections are
the same, we get bigon boundaries. Otherwise, two reflections give a rotation, and so
in fact all the orbits have the same length.

Lemma 5.8 If there are two bigons, then all other faces are squares, except for either
an octagon, a pair of hexagons, or an annulus with two vertices in each boundary
component.

Proof The Euler characteristic of a torus is zero. As every vertex is four-valent, an
n–gon contributes 1� n

2
C

n
4
D 1� n

4
to the Euler characteristic, so bigons contribute

C
1
2

, squares contribute 0, hexagons contribute �1
2

, etc. An annular face with n and
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m triple points in each boundary component contributes �nCm
4

, and a punctured torus
face with n vertices in its boundary contributes �1� n

4
. Two bigons contribute C1 to

the Euler characteristic, so the other faces sum to �1. The only ways in which this can
happen are if all other faces are squares, except for either two hexagons, or a single
octagon, or an annulus formed by tubing two bigons together.

If the boundary of an inner solid torus consists of a pair of strips, then any faces which
are discs in the interior of the solid torus are bigons with essential boundary. We will
use this observation repeatedly, so we state it as a lemma.

Lemma 5.9 Suppose an inner solid torus has boundary which is the union of two
strips. Then a face which is a disc in the interior of the inner solid torus is a bigon with
essential boundary.

Proof A choice of orientation for the disc in the interior of the inner solid torus
induces orientations in its boundary arcs in each of the strips. The double arcs in each
strip are all essential and parallel, so the induced orientation is the same in each arc
in the boundary of the strip. This means that the geometric intersection number of
the boundary of the disc with a boundary curve of one of the strips is the same as the
algebraic intersection number. As an inner solid torus has meridional discs that hit
each boundary curve of a strip once, this means that the intersection number must be
one, and the boundary of the face which is a disc is a bigon with essential boundary.

We now show that there must always be at least two bigons.

Lemma 5.10 A configuration with triple points contains at least two bigons.

Proof Any inessential curve with triple points creates at least two bigons, so we
assume all curves with triple points are essential. Any pair of intersecting curves with
non-minimal intersection creates at least two bigons, so we may assume all curves are
essential, with different slopes, and have minimal intersection. So the green curves
divide the red torus up into strips, as do the blue curves, and every face is a square.

Consider an outermost green strip with blue boundary on one side of the red torus,
which divides the solid torus on one side of the red torus into inner and outer solid tori.
The boundary of the inner solid torus consists of two strips, so by Lemma 5.9 any blue
faces which are discs inside the inner solid torus must be bigons, a contradiction.

So from now on we may assume that there are at least two bigon-orbits. Next we show
that every configuration has at least three bigon-orbits. A non-triple point move which
is not a saddle move may involve at most two bigon-orbits, so this deals with all cases,
except for saddle moves, which we consider separately, in Section 5.4.
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5.2 Intersection lemmas

We now prove some useful lemmas that show that if certain kinds of discs or strips
intersect on the same side of the red torus, then there are bounds on the number of
intersections that they may have. The results of this section are summarised in the list
below.

If there are only two bigons, then:

5.11 Two inessential discs may intersect in at most two arcs.

5.12 A disc may intersect a strip only in one of the following three ways.
(1) The strip has parallel inessential boundary components, the disc is essential,

and there are at most two arcs of intersection.
(2) The strip has parallel essential boundary, the disc is essential, and there are

at most two arcs of intersection.
(3) The strip has parallel essential boundary, the disc is inessential, and there

are at most four arcs of intersection.

5.13 Two strips may not intersect.

We now prove these lemmas.

Lemma 5.11 Suppose there are only two bigons, and a pair of inessential discs of
different colours intersect on the same side of the red torus; then they have at most two
arcs of intersection.

Proof Assume there are at most two bigons, and consider the green and blue discs
only, ignoring all the other green and blue surfaces. As there are only two bigons, the
inessential green disc contains parallel red arcs, and its boundary also bounds a red
disc in the red torus, which contains parallel green arcs. Again, as there are only two
bigons, the blue disc contains parallel red arcs, so the blue faces in the blue disc which
are not bigons are squares. These two discs bound a 3–ball, which we shall call the
inner 3–ball, and we will call its complement in the solid torus bounded by the red
torus, the outer solid torus. Then Lemma 5.7, the reflection lemma, implies that all of
the blue faces inside the inner 3–ball have the same boundary length. As these blue
faces all lie inside the blue inessential disc, they are all either bigons or squares.

If the blue faces are bigons, then there may be at most two of them, so there may be
at most two arcs of intersection. If the blue faces are squares, then the two bigons
lie in the outer solid torus. In order to avoid creating red bigons outside the red disc,
the boundary arcs of the blue bigons lying outside the red disc must be essential, as
illustrated in Figure 11 below.
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Blue bigons

Blue square

Inner 3–ball

Outer solid torus

Figure 11: Bigons in the outer solid torus

The only possible blue squares lying in the outer solid torus are ones parallel to the
blue square shown in Figure 11 above. However, as there are blue squares inside the
inner 3–ball, then any blue square in the outer solid torus has both red arcs attached to
the same blue square in the inner 3–ball, forming a blue strip with two essential red
arcs. Therefore there may be no blue squares in the outer solid torus, so there may be
at most two arcs of intersection.

Lemma 5.12 Suppose there are exactly two bigons, and a green strip and a blue
disc have intersecting boundaries on the same side of the red torus. Then one of the
following cases occurs.

(1) The strip has parallel inessential boundary components, the disc is essential, and
there are at most two arcs of intersection.

(2) The strip has parallel essential boundary, the disc is essential, and there are at
most two arcs of intersection.

(3) The strip has parallel essential boundary, the disc is inessential, and there are at
most four arcs of intersection.

Proof Consider just the disc and the annulus, and ignore all other surfaces inside
the solid torus bounded by the red torus. There are four different ways in which the
boundary of the annulus may be embedded in the boundary of the solid torus, as
illustrated in Figure 9. We consider each one in turn.

Case 1 The strip has inessential boundary components which bound disjoint discs.

As there are exactly two bigons, the strip cannot have inessential boundary components
that bound disjoint discs. Case 1
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Case 2 The strip has parallel inessential boundary components.

If the green strip has parallel inessential boundary components, then there are at least
two bigons in the innermost disc bounded by the blue double curves, so there cannot
be any bigons in the red annulus between the two blue double curves, so this annulus
is a strip. The union of the green and red strips is a torus, which is contained in the
solid torus bounded by the red torus. This torus has compressing discs on both sides,
namely the blue faces inside the inner solid torus, and the red subdisc of the red torus
bounded by the innermost blue boundary component of the green strip. The solid torus
bounded by the two strips is therefore an unknotted solid torus contained in the larger
solid torus bounded by the red torus, so the boundaries of the red disc and the blue
compressing discs have intersection number one. This means that the blue faces cannot
be squares, and so are bigons. But there may be at most two bigons, so the disc and
the strip may have at most two arcs of intersection. Case 2

Case 3 The strip has exactly one essential boundary component.

There are blue bigons with one boundary arc essential in the the green strip, and whose
other boundary is therefore essential in the red pants bounded by the blue double curves,
so the strip is unknotted. Therefore the strip divides the solid torus bounded by the red
torus into another solid torus, whose boundary contains two green annuli, one essential
and one inessential, as illustrated in Figure 12 below.

Green strip
Boundary of
the blue square

Figure 12: The green strip divides the red solid torus into another solid torus.

There is a blue face with a boundary arc inside the red disc. This blue face has at least
two red boundary arcs in the green strip adjacent to the red disc, so it is a square. This
blue square is either a meridian disc or an inessential disc in the solid torus bounded
by the red pants and the green strip. As the blue square is disjoint from the essential
green strip, the square cannot be a meridian disc, so it must be an inessential disc, as
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illustrated in Figure 12 above. This creates an inessential arc in the red pants, creating
at least three bigons, a contradiction. Case 3

Case 4 The strip has both boundary components essential.

The strip divides the solid torus on one side of the red torus into an inner solid torus
and an outer solid torus, as in Definition 5.4. If there are more than two arcs, then
there are squares on both sides of the strip. All squares in the inner solid torus have
boundary that consists of two essential arcs in the strip, together with two inessential
arcs connecting them inside the annulus in the red torus. In particular, there are two
bigons in this annulus, so there may be no bigons in the red annulus in the boundary
of the outer solid torus, so this red annulus is a strip. The outer solid torus therefore
has boundary consisting of two strips, so the faces in the outer solid torus are either all
bigons or all squares. If they are bigons, there may be at most two of them, so there are
at most two arcs of intersection, so we may assume that they are all squares, and the
inner solid torus contains both bigons. All the squares on the outside are parallel to the
one shown in the left hand side of Figure 13 below. The top of the red cylinder should
be identified with the bottom by a half twist so that there is a single green annulus.

Inner solid torus

Red 2bigon

Square

Outer solid torus

Arcs from squares
in the inner solid torus

Arcs from squares
in the outer solid torus

Arcs from bigons
in the inner solid torus

a

a2n

anC2

anC1

a3

a2

a1

n�1
n�1

b

b2n

bnC2
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b3

b2

b1

n�2

n�1

a

a2n

anC3

anC2
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an

a3

a2
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Figure 13: Counting triple points in double curves

The boundary of the inner solid torus consists of two annuli: a green strip containing
red arcs, and a red 2bigon containing green arcs. We now explain how this forces a
particular arrangement of blue faces inside the inner solid torus. The inner solid torus
contains two bigons, and the boundary of each bigon consists of a green arc and a red
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arc. The red arc lies in the green strip, and is therefore an essential arc, so the green
arc in the boundary of the bigon must be essential in the red annulus which is a 2bigon.
This means that each bigon in the inner solid torus is a meridional disc for the inner
solid torus. If there are any blue squares in the inner solid torus, then their red boundary
arcs are essential arcs in the green strip. The blue squares lie in the complement of
the bigons, which are meridional discs for the inner solid tori, so they have inessential
boundaries in the boundary of the inner solid torus, so as the red arcs in the boundary
of each blue square are essential, the green arcs must be inessential. As the red annulus
is a 2bigon, there are at most two families of inessential green arcs with endpoints on
each boundary component of the red 2bigon, so in fact all blue squares must be parallel
inside the inner solid torus, and their boundaries consist of a pair of essential red arcs,
and a pair of inessential green arcs, with one green arc meeting each blue double curve
boundary component of the red 2bigon. As the blue squares are all parallel, the two
blue bigons are also adjacent inside the inner solid torus.

The strips forming the boundaries of the inner and outer solid tori share a common pair
of blue double curves, label one of these double curves a and the other one b . The
double curve a contains a pair of adjacent triple points which lie in the blue bigons
contained in the inner solid torus, label these triple points a1 and a2 . Now label the
remaining triple points a3; : : : ; a2n following the circular order coming from the blue
double curve a. We may assume there are 2n triple points on each of the blue double
curves as there are an even number of triple points on each double curve. Label the
triple points in the blue double curve b in a similar manner. To be precise, label the
triple points which lie in the boundaries of the blue bigons in the inner solid torus b1

and b2 , so that a1 and b1 lie in the boundary of a common blue bigon. Now label
the remaining triple points b3; : : : b2n , following the circular ordering coming from
the blue double curve b . This means that the green arcs contained in the boundaries
of squares in the inner solid torus connect ak to a2nC3�k and bk to b2nC3�k , for
36 k 6 n. Also, the green arcs contained in the boundaries of squares in the outer solid
torus connect ak to bkCn , taking indices modulo 2n. This is illustrated on the right
hand side of Figure 13 above. Opposite sides of the right hand diagram are identified to
form the red torus, in particular there is only one blue double curve a in the red torus,
as its two images in Figure 13 are identified. The green shaded regions denote some
number of parallel arcs; the number inside the region indicates exactly how many.

There is a simple closed green double curve containing the eight triple points fa1 , b1 ,
anC1 , anC2 , b2 , a2 , bnC2 , bnC1g. However, there must be exactly one double curve,
so in fact this implies that this must be all the triple points, so in fact nD 2, and there
are four arcs of intersection between the disc and the strip. However, in this case the
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disc is inessential, so if the disc is essential, the number of arcs of intersection is at
most two. Case 4

This completes the proof of Lemma 5.12.

We wish to prove the following lemma:

Lemma 5.13 Suppose there are only two bigons. Then a green strip and a blue strip
may not intersect on the same side of the red torus.

We break the proof up into two parts. First we show Lemma 5.14, that if there are two
bigons, then a pair of intersecting strips must have parallel and essential boundaries,
with exactly four arcs of intersection. We then complete the proof by showing in
Lemma 5.15 that, if there are only two bigons, the configuration can not have parallel
essential curves.

Lemma 5.14 Suppose there are only two bigons, and a green strip and a blue strip
intersect on the same side of the red torus. Then the boundary components of the strips
are essential, with the same slope, and the strips have exactly four arcs of intersection.
In particular, this means that the outer solid tori for the strips have meridional discs that
intersect each boundary curve of the annuli twice.

Proof The green annulus may be one of the four types shown in Figure 9. We deal
with each case in turn.

Case 1 The green strip has inessential boundary components which bound disjoint
discs.

In this case, the two blue curves bound disjoint discs. Each curve contains triple points,
so each disc contains at least two disjoint bigons, so there are at least four bigons.

Case 1

Case 2 The green strip has inessential boundary components which bound nested
discs. The innermost blue curve contains two bigons, so if there are only two bigons, all
green arcs in the annulus bounded by the two blue double curves must be essential, and
so the blue double curves bound a red strip in the red torus. Let T be the torus formed
from the union of the green and red strips. Any square in the region bounded by T has
intersection number two with each blue curve. We can compress the torus T along
such a blue square to form a 2–sphere, which must bound a 3–ball by irreducibility,
so in fact the torus T bounds a solid torus, with a blue square as a meridional disc.
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However, the torus T also has a compressing disc on the other side, given by the disc
in the red torus with boundary the innermost blue boundary component of the green
strip. The boundaries of two compressing discs have intersection number two, giving
an RP3 summand to the solid torus bounded by the red torus, a contradiction. Case 2

Case 3 The green strip has exactly one essential boundary component.

The green annulus divides the solid torus into a 3–dimensional region, which we shall
call R, which has torus boundary. The region R need not be a solid torus, as the green
annulus may be knotted. The boundary of R consists of a red disc and a red pair of
pants, and two copies of the green annulus, as illustrated in Figure 12. Consider the
blue double curve 
 which is inessential in the red torus. This appears twice in @R,
once as the boundary of the red disc, which we shall call 
1 , and also as a boundary
component of the red pair of pants, which we shall call 
2 . We now show that 
2 is
essential in R. We can make a simple closed curve in @R by taking one of the essential
red arcs in the green strip, and connecting its end points by an arc in the red pants. If
the blue double curve bounds a disc D in R, then the union of D and the red disc from
a 2–sphere inside the solid torus bounded by the red torus, which this curve intersects
once, a contradiction.

The inessential blue curve 
 has triple points, so there are at least two disjoint bigons
inside the red disc that it bounds. Consider a blue square in R which contains a green
boundary arc lying in the red disc. The two red arcs in the boundary of the square lie in
the green strip, and the other green arc lies in the red pair of pants, with both endpoints
in the same boundary component. If the green arc is inessential in the red pair of pants,
then it creates an extra bigon, so the green arc must be essential in the red pair of pants.
However, this means that the boundary of the square is now homotopic inside R to the
essential blue double curve, a contradiction. Case 3

If any boundary component of the blue annulus is inessential, then we are in one of
the cases above, using the blue annulus instead of the green annulus, so we may now
assume that all boundary curves are essential.

Case 4 The green strip has both boundary components essential.

If the blue strip has an inessential boundary component, then we can swap the colours
green and blue, and use one of the cases above, so we may assume that both strips have
both boundary components essential.

The green strip divides the red solid torus into inner and outer solid tori, as in Definition
5.4. All the blue squares in the inner solid torus have boundary consisting of two
essential red arcs in the green strip, and two inessential green arcs in the red annulus,
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and they are all parallel. In particular, the green curves do not cross from one boundary
component to the other in the red annulus, so the boundary components of the blue
strip have the same slope as the boundary components of the green strip.

If there are only two bigons, there may be no bigons in the other red annulus, so all
green curves cross from one boundary component to the other, and so must be parallel.
So the meridian discs of the outer solid torus intersect each essential curve twice, as
illustrated in Figure 13.

Label one of the blue double curves a and the other one b . We may assume there are
2n triple points on each curve, as there are an even number of triple points on each
double curve. On the curve a, we will label the triple points a1; : : : a2n , following the
circular ordering, so that the triple points a1 and a2n lie in the outermost blue square
in the inner solid torus. We will label the triple points on b with labels b1; : : : b2n , so
that b1 and b2n lie in the same blue square in the inner solid torus as a1 and a2n , and
so that the orientations induced on the double curves by the circular orderings are the
same. All squares in the inner and outer solid tori are parallel, so this determines the
pattern of green curves in the red torus, which is illustrated below on the left hand side
of Figure 14. The shaded regions indicate that there are possibly many parallel curves,
and the opposite sides of the square are identified to form a torus.

Each green double curve contains four triple points, fak ; a2nC1�k ; bnC1�k ; bnCkg.
As there are two green double curves, this means n D 2, so there are four arcs of
intersection between the strips. This is illustrated on the right hand side of Figure 14.

Inner solid torus
for the blue strip

Outer solid torus
for the blue stripArcs from squares

in the inner solid torus
Arcs from squares
in the outer solid torus

a2n

anC1

an

a1

n n

n
n

n

b2n

bnC1

bn

b1

a2n

anC1

an

a1

Figure 14: A green strip and a blue strip which intersect

In the right hand side of Figure 14 above, the solid torus is drawn as a cube with top
and bottom face identified with a half twist, so that there is a single blue annulus, and
a single green annulus. Case 4
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This completes the proof of Lemma 5.14.

We now eliminate the special case from Lemma 5.14.

Lemma 5.15 If there are only two bigons, a configuration cannot have intersecting
essential double curves with the same slope. In particular, this implies there are no
intersecting strips.

Proof We consider two cases, depending on whether or not there are inessential
curves.

Case 1 No inessential curves

By Lemma 5.14, Case 4, there is an essential green double curve and an essential
blue double curve which have geometric intersection number two. So if there are no
inessential double curves, then all essential double curves are parallel to the ones shown
below in Figure 15.

Figure 15: Two bigons, essential curves with the same slope

There are the same number, n say, of blue and green curves with triple points. The
number of triple points is then 2n2 . The number of triple points is divisible by six, so
n is divisible by 3. If n is at least 3, then there is a set of three consecutive parallel
green double curves, which bound a pair of adjacent red strips with green boundary
in the red torus, so the images of these under g give rise to green strips with blue
boundary, which lie on opposite sides of the red torus. Similarly, as n is at least 3,
there is a set of three consecutive parallel blue double curves, which create a pair of
adjacent red strips with blue boundary in the red torus, and images of these under g2

give rise to a pair of blue strips with green boundary, which lie on opposite sides of the
red torus. Therefore there are green and blue strips on both sides of the red torus, and
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so each side of the red torus contains an intersecting pair of green and blue strips, as in
Lemma 5.14, Case 4, as illustrated in Figure 14.

Consider a green annulus with blue boundary curves which contains inessential red
arcs. A blue boundary component of this annulus has triple points, and is parallel to
the other blue double curves, and so intersects a blue strip with green boundary curves,
and red essential arcs. Now consider a red arc in the green annulus which bounds an
innermost disc in the green annulus. This green disc is a bigon with a red double arc
which is essential in the blue strip, so the other blue double arc in the boundary must
also be essential in the red annulus it is contained in. The outer solid torus for the blue
strip has meridional discs that intersect each boundary component of the annuli twice,
by Lemma 5.14, so the bigon cannot lie in the outer solid torus, as it has essential
boundary arcs, and would therefore be a meridional disc intersecting the boundary
components of the annuli once.

The green bigon must therefore lie in the inner solid torus for the blue strip. As the red
boundary arc of the bigon is essential in the blue strip, the blue boundary arc of the
bigon runs from one boundary component of the red annulus to the other, as illustrated
in Figure 16 below.

Green bigon

Inner solid torus
for the blue strip

Figure 16: A green bigon in the inner solid torus for the blue strip

The boundary of the blue strip is a pair of green double curves, which divide the red
torus into a pair of annuli, one lying in the inner torus for the blue strip, and the other
lying in the outer solid torus. The red annulus in the outer solid torus contains essential
blue arcs coming from the squares which are meridional discs for the outer solid torus.
The green bigon in the inner solid torus creates essential blue arcs in the other red
annulus as well. This is a contradiction, as Figure 15 shows there may only be essential
arcs in one of the red annuli. Case 1
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Case 2 Inessential curves First suppose there are inessential curves of only one colour.
Without loss of generality we may assume that the inessential double curves are blue.
As we are assuming there are two bigons, all inessential blue curves are parallel in
the red torus, and divide the red torus into an innermost red disc containing parallel
green arcs, a collection of red annuli containing parallel green double arcs, and a single
punctured torus component.

By Lemma 5.14, Case 4, there is a green essential curve and a blue essential curve with
the same slope, and with with geometric intersection number two. Such a pair of curves
divide the red torus into three regions, two of which must contain an innermost bigon.
Therefore one of the innermost bigons inside the innermost blue inessential curve must
lie in one of these two regions. This means that all of the double curves with triple
points in the configuration must be parallel to the curves shown below in Figure 17.
There is an even number of green curves in total, and an even number of essential blue
curves, so there is an even number of inessential blue curves. In particular, this means
that there are at least four double curves of each colour, and the red torus contains red
strips with both green and blue boundary. We will use the labels in Figure 17 to refer
to how many curves there are parallel to the one shown.

a c b

d

Figure 17: Inessential curves of one colour

We now show that there is a green strip with blue boundary components, such that at
least one of these blue boundary components is inessential in the red torus. The red
torus divides the green torus into a number of subsurfaces along the blue double curves.
The green surfaces consist of strips, and a pair of 1bigons. If none of the blue boundary
components of the green strips are inessential in the red torus then the inessential curves
must all be part of the boundary of the two green 1bigons. In this case, the two green
1bigons share a common pair of blue boundary components, creating a green torus with
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no strips with blue boundary, a contradiction, as the green torus is an image of the red
torus under g , and the red torus contains strips with both colour boundary components.

Figure 17 shows that an inessential blue curve meets all the essential green curves,
and by Lemma 5.14, a green strip with an inessential blue boundary component may
not intersect any blue strips, therefore there can’t be blue strips on both sides of the
red torus. This means the total number of blue double curves is at most four, so must
be exactly four, with two essential blue curves, and two inessential blue curves, so
c D d D 2. The green curves parallel to b have four triple points, so there are blue
curves with four triple points. The blue curves parallel to d have more than four triple
points, so the curves parallel to c have four triple points, so aD 2, and hence b D 2.
But this implies there are 32 triple points in total, which is not divisible by six, a
contradiction.

So we may now assume that there are inessential double curves of both colours, for
example as illustrated in Figure 18 below.

Figure 18: Inessential curves of both colours

The number of triple points on the inessential curves is strictly greater than the number
of triple points on the essential curves, as each essential curve intersects essential
curves of the other colour twice, but inessential curves four times. This means that
essential curves are mapped to essential curves, and inessential curves are mapped to
inessential curves. In particular this implies that the red disc with boundary consisting
of the innermost green inessential curve gets mapped by g to a green disc with a
blue boundary curve which is inessential in the red torus. Similarly the red disc with
boundary consisting of the innermost blue inessential curve gets mapped by g2 to a
blue disc with green inessential boundary.
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There are an even number of essential curves of the same colour, creating a strip with
essential boundary components. Suppose there are three or more inessential curves
of the same colour. This creates at least two strips in the red torus with inessential
boundary, so there are intersecting strips on at least one side of the red torus, but one
of these strips has inessential boundary components, contradicting Lemma 5.14. So
there are at most two inessential curves. We now consider the cases when there are
one or two inessential curves of each colour.

Case 2.1 Two inessential curves of each colour

Notation 5.16 The green curves divide the red torus up into subsurfaces, which lie
on different sides of the blue surfaces. We will write fS1;S2; : : : jT1;T2; : : :g to mean
that the curves divide the red torus up into surfaces Si and Ti , with the Si lying on
one side, and the Ti lying on the other side. In practice it will be convenient to label
the surface by its homeomorphism type, ie, disc, strip, etc. So f disc, strip j pants g
means there is a disc and a strip on one side of the blue torus, and a pair of pants on
the other side.

Two inessential curves create a strip with inessential boundary. If there are four or
more essential curves, then there are strips on both sides, one of which intersects a
strip with an inessential boundary component, contradicting Lemma 5.14, so there are
two essential curves also. So both the green and blue double curves divide the torus
into f disc, pants j strip, strip g.

A pair of green and blue inessential double curves must have at least four points of
intersection, however, they may have arbitrarily many. Blue and green inessential
double curves with minimal intersections are illustrated in Figures 19 and 20. Extra
points of intersection may occur, for example by doing a Dehn twist to the blue double
curves along a curve parallel to the essential curves. Figure 18 is an example of
inessential blue and green curves having non-minimal intersection.

If the green and blue discs are on the same side of the red torus, then they may have at
most two arcs of intersection, by Lemma 5.11, implying the inessential curves have
minimal intersection. If the discs are on opposite sides, then the two strips intersect an
inessential disc and a pants. However, an inessential disc may intersect a strip in at
most four arcs, by Lemma 5.12 which again implies that the inessential curves have
minimal intersections. If the inessential curves have minimal intersection, then there
are 56 triple points, as shown in Figure 19. This is a contradiction, as 56 is not a
multiple of six.

Case 2.2 One inessential curve of each colour
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Figure 19: Two inessential curves with minimal intersection gives 56 triple points.

Suppose there is one inessential curve, with some even number of essential curves.
Both the blue and the green curves divide the torus into f disc, strips j pants, strips g. If
the discs are on the same side, so there are at most two arcs of intersection, by Lemma
5.11, so the intersection of the inessential curves is minimal, as shown in Figure 20
below.

n n

Figure 20: One inessential curve

The inessential green curve contains 4C 4n triple points, and each essential green
curve contains 4C 2n triple points, so in total there are 4C 8nC 2n2 triple points,
which it is easy to check is not divisible by six.
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Finally, if the discs are on different sides, then there is a green disc, and at least one
green strip, on one side, which both intersect a blue pair of pants. These green and blue
surfaces must intersect as their boundaries consist of blue and green double curves in
the red torus, and every blue double curve hits every green double curve, as shown in
Figure 20. The inessential curves have more triple points than the essential curves, so
the inessential curves are images of each other, and the essential curves are images of
each other. This means that the strip has both boundary components essential. Also, the
blue pants does not contain any bigons, as one of its boundary components is inessential
in the blue torus, so by Lemma 5.8, the pants contains only squares, together with
either a pair of hexagons or a single octagon. Figure 21 below illustrates the only way
of embedding squares, hexagons and octagons in the inner solid torus on one side of
the green strip. If there are blue squares in the inner solid torus, then there may not
also be any hexagons or octagons in the inner solid torus, as this would create at least
three bigons.

Square

Hexagon

Octagon

Figure 21: Blue faces in the inner solid torus

Whichever faces occur, there are two bigons in the red annulus in the boundary of the
inner solid torus, so the red annulus forming part of the boundary of the outside solid
torus is a strip, so the boundary of the outer solid torus consists of the union of two
strips. This means that if a blue disc face which is a 2n–gon is contained in the outer
solid torus, then each blue double curve in the boundary of the two strips intersects the
blue disc n times, as all of the arcs in the boundary of the 2n–gon are essential in each
strip. This means that the blue boundary curves of the strips may not be meridional
curves for the outer solid torus, and Figure 22 below illustrates the possible squares,
hexagons and octagons that may occur in the outer solid torus.
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Square Hexagon Octagon

Figure 22: Blue faces in the outer solid torus

In Figure 22 above, the top of the solid torus should be glued to the bottom with
an appropriate twist to glue the green surfaces up into a single annulus. The three
possibilities shown in Figure 22 are mutually exclusive, ie, there may only be faces of
one sort (squares, hexagons or octagons) in the outer solid torus.

If there is a blue strip on the same side of the red torus as the blue pair of pants, then
this blue strip gives rise to blue squares on both sides of the green strip, which means
there are no hexagons or octagons in either the inner or outer solid tori, a contradiction.

If there are no other blue strips on the same side of the red torus as the blue pair of
pants, then there are precisely two essential double curves of each colour, giving a
total of three double curves of each colour. The red torus then bounds a solid torus
containing a green strip, a green disc and a blue pair of pants, and no other surfaces.
There are blue hexagons or octagons on at least one side of the green strip, and that
side contains either a single octagon, or at most two hexagons. This means that there
may be at most six red arcs in the green strip. However, Figure 20 above shows the
smallest number of arcs that may occur in the strips, namely eight arcs in the strips,
giving a contradiction. Case 2

This completes the proof of Lemma 5.15, which in turn completes the proof of Lemma
5.13.

5.3 There are at least three bigons

In this section, we prove the following lemma.

Lemma 5.17 A configuration with triple points contains at least three bigons.

Consider the green double curves which contain triple points. These divide the red
torus up into subsurfaces, possibly containing simple closed curves without triple
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points. We may assume there is at most one disc, as each disc contains at least two
bigons. Similarly, the blue double curves with triple points also divide the red torus
into subsurfaces. Therefore, the following possible cases may arise: the collection of
surfaces may contain a punctured torus component, it may contain a pair of pants, or it
may consist of annuli only. We need to consider all pairs of these possibilities, as the
green curves and blue curves may divide the red torus in different ways. We deal with
the different cases in the order listed in Table 1 below. It doesn’t matter which set of
curves is green or blue, so we will make an arbitrary choice.

Punctured torus Pants Annuli
Punctured torus 1 2 3

Pants 4 5

Annuli 6

Table 1: Cases

Notation 5.18 We will write geom.a\b/ to denote the geometric intersection number
of two simple closed curves a and b .

Case 1 The green and the blue double curves with triple points divide the red torus
into subsurfaces which both have punctured torus components.

An innermost green double curve bounds a red disc containing at least two bigons, so
all green double curves with triple points are parallel, and bound strips in the red torus.
Similarly, all blue double curves with triple points are parallel, and bound strips in the
red torus. The total number of triple points is therefore n2geom.a\b/, where n is the
number of double curves of each colour with triple points, and a is a green curve with
triple points and b is a blue curve with triple points.

If there are three or more curves of each colour with triple points, then there are strips of
both colours on both sides of the red torus, so there are intersecting strips, contradicting
Lemma 5.13, so there may be at most two curves of each colour with triple points.

Case 1.1 Two curves of each colour with triple points

If there are two curves of each colour with triple points, then the red torus is divided
up into f disc, punctured torus j strip g by each of the green and blue curves with
triple points. The total number of triple points is four times the number of intersections
between a single green curve and a single blue curve.
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So the green inessential disc on one side of the red torus intersects either a blue
inessential disc, or a blue strip. If the green inessential disc intersects the blue inessential
disc, then by Lemma 5.11 it does so in one or two arcs, so the boundary curves of the
discs intersect in either two or four points, giving eight or 16 triple points in total, a
contradiction. If the green inessential disc intersects the blue strip, then there are green
faces coming from the green disc lying inside the inner solid torus bounded by the blue
strip. As the boundary components of the blue strip are inessential in the red torus, any
green square contained in the inner solid torus bounded by the blue strip creates bigons
outside the innermost disc, so there may be no green square faces in the inner solid
torus. If there are at most two bigons, then the green disc contains two bigon faces,
and all other faces in the green disc are squares. This means there may be at most two
green bigons from the green disc in the inner solid torus, which again gives either eight
or 16 triple points, a contradiction.

Case 1.2 One curve of each colour with triple points

If there is only one curve of each colour with triple points, then the red torus is split
into f disc j punctured torus g by each of the green and blue curves with triple points.
If the green disc and the blue disc lie on the same side of the red torus, then they
may intersect in at most two arcs, by Lemma 5.11, giving a total of two or four triple
points, a contradiction. So on one side of the red torus there is a green disc and a blue
punctured torus. If there are two bigons, then the punctured torus may not contain a face
with more than eight sides, by Lemma 5.8. The green disc has inessential boundary,
and divides the solid torus bounded by the red torus into a 3–ball, which we shall call
the inner 3–ball, and a solid torus, which we shall call the outer solid torus.

Claim 5.19 The blue faces in the inner 3–ball are either squares or hexagons.

Proof The rotation lemma, Lemma 5.7, implies all boundary components of blue faces
inside the inner 3–ball have the same length, so they are all length at most eight. If
they are length two (coming from an annulus consisting of two bigons tubed together),
then there are only two or four triple points. There may be only one octagon, which
gives eight triple points, which is not divisible by six, so the blue faces in the inner
3–ball are either squares or hexagons.

Now consider the blue faces in the outer solid torus. The boundary of the outer solid
torus consists of a green disc and a red punctured torus. The boundary of a blue face
consists of alternating red and green arcs. The red arcs are all parallel in the green disc,
and the green arcs are all essential in the red punctured torus.
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The boundary of a blue square in the outer solid torus may be essential or inessential.
If the boundary is inessential, then the disc it bounds in the boundary of the outer
solid torus contains either a red square or a green square. If it contains a green square,
then the green bigons lie outside the disc, so there are green inessential arcs in the red
punctured torus, so it must contain the red square, and hence the two green bigons.
These two cases are illustrated below in Figure 23. There is no natural choice of
longitude for the outer solid torus, so we have chosen to draw the simplest one.

Essential
blue square

Inessential
blue square

Figure 23: Squares in the outer solid torus

In the diagram above, we have only drawn the boundary of the blue square, and we
have labelled the blue squares essential or inessential, depending on whether their
boundaries are essential or inessential. The top of the red cylinders should be identified,
with an appropriate twist in the left hand diagram. We have also shaded the interior of
the green disc with blue boundary in the boundary of the outer solid torus, but we have
not shaded the complement, which is a red punctured torus with blue boundary.

We next show that all faces in the punctured torus are discs.

Claim 5.20 All faces in the punctured torus are discs.

Proof All the arcs in the punctured torus are essential, so if there is a face which is not
a disc, then there is a single annulus with two bigon boundaries, which implies that all
the arcs in the punctured torus must be parallel. In particular this means that there are
no hexagonal faces, so by Claim 5.19 all of the faces in the inner 3–ball are squares,
and so there are an even number of red arcs in the green disc in the boundary of the
inner 3–ball. However, all arcs in the green disc must also be parallel, which implies
that all boundary curves of blue faces in the outer solid torus have the same number
of triple points. The collection of blue faces in the blue punctured torus includes an
annulus with bigon boundaries, which does not lie in the inner 3–ball, and so lies in
the outer solid torus. Therefore the boundary curves of the blue faces in the outer solid
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torus must all have two triple points. The only faces with bigon boundaries are the
annulus, and at most two bigons, so as there are an even number of red arcs, there are
either four or eight triple points in total, a contradiction.

We have shown that all faces in the punctured torus are discs, so in fact there may be
no essential simple closed curves without triple points. We now show that no face can
be an octagon.

Claim 5.21 There are no octagons in the punctured torus.

Proof If the blue punctured torus contains an octagon, then it must lie in the outer
solid torus, by Claim 5.19.

Suppose there is an essential square in the outer solid torus. The boundary of an
essential square contains two distinct isotopy classes of green arcs in the punctured
torus, so if the punctured torus contains an octagon, these must be the only two isotopy
classes of green arc, and so all other green arcs are parallel to these. However, as all the
red arcs in the green disc are also parallel, this means that all curves in the boundary of
the outer solid torus contain exactly four triple points, so if there is an octagon in the
outer solid torus, then there may be no essential squares in the outer solid torus.

Suppose there is an inessential square in the outer solid torus. Consider an innermost
inessential square, which bounds a 3–ball in the outer solid torus, not containing
any other blue face. If there is an octagon, then there is exactly one octagon, and
no hexagons, so the inner 3–ball contains squares, by Claim 5.19. The innermost
inessential face has two red arcs in its boundary, which are innermost in the green disc,
and therefore lie in the boundary of a common square. However, the union of the two
squares is then an annulus with two green double curves in its boundary, contradicting
the fact there is a single double curve of each colour.

We have shown that there may be no squares in the outer solid torus, so it contains a
single octagon, so there are eight triple points in total, a contradiction.

So the remaining cases are when there are hexagonal faces in the punctured torus.

If the boundary of a hexagon in the outer solid torus is inessential, then this creates a
bigon in the boundary of the outer solid torus whose boundary consists of a green arc
and a blue arc, as illustrated in Figure 24 below. However this bigon lies in the red
punctured torus, creating at least three bigons. So any hexagon in the outer solid torus
must have essential boundary.

If there are hexagons on both sides of the green disc, then the inner 3–ball contains a
single hexagon, so the outer solid torus also contains a single hexagon and no squares,
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Inessential hexagon

Extra bigon

Figure 24: The boundary of an inessential hexagon in the boundary of the
outer solid torus

as there are exactly three red arcs in the green disc in the boundary of the outer solid
torus. The single hexagon is a meridional disc which intersects a core curve for the outer
solid torus precisely once, a contradiction, as the blue surfaces are null homologous.
So both of the hexagons lie on the same side of the green disc.

Case 1.2.1 Both hexagons are contained in the inner 3–ball.

The blue squares in the outer solid torus may have boundaries which are either essential
or inessential. If there are hexagons in the punctured torus, then there are three distinct
isotopy classes of green arcs in the red punctured torus, so there are both essential and
inessential squares. The blue torus is a zero homology class, and in particular intersects
the core curve of the outer solid torus an even number of times, so there are an even
number of essential squares. Two hexagons in the inner 3–ball give rise to six red arcs
in the green disc in the boundary of the outer solid torus, so there are three squares in
the outer solid torus, two of which must be essential, and one is inessential. This is
illustrated on the left hand side of Figure 25 below.

Green
disc

Inessential
square

Red punctured torus

Essential squares

The boundary of the outer solid torus The red torus

Figure 25: Both hexagons contained in the inner 3–ball
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The right hand side of Figure 25 shows the corresponding pattern of green arcs in the
red torus. However, this means there are four green double curves, a contradiction. In
Figure 25 we have illustrated this by colouring one of the simple closed curves black
instead of green.

Case 1.2.2 Both hexagons are contained in the outer solid torus.

Blue hexagons in the outer solid torus must have essential boundary, as illustrated
below in Figure 26, which also shows the possible essential and inessential squares
in the outer solid torus. In the right hand part of Figure 26 the top of the red square
should be identified with the bottom with a one-third shift, so that the blue arcs are
identified to form a simple closed curve. The outer solid torus may not contain both
essential and inessential squares.

Essential
hexagon

Essential
square

Inessential
square

Figure 26: An essential hexagon in the outer solid torus

We now show that there may be no essential blue squares in the outer solid torus.
The two essential blue hexagons must be parallel. Suppose there are n essential blue
squares in the outer solid torus. The red arcs in the green disc in the boundary of the
outer solid torus are all parallel, and starting from an outermost red arc, they consist
of two red arcs contained in the boundary of the two blue hexagons, then n red arcs
contained in the boundary of the blue squares, then another two red arcs contained in
the boundary of the blue hexagons, then another n red arcs contained in the boundary
of the blue squares, and finally another two red arcs from the blue hexagons. The faces
inside the inner 3–ball are all blue squares, and so the outermost red arcs live in the
same blue square, as do the second outermost pair of arcs, and so on. This means that
the six red arcs in the boundary of the two blue hexagons are equal to the six red arcs
contained in the boundary of three blue squares in the inner 3–ball. So the union of
the six green arcs in the boundary of the blue hexagons in the outer solid torus and
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the six green arcs in the boundary of the three blue squares in the inner 3–ball form a
single simple closed green double curve in the red torus. As there is at most one simple
closed curve this means that n must be zero, ie, there are no essential squares in the
outer solid torus.

If there are inessential blue squares, then each inessential square is connected to itself
by a square in the inner 3–ball, forming annuli, so there may be no squares in the outer
solid torus. This means there are exactly 12 triple points, and the inner 3–ball contains
three squares. The boundary of the inner 3–ball contains a simple closed blue curve.
On one side the blue curve bounds a red disc containing parallel green arcs, and on the
other side a green disc containing parallel red arcs. The red and green arcs form the
boundary of three blue squares. This is illustrated below in Figure 27.

Figure 27: The boundary of the inner 3–ball

The red dots indicate those triple points which are vertices of the red bigons, and the
green dots indicate the triple points which are vertices of the green bigons. These two
sets are disjoint from each other, so the third images of these points, the boundaries of
the blue bigons, are disjoint from the first two, in fact the remaining four triple points,
which we have labelled with blue dots. But then the triple points with blue dots all lie
on a single red double curve with four triple points, a contradiction. Case 1

Case 2 The green double curves with triple points divide the red torus into components
which include a punctured torus, and the blue double curves with triple points divide
the red torus into components which include a pair of pants.

We may assume that the green curves with triple points are all inessential, and the blue
curves with triple points contain an essential curve. The blue inessential curve with
triple points bounds a red disc which must contain at least two bigons, so there may be
no bigons outside the disc. There must also be an even number of blue essential double
curves, but if there is only one essential blue double curve with triple points, then there
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is an annulus whose boundary consists of two blue curves, one with triple points and
the other with no triple points, which creates bigons outside the disc bounded by the
blue inessential curve with triple points. So there must be at least two essential blue
curves with triple points, so there are at least three curves of each colour with triple
points. Furthermore, the annulus bounded by two essential blue double curves with
triple points may not contain bigons, so must be a strip. The green double curves with
triple points dividing the torus into a punctured torus create strips on both sides of one
of the tori. So at least one side of the red torus has both green and blue strips, which
must intersect, which implies there are at least three bigons, by Lemma 5.13. Case 2

Case 3 The green double curves with triple points divide the red torus into components
which include a punctured torus, and the blue double curves with triple points divide
the red torus into components which consist of annuli only.

Suppose there are three or more curves of each colour with triple points. The innermost
green double curve with triple points bounds a red disc containing at least two bigons,
so there are no bigons outside the disc, and the green curves with triple points bound a
pair of adjacent strips. As there are also three blue double curves with triple points,
there must be at least one annulus which is a strip, so there are intersecting strips on at
least one side of the red torus, contradicting Lemma 5.13.

Suppose there is only one double curve of each colour with triple points. All the blue
arcs inside the red disc bounded by the green double curve with triple points are parallel.
There is an even number of essential blue double curves, so there must be an essential
blue double curve with no triple points. This means that the green and blue double
curves with triple points are contained in an annulus. There may be no bigons outside
the red disc bounded by the green double curves, so all the blue arcs outside this red
disc must all be parallel and essential. But then if there are more than two blue arcs in
the red disc, there are more than two blue double curves with triple points, so in fact
there are at most two blue arcs in the red disc, so there are at most four triple points in
total, a contradiction.

Finally, suppose there are two double curves of each colour with triple points.

The two inessential green curves bound a strip, so they both have the same number
of triple points, so the total number of triple points is four times the number of blue
arcs inside the innermost disc. This also means the blue curves have the same number
of triple points, so the red annuli with blue boundary cannot contain one bigon each,
and so must be a strip and an annulus which contains two bigons. The blue strip and
the green strip lie on opposite sides of the red torus, so there is a side in which a strip
intersects a disc and a punctured torus. The disc must be essential, so may have at most
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Figure 28: The green double curves create a punctured torus, while the blue
double curves create annuli only.

two arcs of intersection with the strip, by Lemma 5.12, but this implies that there are
either two or four triple points on the inner green curve, which implies there are four
or eight triple points in total, a contradiction. Case 3

Case 4 Both sets of double curves with triple points divide the red torus into compo-
nents which contain pairs of pants.

If there are five or more curves of each colour with triple points, then there must be
adjacent red strips with both green and blue boundaries, so at least one side of the red
torus has intersecting strips, contradicting Lemma 5.13. If there are only two curves of
each colour with triple points, then one of the curves must be essential, and the other
curve must be inessential. However there must be an even number of essential curves,
so there is an essential double curve with no triple points. This creates an annulus
disjoint from the inessential double curve with triple points, which has triple points on
one boundary component, but not the other, creating bigons outside the disc bounded
by the inessential double curve with triple points, a contradiction. So the cases we need
to consider are when there are three or four curves of each colour with triple points.

Case 4.1 The configuration contains four double curves of each colour with triple
points.

There is only one arrangement of four green curves with triple points which does not
create adjacent strips, ie, there must be two essential curves and two inessential curves.
This illustrated below in Figure 29.

If there are only two bigons, and there are essential curves of both colours, then all
faces must be discs. As we will make use of this fact in future cases, we state it as the
following lemma.
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Strips

Figure 29: The red strips with green boundary both lie on the same side of
the blue torus.

Lemma 5.22 If there are only two bigons, and the red torus contains essential double
curves of both colours, then all faces must be discs.

Proof If there is a face which is not a disc, then the red torus contains a simple closed
curve (not necessarily a double curve) which is disjoint from all of the double curves,
and which either bounds a disc containing triple points in its interior, which creates at
least three bigons, or else implies that the essential curves of both colours must have
the same slope, contradicting Lemma 5.15

Therefore, by the argument preceding Case 4.1, there may not be any essential double
curves without triple points, or any inessential double curves without triple points
which contain triple points in the discs they bound. This means that the two red strips
with green boundary lie on the same side of the blue torus, so the images of these strips
under g , which are green strips with blue boundary, must also lie on the same side of
the red torus.

The same argument may be applied to the blue double curves, so there is a pair of red
strips with blue boundary which lie on the same side of the green torus, and the images
of these under g2 , which are blue strips with green boundary, must lie on the same
side of the red torus. However, by Lemma 5.13, the strips of different colours may not
intersect, so the pair of green strips with blue boundary must lie on the other side of
the red torus from the pair of blue strips with green boundary. So on one side of the
red torus we have a pair of green strips intersecting a blue disc and a blue pants.

If both green strips have exactly one inessential boundary component, then by Lemma
5.12, the blue disc is disjoint from the green strips, so doesn’t have any triple points,
a contradiction. So we may assume that one strip has both boundary components
essential, and the other strip has both boundary components inessential. We now show
that as the green strip with inessential boundary bounds a red strip in the the red torus,
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the union of these two strips is in fact an unknotted solid torus. As we use this fact
later on, we will state it as the following lemma.

Lemma 5.23 Suppose a green strip and a red strip have two blue double curves in
common as their boundary. Suppose further that the blue double curves are either both
inessential, or both meridional on the side of the red torus containing the green strip,
and that all faces are discs. Then the torus formed by the union of the two strips bounds
an unknotted solid torus containing blue bigon faces only.

Proof The torus formed by the union of the green strip and the red strip has a
compressing disc with boundary parallel to the blue double curve boundary components
of the strip. We will call the side of the torus containing the compressing disc the
outside, and the other side the inside. All the blue faces inside the torus formed by
the union of the two strips have parallel boundary, with the same number of red and
green edges. Furthermore, the boundaries of the blue faces cross the blue double curves
with the same orientation at each crossing, and are therefore compressing discs for the
inside region. As compressing a torus creates a sphere, the inside region must be a solid
torus, as the torus is contained in the solid torus bounded by the red torus, which is
irreducible. This solid torus is unknotted, as there is a compressing disc on the outside.
Therefore the compressing disc on the outside of the torus intersects each blue face
inside the torus with the same orientation, so if there is a face with more than two
sides, this creates a lens space connect summand inside the solid torus, contradicting
irreducibility, so all faces inside the torus must be bigons.

We have shown that all faces inside the solid torus bounded by the strips with inessential
boundary are bigons, so as the blue pants contains no bigons, this means that the blue
pants must be disjoint from the inessential blue curves. However, the blue pants contains
three of the green double curves in its boundary, which means that only one green
double curve may intersect the blue inessential double curves, which is a contradiction,
as the double curves come in two parallel pairs.

Case 4.2 The configuration contains three double curves of each colour with triple
points.

All faces are discs, by Lemma 5.22, so there are no essential double curves without
triple points. There must be an even number of essential double curves, so there must
be two essential double curves with triple points of each colour, and a single inessential
double curve with triple points of each colour, as illustrated for the green double curves
with triple points in Figure 30 below.
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Strip

Figure 30: Three double curves

The curves divide the red torus into f disc, strip j pants g, and the strips of different
colours must lie on opposite sides of the red torus, by Lemma 5.13. We now show that
the green disc must be inessential in the solid torus bounded by the red torus.

Claim 5.24 The green disc is inessential.

Proof Suppose the green disc is essential. Then in this case, the green strip has exactly
one inessential boundary component. This is shown in Figure 31 below.

Tube
may be knotted

Figure 31: The green disc is essential.

One of the complementary regions is a 3–ball, whose boundary is divided up into a
disc and an annulus of each colour. All arcs are parallel in the discs and the annuli,
so this 3–ball can contain hexagons only. The inessential blue double curve bounds
a disc in the red torus containing two bigons, and these two bigons must also lie in
the disc bounded by the inessential green curve, so the blue inessential double curve
must have at least four triple points. This means that there must be two hexagons in
the 3–ball, and so in fact every blue double curve has precisely four triple points. This
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implies that each of the green double curves also has precisely four triple points, so the
green and blue inessential curves may only intersect each other, as shown on the right
hand side of Figure 31. However, this implies that the green and blue essential double
curves have the same slope, contradicting Lemma 5.15.

So we may now assume that the green disc is inessential.

The inner solid torus bounded by the green strip contains either the red strip, or the
inessential green disc, in its boundary. If it contains the red strip, then, as an inner solid
torus has meridional discs that hit each boundary curve of the strips once, all the blue
disc faces inside the inner solid torus are bigons. By Lemma 5.13, the green and blue
strips lie on opposite sides of the red torus, so the blue faces in the inner solid torus
must lie in the blue pants. However the blue pants contains no bigons, so the inner
solid torus contains the inessential green disc. The inessential green disc divides the
inner solid torus into two pieces. We will call the piece which is a 3–ball the inner
3–ball, and the other piece, which is a solid torus, the middle solid torus. The middle
solid torus separates the inner 3–ball from the outer solid torus.

We now describe all possible blue squares in the middle solid torus. If a blue square has
both red boundary arcs in the strip, then both green arcs must connect the two essential
blue double curves. However this gives a disc with intersection number two with one
of the blue double curves, a contradiction. If a blue square has one red boundary arc in
the green strip, and one in the green disc, then the two green arcs must each have one
end point on the inessential blue double curve, and one endpoint on an essential blue
double curve. In this case the blue square is a meridional disc for the middle solid torus,
and we will refer to squares of the sort as essential squares. Finally, if a blue square
has both red boundary arcs contained in the green disc, then the two green boundary
arcs must be essential arcs which connect the inessential blue double curve to itself,
and we will call squares of this sort inessential squares. These two possibilities are
illustrated below in Figure 32.

The pair of pants contains either a single octagon or two hexagons. Recall that by
Lemma 5.13, the green and blue strips may not lie on the same side of the red torus, so
the blue pants lies on the same side of the red torus as the green strip. We now consider
each case in turn.

Case 4.2.1 The pair of pants contains an octagon.

Suppose the octagon is contained in the inner 3–ball. This creates exactly eight triple
points on the inessential blue double curve. As the pair of pants contains an octagon,
there are exactly two isotopy classes of essential arc in the pair of pants, so the middle
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Essential square

Inessential square

Figure 32: Squares in the middle solid torus

solid torus contains essential squares only. This means that there are precisely four
triple points on each essential blue double curve, giving a total of 16 triple points,
which is not divisible by six, a contradiction.

Suppose the octagon is contained in the outer solid torus, then there may be no other
squares in the outer solid torus, so each blue essential double curve contains precisely
four triple points. Again, there may only be essential squares in the middle solid torus,
so the inessential blue double curve contains precisely eight triple points, giving a total
of 16 triple points, which is not divisible by six, a contradiction.

So the octagon is contained in the middle solid torus. If there are no other faces in
the middle solid torus, then there are eight triple points in total, which is not divisible
by six, a contradiction. The only other faces in the middle torus may be squares, and
there may be no inessential squares, as they connect a boundary curve of the red pants
to itself, dividing the red pair of pants into hexagons, not octagons. However, the red
pair of pants is an image of the blue pair of pants under g , which contains an octagon,
so this cannot happen. Therefore there may only be essential squares. As the pants
contains an octagon, there are only two isotopy classes of green double arcs in the red
pants, so the green boundary arcs of the octagon in the red pants must be parallel to the
green boundary arcs of the essential square. As the blue essential double curves bound
a green strip in which each red arc runs from one boundary component to the other,
the green boundary arcs of the octagon must have the same number of endpoints in
each essential blue curve, so the octagon must have two green boundary arcs parallel to
each green boundary arc of an essential blue square. This is illustrated below in Figure
33, which shows the arrangement of green and red double arcs in the boundary of the
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middle solid torus, which is a torus consisting of a green strip, a red pair of pants and a
green disc.

Green strip

Octagon

Red pair
of pants

Essential
squares

b2nC2

b3

b2

b1

a2nC2

a3

a2

a1

b2nC2

b3

b2

b1

c2 c1

c3 c4nC4

c2nC2 c2n�5

c2nC3 c2nC4

Figure 33: The boundary of the middle solid torus

In Figure 33 above we have only drawn two essential squares, there may be arbitrarily
many parallel essential squares.

The inner 3–ball contains squares only, so there must be an even number of red arcs in
the disc, hence an even number of essential squares, 2n say, in the middle solid torus.
We will label the triple points on the two essential blue curves ai and bi , respectively,
and we will label the triple points on the inessential blue curve ci . If there are 2n

squares in the middle solid torus, then we will label the points on one double curve
a1; : : : ; a2nC2 in order going around the curve, starting with a1 and a2 being adjacent
triple points which lie in the boundary of the octagon. Similarly, we will label the
triple points on the other blue double curve b1; : : : ; b2nC2 , so that b1 and b2 are
adjacent triple points on the blue double curve, and they both lie in the boundary of
the octagon, and the induced orientation on the blue double curves given by going
from either a1 to a2 or b1 to b2 is the same. We will label the triple points on the
inessential blue double curve c1; : : : c4nC4 , in order along the double curve, so that
the triple points lying in the outermost red double arcs are labelled c1; c2; c2nC3 and
c2nC4 , and furthermore, so that the labelling of the triple points in the boundary of the
octagon is fc1; c2; b2; a2; c2nC3; c2nC4; a1; b1g, in that order.

As the inner 3–ball and the outer solid torus contain blue squares only, this determines
the pattern of green arcs in the red torus. In the inner 3–ball, the red arcs connect
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ck to c4nC7�k , taking the indices modulo 4nC 4, while in the outer solid torus the
green arcs connect ak to bkCnC1 , taking the indices modulo 2nC2. This is illustrated
below in Figure 34. In the figure below, a shaded green region between two green arcs
indicates some number of parallel arcs. If the region is labelled n, then there are n

parallel arcs in the region, including the two green boundary arcs which demarcate the
region.
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bnC2

bnC1
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b1

n

n
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n
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b2nC2
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cnC2 c3nC5

cnC3
c3nC4

c2nC2 c2nC5
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Figure 34: The green and blue double curves in the red torus

The outermost pair of red arcs in the disc bounded by the inessential blue curve lie in
the boundary of a common square, so there are green arcs connecting c1 and c2nC4 ,
and c2 and c2nC3 . As all the blue squares are parallel inside the inner 3–ball, this
means that ck is connected to c2nC5�k by a green arc, taking the indices modulo
4nC 4. As the blue squares inside the outer solid torus are all parallel essential discs,
the green arcs inside the annulus connect ak to bkCnC1 , modulo 2nC 2.

These identifications mean that in fact the triple point a1 lies on a simple closed green
double curve with exactly 16 triple points. To be precise, the identifications described
in the preceding paragraph show that this double curve contains the triple points fa1 ,
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bnC2 , c3nC4 , c3nC5 , bnC3 , a2 , c2nC3 , c2 , b2 , anC3 , cnC2 , cnC3 , anC2 , b1 , c1 ,
c2nC4g. This curve is drawn using a darker green line in Figure 34 above.

The blue double curves have either 2nC 2 or 4nC 4 triple points, so n may be three
or seven, but the total number of triple points is 8nC 8, and this gives either 32 or 64

triple points, neither of which is divisible by six.

Case 4.2.2 The pair of pants contains hexagons.

First we show there are no hexagons in the inner 3–ball. If there is a single hexagon in
the inner 3–ball, then all faces in the inner 3–ball are hexagons. If there is only one
hexagon, then the inessential blue double curve has six triple points. As the pair of
pants contains hexagons, it contains three isotopy classes of essential arcs, so there
must be both essential and inessential squares in the middle solid torus. So four of the
triple points on the inessential double curve must lie in the boundary of an inessential
square, and two lie in the boundary of an essential square, which has two other triple
points, one on each of the other blue double curves. However this means that there is a
total of eight triple points, which is not divisible by six, a contradiction. Suppose both
hexagons must lie in the inner 3–ball. As before, both essential and inessential squares
must occur in the middle solid torus. If there is exactly one inessential square, then
the arcs in the red pants coming from the inessential square connect four triple points
together in the inessential blue double curve, so there are four triple points on each of
the essential curves, giving 20 triple points in total. If there are two essential squares,
then there are two triple points on each essential curve, giving 16 triple points in total.
In either case, the total number of triple points is not divisible by six, so there may be
no hexagons in the inner 3–ball.

We now show that there are no inessential squares in the middle solid torus. As there
are no hexagons in the inner 3–ball, the inner 3–ball contains squares only. If there
are inessential squares in the middle solid torus, then there is an innermost one which
bounds a 3–ball containing no other faces. The two red arcs in the boundary of the
innermost inessential square are innermost on the green disc in the boundary of the
inner 3–ball, and so lie in the boundary of a common blue square in the inner 3–ball,
and so the green arcs in the boundary of these two squares form two green simple
closed curves with exactly two triple points each. Furthermore, this means that there
may be no other green arcs in the red pants parallel to the green arcs in the boundary of
the inessential square, as this would create at least one more green double curve with
two triple points, but this would imply that all three green double curves have exactly
two triple points, and therefore all three blue double curves have exactly two triple
points, a contradiction, as the blue inessential double curve has at least four. The image
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of these two green double curves with two triple points under g consists of two blue
double curves with triple points. The inessential blue double curve has at least four
triple points, so the two essential blue must each have two triple points. In particular,
this means that the outer solid torus contains exactly four triple points in its boundary,
and so contains a single blue square. As all the green arcs in the red pants with blue
boundary are essential, this means that for each essential blue double curve there is a
single pair of greens arcs in the red pants connecting it to the inessential blue curve.
This gives exactly six green arcs in the red pants with blue boundary, two of which lie
in the boundary of a blue square. However, this leaves exactly four green arcs in the
boundary of the middle solid torus, which are too few to form the boundary of the two
blue hexagons which must be contained in the middle solid torus, a contradiction. So
there are no inessential squares in the middle solid torus.

The green arcs in the boundary of an essential square in the middle solid torus give
rise to two isotopy classes of green arc in the red pants. However, as the red pants
contains hexagons, there must be three isotopy classes for green arcs in the red pair of
pants, so there must be at least one green arc in the red pants not contained in a blue
square in the middle solid torus. This means at least one hexagon must be contained in
the middle solid torus, containing a green boundary arc that either connects the two
essential blue double curves, or connects the inessential blue double curve to itself.

If the hexagon contains a green arc that connects the two essential double curves, then
the hexagon contains at least two red arcs lying in the green strip. If all three of the
hexagon’s red arcs lie in the green strip, then all three green arcs must connect the
essential blue double curves, and so the boundary of the hexagon has intersection
number three with the blue double curves in the middle solid torus, a contradiction. If
the hexagon has exactly two red arcs in the green strip, then they each have an endpoint
on the green arc which connects the two essential blue double curves, so the hexagon
has intersection number two with a blue essential double curve in the middle solid
torus, which is again a contradiction. So the hexagon has at most one red arc in the
strip, and so must contain a green arc with both endpoints in the inessential blue double
curve. All three red arcs may not be contained in the green disc, so the hexagon must
have one red arc in the strip, two red arcs in the disc, and at least one green arc with
both endpoints in the blue inessential curve. In this case, the remaining two green arcs
must each have one endpoint in the inessential blue double curve, and one endpoint
in one of the essential blue double curves, so up to isotopy there is only one possible
hexagon in the middle solid torus, illustrated below in Figure 35.

The inner 3–ball contains squares, so there is an even number of red arcs in the green
disc. Each blue square in the middle solid torus contains a single red boundary arc in
the green disc, and has a single triple point on each blue essential double curve. Each
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Figure 35: The boundary of the middle solid torus

blue hexagon in the middle solid torus contains two red boundary arcs in the green
disc, and has a single triple point on each blue essential double curve. There must be
an even number of triple points on each double curve, so in fact there must be two
parallel blue hexagons in the middle solid torus. We will assume there are 2n essential
squares, so the essential blue double curves each have 2nC 2 triple points, and the
inessential blue double curve has 4nC 8 triple points.

We will label the triple points as follows. Start with one of the essential blue double
curves, and label the adjacent triple points lying in the two blue hexagons a1 and a2 .
Now label the remaining triple points in the essential blue double curve a3; : : : a2nC2 ,
following the circular ordering. There are two possible choices of labelling consistent
with this, choose the one so that the opposite endpoints of the green arcs meeting the
adjacent triple points a1 , a2 and a3 are also adjacent on the inessential blue double
curve. Now label the triple points in the other essential blue double curve b1; : : : b2nC2 ,
so that bi and ai lie in a common blue face in the middle solid torus for all i . Finally,
label the triple points in the inessential blue double curve c1; : : : c4nC8 , following the
circular ordering, so that ai and ci are the end points of a green arc in the red pair of
pants, for 16 i 6 2nC 2. This labelling is illustrated above in Figure 35.

The squares in the inner 3–ball and the outer solid torus determine the pattern of green
arcs in the red torus. The green arcs in the boundary of the inner 3–ball connect ck

to c2nC5�k , taking indices modulo 4nC 8, while the green arcs in the boundary of
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the outer solid torus connect ak to bkCnC1 , taking indices modulo 2nC 2. This is
illustrated in Figure 36 below.
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Figure 36: The green double curves in the red torus

The following eight points all lie on a single green double curve, which contains no
other triple points: fa3; c3; c2nC2; a2nC2; bnC1; c3nC8; c3nC5; bnC4g. The number of
triple points on a simple closed curve is either 4nC 8 or 2nC 2, which means n must
be either zero or three. As n is not zero, this implies that n D 3, and that the two
essential blue double curves have eight triple points, and the inessential blue double
curve has 20 triple points. We will call the green double curve with 20 triple points a.
Although we now know that nD 3, we will continue to refer to triple points as cnC2

rather than c5 in order to aid references to Figure 36.

The green double curve a contains the following triple points: fa1 , c1 , c2nC4 , c4nC7 ,
c2nC6 , b1 , anC2 , cnC2 , cnC3 , anC3 , b2 , c2nC5 , c4nC8 , c2nC3 , c2 , a2 , bnC3 , c3nC6 ,
c3nC7 , bnC2g. The blue inessential double curve also contains 20 triple points, so this
curve is ga.

The four points fcnC2; cnC3; c3nC6; c3nC7g are the vertices of the red bigons, while the
four points fc1; c4nC8; c2nC4; c2nC5g are the vertices of the green bigons, contained
in the green disc. All of these points lie in a\ga, so the vertices of the blue bigons
must also lie in a\ ga, and as the red and green bigons have distinct vertices, the
vertices of the blue bigons are also distinct. As a\ga consists of exactly twelve triple
points, this means that the vertices of the blue bigons are fc2; c2nC3; c2nC6; c4nC7g.
Note that c2nC4 and c4nC7 are vertices of green and blue bigons respectively, and are
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connected by a green double arc. So the image of the this green double arc under g is
a blue double arc connecting the blue and red bigons, but this gives a contradiction, as
the vertices of the red bigons are not adjacent to the vertices of the blue bigons along
the blue double curve ga. Case 4

Case 5 The green double curves with triple points divide the red torus into components
which include a pair of pants, and the blue double curves with triple points divide the
red torus into components all of which are annuli.

Strips
Strips

Figure 37: Pants and annuli

First we show that there must be exactly four double curves of each colour. If there
are five or more double curves with triple points, then there is a triple of parallel green
curves bounding strips whose images under g give rise to green strips on both sides of
the red torus. The blue double curves bound at least one strip, so there are intersecting
strips on at least one side of the red torus, contradicting Lemma 5.13, so there may be
at most four double curves with triple points. By Lemma 5.15, the essential double
curves have different slopes, so every essential double curve contains triple points.
In particular this means that there are an even number of essential curves with triple
points of each colour. This means there must be at least three green curves with triple
points, so there must be exactly four double curves with triple points of each colour, as
illustrated in Figure 37 above.

We now obtain a contradiction by showing that all double curves must have the same
number of triple points. By Lemma 5.13, the green and blue strips lie on opposite
sides of the red torus. Consider the side of the red torus in which two blue strips with
green boundary intersect a green disc and a green pants with blue boundary. Suppose
one of the blue strips with green boundary has both curves inessential in the red torus.
Then this only contains bigons boundaries by Lemma 5.23, so the inessential curves
have two triple points each. But the blue double curves come in pairs that bound strips,
so the inessential green curves must have at least four triple points, a contradiction.
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So each blue strip must have one boundary curve essential, and one boundary curve
inessential. This means that the union of the strips forms a torus, so all double curves
must have the same number of triple points. This is a contradiction, as some of the
annuli are 1bigons, which have different number of triple points on each boundary
component. Case 5

Case 6 Both sets of double curves with triple points divide the red torus into annuli
only.

First we show there are exactly two double curves of each colour.

Claim 5.25 There are exactly two double curves of each colour.

Proof If there are five or more double curves with triple points, then there is a pair of
adjacent strips, so there are intersecting strips on both sides, contradicting Lemma 5.13,
so there may be at most four double curves of each colour with triple points. The blue
and green essential curves may not have the same slope, by Lemma 5.15, so all faces
are discs, and there are an even number of double curves of each colour with triple
points. So there are either two or four double curves of each colour with triple points.

We now show that there are exactly two double curves with triple points. Suppose
there are four double curves with triple points, then in order to avoid intersecting strips,
the double curves of each colour divide the red torus into the following collection of
surfaces: f 1bigon, 1bigon j strip, strip g. Consider an innermost green strip with blue
boundary, which divides the solid torus on one side of the red torus into inner and outer
solid tori. The inner solid torus has a red annulus in its boundary, which has the same
number of triple points on each boundary component, so the red annulus is a strip as
well. Then as all faces are discs, Lemma 5.9 implies that each blue face in the inner
solid torus is a bigon, so there are at most two essential arcs in each strip, but as the
green and blue double curves have different slopes, each curve intersects the others, so
there are at least four arcs of intersection, a contradiction.

The two essential double curves divide the red torus into two annuli. The two annuli
are either both 1bigons, or a strip and a 2bigon. Every blue curve is the image of a
green curve, so if both the green curves have the same number of triple points, then so
do both the blue curves, so if the green double curves divide the red torus into a strip
and a 2bigon, then the blue double curves also divide the red torus into a strip and a
2bigon. Similarly, if the green double curves divide the red torus into a pair of 1bigons,
then the blue double curves also divide the red torus into a pair of 1bigons.

We now show that both annuli must be 1bigons.
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Claim 5.26 Both annuli are 1bigons.

Proof Suppose the annuli consist of a strip and a 2bigon. The green and blue strips
cannot lie on the same side of the red torus by Lemma 5.13, so one side of the red torus
contains a green strip and a blue 2bigon, which intersect in red double arcs. As one of
the annuli is a strip, both double curves have the same number of triple points, so the
2bigon contains an innermost bigon adjacent to each of the boundary components.

Consider the solid torus on the side of the red torus which contains the green strip with
blue boundary. The green strip divides this solid torus into inner and outer solid tori.
If the boundary of the inner solid torus is a union of two strips, then all blue faces in
the inner solid torus are bigons, by Lemma 5.9. As there are two bigons, this gives at
most four triple points in total, a contradiction. So the boundary of the inner solid torus
consists of a green strip and a red 2bigon, and the boundary of the outer solid torus
consists of a green strip and a red strip. This implies that all blue faces in the outer
solid torus have the same number of triple points. If the faces in the outer solid torus
are bigons, then as there are two bigons, this again implies there are at most four triple
points, a contradiction, so in fact both bigons are contained in the inner solid torus.

As all faces are discs, the blue 2bigon contains either two hexagons, or an octagon. We
now show that in either case, these faces are contained in the inner solid torus. All blue
faces in the outer solid torus have the same number of triple points in their boundaries,
and the possible squares and hexagons are illustrated in Figure 22. Therefore, the outer
solid torus may not contain an octagon, as this implies there are exactly eight triple
points. There may not be a single hexagon in the outer solid torus, as then the other
hexagon and the two bigons would lie in the inner solid torus, giving different numbers
of red arcs in the green strip. If both hexagons lie in the outer solid torus, then the
inner solid torus contains two blue bigons and two blue squares. This determines the
arrangement of green double curves in the red torus, illustrated below in Figure 38.
The labels refer to which blue faces contain the green double arcs in the 2bigon. All
the green double arcs in the strip are contained in the hexagons.

In Figure 38 above, we have labelled the vertices of the red bigons with red dots, and
we have labelled the vertices of the blue bigons with blue dots. For a given bigon, the
orbits of its vertices are distinct, and so consist of exactly six points. As all the red and
blue bigons are disjoint from each other, this implies that the green bigons are disjoint
from red and blue bigons as well, and so the remaining four triple points, marked with
green dots above, must be the vertices of the two green bigons. However, the two
vertices of a green bigon must be adjacent along a blue double curve, and none of the
triple points marked with green dots in Figure 38 above have this property, so the outer
solid torus may not contain a pair of hexagons.
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Blue squares

Blue bigons

Figure 38: Two hexagons in the outer solid torus

We have shown that the blue hexagons or octagons are contained in the inner solid
torus. These faces are disjoint from the blue bigons, so their boundaries are inessential
curves in the boundary of the inner solid torus, and we now deal with each case in turn.

The boundary of a hexagon consists of three essential red arcs in the green strip, together
with three green arcs in the red 2bigon. As the boundary of the hexagon is inessential,
there is at least one inessential green arc connecting a pair of endpoints of red arcs on
the same blue double curve. The remaining triple point on that blue double curve must
be connected to a triple point on the other blue double by an essential green arc, and so
the remaining two triple points on the second blue double curve must be connected
by an inessential green arc. This corresponds to the hexagon illustrated in Figure 21.
However, there must be two hexagons in the inner solid torus, and this cannot happen if
all the inessential green arcs with endpoints in the same blue double curve are parallel.

The boundary of an octagon consists of four essential red arcs in the green strip. The
boundary of the octagon is inessential in the inner solid torus, so contains at least
one green arc which is inessential in the red 2bigon. If the boundary of the octagon
contains two inessential green arcs in the red 2bigon with endpoints in the same blue
double curve, then the other two green arcs in the red 2bigon are also inessential, with
endpoints in the other blue double curve. However, as the inessential green arcs must
be parallel in the red 2bigon, this creates two squares instead of an octagon. So the
boundary of the octagon contains one green arc with both endpoints in one of the
double curves, and the other two triple points in this double curve are endpoints of
essential green arcs in the red 2bigon. This implies that the boundary of the octagon
contains two essential green arcs, and two inessential green arcs, and the two inessential
green arcs have endpoints in the two different blue double curves. This gives rise to the
octagon illustrated in Figure 21. In this case, there may be no squares in the inner solid
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torus, so there are two bigons and an octagon in the inner solid torus, and exactly three
squares faces in the outer solid torus. The squares are meridional discs for the outer
solid torus, as illustrated in Figure 22. However, the blue surface is null-homologous,
so there must be an even number of blue squares, a contradiction.

So we have shown that the annuli consist of a pair of 1bigons. In particular, this means
that the faces in the red torus consist of a pair of bigons, a pair of hexagons, and all
other faces are squares. Furthermore, note that the red bigons each lie on different
sides of both the green and blue double curves, so the blue bigons lie on different sides
of the red torus. Similarly, the blue hexagons lie on different sides of the red torus.

We now show there are more than six triple points. If there are only six triple points,
the diagram is the one shown in Figure 39 below.

a b

ga

gb

Figure 39: Six triple points

Recall from [3, Section 2.5] that each triple point may be given a sign, either positive
or negative, which is preserved by g , and which has the property that triple points
which are adjacent to each other in a double curve have opposite signs. There is only
one point in b\gb , and its image lies in gb . The triple point b\gb can’t be a fixed
point, so this triple point gets mapped to a\gb , but this is adjacent to b\gb in the
blue double curve gb , and so has the opposite sign, a contradiction. Therefore, there
must be at least 12 triple points.

The green 1bigon divides the solid torus bounded by the red torus into two regions,
one of which is the inner solid torus. As there are at least 12 triple points, there must
be at least two blue squares on each side of the green 1bigon. We now construct all
possible squares in these two regions.

Consider squares in the inner solid torus. If both red arcs are essential in the green
annulus, then both green arcs must be inessential in the red 1bigon, but then the two
inessential green arcs meet different boundary components of the 1bigon, a contradiction.
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If both red arcs are inessential, then as the green annulus is a 1bigon, they must both
have endpoints on a common blue double curve, and be parallel. However, this means
that both green arcs must also be inessential and parallel. In order for the union of the
arcs to form a simple closed curve, each red arc must have endpoints in a different
green arc, but then the resulting simple closed curve is homotopic to a core curve of
the solid torus, and so does not bound a disc inside the solid torus. The remaining case
is when there is one essential red arc, and one inessential red arc, and this is illustrated
below on the left hand side of Figure 40.

Consider squares in the outer solid torus. If both red arcs in the boundary of the square
are inessential, then the green arcs must also be inessential, and as before, this means
that the boundary of the square is isotopic to the blue double curve. If this happens,
then the blue essential double curve is a meridian curve for the solid torus, and if this
happens on both sides, then the manifold is S2 � S1 , so we may assume we have
chosen a side of the red torus where the blue double curve is not a meridian, and so
there are no squares in the outer region with both red boundary arcs inessential. If
there are one or two essential arcs, then the possible squares are illustrated below in
the center and right hand diagrams in Figure 40. In both of these two cases the square
forms a compressing disc for the outer region, so by irreducibility, the outer region is a
solid torus.

A square in the inner solid torus Squares in the outer solid torus

Figure 40: Squares in the inner and outer solid tori

There are therefore two types of mutually exclusive square that may occur in the outer
region, and we consider each case in turn.

Case 6.1 The squares in the outer solid torus have essential boundary arcs only.

Consider the case in which the boundaries of the outer squares contain essential red
arcs only, as illustrated in the right-most diagram in Figure 40. There are at least two
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squares in the inner solid torus, and these have at least two inessential red arcs in their
boundaries. These inessential red arcs cannot lie in squares in the outer region, and at
most one essential red arc lies in the blue bigon, so the blue hexagon must be contained
in the outer region.

If the blue bigon is contained in the inner solid torus, then both boundary arcs of the
bigon are essential, so if there are n squares in the inner solid torus, then there are
nC 1 essential red arcs, and n inessential red arcs. This means there are 2nC 1 red
arcs in total, and so there are 4nC 2 triple points, which must be divisible by six, and
at least 12, so n must be at least four. This means there are at least four inessential red
arcs, but this is a contradiction, as all faces in the outer solid torus have essential red
arcs in their boundaries, except for at most three inessential arcs in the hexagon.

If the blue bigon is contained in the outer region, then there are only squares in the
inner solid torus. If there are n such squares, then there are n essential red arcs and n

inessential red arcs, giving a total of 2n red arcs and 4n triple points, so n must be
at least three. The blue bigon must have inessential boundary, and the hexagon has
at most three red inessential arcs in its boundary, so nD 3, and the hexagon has two
inessential red arcs, and one essential red arc in its boundary. However, this means that
the hexagon intersects the blue double curve with fewer triple points precisely once, so
is a disc with ˙1 intersection number with an essential blue double curve, which is a
contradiction, as every disk in the outer solid torus has even intersection number with
the essential blue double curves.

Case 6.2 The squares in the outer solid torus have inessential boundary arcs.

Now suppose that the outer squares contain both essential and inessential red arcs in
their boundaries.

We now show that the boundary of the blue bigon consists of a pair of essential arcs,
no matter which side it lies on. Suppose that the blue bigon has both boundary arcs
inessential. If it lies in the inner solid torus, then the presence of a square in the inner
solid torus forces the red annulus in the boundary of the inner solid torus to be a 2bigon.
If it is in the outer solid torus, then the green arc in the bigon must cross the green arcs
of a square in the outer solid torus.

The squares in both the inner and outer regions all have exactly one essential arc and
one inessential arc, and the total number of essential red arcs of faces in the inner solid
torus must be the same as the total number of essential red arcs of faces in the outer
region. So if the blue hexagon and the blue bigon lie on the same side of the green
1bigon, then the hexagon must have two inessential red arcs, and one essential red arc.

Algebraic & Geometric Topology, Volume 7 (2007)



Period three actions on lens spaces 2085

Otherwise, if the blue hexagon and the blue bigon lie on different sides of the green
1bigon, then the blue hexagon must have two essential red arcs and one inessential red
arc.

Claim 5.27 The hexagon has two essential red arcs.

Proof Suppose there is a hexagon with exactly one essential red arc. The two inessen-
tial red arcs are parallel, and the innermost one has endpoints in two distinct green arcs.
Removing the innermost red arc and connecting the resulting free endpoints of the two
green arcs creates a blue square with one essential red arc and one inessential red arc,
as illustrated in the leftmost diagram in Figure 40. This operation is equivalent to doing
a boundary compression of the disc along a disc parallel to the green disc bounded by
the innermost red arc and the corresponding innermost arc of the blue double curve
with the same endpoints, and discarding the resulting component with two triple points.
This means that the hexagon may be recovered by the reverse process, ie, choose an
arc in the red torus with one endpoint in a green double arc component of the boundary
of the square, and the other endpoint in the innermost blue double arc bounded by
the inessential red double arc in the boundary of the square, and then do a “disc slide”
of the blue disc along this arc. Furthermore, this arc must be chosen so that the disc
slide does not create any green bigons which are not parallel to the green inessential
boundary arc in the blue square. There are only two possible ways of doing this, and
they are illustrated in Figure 41 below.

Figure 41: “Disc slide” arcs for a blue square

Figure 41 above shows part of the region bounded by the red and green annuli; the two
ends of these surfaces should be identified to form a torus.

The resulting two hexagons with exactly one essential arc are illustrated in Figure 42
below.
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Figure 42: Hexagons in the inner solid torus with one essential red arc

In the left hand case, there may be no squares in the solid torus, so there are eight triple
points in total, a contradiction, while in the right hand case, there may be no essential
bigon in the solid torus, which is also a contradiction.

So we may assume that the hexagon has two essential arcs. In the left hand side of
Figure 43 below we have drawn the only possible hexagon with exactly two essential
arcs, up to Dehn twists in a curve in the red 1bigon parallel to the blue double curves.
As there must also be squares in the solid torus, there must in fact be exactly one Dehn
twist, as illustrated on the right hand side of Figure 43. We have drawn the square face
with black boundary arcs, in order to distinguish it from the hexagon.

Figure 43: Hexagons with two essential red arcs

If there are n parallel squares in the solid which contains the hexagon, then in the other
solid torus, the blue faces consist of an essential blue bigon, and nC1 parallel squares.
This gives the following pattern of green arcs in the red torus. The shaded regions
correspond to parallel green arcs; the number of parallel green arcs is indicated by the
label in the region.

We will label the blue double curve with fewest triple points a, and the other blue
double curve b . We will give the triple points on a labels a1; : : : ; anC2 , starting with
the the triple point on a which lies in the essential green arc of the bigon. Similarly
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Figure 44: The green arcs in the red torus

we will give the triple points on the double curve b the labels b1; : : : b3nC4 , starting
with the triple point which lies in the essential green arc of the bigon. Each vertex
has a sign, and we will label a1 as C, and this gives a sign ˙ to the other vertices,
depending on whether they are an even or odd distance from a1 , and we will indicate
the sign with a superscript. The two red bigons share a triple point, and the triple points
in their boundaries are fb�

nC1
; bC

nC2
; b�

nC3
g. One of the green bigons has a red arc

corresponding to the inessential red arc in the hexagon, so fb�
2nC3

; bC
2nC4
g lie in the

boundary of the green hexagons. The third vertex is either bC
2nC2

or b�
2nC5

, and so in
fact must be b�

2nC5
, as the sign is preserved by g , so there are two negative vertices

and one positive vertex. One of the blue essential bigons has vertices faC
1
; b�

1
g, so the

third vertex is either bC
2nC2

or b�
2nC5

, so as it must have negative sign, it must in fact
be b�

2nC5
. However, this means that the green and blue bigons share a vertex, but the

blue and red bigons do not share a vertex, a contradiction. Case 6
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5.4 Disjoint bigons for saddle moves

In this section we show that there are disjoint bigons for saddle moves. The only result
we use from Sections 5.2 and 5.3 is Lemma 5.17, that there are at least three bigons.

Lemma 5.28 There are disjoint bigons for saddle moves.

First we set up some notation, and prove some preliminary lemmas. We will always
call the singular curve a. We will draw the curve involved in the saddle move as either
an eyeglass curve, ie, as two smooth circles connected by an arc, or as a theta curve,
ie, a single smooth curve, together with an arc with both endpoints in the curve. The
connecting arc we will call the saddle arc, and we will refer to the one or two smooth
circle components as loops. The blue singular curve is the image of the green singular
curve under g , so the green curve is an eyeglass curve if and only if the blue curve is
an eyeglass curve. Recall that we call the union of the blue and green double curves
with triple points the blue-green diagram. We will refer to the union of the blue-green
diagram and the blue and green saddle arcs, as the saddle diagram. We will call the
union of a blue arc and a green arc which meet exactly at their endpoints and contain
no other triple points a bigon-boundary. A bigon-boundary may not bound a bigon
as it may not necessarily bound a disc. If we orient the green and blue arcs in the
bigon-boundary, then each point of intersection has opposite orientation, as if they had
the same orientation, then a regular neighbourhood of the bigon-boundary would have
a boundary component which is a simple closed curve in the red torus that hits the
union of the green curves precisely once. However, the union of the green curves is
null-homologous in the red torus, so this cannot happen. So a regular neighbourhood
of the bigon-boundary in the red torus is an annulus with one boundary curve disjoint
from the double curves.

By Lemma 5.17, the configuration both before and after the saddle move contains at
least three bigons. So we may assume that each saddle arc in the saddle diagram has at
least one endpoint on a bigon. A third red bigon may also have an endpoint of either
the green or blue saddle arc meeting its boundary. The interior of the third bigon either
intersects the interior of the saddle arc, or else meets the saddle arc only in its endpoint.
If the interior of the saddle arc meets the interior of the bigon, then the third bigon is
adjacent to one of the first two bigons. These two different cases are illustrated below
in Figure 45.

In the adjacent bigons case we have drawn the case in which the singular curve is an
eyeglass. There is a similar picture in which the saddle arc and the loop with no triple
points are replaced by a saddle arc with both endpoints in the loop with triple points,
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a

ga

a ga

Adjacent bigons Non-adjacent bigons

Figure 45: Adjacent and non-adjacent bigons

forming a theta curve. We will refer to both configurations as the case of adjacent
bigons. In the non-adjacent bigons picture the part of the singular curve shown may lie
in either a theta curve or an eyeglass.

We deal with the two cases of adjacent or non-adjacent bigons separately. However,
in each case the strategy is the same. First we show that the orbits of the triple points
closest to the saddle arcs are all distinct, and construct the local configuration of the
saddle diagram near these points. We then show that the saddle diagram may not have
more than one connected component, and then finally eliminate this case.

5.4.1 Adjacent bigons We start by showing that the orbits of the triple points closest
to the saddle arc are distinct.

Lemma 5.29 If the saddle arcs meet adjacent bigons then the orbits of the triple points
closest to the green saddle arc are all distinct.

Proof We may assume that the adjacent bigons share a common green arc, and we
will label the blue double curve made up of the blue arcs of the adjacent bigons gc .
The double curve gc contains exactly two triple points, which we will call x and y .
This is illustrated below in Figure 46.

If the triple points closest to the saddle arcs, namely x , y , gx and gy; are not all
distinct, then the pair of points fx;yg is the same as the pair of points fgx;gyg, as
the blue double curve gc is a loop of the eyeglass curve ga. This means there is a pair
of points invariant under G , a contradiction. So we may assume that the points in the
orbits of x and y are all distinct. This also implies that the double curve c is not one
of the loops of a. Figure 46 above shows the blue-green diagram close to the orbits of
x and y .

We now show that the saddle diagram is connected.
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Figure 46: The local configuration for adjacent bigons

Lemma 5.30 Suppose the saddle diagram has more than one component. Then there
is a bigon disjoint from the saddle arcs.

Proof We divide the proof of this lemma into two steps. We first show that no
connected component of the saddle diagram may be contained in a disc. We then argue
that the only other possibility is that the saddle diagram consists of two components,
both contained in annuli, and then deal with that case.

Case 1 Suppose the saddle arcs meet adjacent bigons, and a component of the saddle
diagram is contained in a disc. Then there is a bigon disjoint from the saddle arcs.

A pair of intersecting curves in a disc creates at least three bigons. A single image of a
saddle arc may intersect at most two bigons, so both the green and blue saddle arcs
must be contained in the same connected component of the saddle diagram, lying in
the disc.

The green double curve c , together with the arc of gb between g2x and g2y with
no triple points in its interior, creates two bigon-boundaries, as illustrated in Figure
46. As we have assumed that the saddle diagram is contained in a disc, at most one
of these bigon-boundaries may not bound a disc. In order to avoid a disjoint bigon,
the bigon-boundary which bounds a disc must contain either a green or blue saddle
arc in its interior, contained in a connected component of the saddle diagram. But
this means that the different saddle arcs live in different connected components of the
saddle diagram, so there is a disjoint bigon. Case 1

If any connected component of the saddle diagram is contained in a punctured torus,
then any other component must be contained in a disc, which we have just shown may
not occur. Any collection of intersecting double curves contained in an annulus creates
a bigon, so if there are three or more connected components of the saddle diagram
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contained in annuli then there is a disjoint bigon, as there are only two saddle arcs. So
the final disconnected case to consider is if the saddle diagram has two components,
each contained in an annulus.

Case 2 Suppose the saddle arcs meet adjacent bigons, then the saddle diagram may
not contain two connected components, both contained in annuli.

The leftmost picture in Figure 46 contains a pair of bigon-boundaries. If either bounds a
disc, then it is a bigon disjoint from the saddle arcs, as we have shown that no connected
component of the saddle-diagram is contained in a disc. Therefore, neither bounds a
disc, and the only way this can happen is if they are tubed together to form an annulus
with a pair of bigon-boundaries, as illustrated below in Figure 47.

a

x

y

gc

b

ga

gb

g2x

g2y

c

gx

gy

Figure 47: The local configuration when the saddle diagram has two annular components

This implies that the green double curve c bounds a punctured torus on one side, and
therefore must bound a disc on the other side, so the other component of the saddle
diagram is contained in the annulus with two bigon-boundaries.

The blue double curve gb divides the disc bounded by the green curve c into two
discs, each of which contains at least one bigon, separated by the blue curve. In order
for both of these bigons to intersect a single saddle arc, the blue saddle arc must lie
in this component, and gb must be the loop of ga containing triple points. This is
illustrated below in the left hand side of Figure 48.

In the left hand side of Figure 48 above we have chosen to draw the saddle arc on one
particular side of the blue double curve ga, but it makes no difference which side it
lies on.

Any green arcs with endpoints in ga must be parallel to the green arcs of c , and so
must be parallel to the green curve c . Any other blue double curves create disjoint
bigons, so there may be no other blue double curves with triple points. Therefore the
left hand side of Figure 48 shows all possible blue and green double curves in this
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ga

c
gc

a

Figure 48: The saddle arcs contained in two annular components of the saddle diagram

annular component of the saddle diagram. The dotted green curve represents some
number, which may be zero, of parallel green double curves.

The green saddle arc lies in the other connected component of the saddle diagram. The
blue double curve gc bounds a disc containing a pair of bigons, so is inessential. If
the green double curve a is also inessential, then it contains a disjoint bigon, so it
must be essential. This is illustrated above in the right hand side of Figure 48. Any
blue double arcs with endpoints in a must be parallel to gc , and so all blue curves
in this component are parallel to gc . Any other green double curves contained in
this component create disjoint bigons, so there may be no other green double curves.
Therefore the left hand side of Figure 48 shows all possible green and blue double
curves in the connected component of the saddle diagram containing the green saddle
arc. The blue dotted curve represents some number, which may be zero, of parallel
blue double curves.

The configuration has the property that all triple points lie on either a or ga. As each
triple point has three orbits under G , this means that two of them must lie on the
same double curve. By choosing labels appropriately, we may assume that x and gx

lie in the same double curve. Suppose that x and gx lie on the green double curve
a. But if x is in a, then gx lies in ga, so the double curves a and ga intersect, a
contradiction. Similarly, if x and gx lie in the blue double curve ga, then as gx is in
ga, this implies that x is in a, so again the double curves a and ga must intersect, a
contradiction. Case 2

This completes the proof of Lemma 5.30.

We have shown that there are disjoint bigons if the saddle diagram is disconnected. So
we now assume that the saddle diagram is connected, and contains the local configura-
tions shown in Figure 46.

The green double curve c , together with the arc of gb between g2x and g2y with
no triple points in its interior, creates two bigon-boundaries. By Lemma 5.30 the
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saddle diagram is connected, so they cannot bound discs, so they are tubed together, as
illustrated previously in Figure 47 above.

The green and blue saddle arcs lie in the disc bounded by c . There is a blue arc of gb

which divides this disc into two discs, each of which contains a bigon. If the double
curve gb is not part of ga, then the green and blue saddle arcs must lie on different
sides of gb in the disc bounded by c . But then the loop of ga containing triple points
is inessential, so contains two bigons, at least one of which is disjoint from the saddle
arcs. So we may assume that b is a loop of a.

This means that the blue loop of ga with triple points is essential, and the green loop
of a with triple points is disjoint from c , and hence contained in the disc bounded by
c , and so is inessential, and bounds a disc containing the blue saddle arc in its interior.
This is illustrated in Figure 49 below. There may be many double curves parallel to the
dotted curves. There must be an even number of essential double curves of each colour,
as the union of the double curves of a single colour is null-homologous, so there must
be at least one blue curve without triple points. The saddle arcs may lie on either side
of the loops with triple points, this makes no difference to the argument that follows.

ga

c

gc

a

Figure 49: The eyeglass ga has an essential loop.

Consider the configuration after the saddle move. The green curves divide the red torus
into a disc, some number of annuli, and a punctured torus. The red disc bounded by
the green curve a gets mapped to a green disc bounded by the blue curve ga, so ga is
a meridian on this side of the red torus. The adjacent red annulus between a and the
next green curve gets mapped to a green annulus with blue boundary, one of whose
boundary curves is ga. This green annulus lies on the other side of the red torus to the
green disc whose boundary is ga. The blue curve ga does not bound a disc on the
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other side of the red torus to the green disc, as L is not S2�S1 , so this green annulus
has both blue boundary components essential and with the same slope on the red torus.
But only one essential blue curve has triple points, and the annulus has triple points on
both components, a contradiction.

This completes the proof of Lemma 5.28 in the case that the saddle arcs meet adjacent
bigons.

5.4.2 Non-adjacent bigons We now consider the case in which the saddle arcs meet
non-adjacent bigons. We start by showing that the orbits of the triple points closest to
the saddle arc are distinct.

Lemma 5.31 Suppose the saddle arcs meet non-adjacent bigons. Then the orbits of
the triple points closest to the green saddle arc are all distinct.

It will be convenient to give a name to the union of the saddle arc and the two segments
of the loops between the closest triple points to the saddle arc.

Definition 5.32 (The green H and the blue H , and the H –points) Consider the
green singular curve a, minus its triple points. Call the closure of the connected
component of this which contains the saddle arc the green H . Define the blue H

similarly. We shall refer to the endpoints of the H as the H –points.

Proof We start by showing that the endpoints of each H are distinct from each other.
The triple points alternate in sign going clockwise around the endpoints of the green
H , and G preserves the sign of the triple points. If opposite points are the same, then
the green arcs are part of a single essential curve which is saddled to itself by a saddle
arc which is essential in the annulus formed by the complement of the green double
curve in the red torus. But this means that the union of the green curves is a non-zero
homology class in the red torus, a contradiction.

We now wish to show that in fact the orbits of all the H –points are distinct. Figure 50
below shows the configuration close to the orbits of the H –points.

The top row of Figure 50 shows the saddle move going forward in time, while the
bottom row shows it going back in time. The rightmost bigon-boundary cannot bound
a disc, or else there is a disjoint bigon, so it is tubed to some other face. The bottom
configuration also contains at least three bigons, which may not be disjoint from the
saddles, or else there is a disjoint bigon. So one of the saddle arcs has its endpoints on
two bigons, and the other on at least one. There are two different ways in which this
can happen, illustrated in Figure 51 below.
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a

a

ga

ga

Going forward in time

Going backward in time

Figure 50: The orbits of the H –points are all disjoint.
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t

t

x

x

y

y

ga
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b

b

gz
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gt

gy

gy

gx

gx

gb

gb

c

c

g2z

g2z

g2t

g2t

g2y

g2y

g2x

g2x

Figure 51: The two different local configurations for non-adjacent bigons

We now deal with different cases depending on how the orbits of the endpoints of the
H may overlap. We label the triple points fx;y; z; tg as illustrated in Figure 51. If
the H –points are not all distinct, then, in particular, the sets of points fx;y; z; tg and
fgx;gy;gz;gtg must have an element in common. Recall that each triple point has
a sign, which is preserved by G , and triple points which are adjacent along a double
curve have opposite sign. This means that if x is an element of fgx;gy;gz;gtg, then
it may only be equal to gx or gz . As there are no fixed points, this means that if x is
a member of fgx;gy;gz;gtg, then it must be gz . Analogous arguments show that
the only possible identifications between elements of fx;y; z; tg and fgx;gy;gz;gtg

are x D gz;y D gt; z D gx or t D gy .
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We now deal with the upper and lower configurations in turn. In each case, the basic
strategy is to observe that if two triple points are the same, then their adjacent triple
points along a double curve are also the same. Hence any pair of identifications between
the triple points in the diagrams gives rise to extra identifications among the triple
points which are adjacent to it along double curves. Repeating this procedure, we
eventual find so many identifications that it gives rise to a triple point that is its own
image, ie a fixed point, which is a contradiction.

Case 1 The upper diagram in Figure 51

First suppose that x D gz . In the top left diagram of Figure 51, the triple point x is
adjacent to y and t along a blue double curve. In the top middle diagram of 51, the
triple point gz is adjacent to gy along a blue double curve. This implies that gy is
equal to either y or t , but as there are no fixed points, this implies t D gy . Applying
g , this implies gt D g2y . In the top middle diagram of Figure 51, the triple point gt

is adjacent to gz along a green double arc, while in the top right diagram of Figure 51,
g2y is adjacent to the triple points g2x and g2z along green double arcs. As there
are no fixed points, this implies that gz D g2x . But we assumed that x D gz , so this
gives x D g2x , giving a fixed point, a contradiction.

Now suppose that y D gt . The triple point y is adjacent to x and z along blue arcs,
and gt is adjacent to gx . As there are no fixed points, this implies that z D gx .
Applying g , this implies that gz D g2x . The triple point gz is adjacent to gy and
gt along green arcs, whereas the triple point g2x is adjacent to g2y and g2t along
green arcs. This implies that the pair of points fgy;gtg is equal to the pair of points
fg2y;g2tg, but this gives a pair of points fixed by g . As g has order three, this implies
that g has fixed points, a contradiction.

Now suppose that z D gx . The triple point z is adjacent to y and t along blue arcs,
while gx is adjacent to gt along a blue arc. As there are no fixed points, this implies
y D gt , which is the case we have just dealt with.

Finally suppose that t D gy . The triple point t is adjacent to x and z along blue arcs,
while gy is adjacent to gz along a blue arc, so as there are no fixed points, x D gz ,
which was the first case we considered. Case 1

Case 2 The lower diagram in Figure 51

It will be convenient to consider the cases in a different order.

First, suppose that t D gy . This implies that gt D g2y . The triple point g2y is
adjacent to g2x and g2z along green arcs, so as g2y is the same triple point as gt ,
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this implies that the triple points gz and gx , which are adjacent to gt along green
arcs are the same as the pair of triple points g2x and g2z . However, this implies that
the pair of points gz and gx are G–invariant, but as g has order three, this means
they are fixed points, a contradiction.

Now suppose that x D gz . The triple point x is adjacent to t along a green double
curve, and the triple point gz is adjacent to gy and gt along a green double curve.
As there are no fixed points, this means that t D gy . But this is the case we have just
considered.

Now suppose that y D gt . The triple point y is adjacent to z along a green arc, while
gt is adjacent to gz and gx along green double arcs, so as there are no fixed points,
this implies that z D gx . Applying g , this implies that the triple point gzD g2x . The
triple point gz is adjacent to the triple points gy and gt along green arcs, while the
triple point g2x is adjacent to g2y along green arcs. As there are no fixed points, this
implies that gt D g2y . However, as y D gt , this implies that y D g2y , giving a fixed
point, a contradiction.

Finally suppose that z D gx . The triple point gx is adjacent along a blue arc to gt ,
so gt is equal to either t or y . As there are no fixed points, this implies that y D gt ,
but this is the previous case we have discussed. Case 2

This completes the proof of Lemma 5.31.

We now show that the saddle diagram is connected. As in the case of adjacent bigons,
we start by showing that no component of the saddle diagram may be contained in a
disc. We then argue that the only remaining disconnected case is when there are two
components, each contained in an annulus, and we then deal with that case.

Lemma 5.33 Suppose the saddle arcs meet non-adjacent bigons. Then the saddle
diagram is connected.

Proof We first show that no connected component of the saddle diagram may be
contained in a disc.

Case 1 Suppose the saddle arcs meet non-adjacent bigons, and a component of the
saddle diagram is contained in a disc. Then there is a bigon disjoint from the saddle
arcs.

A pair of intersecting curves in a disc creates at least three bigons. A single image of a
saddle arc may intersect at most two bigons, so both the green and blue saddle arcs
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must be contained in the same connected component of the saddle diagram, lying in
the disc.

In both the upper and lower cases illustrated in Figure 51, the right hand diagrams
contain a pair of bigon-boundaries, formed by arcs of c and gb , at most one of which
may not bound a disc. A bigon-boundary which bounds a disc is either a disjoint
bigon, or contains a connected component of the saddle diagram, which either creates a
disjoint bigon, or contains at least one saddle arc. But by the argument in the previous
paragraph, a connected component of the saddle diagram contained in a disc contains
both saddle arcs, so in fact both saddle arcs are contained in the disc bounded by the
bigon-boundary, and the component of the saddle diagram containing c and gb must
have a disjoint bigon. Case 1

So we have shown that no connected component of the saddle diagram may be contained
in a disc. Any collection of intersecting curves in an annulus creates at least two bigons,
so if there are three or more components then there is a disjoint bigon. So there are
exactly two connected components in the saddle diagram, each of which is contained
in an annulus, and each component contains one of the blue or green saddle arcs.

Case 2 Suppose the saddle arcs meet non-adjacent bigons. Then the saddle diagram
may not have two connected components, both contained in annuli.

The two possible local configurations near the orbits of the H –points is shown in Figure
51 above. In both cases, the right hand diagrams contain a pair of bigon-boundaries,
which may not bound discs, as this would create disjoint bigons. Therefore, they must
be tubed together to form an annular region, whose boundary consists of a pair of
bigon-boundaries, as illustrated in Figure 52 below.

A regular neighbourhood of the annulus with boundary a pair of bigon-boundaries is
a punctured torus, so all other faces in the annular component containing the green
double curve c must be discs. However, there must therefore be bigons on both
sides of the green double curve c , in the complement of the annular region with two
bigon-boundaries. These bigons may meet a single saddle arc only if the saddle arc
is green. Similarly, there are bigons on both sides of the blue double curve gb in the
complement of the annular region with two bigon-boundaries, and again the only way
this can happen is if the two bigons meet the blue saddle arc. However, this implies
that both the green and blue saddle arcs are contained in a single annular connected
component of the saddle diagram, but there must be one saddle arc in each component,
a contradiction. Case 2

This completes the proof of Lemma 5.33.
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Figure 52: Annuli with bigon-boundaries

Finally, we consider the case in which the saddle diagram contains a single connected
component. In both cases illustrated in Figure 51, the rightmost diagram contains a
pair of bigon-boundaries, neither of which may bound a disc, so they must be tubed
together to form an annulus whose boundary consists of a pair of bigon-boundaries,
as illustrated in Figure 52. The annulus with bigon-boundaries may not contain any
triple points in its interior, as the saddle diagram is connected by Lemma 5.33. As
there are no double curves with triple points in the annulus, all curves with triple points
are inessential, except for the green and blue curves in the rightmost diagram in Figure
52. We consider two cases depending on whether or not the green double curve c is a
loop of the singular green curve a.

Case 1 The green double curve c is not part of the singular green curve a.

Suppose that the green curve c shown in the rightmost diagram does not form part of
the singular curve a. This has to happen in the top case, as the orbits of the H –points
are distinct, but may not necessarily happen in the bottom case. The saddle diagram
consists of a single component contained in an annulus, and the green double curve
c is essential in this annulus, and divides it into two pieces, each of which contains
at least one bigon. As the green and blue saddle arcs are disjoint from c , there must
be one saddle arc on each side of c . Suppose the green singular curve has two loops.
Then there is an innermost green loop which bounds a disc containing at least two
bigons, only one of which may meet the saddle arc, so there is a disjoint bigon. If the
green singular curve contains a single loop, then this loop bounds a disc containing at
least two bigons, which must both intersect the green saddle arc, so the green saddle
arc may not lie in the interior of the green loop. As the saddle arc lies in the exterior
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of the green loop, it divides the complement of the disc bounded by the green loop
into two parts, one of which is a disc. The blue arcs in the interior of the disc bounded
by the green loop are contained in blue double curves which may not cross the green
saddle arc, so this creates a disjoint bigon inside this disc. Case 1

Case 2 The green double curve c is a loop of the singular curve a.

Now suppose that the green double curve c is one of the loops of the singular green
curve a. As the orbits of all of the H –points are distinct, this can only happen in the
lower case of Figure 52. The singular curve a has either one or two loops, and we deal
with each case in turn.

Case 2.1 The singular curve a has a single loop.

Suppose that the singular curve a contains a single loop. Then the green saddle arc,
together with a subsection of the green loop, bounds a disc. The subsection of the
green loop between the endpoints of the saddle arc must contain triple points, so there
is a blue arc which creates a bigon inside this disc, disjoint from the green saddle arc.
This bigon must therefore meet the blue saddle arc. But again, the blue saddle arc,
together with part of the blue loop of ga, bounds a disc, and there must be triple points
in between the endpoints of the blue saddle arc. Therefore the disc bounded by the
blue saddle arc and part of the blue loop contains a disjoint bigon. This is illustrated
below in Figure 53.

gb

a

Figure 53: The singular curve a has a single loop.

In Figure 53 above, we have chosen to draw the saddle arcs as lying above the loops;
this makes no difference to the argument.
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Case 2.2 The singular curve a has two loops.

Finally, suppose that the singular curve a has two loops. There are two ways in which
this can happen, illustrated below in Figure 54.

gb

a

gb

a

n

m

nCmC4 n
m

nCmC2

Figure 54: The singular curve a has two loops.

Figure 54 above shows all possible blue arcs that may occur. The dotted lines show
that there may be many arcs parallel to the one shown. We have drawn the saddle arcs
as points, as there are two different ways in which they may occur, either horizontal or
vertical. In both cases, the arcs of gb meet a on the left hand side of the green saddle
arc, and there are two collections of blue arcs that have endpoints on either side of
the green saddle arc. The labels on the dotted arcs refer to how many curves there are
parallel to each arc, so n and m are non-negative integers, and the number of dotted
arcs on one side of a determines the total number of dotted arcs on the other side
of a. In both cases, there are enough blue arcs on the other side of the green saddle
arc to create a blue double curve (corresponding to the one labelled gc in Figure 52)
containing precisely the four triple points closest to the green saddle, and in particular,
this blue double curve is disjoint from the blue saddle arc. However, we have assumed
that c is part of the singular curve a, a contradiction. Case 2

This completes the proof of Lemma 5.28.
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