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Ideal boundary of 7–systolic complexes and groups

DAMIAN OSAJDA

We prove that ideal boundary of a 7–systolic group is strongly hereditarily aspherical.
For some class of 7–systolic groups we show their boundaries are connected and
without local cut points, thus getting some results concerning splittings of those
groups.

20F65; 20F69

1 Introduction

The notion of a k –systolic complex (k a natural number at least 6) was introduced by
T Januszkiewicz and J Świa̧tkowski [13] and, independently, by F Haglund [10] as a
combinatorial analogue of a nonpositively curved space. A k –systolic complex is a
simply connected simplicial complex satisfying some local combinatorial conditions.
Roughly speaking, there is a lower bound for the length of “essential” closed paths in a
one-skeleton of every link.

A group acting geometrically by automorphisms on a k –systolic complex is called
a k –systolic group. Januszkiewicz and Świa̧tkowski constructed examples of such
torsion free groups of arbitrary large cohomological dimension, for every k � 6 [13].
The examples are fundamental groups of some simplices of groups. In the same paper
they prove that 7–systolic groups are Gromov-hyperbolic.

In this paper we study 7–systolic complexes and groups and in particular their ideal
boundaries. Our main result is the following.

Main Theorem (Theorem 4.2) The ideal boundary of a 7–systolic group is a strongly
hereditarily aspherical compactum.

The notion of strong hereditary asphericity (see Section 2.3 for the precise definition)
was introduced by R J Daverman [5]. Roughly speaking, a space is hereditarily as-
pherical if each of its closed subsets is aspherical. The significance of this notion
follows from the fact that a cell-like map defined on a strongly hereditarily aspherical
compactum does not raise dimension.
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The Main Theorem shows that 7–systolic groups are quite different from many classical
hyperbolic groups. It gives also new examples of topological spaces that can occur as
boundaries of hyperbolic groups. The question about the spaces being such boundaries
is well understood only in dimensions 0 and 1—compare Kapovich and Kleiner [16].
It is still not known which topological spaces can be higher dimensional boundaries of
hyperbolic groups and only a few homeomorphism types of such spaces are known—see
Benakli and Kapovich [15] and Remarks 4.3 (1). Moreover, we show in Corollary 5.7
that for certain classes of complexes (and groups) their ideal boundaries are “simple”
in a sense—they are connected and have no local cut points.

In order to prove the main theorem we define (in Section 3) an inverse system of
combinatorial spheres in a 7–systolic complex and projections onto them, whose
inverse limit is the ideal boundary of the complex. It should be noticed that even in the
more general systolic (which means 6–systolic) case some such inverse system can be
defined (cf Januszkiewicz and Świa̧tkowski [13, Section 8]). However its properties
prevent it from being the right tool to define a reasonable boundary of a systolic complex
or group. In particular the inverse limit of this standard systolic inverse system in a
7–systolic case is not the Gromov boundary. On the other hand, our construction is not
valid in general systolic case, although some results are probably true for hyperbolic
systolic (not necessarily 7–systolic) groups.

In Section 5 we study further properties of boundaries of some 7–systolic complexes.
In particular we prove the following theorem, which is a special case of Theorem 5.6
proved in that section.

Theorem (Corollary 5.7) Let X be a locally finite 7–systolic normal pseudomanifold
of dimension at least 3. Then its ideal boundary @X is connected and has no local cut
points.

Via the results of Stallings [19] and the ones of Bowditch [2] the latter theorem implies
the following.

Theorem (Corollary 5.9) A group acting geometrically by automorphisms on a
locally finite 7–systolic normal pseudomanifold of dimension at least 3 does not
split essentially over a finite or two-ended group as an amalgamated product or an
HNN-extension.

Groups acting geometrically on such pseudomanifolds of arbitrary large dimension
were constructed in Januszkiewicz and Świa̧tkowski [13] and are the only 7–systolic
groups of cohomological dimension greater than 2 known to us at the moment.
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2 Preliminaries

2.1 Simplicial complexes

In this section we recall some definitions and fix the notation.

Let X be a simplicial complex. We denote by X 0 the first barycentric subdivision of
X . For a natural number k , we denote by X .k/ the k –skeleton of X , ie the union of
all simplices of X , of dimension at most k . For a given subset C D fv1; v2; :::; vlg

of X .0/ we denote by hv1; v2; :::; vli the minimal simplex in X containing C —the
simplex spanned by C . We denote by X� the link of a given simplex � in X . A
simplicial complex X is flag if every set B of pairwise connected (by edges) vertices
of X spans a simplex in X .

Recall that a subcomplex Y of X is full if every set B of vertices of Y spanning a
simplex of X spans a simplex in Y . We denote by � � � the join of simplices � and
� .

If it is not stated otherwise a simplicial complex X is equipped with a path metric dX

for which every k –simplex of X is isometric to the regular Euclidean k –simplex.

A simplicial complex X is called a chamber complex of dimension n if it is the union
of n–simplices (which are called chambers of X ) and for every .n� 1/–dimensional
face of X there exist at least two chambers containing that face. It is easy to see that
links in a chamber complex are themselves chamber complexes. A gallery in a chamber
complex is a finite sequence of maximal simplices such that two consecutive simplices
share a common face of codimension 1. A chamber complex is said to be gallery
connected if any two chambers can be connected by a gallery. Chamber complex is
normal if it is gallery connected and all its links of dimension above 0 are gallery
connected. A chamber complex is a pseudomanifold if every codimension one face
belongs to exactly two chambers.
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2.2 Systolic complexes and groups

We follow here Januszkiewicz and Świa̧tkowski [13; 14]. For a given natural number
k � 4, a simplicial complex X is k –large if it is flag and every cycle 
 in X (ie a
subcomplex homeomorphic to the circle) of length 4� j
 j< k has a diagonal (ie an
edge connecting two nonconsecutive vertices in 
 ). Here j
 j denotes the number of
edges of 
 .

A simplicial complex X is locally k –large if for every simplex � ¤∅ of X its link
X� in X is k –large.

X is k –systolic if it is locally k –large, connected and simply connected.

Because k D 6 is of special importance in that theory, 6–systolic complexes are called
systolic.

A group acting geometrically (ie properly discontinuously and cocompactly) by sim-
plicial automorphisms on a k –systolic (resp. systolic) complex is called k –systolic
(resp. systolic). Free groups and fundamental groups of surfaces are systolic groups. In
Januszkiewicz and Świa̧tkowski [13], for arbitrary k and n, a torsion free k –systolic
group of cohomological dimension n is constructed. Those groups are the fundamental
groups of some simplices of groups.

In the rest of this subsection we list some results concerning systolic complexes and
groups. We begin with the easy facts whose proofs can be found in [13].

Proposition 2.1 (1) If k >m and X is k –large then X is also m–large.

(2) A full subcomplex in a (locally) k –large complex is (locally) k –large.

(3) Links of a k –large complex are k –large.

(4) There is no k –large triangulation of the 2–sphere for k � 6. Hence no triangu-
lation of a manifold of dimension above 2 is 6–large since 2–spheres occur as
links of some simplices in that case.

The following property of 7–systolic complexes is crucial for this paper.

Theorem 2.2 [13, Theorem 2.1] Let X be a 7–systolic complex. Then the 1–
skeleton of X with its standard geodesic metric is ı–hyperbolic with ı D 21

2
.

Thus 7–systolic groups are word-hyperbolic.

In [13, Sections 3 and 7] the notion of a convex subcomplex of a systolic complex is
introduced. A simplex is a convex subcomplex.
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For a simplicial complex X and its subcomplex Q we can define a closed combina-
torial ball of radius i around Q in X , Bi.Q;X /, inductively: B0.Q;X /DQ and
Bi.Q;X /D

S
f� W � \Bi�1.Q;X /¤∅g, for every positive natural number i .

By Si.Q;X / we denote the subcomplex of Bi.Q;X / spanned by the vertices at
combinatorial distance i from Q, ie not belonging to Bi�1.Q;X / (for i > 0). We
denote by

ı
Bi.Q;X / the interior of the closed combinatorial i –ball around � in X ,

ie
ı

Bi.Q;X /D Bi.Q;X / nSi.Q;X /.

For the rest of this section let X denote a systolic complex and Q its convex subcom-
plex.

Lemma 2.3 [13, Lemmas 7.5 and 7.6] The sphere Si.Q;X / and the ball Bi.Q;X /

are full subcomplexes of X and they are 6–large.

Lemma 2.4 [13, Section 7] If i > 0, then for every simplex � 2 Si.Q;X /, � D
@Bi�1.Q;X / \ X� is a single simplex, X� \ Bi.Q;X / D B1.�;X� / and X� \

Si.Q;X /D S1.�;X� /.

In the rest of the paper we call the simplex � , as in the above lemma the projection of
� on Si�1.Q;X /.

The universal cover of a connected locally 6–large simplicial complex is systolic and
the following fact holds.

Theorem 2.5 [13, Theorem 4.1] The universal cover of a finite dimensional con-
nected locally 6–large simplicial complex is contractible.

The proof of this theorem uses the projections onto closed combinatorial balls (compare
[13, Section 8]). Restrictions of those projections to spheres

�Bi .Q;X /jSiC1.Q;X /W SiC1.Q;X /! Si.Q;X /

have some properties that do not allow us to use them in order to define a reasonable
boundary of a systolic complex. Thus in Section 3 we define, only for 7–systolic
complexes, other maps between spheres.

The following lemma follows easily from the facts above and from [13, Corollary 1.5].

Lemma 2.6 Let k � 6, let Y be a k –large simplicial complex and let � be a simplex
of X . If pW X!Y is the universal cover of Y and m< k�1

2
then for i D 0; 1; 2; :::;m

the map pjBi .�;X /W Bi.�;X /! Bi.p.�/;Y / is an isomorphism.
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We recall two results concerning systolic chamber complexes.

Lemma 2.7 [17, Lemma 4.1] Let X be a systolic chamber complex of dimension
n� 1 and � its simplex. Then Sk.�;X / is an .n� 1/–dimensional chamber complex,
for every k � 1.

Lemma 2.8 [17, Lemma 4.2] Let X be a systolic chamber complex of dimension
n� 1 and � its simplex. Let � be an .n� 1/–dimensional simplex of Sk.�;X /. Then
there exists a vertex v at a distance kC 1 from � such that v � � is a simplex of X .

2.3 Strongly hereditarily aspherical compacta

The notion of strongly hereditarily aspherical compacta was introduced by R J Daverman
[5]. A compact metric space Z is strongly hereditarily aspherical if it can be embedded
in the Hilbert cube Q in such a way that for each � > 0 there exists an �–covering U
of Z by open subsets of Q, where the union of any subcollection of elements of U is
aspherical.

To show, in Section 4, that the boundaries of 7–systolic groups are strongly hereditarily
aspherical, we will use the following result.

Proposition 2.9 [5, Proposition 1] Suppose fLi ; �ig is an inverse sequence of finite
polyhedra and PL maps, and suppose each Li is endowed with a fixed triangulation Ti

such that

(1) ��1
i .each subcomplex of Li/ is aspherical, and

(2) there exists a sequence .ak/
1
kD1

of positive numbers, such that limk!1ak D 0,
and diam.�i�k ı ::: ı�i�1.�// < ak , for every simplex � 2 Ti .

Then the inverse limit Z D inv lim fLi ; �ig is strongly hereditarily aspherical.

It should be noticed that, by Daverman and Dranishnikov [6, Theorem 2.10], every
strongly hereditarily aspherical compactum can be expressed as an inverse limit like
the one above.

3 7–systolic complexes

In this section we study some properties of 7–systolic complexes. In particular we
define and examine other (then in the general systolic case) contractions on spheres.
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This is crucial for Section 4. Then we study properties of some 7–systolic chamber
complexes. Those results are important for Section 5.

Let X be a 7–systolic complex of dimension n<1. Let Q be its convex subcomplex
(see Sections 3 and 7 of [13] and compare Section 2.2). For a natural number k ,
we denote by Sk the combinatorial sphere Sk.Q;X / (compare Section 2.2) and we
denote by Bk the closed ball Bk.Q;X /.

Define a map �Q;k W S
.0/

k
! .S 0

k�1
/.0/ by putting �Q;k.w/D b� , for every vertex w

of Sk , where � DXw \Bk�1 is the projection of w on Sk�1 and b� 2 .S
0
k�1

/.0/ is
the barycenter of � .

Lemma 3.1 Let v1 and v2 be two vertices in Sk belonging to the same simplex. Then
�Q;k.v1/ and �Q;k.v2/ belong to the same simplex of S 0

k�1
.

Proof Let � DXhv1;v2i
\Bk�1 and �i DXvi

\Bk�1 , for i D 1; 2. Then � � �1\�2 .
It is enough to show that �1 � �2 or �2 � �1 .

We will show this arguing by contradiction. Suppose it is not true, ie there exist vertices
wi such that wi 2 �i n �j for fi; j g D f1; 2g. Let for i D 1; 2, ti be a vertex belonging
to Xwi

\Bk�2\X� .

Let us examine the closed path .v1; w1; t1; t2; w2; v2; v1/ in X .1/ .

There are no diagonals of the form hvi ; tj i since the distance between vi and tj is at
least 2, i; j D 1; 2.

There are no diagonals of the form hvi ; wj i, i ¤ j . Since if, eg hv1; w2i is an edge in
X then w2 2Xv1

\Bk�1 D �1 .

There is no diagonal hw1; w2i. If it exists, then the path .v1; w1; w2; v2; v1/ is a
closed simple path without diagonals of length 4 which contradicts 7–largeness of X .
Similarly there are no diagonals hw1; t2i and hw2; t1i.

Hence the path .v1; w1; t1; t2; w2; v2; v1/ is a closed path of length at most six without
diagonals. This contradicts 7–largeness of X .

Using the above lemma we can extend �Q;k simplicially.

Definition 3.2 Define, for a natural number k , a continuous map between combinato-
rial spheres

�Q;k W Sk.Q;X /! .Sk�1.Q;X //
0;

given by the simplicial extension of the map

�Q;k W Sk.Q;X /
.0/
! .Sk�1.Q;X /

0/.0/:
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Lemma 3.3 There exists a constant C < 1, depending only on n D dim.X / such
that for every k; l 2 f1; 2; 3; :::g with l < k and for every two points x;y 2 Sk

one has dSk�l�1
.�Q;k�l ı ::: ı�Q;k�1 ı�Q;k.x/; �Q;k�l ı ::: ı�Q;k�1 ı�Q;k.y//�

C lC1dSk
.x;y/.

Proof Let D be the distance from a vertex to an opposite codimension one face in the
regular .n�1/–simplex. Let E be the diameter of a maximal simplex in the barycentric
subdivision of the regular .n� 1/–simplex. Then for C D E

D
< 1 the lemma holds.

Lemma 3.4 For every subcomplex L of Sk�1 the subcomplex ��1
Q;k

.L/ of Sk is
aspherical.

Proof We will show that ��1
Q;k

.L/ is a full subcomplex of Sk . Hence, by Proposition
2.1, as a full subcomplex of 6–large complex it is 6–large and thus aspherical, by
Theorem 2.5.

Let vertices v1; v2; :::; vl 2 .�
�1
Q;k

.L//.0/ span a simplex in Sk . Then, by Lemma 3.1,
�Q;k.v1/; :::; �Q;k.vl/ are vertices of a simplex of S 0

k�1
and they correspond to a

chain of simplices �1; :::; �l of Sk�1 . One of them, say �1 , is the highest dimensional
simplex among them and hence it contains all the simplices �2; :::; �l . This means
that ��1

Q;k
.�1/� �

�1
Q;k

.L/ contains all points v1; :::; vl and hence simplex spanned by
them.

In the rest of this section we study some 7–large chamber complexes.

For a 7–large chamber complex X we define, for a vertex v of X , a condition
R.v;X / that will be crucial for Section 5 (compare the condition R.v;X / defined in
[17, Section 4]):

R.v;X / iff .for all � 2Xv .Xv n
ı

B2.�;Xv/ and Xv n
ı

B3.�;Xv/ are connected//

The next lemma is an analogue of [17, Lemma 4.7], for 7–large complexes.

Lemma 3.5 Let X be a 7–large chamber complex such that the link X� is connected,
for every simplex � of X of codimension greater than one, and X� n

ı
Bi.�;X� /,

i D 2; 3 is connected for every codimension two simplex � of X and every simplex �
of its link X� . Then for every vertex v of X condition R.v;X / holds.

Proof We will proceed by induction on nD dim.X /.

For nD 2 the assertion is clear since codimension two simplices are just vertices.
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Assume we proved the lemma for n � k . Let dim.X /D k C 1. Take a vertex v of
X and consider its link Xv . It has dimension k . Moreover for every codimension l

simplex � of Xv the simplex � � v is of codimension l in X and X��v D .Xv/� .
Thus Xv satisfies hypotheses of the lemma. Hence by the induction assumptions, for
every vertex w of Xv condition R.w;Xv/ holds.

Xv is 7–large as a full subcomplex of X (Proposition 2.1). Thus the universal cover�Xv of Xv is 7–systolic. Let pW �Xv!Xv be a covering map.

Take a simplex ! of Xv . Let � be a simplex of �Xv such that p.�/ D ! . Since
S0.�; �Xv/ is connected we have, by [17, Lemma 4.5] (or by Corollary 5.4), that
S1.�; �Xv/, S2.�; �Xv/ and S3.�; �Xv/ are connected. By Lemma 2.6,

p0 D pj
B2.�; �Xv/

W B2.�; �Xv/! B2.!;Xv/

is an isomorphism. Observe that p.B3.�; �Xv//� B3.!;Xv/. We want to show that
p.B3.�; �Xv// D B3.!;Xv/. Let z be a vertex in B3.!;Xv/ n B2.!;Xv/ and let
u 2 B2.!;Xv/ be a vertex connected by an edge with z . Then, by Lemma 2.6,

p00 D pj
B1..p0/�1.u/; �Xv/

W B1..p
0/�1.u/; �Xv/! B1.u;Xv/

is an isomorphism and .p00/�1.z/ 2 B3.�; �Xv/. Hence z 2 p.B3.�; �Xv// and the
image p.B3.�; �Xv//DB3.!;Xv/. Now we claim that S3.!;Xv/Dp.S3.�; �Xv// and
hence is connected. Observe that S3.!;Xv/� p.S3.�; �Xv//. Suppose S3.!;Xv/¤

p.S3.�; �Xv//. Let w1 2 S3.�; �Xv/ be a vertex such that p.w1/ 2 B2.!;Xv/. The
vertex w2 D .p

0/�1.p.w1// belongs to B2.�; �Xv/ and p.w1/D p.w2/. But then the
distance between w1 and w2 in �Xv.1/ is less than 7 and we can find homotopically
nontrivial closed path of length less than 7 in Xv . This contradicts 7–largeness of
Xv , by [13, Corollary 1.5]. Thus we have shown that S3.!;Xv/D p.S3.�; �Xv// is
connected.

Take two vertices t and s of Xv n
ı

B2.!;Xv/ (or of Xv n
ı

B3.!;Xv/). Since, by
assumptions, Xv is connected there exists a path in .Xv/.1/ joining them. If this path
misses

ı
B2.!;Xv/ (respectively

ı
B3.!;Xv/) it joins these vertices in Xv n

ı
B2.!;Xv/

(respectively in Xv n
ı

B3.!;Xv/). If not we can replace it, by connectedness of
S2.!;Xv/ (respectively S3.!;Xv/), by a path intersecting S2.!;Xv/ (respectively
S3.!;Xv/) and also lying in Xvn

ı
B2.!;Xv/ (respectively in Xvn

ı
B3.!;Xv/). Hence

we get the conclusion.

Corollary 3.6 Let X be a normal 7–systolic pseudomanifold. Then condition
R.v;X / holds for every vertex v of X .
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Proof One dimensional link in a normal pseudomanifold is a circle. Hence it satisfies
assumptions of the preceding corollary.

4 Gromov boundary

The aim of this section is to prove that the ideal boundary of a 7–systolic group
(such groups are word hyperbolic by Theorem 2.2) is a strongly hereditarily aspherical
compactum. To prove this we first show that such a boundary can be described as
an inverse limit of combinatorial spheres in the complex on which the group acts
geometrically.

Throughout this section X denotes a locally finite 7–systolic complex of dimension
n < 1. We fix a vertex v of X . For a natural number k , we denote by Sk the
combinatorial sphere Sk.v;X / and we denote by Bk the closed ball Bk.v;X /. We
denote by �k the projection �fvg;k W Sk ! Sk�1 (see Section 3).

Lemma 4.1 ıX D inv lim fSk ; �kg is homeomorphic to @X , the Gromov boundary
of X .

Proof We use the set of equivalence classes of geodesic rays in X .1/ propagating
from a given vertex v , as a definition of the Gromov boundary of X —for details see
eg Bridson and Haefliger [3, Chapter III.3].

Compactness of both ıX and @X follows from the fact that the balls in X .0/ are finite.

First, we construct a bijection F W ıX ! @X . Let x D .v;x1;x2; :::/ 2 ıX . Note
that xk 2 Sk for k D 1; 2; :::. For arbitrary k , choose a maximal simplex �k of Sk

containing xk . If we take a vertex u of �k then X�k
\Bk�1 �Xu\Bk�1 and hence

there exists a vertex w of �k�1 connected by an edge with u. Hence for any k we can
construct a sequence .v D vk

0
; vk

1
; vk

2
; :::; vk

k
/ of vertices of X such that vk

i 2 �i and
vi�1

k
is connected by an edge with vi

k
for i D 1; 2; :::; k . Since a path ck D .v

k
0
; :::; vk

k
/

in X .1/ has length k and joins v and vk
k

lying at a distance k it is a geodesic segment
starting at v . Since balls in X .0/ are finite, we can, by the diagonal argument, extract
from .ck/

1
kD1

a geodesic ray c D .v; v1; v2; :::/, such that vk is a vertex of �k , for
every k D 1; 2; 3; :::. The equivalence class of c within @X is by definition F.x/.
Observe that it is independent of choosing c as above, since all of them lie at distance
at most one from the sequence x .

We show now that F is injective. Let x D .v;x1;x2; :::/ and y D .v;y1;y2; :::/ be
two elements of ıX with F.x/D F.y/. Let the geodesic rays c D .v; v1; v2; :::/ and
d D .v; w1; w2; :::/ in X .1/ representing, respectively, F.x/ and F.y/ be constructed
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as above. Then there exists a constant D > 0 such that for every k D 1; 2; 3; ::: we
have dSk

.vk ; wk/ �D . Fix k . It is enough to show that dSk
.xk ;yk/ � � for every

� > 0. Choose � > 0. Take l 2N such that l � logC
�

DC2
, where C < 1 is the constant

from the proof of Lemma 3.3. By construction dSkCl
.xkCl ;ykCl/�DC 2 and thus

by Lemma 3.3,

dSk
.xk ;yk/

D dSk
.�kC1 ı ::: ı�kCl�1 ı�kCl.xkCl/; �kC1 ı ::: ı�kCl�1 ı�kCl.ykCl//

� C ldSkCl
.xkCl ;ykCl/� �:

Now we show F is onto. Take a geodesic ray c D .v; v1; v2; :::/, vi 2X .0/ . Observe
that vk 2 Sk for k D 2; 3; 4; :::. Consider a sequence .�2 ı�3 ı ::: ı�k.vk//

1
kD2

of
points in S1 . By compactness of spheres there is a subsequence .va1.1/; va1.2/; :::/ of
the sequence .v2; v3; :::/ such that .�2 ı�3 ı ::: ı�a1.k/.va1.k///

1
kD2

converges. Let
x1 2 S1 be the limit of this subsequence. Now given a subsequence (of .v; v1; v2; :::/)
.val .1/; val .2/; :::/, l > 1 we find a subsequence .valC1.1/; valC1.2/; :::/, alC1.i/ > l

such that �lC2 ı :::ı�alC1.k/.valC1.k///
1
kDlC1

tends to xlC1 2SlC1 . By construction
�k.xk/Dxk�1 , for k> 1 and �1.x1/D v . Hence xD .v;x1;x2; :::/2 ıX . Moreover
since vk and vkC1 belong to a common simplex for every k D 2; 3; 4::: we get, by
definition of �k , that d.vk ; �kC1.vkC1// � E , for E < 1 being the constant from
the proof of Lemma 3.3. Then for every natural number l we have the inequality
d.vk ; �kC1ı�kC2ı:::ı�kCl.vkCl//�

P1
iD1 Ei <1. Thus d.vk ;xk/<

P1
iD1 Ei <

1, which implies c represents the equivalence class of F.x/.

Finally we argue F is continuous and hence as a continuous bijection defined on a
compact space it is a homeomorphism.

Given x D .v;x1;x2; :::/ 2 ıX and a sequence .xi/1
iD1
� ıX , xi D .v;xi

1
; :::/ con-

verging to x , fix geodesic rays cD .v; v1; v2; :::/ and ci D .v; v
i
1
; vi

2
; :::/, iD1; 2; 3; :::

representing, respectively, F.x/ and F.xi/, i D 1; 2; 3; :::, and constructed as when
we defined F . To prove F is continuous at x it is enough to show that for every
natural number N there exists M > 0 such that for every natural number i >M we
have dSN

.vN ; v
i
N
/ < 3. By definition of the topology of an inverse limit there exists

M > 0 such that for every natural number i > M one has dSN
.xN ;x

i
N
/ < 1 and

hence dSN
.vN ; v

i
N
/� dSN

.vN ;xN /C dSN
.xN ;x

i
N
/C dSN

.xi
N
; vi

N
/ < 3.

Now we state and prove the following main theorem.

Theorem 4.2 The ideal boundary of a 7–systolic group is a strongly hereditarily
aspherical compactum.
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Proof A 7–systolic group G acts, by definition, geometrically on a locally finite
7–systolic complex X of finite dimension. Then the ideal boundary @G of G is
homeomorphic to @X .

We apply Proposition 2.9 to the inverse system fLi ; �ig D fSi ; �iC1g. By Lemma 3.4
the condition 1/ of Proposition 2.9 is fulfilled, and by Lemma 3.3 we get condition 2/ of
the proposition. Hence @G D @X D ıX D inv lim fSi ; �iC1g is a strongly hereditarily
aspherical compactum.

Remarks 4.3 (1) A simple argument shows that every compact metrizable space can
be homeomorphic to the ideal boundary of some hyperbolic space (even more—of some
CAT .�1/ space). The question of which topological spaces can occur as boundaries of
hyperbolic groups (compare Benakli and Kapovich [15, Chapter 17]) is more difficult.
It is answered somehow only in dimensions (of the boundary) 0 and 1 (cf Kapovich
and Kleiner [16]). For higher dimensions the following homeomorphism types of the
boundaries of hyperbolic groups were known: spheres, Pontryagin surfaces …p for p

being a prime number, two-dimensional universal Menger compactum �5
2

(compare
[15, Chapter 17]), three-dimensional universal Menger compactum �7

3
(cf Dymara and

Osajda [7]), Pontryagin spheres and three-dimensional trees of manifolds (cf Przytycki
and Świa̧tkowski [18]).

By Theorem 2.2, 7–systolic groups are hyperbolic and, by [13, Corollary 19.3], for
each natural number n, there exists a hyperbolic group of cohomological dimension
n. Hence, by Theorem 4.2, and by Bestvina and Mess [1, Corollary 1.4], strongly
hereditarily aspherical compacta of all dimensions can occur as boundaries of hyperbolic
groups.

Moreover, in [13] examples of 7–systolic groups acting on pseudomanifolds of arbitrary
large dimension are constructed. Thus, by Corollaries 5.7 and 5.9, those group are, in
a sense, indecomposable and their boundaries are connected, locally connected and
without local cut points (compare Section 5).

(2) Zawiślak [20] has shown that the boundary of a 7–systolic orientable normal
pseudomanifold of dimension 3 is the Pontryagin sphere (cf Jakobsche [11]). Such
pseudomanifolds are constructed in [13].

The Pontryagin sphere is the inverse limit of an inverse system fXi ;pig
1
iD1 defined as

follows. Let X1 D S2 be a triangulated two-sphere. Let T be a given triangulation of
the two torus. Assume Xi ;pj are defined for i � k and j � k�1. Let Xk be a surface
and Tk its triangulation. XkC1 is a connected sum of Xk and a set of disjoint tori
T�—one for every 2–simplex � of Tk —carrying the triangulation T . Every T� is
glued to Xk by identifying @� and the boundary of some 2–simplex � 0 of triangulation
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of T� . Then XkC1 carries an induced triangulation and we define a triangulation TkC1

of XkC1 as a subdivision of this natural triangulation. The map pk W XkC1!Xk is
defined by the conditions: pk.T� n�

0/D int � and pk j@� D Id@� for every 2–simplex
� of Tk .

(3) For a polytopal complex Y its face complex ˆ.Y / is a simplicial complex defined
as follows. The vertex set of ˆ.Y / is the set of cells of Y and the vertices of ˆ.Y /
span a simplex if the cells of Y corresponding to those vertices are contained in a
common cell of Y . It can be shown (compare [12]) that if Y is a simply connected
simple (ie all links are simplicial complexes) polytopal complex with 7–large links
then ˆ.Y / is 7–systolic. Thus the ideal boundary of such a complex Y is strongly
hereditarily aspherical.

Question Is the ideal boundary of a hyperbolic systolic group strongly hereditarily
aspherical?

5 Splittings

The aim of this section is to study further properties of boundaries of 7–systolic
complexes in some special cases. As a consequence we get results concerning splittings
of groups acting on such complexes.

Throughout this section X denotes a locally finite 7–systolic chamber complex of
dimension n<1. We fix a vertex v of X . For a natural number k , we denote by Sk

the combinatorial sphere Sk.v;X / and we denote by Bk the closed ball Bk.v;X /.
We denote by �k the projection �fvg;k W Sk ! Sk�1 (see Section 3).

Lemma 5.1 Let Y be a 7–large n–dimensional chamber complex, � one of its
simplices and � an .n � 1/–simplex of S2.�;Y /. Then there exists a vertex v 2

Y nB2.�;Y / such that v � � is a simplex of Y .

Proof By Lemma 2.8, if we consider the universal cover pW zY ! Y and z� 2 p�1.�/,
z� 2 p�1.�/\S2.z�; zY /, then there exists a vertex zv of zY such that zv 2 zY nB2.z�; zY /

and zv � z� is a simplex of zY . Consider v D p.zv/. Clearly v � � is a simplex of Y .

Assume v 2 B2.�;Y /. Then there exists a simplex ��1 2 p�1.�/ distinct from z� such
that zv 2B2.��1; zY /. Since zv 2B3.z�; zY / we can then choose vertices s 2 z� and t 2 ��1

with p.s/D p.t/ and a path of length at most 6 joining s and t . But this contradicts
7–largeness of Y . Thus v 2 Y nB2.�;Y /.
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Lemma 5.2 The map �k W Sk ! Sk�1 is onto.

Proof Let z be a given point in Sk�1 . We will show that there exists a point w 2 Sk

satisfying �k.w/D z .

Case 1 z is a barycenter of a simplex � of Sk�1 .

If dim.�/D n� 1 then by Lemma 2.8 there exists a vertex w 2 Sk such that w � � is
a simplex of X and hence �k.w/D z .

Now, let dim.�/ D m < n� 1. Since, by Lemma 2.7, Sk�1 is a chamber complex
of dimension n� 1, there exists an .n� 1/–simplex � of Sk�1 containing � . Then,
again by Lemma 2.8, there exists a vertex w0 2 Sk spanning a simplex with � . Clearly
w0 2 Sk \ S2.ı;X� /, where ı D X� \ Sk�2 . Since X� is a 7–large .n�m� 1/–
dimensional chamber complex and, (again by Lemma 2.7) S2.ı;X� / is an .n�m�2/–
dimensional chamber complex (nonempty), we get, by Lemma 5.1, that there exists a
vertex w 2X� nB2.ı;X� /. It follows that �k.w/D z .

Case 2 z belongs to an interior of an m–simplex � of S 0
k�1

.

Then � D ha0; a1; :::; ami where ai is the barycenter of an i –simplex �i of Sk�1 .
By Case 1 there exists a vertex a0m 2 Sk such that �k.a

0
m/ D am . Then we have

a0m 2 S2.X�m�1
\ Bk�2;X�m�1

/ and, using Lemma 5.1 for X�m�1
, there exists a

vertex a0
m�1

2 X�m�1
n B2.X�m�1

\Bk�2;X�m�1
/ connected to a0m by an edge.

Note that �k.a
0
m�1

/ D am�1 and that ha0m; a
0
m�1
i � S2.X�m�2

\ Bk�2;X�m�2
/.

Assume we found vertices a0m; a
0
m�1

; :::; a0
l
, l > 0 spanning a simplex in S2.X�l�1

\

Bk�2;X�l�1
/, such that �k.a

0
i/ D ai . Then we can find a vertex a0

l�1
2 X�l�1

n

B2.X�l�1
\Bk�2;X�l�1

/ spanning together with ha0m; a
0
m�1

; :::; a0
l
i a simplex in X .

Hence we can find points a0m; a
0
m�1

; :::; a0
0
2Sk spanning a simplex in X and satisfying

�k.a
0
i/ D ai . Then if z D

Pm
iD0 �iai for �i > 0 such that

Pm
iD0 �i D 1, we have

�k.
Pm

iD0 �ia
0
i/D z .

Lemma 5.3 Let the condition R.w;X / hold for every vertex w of X . Then ��1
k
.�/

is connected for every simplex � of Sk�1 and for every k � 2.

Proof If � is a vertex then its preimage by the map �k W Sk ! Sk�1 , ��1
k
.�/ D

span
˚
vertices in X� nB2.X� \Bk�2;X�/

	
is nonempty, by Lemma 5.2 and it is

connected by R.�;X /.

By surjectivity of �k it is now enough to show the following. Let � D ha0; a1; :::; ami

be a simplex of S 0
k�1

such that ai is the barycenter of an i –simplex of Sk�1 . Then
every point p 2 ��1

k
.�/ can be connected to ��1

k
.a0/ by a path in ��1

k
.�/.
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The proof goes via induction on m.

For mD 0 it is trivial.

Let m>0. Wlog we can assume that �k.p/D
Pm

iD0 �iai with �m>0 and
Pm

iD0 �iD

1, �i � 0. Let I � fi j�i ¤ 0g By definition of �k there exist .a0j /j2I such that
�k.a

0
j /D aj ,

P
j2I �j a0j D p . Then the span of .a0j /j2I is contained in ��1

k
.�/ and

hence we can connect p to a0m inside ��1
k
.�/. Following Case 2 in the proof of

Lemma 5.2 we can then find a vertex a00
m�1
2Sk such that �k.a

00
m�1

/D am�1 and a0m
and a00

m�1
span an edge. Then ha0m; a

00
m�1
i � ��1

k
.�/ and, by induction assumptions,

we can connect p to ��1
k
.a0/ by a path in ��1

k
.�/.

Corollary 5.4 Let the condition R.w;X / hold X for every vertex w of X . Then for
every k � 2 and for any connected subcomplex K of Sk�1 its preimage ��1

k
.K/ is

connected.

Theorem 5.5 Let X be a finitely dimensional locally finite 7–systolic chamber com-
plex such that the condition R.w;X / holds for every vertex w of X . Then the ideal
boundary @X of X is connected.

Proof Observe that S1 D Xv and thus it is connected by R.v;X /. By Corollary
5.4 if Sk�1 is connected then Sk is connected too. Hence @X as an inverse limit of
continua is a continuum.

Theorem 5.6 Let X be a locally finite 7–systolic chamber complex of finite dimension
n� 3. Assume that the link X� is connected, for every simplex � of X of codimension
greater then one, and X� n

ı
Bi.�;X� /, i D 2; 3 is connected for every codimension two

simplex � of X and every simplex � of its link X� . Then the ideal boundary @X of
X is connected and has no local cut points.

Proof Connectedness of the boundary follows from Lemma 3.5 and Theorem 5.5.

Now we show there are no local cut points in @X . If a point x 2 @X disconnects an
open connected set U � @X then it disconnects every open connected V � U . Hence
it disconnects every connected subset W � U whose interior contains x . Thus, to
prove the Lemma, it is enough to show that for a given point x 2 @X and its open
neighborhood U there exists a connected set W with x 2 int W �W � U such that
W n fxg is connected.

Let us define, for a natural number k , a map �1
k
W @X ! Sk as a projection from the

inverse limit @X to the element Sk of the inverse system fSi ; �ig. By the definition
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of the topology on @X we can find a natural number k large enough so that if � is a
simplex of Sk containing �1

k
.x/ then W D .�1

k
/�1.B2.�;Sk//� U . We claim W

is as desired.

First observe that .�1
k
/�1.

ı
B2.�;Sk// � W is open and contains x . Moreover

B2.�;Sk/ is a connected subcomplex of Sk and hence, by Corollary 5.4 the inverse
system n

Wl D �
�1
l .:::.��1

kC1.B2.�;Sk///:::/; �l jWl

o1
lDkC1

consists of continua and its inverse limit W is a continuum.

Now we show that every two points y; z 2 W n fxg are connected by a continuum
within W n fxg. Again by the definition of the topology on @X we can find m

big enough such that there exists a vertex w 2 Sm such that �1m .x/ 2
ı

B1.w;Sm/

and y; z …
ı

B1.w;Sm/. Since �1m .W / D ��1
m .:::.��1

kC2
.��1

kC1
.B2.�;Sk////:::/ is a

connected subcomplex of Sm then, if S1.w;Sm/D .Sm/w is connected, we can find
a continuum K 2 �1m .W / n

ı
B1.w;Sm/ connecting y and z . Then .�1m /�1.K/ is a

continuum (as an inverse limit of continua) in W missing x and containing y and z .

Thus to finish the proof we have to show that S1.w;Sm/ D .Sm/w is connected.
Observe that for every simplex � of Xw the link of � in Xw is the link of � �w
in X . Hence (compare Lemma 3.5 and its proof) the link Xw is a 7–large chamber
complex such that the condition R.z;Xw/ holds for every vertex z , provided Xw
has dimension above two. Let � D Xw \ Sm�1 . Then, by Lemma 2.4, we get
S1.w;Sm/D .Sm/w D Xw \Sm D S1.�;Xw/. Since @� is connected and balls of
small radii in 6–large complexes are isomorphic with the ones in its universal covers
(cf Lemma 2.6) we get, by Corollary 5.4 that S1.�;Xw/ is connected.

Corollary 5.7 Let X be a locally finite normal 7–systolic pseudomanifold of finite
dimension at least 3. Then its ideal boundary @X is connected and has no local cut
points.

Proof One-dimensional links in normal manifolds are circles.

Theorem 5.8 Let G be a group acting geometrically by automorphisms on a 7–
systolic chamber complex X of dimension n�3. Assume that the link X� is connected,
for every simplex � of X of codimension greater then one, and X�n

ı
Bi.�;X� /, iD2; 3

is connected for every codimension two simplex � of X and every simplex � of its
link X� . Then G does not split essentially, as an amalgamated product or as an
HNN-extension, over a finite nor two-ended group.
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Proof This follows from Theorem 5.6.

By Stallings’ theorem [19], G does not split over a finite group—compare also Gromov
[9, remarks after Proposition 3.2.A], Coornaert–Delzant–Papadopoulos [4, Exercise 4)
in Chapter 2] and Ghys and de la Harpe [8, Proposition 17 in Chapter 7.5].

By Bowditch [2, Theorem 6.2], G does not split essentially over a two-ended group.

Corollary 5.9 A group acting geometrically by automorphisms on a locally finite
normal 7–systolic pseudomanifold of dimension at least 3 does not split essentially
over a finite or two-ended group as an amalgamated product or an HNN-extension.

Remarks 5.10 (1) A systolic group acting on a 7–systolic pseudomanifold of dimen-
sion at least 3 can split over a surface group (this remark is due to J Świa̧tkowski). To
see this take two isomorphic closed 3–dimensional 7–large pseudomanifolds with links
of vertices being closed surfaces (such spaces exist by Januszkiewicz and Świa̧tkowski
[13, Corollary 19.3 (1) and its proof]). Consider complement of an open residue of
a given vertex in each of them. The link of the vertex is a convex subcomplex of the
complement and hence the union of both complements along that links is 7–large.
Thus the fundamental group of the sum splits over the fundamental group of a link
which is a surface.

(2) As noticed in [17, Section 5] most of the examples of systolic groups—except
automorphism groups of complexes of dimension at most two—constructed in [13] as
fundamental groups of some extra-tileable simplices of groups satisfy assumptions of
Theorem 5.6 and Theorem 5.8.

At the moment the only 7–systolic groups of virtual cohomological dimension above
two known to us are the groups acting on normal 7–systolic pseudomanifolds, con-
structed in [13].

Question Can groups acting geometrically on normal 7–systolic pseudomanifolds of
dimension at least 3 split over free nonabelian groups ?
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