
Algebraic & Geometric Topology 8 (2008) 101–153 101

Knot Floer homology and integer surgeries

PETER S OZSVÁTH

ZOLTÁN SZABÓ

Let Y be a closed three-manifold with trivial first homology, and let K � Y be a
knot. We give a description of the Heegaard Floer homology of integer surgeries on
Y along K in terms of the filtered homotopy type of the knot invariant for K . As an
illustration of these techniques, we calculate the Heegaard Floer homology groups of
non-trivial circle bundles over Riemann surfaces (with coefficients in Z=2Z).

57M27; 57M25

1 Introduction

Heegaard Floer homology is an invariant for closed-oriented three-manifolds Y (see
Ozsváth–Szabó [16]). The invariant, denoted HFı.Y /1, is the homology of a chain
complex whose generators have a combinatorial definition, and whose boundary op-
erator counts certain pseudo-holomorphic disks in associated spaces. Moreover, if
W W Y1�!Y2 is a smooth, connected, oriented cobordism from the connected, oriented
three-manifold Y1 to Y2 , equipped with a Spinc structure, there is an associated map
of Heegaard Floer homology groups. Explicit calculations of the chain complex
and associated chain maps are difficult to make in general, though under favorable
circumstances, the homology groups can be determined with the help of a long exact
sequence relating the Heegaard Floer homologies of various surgeries on a given knot,
cf Ozsváth–Szabó [15].

In Ozsváth–Szabó [14] and Rasmussen [21], a closely related invariant is defined for
null-homologous knots K in a closed, oriented three-manifold Y , taking the form of
an induced filtration on the Heegaard Floer complex of Y . The filtered chain homotopy
type of this complex is a knot invariant, to which we refer loosely as “knot Floer
homology”.

1In [16], we defined several variants of Heegaard Floer homology : bHF , HF� , HF1 , and HFC ,
which are related to one another by various exact sequences. We denote this entire collection here by
HFı . In this paper, however, we will focus primarily on the case of HFC .

Published: 8 February 2008 DOI: 10.2140/agt.2008.8.101



102 Peter S Ozsváth and Zoltán Szabó

If K � Y is null-homologous, there is a canonical identification of framings on K

with integers. Given an integer n, let Yn.K/ denote the three-manifold obtained by
n–framed surgery on Y along K . When n is sufficiently large, there is an immediate
relationship between the knot Floer homology of K and the Heegaard Floer homology
of Yn.K/, see [14; 21]. In cases where Y is sufficiently simple – for example, when
Y Š S3 – these data are sufficient to determine HFC.Yn.K// for arbitrary integers
n. However, even this case, one loses information on some of the additional structure
carried by Heegaard Floer homology (for example, its absolute grading).

The aim of this paper is to describe completely the Heegaard Floer homology of integral
surgeries on Y along K in terms of data associated to the knot K , in the case where
Y has trivial first homology. To describe this construction, we recall some aspects of
knot Floer homology.

Knot Floer homology associates to a knot K in Y a Z˚Z–filtered ZŒU �–complex
C D CFK1.Y;K/. More precisely, C is generated over Z by a set X equipped
with a function F W X �! Z˚Z with the property that if x 2 X is an element with
F.x/D .i; j /, then @x can be written as a linear combination of elements y 2X with
F.y/ � F.x/. Moreover, the action of U on C is induced from an action of U on
the generating set X , with the property that for each x 2X with F.x/D .i; j /, then
F.U � x/D .i � 1; j � 1/.

We write the two factors of the Z˚Z filtration as .i; j /. Let S be a region in the plane
which has the property that for all .i; j / 2 S and all .i 0; j 0/ � .i; j /, we have that
.i 0; j 0/ 2 S . Then the subset of C generated by points with filtration level contained
in S naturally inherits the structure of a quotient complex, which we write as C fSg.
For example, C fi � 0g denotes the quotient complex of C generated by x 2X with
F.x/D .i; j / with i � 0. There is a canonical (up to sign) chain homotopy equivalence
C fi � 0g ' C fj � 0g. Indeed, BC D C fi � 0g is identified with CFC.Y /.

Define ACs DC fmax.i; j �s/� 0g. There are two canonical chain maps vCs W A
C
s �!

BC and hCs W A
C
s �! BC . The map vCs is projection onto C fi � 0g, while hCs is

projection onto C fj � sg, followed by the identification with C fj � 0g (induced by
multiplication by U s ), followed by the chain homotopy equivalence from C fj � 0g

to C fi � 0g.

Let AC D
L

s2Z ACs and BC D
L

s2Z BCs (for this latter group, each summand is
isomorphic to BC , but we include a subscript to distinguish the various summands),
and let DCn W A

C �! BC be the map

DCn .fasgs2Z/D fbsgs2Z;
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where here
bs D hCs�n.as�n/C v

C
s .as/:

Let XC.n/ denote the mapping cone of DCn ; ie this is the chain complex whose
underlying group is AC˚BC , and whose differential over Z=2Z has the form�

@AC 0

DCn @BC

�
:

The following result says that the above data associated to the knot K � Y contains
enough information to deduce the Floer homologies of all the three-manifolds obtained
by integer surgeries on K , and all the corresponding maps induced on homology by
the natural cobordisms.

Theorem 1.1 Let Y be an integral homology three-sphere. For any non-zero integer
n, the homology of the mapping cone XC.n/ of

DCn W A
C
�! BC

is isomorphic to HFC.Yn.K//. Moreover, under this identification the natural map
HFC.Y / Š H�.B

C
s / �! H�.XC.n// is identified with the map HFC.Y / �!

HFC.Yn.K// induced by the natural two-handle cobordism from Y to Yn.K/ en-
dowed with the s th Spinc structure (for some identification of these Spinc structures
with Z).

We have chosen our hypotheses of Theorem 1.1 to simplify the statement. For general-
izations and refinements, see below. In particular, see Theorem 4.1 for a more precise
statement of the isomorphism, which takes gradings into account, and Theorem 4.2,
which makes explicit the identification of the maps induced by cobordisms. See also
Section 4.8 for a discussion of the case where n D 0, and Section 4.10 for further
generalizations of Theorem 1.1. We return to the more general case of rational surgeries
in the sequel (Ozsváth–Szabó [17]).

Note that knowing the filtered chain homotopy type of the knot filtration uniquely
determines the groups ACs and BCs , and also the maps vCs . The maps hCs are, in general,
not known explicitly, as they involve the chain homotopy equivalence C fi � 0g '

C fj � 0g. Despite this shortcoming, Theorem 1.1 is still quite helpful in performing
explicit calculations, as we shall see in Section 5. It is also worth noting that there is
an overall ˙1 ambiguity in the homotopy equivalence, and hence in the maps hCs ;
however, it is easy to see that the homology of the resulting complex is independent of
this ambiguity.
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In Section 2, we recall some of the aspects of Heegaard Floer homology used later, and
also set up some notation. In Section 3, we prove an exact sequence relating Heegaard
Floer homology groups of Yn.K/, YmCn.K/, and Y , which is an ingredient in the
proof of Theorem 1.1. In Section 4, we state and prove a more precise version of
Theorem 1.1 (cf Theorem 4.1 and Theorem 4.2 below), taking into account the gradings
on Floer homology. In Section 5, we give some sample calculations to illustrate the
techniques from this paper. As an example, we calculate the reduced Heegaard Floer
homology of any non-trivial circle bundle over a Riemann surface (with coefficients in
Z=2Z).

Theorem 1.1, of course, strengthens the connection between Floer homology for knots
and Floer homology for closed three-manifolds. This could be further pursued from
several angles. For example, this result could be viewed as motivation for studying
knot invariants in gauge-theoretic contexts, such as Seiberg–Witten or Donaldson’s
theories (compare Collin–Steer [2]). In a different direction, there seems to be a close
connection between knot Floer homology and Khovanov’s homology for links (cf
Khovanov [4], Khovanov–Rozansky [5], Bar-Natan [1] and Lee [7]), see also recent
work of Rasmussen [22]. It is an open problem whether Khovanov’s homology admits
an extension to a three-manifold invariant.
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2 Review

The purpose of this section is to introduce notation, recall some elements of Heegaard
Floer homology used later, and also to put in place various preliminary notions. In
Section 2.1, we set up terminology on gradings which we will use throughout this
paper; in Section 2.2, we recall some standard terminology from homological algebra;
in Section 2.3 we set up notation for the Heegaard Floer complexes; in Section 2.4,
we set up notation and conventions for integral surgeries on null-homologous knots;
in Section 2.5 we recall the relationship between knot Floer homology and Heegaard
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Floer homology of surgeries with sufficiently large (integral) coefficients (compare [14]
and [21]); in Section 2.6 we verify Theorem 1.1 for the unknot in S3 . This calculation
will be useful to us in the proof of Theorem 1.1. Finally, in Section 2.7, we include
some simple observations about the ZŒU �–modules which we encounter in this paper.

2.1 Gradings

Let C be a free Z module which is freely generated by some set X . We say that C is
relatively Z–graded if there is a function

�W X �X �! Z

with the property that

�.x;y/C�.y; z/D�.x; z/:

An element of C is said to be homogeneous if it can be written as a linear combination of
elements from a subset S �X with the property that for all x;y 2S , �.x;y/D 0. An
endomorphism f W C �!C is said to be homogeneous of degree d if the image of any
homogeneous element of C is homogeneous, and indeed for all x 2 X , f .x/ can be
written as a linear combination of elements y with �.y;x/Dd . The same terminology
can be used when the relative grading takes values in the rational numbers, rather than
the integers (in which case we call it a relative Q–grading). A relatively graded chain
complex is a relatively graded group C , which is equipped with a differential

@W C �! C

which is homogeneous of degree �1.

Let C be a free Z–module which is freely generated by some set X . We say that C

is absolutely graded if X is equipped with a function

grW X �!Q:

An absolute grading gr, of course, induces a relative Q–grading by the formula

�.x;y/D gr.x/� gr.y/:

In this case, the absolute grading gr is said to be a lift of the relative grading �.
If C1 and C2 are graded chain complexes, then a map f W C1 �! C2 is said to be
homogeneous of degree c if it carries homogeneous elements in C1 with degree a to
homogeneous elements in C2 with degree aC c .

Algebraic & Geometric Topology, Volume 8 (2008)
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2.2 Chain complexes

We will often use standard notions from homological algebra, which we collect here
for the reader’s convenience.

Let f W C1 �! C2 be a chain map between Z=2Z–graded chain complexes. Then,
the mapping cone M.f / is the chain complex whose underlying group is C1˚C2 ,
endowed with a differential

.a; b/ 7! .@a; @bC .�1/gr.a/
�f .a//:

There is a short exact sequence of chain maps

0 ����! C2
�

����! M.f /
�

����! C1 ����! 0;

whose induced connecting homomorphism is identified (up to sign) with the map on
homology induced by f ,

F�W H�.C1/ �!H�.C2/:

Two maps f; f 0W C1 �! C2 are chain homotopic if there is a map hW C1 �! C2 with
@ıh�hı@D f �f 0 . Two chain complexes C1 and C2 are said to be chain homotopy
equivalent if there are chain maps �W C1 �! C2 and  W C2 �! C1 so that � ı 
and  ı � are chain homotopic to the respective identity maps. The maps � and  
are called chain homotopy equivalences. Chain homotopic maps give rise to chain
homotopy equivalent mapping cones.

Let C1 and C2 be a pair of chain complexes. A quasi-isomorphism is a chain map
f W C1 �! C2 which induces an isomorphism in homology. Of course, a chain homo-
topy equivalence is a quasi-isomorphism. Two complexes C1 and C2 are said to be
quasi-isomorphic if there is a third chain complex C0 and quasi-isomorphisms from
C0 to C1 and C0 to C2 . The following lemma is standard.

Lemma 2.1 Given chain maps f W C1 �! C2 and f 0W C 0
1
�! C 0

2
and quasi-iso-

morphisms �1W C1 �! C 0
1

and �2W C2 �! C 0
2

so that the composites f 0 ı�1 is chain
homotopic to �2 ıf , there is an induced quasi-isomorphism ˆ from M.f / to M.f 0/

making the diagram

0 ����! C2 ����! M.f / ����! C1 ����! 0

�2

??y ˆ

??y �1

??y
0 ����! C 0

2
����! M.f 0/ ����! C 0

1
����! 0

commutative.
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Proof Define ˆ.a1˚a2/D .�1.a1/; .�1/deg.a1/H.a1/C�2.a2//, where H W C1�!

C 0
2

is the homotopy between f 0 ı �1 and �2 ı f . It is easy to see that ˆ is a chain
map, and indeed that the labelled diagram is commutative. The map ˆ is a quasi-
isomorphism by the five-lemma.

2.3 Heegaard Floer complexes

A pointed Heegaard diagram for a three-manifold Y is a quadruple .†; ˛; ˇ ; z/,
where † is an oriented surface of genus g , ˛ D f˛1; : : : ˛gg and ˇ D fˇ1; : : : ; ˇgg

are complete sets of attaching circles which specify Y , and

z 2†�˛1� � � � �˛g �ˇ1� � � � �ˇg

is a reference point. It is explained in [16] that this data, together with some addi-
tional analytical choices (including a complex structure over †) leads to a collec-
tion chain complexes CF�.†; ˛; ˇ ; z/, CF1.†; ˛; ˇ ; z/, CFC.†; ˛; ˇ ; z/, and
bCF .†; ˛; ˇ ; z/, which we refer to simply as CFı.†; ˛; ˇ ; z/. These complexes
are constructed from a suitable variant of Lagrangian Floer homology in the g–fold
symmetric product of †. Specifically, letting

T˛ D ˛1 � � � � �˛g � Symg.†/ and Tˇ D ˇ1 � � � � �ˇg � Symg.†/;

the complex CF1.†; ˛; ˇ ; z/ is freely generated over Z by generators Œx; i � 2 .T˛\
Tˇ/�Z, endowed with a differential

@Œx; i �D
X

y2T˛\Tˇ

X
f�2�2.x;y/

ˇ̌
�.�/D1g

# cM.�/Œy; i � nz.�/�;

where �2.x; y/ denotes the space of homotopy classes of Whitney disks from x
to y, �.�/ denotes its Maslov index, cM.�/ denotes the moduli space of pseudo-
holomorphic representatives of � (with respect to some suitably generic perturbation),
divided out by the natural translation action, and nz.�/ denotes the algebraic in-
tersection number of � with the locus fzg � Symg�1.†/. CF�.†; ˛; ˇ ; z/ is the
subcomplex generated by Œx; i � with i < 0, CFC.†; ˛; ˇ ; z/ is its quotient complex
(ie generated by i � 0), and bCF .†; ˛; ˇ ; z/ is the subcomplex of CFC generated
by pairs with i D 0. These complexes are modules over the polynomial algebra ZŒU �,
where U � Œx; i �D Œx; i � 1�. We have induced ZŒU �–actions on their homology groups
HF1.Y /, HF�.Y /, HFC.Y /, and bHF .Y / respectively.

The homology groups of these complexes are the Heegaard Floer homology groups of
Y . As the notation suggests, although the chain complexes are defined using several
choices (including a Heegaard diagram for Y and a choice of complex structure over
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†), the homology groups on only the homeomorphism type of the underlying three-
manifold. In fact, the proof of topological invariance from [16] actually proves more;
it shows that that the chain homotopy type of the chain complexes CFı.†; ˛; ˇ ; z/

is a topological invariant of Y . As a shorthand, we let CFı.Y / denote the Heegaard
Floer complex of Y for some choice of Heegaard diagram (and auxilliary choices).

The Heegaard Floer complexes come with some additional structure. For example,
there is a splitting of CFC.Y / into summands indexed by Spinc structures over Y ,

CFC.Y /D
M

t2Spinc.Y /

CFC.Y; t/:

These complexes are typically Z=2Z–graded, but when Y is a rational homology
three-sphere, or more generally, when t is a Spinc structure whose first Chern class
is torsion, then CFC.Y; t/ is naturally a Q–graded complex (cf Ozsváth–Szabó [20;
12]).

In a slight abuse of notation, we will in fact write CFC.Y / for a chain complex which
is quasi-isomorphic to a chain complex for Y with respect to some choice of Heegaard
diagram. In the cases where CFC.Y / has extra structure (eg in the case Y is a rational
homology sphere and hence its Heegaard Floer complexes are Q–graded), we require
that our candidate have that additional structure, and the quasi-isomorphism preserves
it.

It is shown in [20] that Heegaard Floer homology is natural under cobordisms. Specifi-
cally, in the present paper, three-manifolds Y will always be closed and oriented. A
cobordism W from Y1 to Y2 is a smooth, connected, compact four-manifold with
two boundary components �Y1 and Y2 (with respect to their boundary orientations).
We sometimes write this as W W Y1 �! Y2 . Of course, such a cobordism can be
“turned around” and viewed as a cobordism W W �Y2 �! �Y1 . Given a cobordism
W W Y1 �! Y2 , we say that two Spinc structures ti 2 Spinc.Yi/ for i D 1; 2 are Spinc

cobordant if there is a Spinc structure s 2 Spinc.W / with sjYi D ti for i D 1; 2.

Suppose now that W W Y1 �! Y2 is a cobordism, equipped with a Spinc structure s

whose restrictions ti D sjYi
for i D 1; 2 both have torsion first Chern class, then there

is an induced chain map

f C
W ;sW CFC.Y1; t1/ �! CFC.Y2; t2/

which is homogeneous of degree

(1)
c1.s/

2� 2�.W /� 3�.W /

4
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(cf [20, Theorem 7.1]). In fact, the Q–grading on Floer homology is characterized
by the above formula, and the normalization that HFC

d
.S3/ is trivial for all d < 0,

non-trivial in degree d D 0.

Sometimes, we will find it convenient to pass to a variant of Heegaard Floer homology
parameterized by an integer ı�0 which interpolates between bCF and CFC , which we
write as CF ı . The generators of CF ı , now, are pairs Œx; i � where 0� i � ı , endowed
with the induced differential from CFC . In other words, CF ı is the subcomplex of
CFC.Y / which is the kernel of multiplication by U ıC1 (in particular, in the case
where ı D 0, this construction gives bCF ).

2.4 Integral surgeries on knots

Let K � Y be a null-homologous knot. Then, there is a canonical Seifert framing
on K , giving rise to a curve � in the boundary of the tubular neighborhood of the
knot K , nd.K/, which meets the meridian � in a single point. Given any integer
n, the three-manifold Yn.K/ denotes the new three-manifold obtained by n–Dehn
filling on the complement Y � nd.K/; ie this is a three-manifold obtained by filling
Y � nd.K/ with a solid torus whose new meridian is given by n ��C �. Of course,
Dehn filling makes sense for arbitrary rational numbers, but we restrict attention here
to integral surgeries. For such a surgery, in fact, there is also a canonical four-manifold
Wn.K/ which is obtained by attaching a two-handle to Œ0; 1� � Y with framing n

along K . This gives a cobordism from Y to Yn.K/. In our applications, we find it
sometimes convenient to consider the cobordism W 0n.K/W Yn.K/�! Y obtained by
turning around the cobordism �Wn.K/W �Y �!�Yn.K/.

Fix a Seifert surface F for K , and let bF �W 0n.K/ denote the surface obtained by
capping off F in W 0n.K/. Suppose that u is a Spinc structure over Yn.K/ which
admits an extension s over W 0n.K/ with the property that

hc1.s/; ŒbF �i � n� 2i .mod 2n/:

Lemma 2.2 The correspondence u 7! i determined by the above formula induces
a surjection Spinc.Yn.K// �! Z=nZ. In the case where Y is an integer homology
three-sphere, the map is an isomorphism. More generally, if we fix a Spinc structure t

over Y , the set of Spinc structures over Yn.K/ which are Spinc –cobordant to t over
W 0n.K/ is identified with Z=nZ under this correspondence.

Proof This is straightforward.
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Of course, in the case where Y is an integral homology three-sphere, the above
correspondence between Spinc structures over Yn.K/ and Z=nZ depends on the
Seifert surface only through its induced orientation on K . Moreover, if we fix i 2Z=nZ
and use the opposite orientation on K , the induced Spinc structure over Yn.K/ is
conjugated.

For i 2Z=nZ, when Y is an integral homology three-sphere we write HFC.Yn.K/; i/

for the Heegaard Floer homology of Yn.K/ calculated in the Spinc structure corre-
sponding to i 2 Z=nZ under the correspondence from the above lemma.

For n ¤ 0, the lens space L.n; 1/ can be viewed as n–surgery on the unknot. For
n> 0, let

(2) d.n; i/D� max
fs2Z

ˇ̌
s�i .mod n/g

1

4

 
1�

.nC 2s/2

n

!

and let d.�n; i/ D �d.n; i/. It can be shown that d.n; i/ is the smallest degree in
which HFC.L.n; 1/; i/ is non-trivial (cf Ozsváth–Szabó [12, Proposition 4.8]).

2.5 Knot Floer homology and large n surgeries

We follow here the notation on knot Floer homology from [14]. A knot K � Y

has a compatible Heegaard diagram .†; ˛; ˇ ; w; z/, where .†; ˛; ˇ / is a Heegaard
diagram for Y , the knot K is supported in the handlebody specified by ˇ , where it is
a standard unknotted circle which is dual to the ˇg –attaching disk, and w and z are a
pair of reference points close to, and lying on either side of ˇg .

This gives rise to a map
sW T˛ \Tˇ �! Z

which is half of the first Chern class of the relative Spinc structure belonging to
x 2 T˛ \ Tˇ evaluated on a Seifert surface for K . The knot chain complex C

described in the introduction is then generated by Œx; i; j � 2 .T˛ \ Tˇ/ � Z � Z,
satisfying s.x/C .i � j /D 0, endowed with the differential

@Œx; i; j �D
X

y2T˛\Tˇ

X
f�2�2.x;y/

ˇ̌
�.�/D1g

# cM.�/ � Œy; i � nw.�/; j � nz.�/�:

This complex is given the filtration function F Œx; i; j � D .i; j /. The forgetful map
Œx; i; j ��! Œx; i � induces an isomorphism between C and CF1.Y /, sending C fi � 0g

isomorphically to CFC.Y /.
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The following result is proved in [14, Theorem 4.4], but we sketch the proof again for the
reader’s convenience. (In fact, a corresponding statement holds for a null-homologous
knot in an arbitrary closed, oriented three-manifold.)

Theorem 2.3 Let K � Y be a null-homologous knot in an integral homology three-
sphere. There is an integer N with the property that for all m�N and all t 2 Z=mZ,
CFC.Ym.K/; t/ is represented by the chain complex ACs D C fmin.i; j � s/ � 0g

where s � t .mod m/ and jsj � m=2, in the sense that there are isomorphisms (of
relatively Z–graded ZŒU �–complexes)

‰Cm;sW CFC.Ym.K/; t/ �!ACs :

Moreover, if xs and ys denote the Spinc structures over W 0m.K/ with

hc1.xs/; ŒbF �iCmD 2sresp.hc1.ys/; ŒbF �i �mD 2s;

then vCs and hCs correspond to the maps induced by the cobordism W 0m.K/ endowed
with the xs and ys respectively, in the sense that the following squares commute:

CFC.Ym.K/; t/
f
C

W 0m.K/;xs

�������! CFC.Y /

‰
C
m;s

??y ??yD
ACs

vC

����! BC

and

CFC.Ym.K/; t/
f
C

W 0m.K/;ys

�������! CFC.Y /

‰
C
m;s

??y ??yD
ACs

hC

����! BC:

Sketch of proof Let .†; ˛; 
 ; ˇ ; w; z/ be a Heegaard diagram for the cobordism
W 0mW Ym.K/ �! Y , containing the pair of basepoints w and z one on each side of
the meridian for Y . In particular, here the three-manifold Y˛;
 Š Ym.K/, Y
;ˇ Š

#g�1.S2 �S1/, Y˛;ˇ Š Y .

For s 2 Z, we define the map ‰Cm;sW CFC.Ym.K/; Œs�/ �! C fmax.i; j � s/� 0g by

‰Cm;s Œx; i �D
X

y2T˛\Tˇ

X
f 2�2.x;‚;y/

ˇ̌
nw. /�nz . /Ds�s.x/g

#M. /Œy; i�nw. /; i�nz. /�;

where here ‚ 2HF�0.Yˇ;
 / is a generator. The constraint on homotopy classes of
triangles is equivalent to the constraint that the first Chern class s induced by the
homotopy class  2 �2.x; ‚; y/ and the basepoint w satisfies

hc1.s/; ŒbF �iCmD 2s:

It is shown in the proof of [14, Theorem 4.4] for all sufficiently large m and all
t 2 Z=mZ, we have that ‰Cm;s induces an isomorphism of chain complexes from
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CFC.Ym.K/; t/ to C fmax.i; j � s/ � 0g for jsj � m
2

and s � t .mod m/. Post-
composing ‰Cm;s with the projection C fmax.i; j � s/� 0g to C fi � 0g (ie vC ), we
obtain the map induced by the cobordism W 0m.K/ equipped with the Spinc structure
xs ; ie the square in the statement of the theorem on the left commutes.

For commutativity of the second square, observe that the composite hCı‰Cm;s is identi-
fied with a map CFC.Ym.K// to CFC.Y / induced by counting pseudo-holomorphic
triangles in a fixed Spinc equivalence class, using the reference point z (rather than
w ). As we have seen, with respect to the reference point w , this Spinc equivalence
class induces the Spinc structure xs ; thus, with respect to the reference point z , the
induced Spinc structure is ys D xs �PDŒbF �.
It follows from the above statement that there are corresponding identifications between
bCF .Ym.K/; i/ with C fmax.i; j � s/D 0g, as well.

Corollary 2.4 Let K � Y be a null-homologous knot in an integer homology three-
sphere, and fix an integer ı � 0. There are constants C1 and C2 (depending on the
knot K and the choice of ı � 0) with the property that for all sufficiently large N , and
any choice of i , there is a chain complex CF ı.YN ; i/ such that

max grCF ı.YN ; i/�min grCF ı.YN ; i/� C1(3)ˇ̌̌
max grCF ı.YN ; i/�min grCF ı.Y /C max

s�i .mod N /

1

4

�
1�
j2sCN j2

N

�ˇ̌̌
� C2:(4)

Proof Both statements follow from Theorem 2.3. The first statement is an imme-
diate consequence of the homogeneous identification for all sufficiently large N of
CFC.YN .K/; i/ with ACi (which in turn is independent of N ). For the second asser-
tion, observe that either xi or yi is the Spinc structure over W 0

N
.K/ for which c1.s/

2

is maximized, amongst all Spinc structures whose restriction to YN .K/ corresponds
to i . (In fact, it is xi if i � 0, and yi if i � 0.) Moreover, the induced map on W 0

N
.K/

is realized as vC or hC , according to whether or not i � 0. It is now immediate to see
that for i � 0 resp i � 0, there is a constant C2 with the property that all of CFC.Y /

is contained within C2 grading levels of the image of vC resp. hC . The second
inequality follows from this observation, together with the is a shift in the gradings in
(1) specialized to the cobordism W 0

N
.K/.

2.6 An example: the unknot

In this subsection, we consider a special case of Theorem 1.1: the case of the unknot
K in the three-sphere.
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For the unknot K , the knot Floer complex CFK1.K/ is generated over Z by a
sequence of generators fxigi2Z with F.xi/D .i; i/, and U.xi/D xi�1 .

Let T C denote the ZŒU � module ZŒU;U�1�=U �ZŒU �.
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Figure 1: The doubly-filtered knot complex for the unknot. We have illus-
trated the doubly-filtered complex for the unknot: each dot at the location
.i; j / denotes a Z–generator for the complex C whose filtration level is .i; j /
(and indeed, they are all located at .i; i/). The hatched region represents
AC

2
, while projection to the region above the dotted line represents hC

2
. The

two generators in AC
2

but not above the dotted line represent the two kernel
elements of hC

2
.

For the unknot, we have that ACs D T C for all s , and also BCs D T C . Moreover, the
maps

vCs W A
C
s �! BCs and hCs W A

C
s �! BCsCn
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can be explicitly identified (up to multiplication by ˙1) as endomorphisms of T C :

vCs D

�
1 if s � 0

U�s if s � 0

hCs D

�
U s if s � 0

1 if s � 0.

For fixed i 2 Z=nZ, let ACi D
L

s�i .mod n/ACs and BCi D
L

s�i .mod n/BCs , and

DCn;i W A
C
i �! BCi

denote the map obtained by restricting DCn . Clearly, the mapping cone of DCn splits
as a direct sum of the mapping cones DCn;i over all i 2 Z=nZ.

It is easy to see that the homology of the mapping cone

DCn;i W A
C
�! BC

is isomorphic to T C . This, of course, is consistent with Theorem 1.1, together with the
fact that the Floer homology of the lens space L.n; 1/ (which in turn is n surgery on
the unknot) has HFC.L.n; 1/; i/Š T C for each i 2Z=nZ (cf [16, Proposition 8.1]).

More explicitly, in the case where n> 0, it is easy to see that DCn;i is surjective, and
its kernel is identified with the image of an injection

�W T C �!AC

given by the formula

(5) �.�/D fU �.�Ckn;n/
� �gk2Z;

where here � is the representative for i .mod n/ with 0� � < n, and

(6) �.� C kn; n/D

8<: k� C
�

k.k�1/n
2

�
if k � 0

.kC 1/� C
�

k.kC1/n
2

�
if k < 0.

Indeed, � induces the isomorphism of T C with H�.M.DCn;i W A
C �! BC//.

Dually, if n> 0, then DC
�n;i is injective, and its cokernel is isomorphic to T C . In fact,

for any ı � 0, let Aı resp. Bı denote the kernel of U ıC1 on AC resp BC , and let

Dı
�n;i W A

ı
�! Bı

denote the restriction of DC
�n;i . There is a map

� W Bı �! ZŒU �=U ıC1
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defined by

�.f��Ckngk2Z/D
X
k2Z

.�1/kU �.�.�Ckn/;n/��Ckn

which vanishes on the image of Dı
�n;i.A

ı/, and inducing an isomorphism

H�.M.Dı
�n;i W A

ı
�! Bı/Š ZŒU �=U ıC1:

2.7 Algebra

Consider the polynomial algebra ZŒU � in a single variable. A graded ZŒU � module is
a Q–graded module M over the ring ZŒU � with the property that the endomorphism
U W M �!M is homogeneous with degree �2. For d 2 Z, let Md denote the the
subgroup generated by homogeneous elements of degree d , and let M�k denote the
sum

M�k D

M
fd�kg

Md :

Note that for all integers k , M�k is a ZŒU �–submodule of M .

We say that a graded ZŒU �–module is of HFC type if for all sufficiently large degrees
k , the endomorphism

U W Md �!Md�2

is an isomorphism, and also for all sufficiently small degrees, Md D 0. Of course, if
Y is any three-manifold and t 2 Spinc.Y / is a Spinc structure whose first Chern class
is torsion, then HFC.Y; t/ is a ZŒU �–module of HFC–type.

The following lemma is straightforward.

Lemma 2.5 Let A and B be a pair of graded ZŒU �–modules of HFC–type. For any
integer c there is a constant D with the property that for all k �D , any homogeneous
map of degree c defined on A�k

f�k W A�k �! B�cCk

can be uniquely extended to a ZŒU �–module map

f W A �! B:

In particular, if A and B are of HFC–type then there is a ı � 0 with the property that
if A�ı Š B�ı , then AŠ B .
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Proof Since A and B are of HFC type, for all sufficiently large ` and all non-
negative integers m, the maps

U m
W A`C2m �!A`

and
U m
W B`C2mCc �! B`Cc

are isomorphisms. Choose then k � `C 2, and define

f .a/D

�
f�k.a/ if gr.a/� k

U�mf�k.U
m.a// where m is chosen so that `� gr.a/� 2m� `C 2:

It is easy to see that f is a canonically-defined extension of f�k . The last claim
follows immediately.

Definition 2.6 A chain complex C over the ring ZŒU � is said to be of CFC–type
if it is quasi-isomorphic (over ZŒU �) to a chain complex of the form C 0 ˝ZŒU �

ZŒU;U�1�=ZŒU �, where C 0 is a finitely generated, free chain complex over ZŒU �.

For example, the chain complex CFC.Y / is of CFC–type (the chain complex CF�.Y /

plays the role here of C 0 ). It is also straightforward to see that if C is a graded ZŒU �–
complex which is of CFC–type, then its homology is of HFC–type. The mapping
cones XC.n/ from the introduction can also be seen to be of CFC–type (cf Lemma
4.3 below).

Let C be a chain complex over ZŒU �, and fix an integer ı � 0. Let C ı denote the
subcomplex of elements in the kernel of multiplication by U ıC1 .

Lemma 2.7 Let A and B be two chain complexes of graded ZŒU �–modules which
are of CFC–type. For any c , there is a constant D with the property that for all
integers ı �D , any homogeneous map of degree c defined on

f ıW H�.A
ı/ �!H�.B

ı/

can be uniquely extended to a ZŒU �–module map

f W H�.A/ �!H�.B/:

In particular, if A and B are graded ZŒU �–complexes which are of CFC–type, then
there is an integer ı � 0 with the property that if H�.A

ı/ŠH�.B
ı/, then H�.A/Š

H�.B/.
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Proof Consider the short exact sequence

0 ����! Aı ����! A
U ıC1

����! A ����! 0:

note that the connecting homomorphism is a homogeneous map of degree 2ıC 1. In
particular, for any k , we can choose ı so that H�.A�k�2ı�1/D 0, the induced long
exact sequence gives an isomorphism H�.A

ı
�k
/ŠH�.A�k/. The lemma then follows

at once from Lemma 2.5.

3 An exact sequence for surgeries

Theorem 1.1 hinges on the following exact sequence relating different surgeries on a
knot in a three-manifold Y . Loosely speaking, the exact sequence is induced by the
homology between the curve .mCn; 1/ in the torus with the sum of curves .n; 1/ and
.m; 0/ (where here m, n, are integers and the homology classes of curves in the torus
are written as .a; b/ 2 Z˚ZŠH1.T

2IZ/).

Theorem 3.1 Let Y be a closed, oriented three-manifold, equipped with a null-
homologous knot K . Fix an integer n and a positive integer m. Then, there is a long
exact sequence

� � � �!HFC.Yn.K// �!HFC.YmCn.K// �!

mM
HFC.Y / �! � � �

and also a corresponding exact sequence using bHF in place of HFC . Indeed, there
are ZŒU �–equivariant chain maps

f C
1
W CFC.Yn.K// �! CFC.YmCn.K//

f C
2
W CFC.YmCn.K// �!

mM
CFC.Y /

f C
3
W

mM
CFC.Y / �! CFC.Yn.K//

inducing the maps in the long exact sequence, and ZŒU �–equivariant quasi-isomor-
phisms

�CW CFC.Yn.K// �!M.f C
2
/

 CW M.f C
2
/ �! CFC.Yn.K//:

(See (8), (9), (11), (13), and (14) for the definitions of f C
1

, f C
2

, f C
3

, �C , and  C

respectively.)
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The proof follows very closely along the lines of various other previously-established
exact sequences for surgeries. In particular, we assume familiarity with [15, Section
10], and continue in the notation set up there.

Proof of Theorem 3.1 Consider a pointed Heegaard diagram for Y , .†; ˛; ˇ ; z/,
with the property that K is contained entirely inside the handlebody Uˇ , so that it is
disjoint from the attaching disks bounding ˇ1; : : : ; ˇg�1 , and with the additional prop-
erty that ˇg is a meridian for the knot. Let 
g be a simple, closed curve in † disjoint
from the ˇ1; : : : ; ˇg�1 which specifies the n–framing of K . (In particular, if �g is the
canonical 0–framing, then 
g is a smooth curve which is homologous to n �ˇgC�g .)
We complete this to a g–tuple of attaching circles 
 by taking curves 
1; : : : ; 
g�1

which are small Hamiltonian translates of ˇ1; : : : ; ˇg�1 respectively. Similarly, define
ı , only this time ıg corresponds to the framing mCn. Thus, .†; ˛; 
 / and .†; ˛; ı /
are Heegaard diagrams for Yn.K/ and YmCn.K/ respectively.

We place a basepoint p on ˇg , and consider twisted homology with coefficients
in Z=mZ; ie write ZŒZ=mZ� D ZŒT �=.T m � 1/, and consider the chain complex
CFC.Y /˝Z ZŒZ=mZ� endowed with the differential

@CŒx; i �D
X

y2T˛\Tˇ

X
f�2�2.x;y/

ˇ̌
�.�/D1g

#
�
M.�/

R

�
�T mp.�/ � Œy; i � nz.�/�

where as usual here x2T˛\Tˇ , i � 0, �2.x; y/ denotes the space of homotopy classes
of Whitney disks connecting x and y, �.�/ denotes the Maslov index of � , and terms
in the above equation for which i � nz.�/ < 0 are to be dropped. Moreover, mp.�/

denotes the multiplicity of the basepoint p in the boundary of � ; ie p determines
a codimension one submanifold ˇ1 � � � � � ˇg�1 � fpg � Tˇ , and we look at the
intersection number with the restriction of the boundary of � with this subset. We
denote the complex by CFC.Y IZŒZ=mZ�/ (In the terminology of [16], this is the
chain complex for Y with twisted coefficients in ZŒZ=mZ�, where it is denoted
CFC.Y IZŒZ=mZ�/, however, we drop the underline here in the interest of notational
simplicity.) There is an isomorphism of chain complexes of modules over ZŒZ=mZ�,

(7) � W CFC.Y IZŒZ=mZ�/
Š
�! CFC.Y /˝Z ZŒZ=mZ�;

where here the right-hand-side is endowed with the differential which is the original
differential on CFC.Y / tensored with the identity map on ZŒZ=mZ�. This map is
induced by fixing an intersection point x0 2 T˛ \Tˇ , and defining

�Œx; i �D T mp.�/Œx; i �;
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where here � 2 �2.x; x0/. Note that mp.�/ depends on � only through the choice of
x0 and x (and indeed the map � depends on the choice of x0 and the placement of p

through an overall multiple of a power of T ). There is a corresponding identification

HFC.Y IZŒZ=mZ�/ŠHFC.Y /˝Z ZŒZ=mZ�Š
mM

HFC.Y /:

First, we define the map f C
1

. The map f C
1

is defined by counting pseudo-holomorphic
triangles between T˛ , T
 , and Tı . More precisely, note that the Heegaard triple
.†; ˛; 
 ; ı ; z/ determines a four-manifold X˛;
;ı with three boundary components

Y˛;
 Š Yn.K/; Y˛;ı Š YnCm.K/; and Y
;ı Š #g�1.S2
�S1/#L.m; 1/:

We will fix a Spinc structure over Y
;ı by the following convention.

Definition 3.2 The lens space L.m; 1/ bounds a tubular neighborhood of a sphere S

whose self-intersection number is m. The canonical Spinc structure ` 2

Spinc.L.m; 1// is the one which bounds a Spinc structure s over the tubular neighbor-
hood which satisfies hc1.s/; ŒS �i Dm. For the connected sum L.m; 1/#.#g�1.S2 �

S1//, the canonical Spinc structure is the one whose first Chern class is torsion and
whose restriction to L.m; 1/ is the canonical Spinc structure.

Let ‚
ı denote the Floer homology class corresponding to the generator (over
ƒ�H1.Y
;ı/˝ZŒU �) of

HF�0.Y
;ı; `/Šƒ
�H 1.Y
;ı/˝ZŒU �

in its canonical Spinc structure `. For simplicity, we can arrange for the homology
class ‚
ı to be represented by a single intersection point in T
 \Tı , which we also
denote by ‚
ı .

We then define

(8) f C
1
.Œx; i �/D

X
y2T˛\Tı

X
f 2�2.x;‚
ı;y/

ˇ̌
�. /D0g

#M. / � Œy; i � nz. /�:

Similarly, we define f C
2
W CFC.YmCn.K// �! CFC.Y IZŒZ=mZ�/ by

(9) f C
2
.Œy; i �/D

X
w2T˛\Tˇ

X
f 2�2.y;‚ıˇ;w/

ˇ̌
�. /D0g

#M. / � Œw; i �nz. /� �T
mp. /:

The map f C
2

can be thought of more invariantly as a weighted sum of maps induced by
cobordisms, as follows. For our Heegaard triple .†; ˛; ı ; ˇ ; z/, the doubly-periodic
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domains all have multiplicity zero at p , while the generator of the space of triply-
periodic domains modulo doubly-periodic ones contains ˇg with multiplicity mC n.
Thus, fixing y0 , ‚ıˇ , and w0 in T˛ \Tı , Tı \Tˇ and T˛ \Tˇ respectively, the
function

mpW �2.y0; ‚ıˇ;w0/ �! Z=mZ

descends to a function
mW Spinc.W 0nCm.K// �! Z

with the property that
m.s�PDŒbF �/Dm.s/CmC n:

Note that m depends on the choice of p and the initial fixed intersection points up to
an overall additive constant; there is also an orientation issue here which is a matter of
convention. Composing with the isomorphism from (7), it follows at once that

(10) � ıf C
2
D

X
s2Spinc.W 0nCm.K //

T m.s/
�f C

W 0nCm.K /;s
:

We must check that f C
2
ı f C

1
' 0. This is proved as usual using associativity for

holomorphic triangles. The verification involves a calculation in the Heegaard triple
.†; 
 ; ı ; ˇ ; z/, showing that the pairing of ‚
ı and ‚ıˇ in HF�0.Y
;ˇIZŒZ=mZ�/
vanishes; ie X

x2T
\Tˇ

X
f 2�2.‚
ı;‚ıˇ;x/

ˇ̌
�. /D0g

#M. / � Œx;�nz. /� �T
mp. /

is null-homologous.

The claim amounts to showing that triangles come in cancelling pairs with the same
value of nz. / and T power. The fact that any two triangles with the same value
of nz. / connecting ‚
ı , ‚ıˇ , and ‚
ˇ have the same power of T follows from
the fact that a generator for the space of the triply-periodic domains for the Heegaard
triple .†; 
 ; ı ; ˇ ; z/ has mp. /Dm, and of course any two triangles with the same
value of nz. / differ by a triply-periodic domain. Next, we claim that triangles with
a fixed value of nz. / come in pairs. This is straightforward to verify – in fact, a
linear map transforms the problem into the same lattice point count considered in
the integer surgeries long exact sequence, [15, Theorem 10.19]. The usual proof
of the associativity law for maps induced by triangles now gives a null-homotopy
HC

1
W CFC.Yn.K// �! CFC.Y IZŒZ=mZ�/ of the composite f C

2
ı f C

1
, defined by

counting pseudo-holomorphic quadrilaterals.
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One could now establish existence of a long exact sequence in homology following
the outline of Ozsváth–Szabó ([15] or [19]). Following the approach of [15], observe
that there are curves in the isotopy class of ıg which approximate arbitrarily well the
juxtaposition of curves m�ˇgC
g . The map from CFC.Yn.K// into CFC.YmCn.K//

is injective, since the counts of small triangles (with vertex at the canonical Spinc

structure) induce the nearest point map from CFC.Yn.K// into CFC.YmCn.K//,
while the counts of small triangles with vertex at ˇg \ 
g and reference point p 2 ˇg

induces the nearest point map tensored with a surjection onto Z=mZ.

However, for the stronger statement about the quasi-isomorphisms, we need to use the
argument from [19, Section 4], and in particular, we need to place the third map on
equal footing with the first two.

To this end, let c 2 Z=mZ be the element gotten as follows. Fix any
 2 �2.‚
ˇ; ‚ˇı; ‚
ı/, where the ‚i;j have been chosen before (recall that ‚
ı
represents the generator of HF�0.L.m; 1/#.#g�1.S2�S1//; `/ in the canonical Spinc

structure). Observe that the congruence class of mp. / modulo m is independent
of the choice of  (as any two such  differ by a triply-periodic domain, whose
multiplicity at p is some multiple of m). Denote this quantity by c 2Z=mZ. (It, of
course, depends on the particular Heegaard triple.)

Define
f C

3
W CFC.Y IZŒZ=mZ�/ �! CFC.Yn.K//

by the formula
(11)
f C

3
.T s
� Œx; i �/D

X
y2T˛\T


X
f 2�2.x;‚ˇ
 ;y/

ˇ̌ �. /D0;

sCmp. /�c .mod m/g

#M. / � Œy; i�nz. /�:

More invariantly, we can think of f C
3

as a sum of maps induced by the two-handle
cobordism Wn.K/W Y �! Yn.K/. Specifically, multiplicity at p induces a map

m0W Spinc.Wn.K// �! Z

with the property that m0.s� PDŒbF �/D m0.s/C n. Now, there is some c0 2 Z=mZ
with the property that

(12) f C
3
ı �.T s

� �/D
X

fs2Spinc.Wn.K //
ˇ̌
m0.s/Cc0�s .mod n/g

f C
Wn.K /;s

:

The verifications that f C
3
ı f C

2
' 0 and f C

1
ı f C

3
' 0 proceed as before. In fact,

counts of quadrilaterals define null-homotopies HCi of f C
iC1
ıf Ci .
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For the quasi-isomorphism statement, we count pseudo-holomorphic quadrilaterals
for Heegaard quadruples. Let ˇ 0 , 
 0 , and ı 0 denote suitable exact Hamiltonian
translates of the corresponding curves ˇ , 
 , and ı respectively. It is easy to see
that for the resulting Heegaard tuples .†; 
 ; ı ; ˇ ; 
 0; z/, and .†; ı ; ˇ ; 
 ; ı 0; z/,
there is exactly one Whitney quadrilateral ' connecting the ‚i;j with D.'/ � 0,
nz.'/ D 0, and �.�/ D �1. (Here, D.'/ denotes the set of local multiplicities of
' on †, cf [16]; these local multiplicities must be non-negative for the homotopy
class to admit pseudo-holomorphic representatives). Moreover, this homotopy class
admits a unique pseudo-holomorphic representative, compare [19, Section 4]. This is
a routine adaptation of the arguments given in that section. For the Heegaard tuple
.†; 
 ; ı ; ˇ ; 
 0; z/, it follows that under the map induced by counting holomorphic
quadrilaterals, the map

bHF .T
 ;Tı/˝bHF .Tı;Tˇ/˝bHF .Tˇ;T
 0/ �! bHF .T
 ;T
 0/

carries the top-dimensional generator of the left-hand-side to the top-dimensional
generator of the right-hand-side cf [19, (11)]. A corresponding statement for HF�0

(taken with coefficients in the ring of formal power series in U , ZŒŒU ��) is now a
formal consequence, showing that the top-dimensional generator of the tensor product
of HF�0 is mapped to a multiple of the generator of HF�0.T
 ;T
 0/ by a unit in
ZŒŒU ��. Corresponding remarks apply to the quadruple .†; ı ; ˇ ; 
 ; ı 0; z/.

The Heegaard tuple .†; ˇ ; 
 ; ı ; ˇ 0/ works slightly differently, as now we are required
to take twisted coefficients when using the pair ˇ and ˇ 0 , bHF .Tˇ;Tˇ0 ;ZŒZ=mZ�/.
In this case, the generator of the top-dimensional homology group is not represented by
the intersection point ‚ˇ;ˇ0 , but rather by the element .

Pm�1
iD0 T i/ �‚ˇ;ˇ0 . Correspond-

ingly, there are now m different homotopy quadrilaterals 'i with i D 0; : : : ;m� 1

which have D.'i/ � 0, nz.'/ D 0, and �.'/ D �1. We can order these so that
mp.'i/D i . Each of these has a unique holomorphic representative. Again, this shows
that the map induced by counting holomorphic quadrilaterals (and recording their
multiplicity at p in the exponent of a formal variable T )

bHF .Tˇ;T
 /˝bHF .T
 ;Tı/˝bHF .Tı;Tˇ/ �! bHF .Tˇ;Tˇ0 IZŒZ=mZ�/

carries the top-dimensional generator of the left-hand-side to .
Pm�1

iD0 T i/ �‚ˇ;ˇ0 , the
top-dimensional generator of the right-hand-side. Corresponding remarks for the maps
induced on HF�0 follow at once.

With this said, the argument from [19] prove that the chain maps

�CW CFC.Yn.K// �!M.f C
2
/ and  CW M.f C

2
/ �! CFC.Yn.K//
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defined by

(13) �C.�/D .f C
1
.�/;HC

1
.�//:

and

(14)  C.x;y/DHC
2
.x/Cf C

3
.y/

respectively are quasi-isomorphisms. (Observe, incidentally, that in [19], we gave a
proof using bCF . To pass from there to CFC , observe that the chain maps and chain
homotopies used are all ZŒU �–equivariant maps; and hence the chain maps above are
in fact ZŒU �–equivariant quasi-isomorphisms.)

4 Proof of Theorem 1.1

Before proving Theorem 1.1, we give a more precise statement.

Let Y be an integral homology three-sphere, equipped with a knot K � Y . Fix also
an integer n¤ 0.

In the introduction, we considered chain complexes AC D
L

s2Z ACs and BC DL
s2Z BCs and a chain map DCn W A

C �! BC defined by DCn .fasgs2Z/D fbsgs2Z;

where here bs D hCs�n.as�n/C v
C
s .as/. We refine this further as follows.

For each i 2 Z=nZ, let

ACi D
M

fs2Z
ˇ̌
s�i .mod n/g

ACs ;

and
BCi D

M
fs2Z

ˇ̌
s�i .mod n/g

BCs :

There is a splitting

AC D
M

i2Z=nZ

ACi and BC D
M

i2Z=nZ

BCi I

and the restriction of DCn to ACi can be thought of as a map

(15) DCn;i W A
C
i �! BCi :

Moreover, the mapping cone XC.n/ of DCn splits into a direct sum of mapping cones
XC.n/D

L
i2Z=nZ XCi .n/, where here XCi .n/ is the mapping cone of DCn;i .

Algebraic & Geometric Topology, Volume 8 (2008)



124 Peter S Ozsváth and Zoltán Szabó

Clearly, XC.n/ can be given a relative Z–grading, which is compatible with the relative
Z grading on ACs and BCs , and with the property that vC and hC (thought of as
endomorphisms of XC.n/) are homogeneous maps of degree �1.

More explicitly, suppose that n> 0, and consider the absolute grading on CFC.Y /.
Although each BCs ŠCFC.Y /, we shift the grading; ie writing sD�C`�n where � is
the representative for i .mod n/ with 0� � <n. We lift the natural relative Z–grading
on BCs so that the homogeneous elements of CFC.Y / of degree d correspond to the
homogeneous elements of BC

�C`�n
of degree d C 2`� C n`.`� 1/� 1. We claim we

can then consistently shift the gradings on ACs so that both maps vCs W A
C
s �! BCs

and hCs W A
C
s �!BCsCn are homogeneous maps of degree �1. This gives a grading on

XCi .n/.

When considering XC.�n/ (where here n > 0), we still have that BCs Š CFC.Y /.
Writing sD�.�C` �n/, for 0�� �n, we identify homogeneous elements of degree d

in CFC.Y / with the homogeneous elements of BC
���`�n

of degree d�2`��n`.`�1/.
We can then consistently shift the gradings on ACs so that both maps vCs W A

C
s �!BCs

and hCs W A
C
s �!BCs�n are homogeneous maps of degree �1. This gives an integral

grading on XCi .�n/.

Theorem 4.1 Let Y be an integral homology three-sphere. The homology of the
mapping cone XC.n/ of

DCn W A
C
�! BC

is isomorphic to HFC.Yn.K//. Moreover, the summand HFC.Yn.K/; i/ (under
the identification Spinc.Yn.K//Š Z=nZ given in Section 2.4) is identified with the
homology of the summand XCi .n/. Also, this map identifies the relative Z–grading
on HFC.Yn.K/; i/ with the one described above on H�.X

C
i .n//. In fact, the isomor-

phism from H�.X
C
i .n// to HFC.Yn.K/; i/ is a homogeneous map of degree d.n; i/,

as defined in (2).

The following result is a quick consequence of the proof of Theorem 4.1. It shows
that knot Floer homology also determines the maps induced by the natural cobordisms
from Y to Yn.K/.

Theorem 4.2 The following square commutes:

H�.BC/
�

����! H�.XC.n//

D

??y ??yŠ
L

i2Z HFC.Y /i
F
C

Wn.K/

�����! HFC.Yn.K//
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where the second vertical isomorphism is provided by Theorem 4.1, the top horizontal
map is the natural map induced from the mapping cone construction, while the bot-
tom one is the map induced by cobordisms; ie the i th factor HFC.Y /i is mapped
to HFC.Yn.K// by the natural map induced by the two-handle cobordism Wn.K/

endowed with the Spinc structure with

hc1.s/; ŒbF �iC nD 2i:

Note that Theorem 1.1 is a special case of Theorem 4.1 and Theorem 4.2.

Most of this section is devoted to a proof of Theorem 4.1. In Section 4.1, we set
up some notation and algebraic preliminaries for the proof. The theorem follows by
applying Theorem 3.1, choosing the surgery coefficient m to be sufficiently large. Thus,
in in Section 4.2, we study Spinc structures over one of the cobordisms from Theorem
3.1, when the surgery coefficient is large. This provides enough information to prove
the special case of Theorem 1.1 for the case of bHF , cf Section 4.3. We assume for
simplicity that n> 0 throughout most of the exposition, returning to the case where
n< 0 in a later subsection. The case for HF ı (arbitrary ı � 0) follows as well, with
minor notational modifications, cf Section 4.4. In Section 4.5, we return to the question
of Spinc structures over cobordisms, when the surgery coefficient is sufficiently large.
With this done, we can complete the the proof of Theorem 4.1, in the case where n> 0.
In Section 4.7, we describe the modifications needed to make the proof go over to the
case where n< 0. In Section 4.8, we make a few comments regarding the case where
nD 0. In Section 4.9, we give the proof of Theorem 4.2. In Section 4.10, we discuss
some generalizations of Theorem 4.1.

4.1 Truncation

Although we are primarily interested in HFC , we will find it convenient to use HF ı

at various times, and also easier to explain things in terms of bHF . To this end, we
will use some straightforward notational changes. Specifically, for any integer ı � 0,
let Aıi , Bıi , Aıi , and Bıi denote the subsets of ACi , BCi , ACi , and BCi respectively
which lie in the kernel of multiplication by U ıC1 . Thus, the mapping cone Xıi .n/ of
the restriction Dı

n;i of DCn;i , viewed as a map

Dı
n;i W A

ı
i �! Bıi ;

is the kernel of the action by U ıC1 on XCi .n/. Similarly, we let bAi , bB i , bAi , bB i

denote the corresponding groups Aıi , Bıi , Aıi , and Bıi with ı D 0.
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It will be convenient for us also to truncate the infinite constructions from the introduc-
tion. Specifically, for fixed integers b , let

ACi .b/D
M

fs2Z
ˇ̌
s�i .mod n/;�b�s�bg

ACs �ACi

BCi .b/D
M

fs2Z
ˇ̌
s�i .mod n/;�bCn�s�bg

BCs � BCi :

Similarly, we let DC
n;iIb
W AC.b/�! BC.b/ denote the restriction of DCn;i , and let and

XCi .nI b/�XCi .n/ denote the corresponding subset of the mapping cone.

Note that when n > 0, there is a quotient map QC
b
W XCi .n/ �! XCi .nI b/; and alsobQb and Qı

b
(for any ı � 0) using corresponding constructions on bXi.n/ and Xıi .n/.

When n< 0, there are inclusion maps iC
b
W XCi .nI b/ �!XCi .n/ and also bi b and iı

b

for the other variants.

Lemma 4.3 If b is sufficiently large, then when n> 0, the quotient maps QC
b

, bQb

and Qı
b

are quasi-isomorphisms; when n < 0, the inclusions iC
b

, bi b , and iı
b

are
quasi-isomorphisms.

Proof This follows quickly from the fact that for all s sufficiently large, the maps vCs
(and bv s , vıs ) and hC�s (and bh�s , hı�s ) are isomorphisms.

It follows easily from the above that XCi .n/ is of CFC–type, in the sense of Definition
2.6.

4.2 Gradings

Let Y be a three-manifold with a null-homologous K � Y . Continuing notation
from Section 2.4, given an integer N , let W 0

N
.K/W YN .K/ �! Y denote the induced

two-handle cobordism. Fix also Seifert surface F for K , and let bF �W 0
N
.K/ denote

the surface obtained by capping off F in W 0
N
.K/.

In the following statement, note that we continue conventions from Section 2.3:
CF ı.YN .K/; Œi �/ and CF ı.Y / will denote complexes which are quasi-isomorphic to
the Heegaard Floer homology complexes for some choice of Heegaard diagram and
auxilliary data.
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Lemma 4.4 Suppose that K is a knot in a three-manifold Y . Then, for any constant
ı � 0, there is another constant b with the following property. For all sufficiently
large N , for any fixed Œi � 2Z=N Z, there are at most two Spinc structures on W 0

N
.K/

whose restriction to YN .K/ is Œi � with the property that

(16) min grCF ı.Y /�max grCF ı.YN ; Œi �/�
c1.s/

2C 1

4
I

these are the Spinc structures with

hc1.s/; ŒbF �i D 2s˙N;

where s is an integer � i .mod N /, and which satisfy �N=2 � s <N=2. All other
Spinc structures satisfy the inequality

(17) c1.s/
2
� �4N:

Moreover, if any integral representative s for i satisfies jsj> b , then there is a unique
Spinc structure satisfying (16), and it is the one for which jhc1.s/; ŒbF �ij is minimal.

Proof The set of Spinc structures over W 0
N
.K/ can be identified with the set of

integers via the correspondence which sends s to the integer s determined by the
formula

hc1.s/; ŒbF �i �N D 2s:

Fixing the restriction of s to YN .K/ corresponds to fixing the equivalence class of s

modulo n. Thus, maximizing the function .c1.s/
2C 1/=4 over the set of Spinc struc-

tures whose restriction to YN .K/ corresponds to i 2 Z=N Z amounts to maximizing
the quadratic function

q.s/D
1

4

 
1�

.N C 2s/2

N

!
over all integers s with s � i .mod N /.

This quadratic form is maximized by the representative i for Œi � with �N < i � 0.
The second largest value is smaller by min.2ji j; 2N C 2i/, and all other values are
smaller than q.i/ by at least max.2ji j; 2N C2i/. Thus, if s is any Spinc structure for
which the quadratic function takes on neither its maximal or next-to-maximal value,
we have that

c1.s/
2C 1

4
� q.i/�max.2ji j; 2N C 2i/� q.i/�N �

1

4
�N:
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On the other hand, according to Corollary 2.4, there is a constant C2 with the property
that if we let �Dmin grCF ı.Y /�max grCF ı.YN ; Œi �/, then

q.i/��CC2:

Thus, if N is sufficiently large, inequality (16) is violated.

Moreover, for the final statement, observe that the hypothesis that any representative
s for i satisfies jsj > b is equivalent to the assertion that min.2ji j; 2.N C i// > 2b .
Moreover, if s is any Spinc structure for which the quadratic form is not minimized,

c1.s/
2C 1

4
� q.i/�min.2ji j; 2NC2i/��CC2�min.2ji j; 2NC2i/<�CC2�2bI

thus the choice of b D C2=2 satisfies the final assertion.

4.3 The case of bHF

Theorem 1.1 follows from an analysis of Theorem 3.1 for a suitable choice of m –
specifically, we choose mD nk where k is a sufficiently large positive integer. We
shall assume for the time being that n > 0, returning to the case of negative surgery
coefficients in Section 4.7. Our aim in the present subsection is to prove an analogue
of Theorem 1.1 for bCF , showing that bXi.n/ is quasi-isomorphic to bCF .Yn.K/; i/.
(However, the statement about maps induced by cobordisms will be relegated to Section
4.9 below, and the case where n< 0 is handled in Section 4.7.)

Let bf 1W
bCF .Yn.K// �!bCF .Yn.kC1/.K//

and bf 2W
bCF .Yn.kC1/.K// �!bCF .Y IZŒZ=nkZ�/

denote the maps induced by f C
1

and f C
2

from (8) and (9) on bCF � CFC , thought
of as the kernel of multiplication by U . We will also fix an identification of chain
complexes

bCF .Y IZŒZ=nkZ�/ŠbCF .Y /˝Z ZŒZ=nkZ�;

and so as to think of bCF .Y IZŒZ=nkZ�/ as a direct sum of complexes

(18) bCF .Y IZŒZ=nkZ�/Š
M

s2Z=nkZ

T s
˝bCF .Y /:

(We are using here an identification � as in (7), which is well-defined up to an overall
shift by T c for some constant c which we will fix later. We suppress the identification
� to simplify notation.)
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Let W 0
n.kC1/

.K/ be the natural two-handle cobordism from Yn.kC1/.K/ to Y . We
abbreviate this cobordism by W 0.k/. Recall that a choice of Seifert surface F for K

gives rise to a closed surface bF �W 0.k/ with

ŒbF � � ŒbF �D�n.kC 1/:

Given s 2Z, let bAs D
bCF .Yn.kC1/.K/; s/; ie it is the summand of bCF .Yn.kC1/.K//

in a Spinc structure gotten by restricting a Spinc structure s over W 0.k/ which satisfies

hc1.s/ � ŒbF �i � n.kC 1/� 2s .mod 2n.kC 1//:

Moreover, let xs resp. ys denote the Spinc structures over the cobordism

W 0.k/W Yn.kC1/.K/ �! Y

which satisfy

hc1.xs/; ŒbF �iC n.kC 1/D 2s and hc1.ys/; ŒbF �i � n.kC 1/D 2s

respectively.

For any s in

(19) �
n.kC 1/

2
� s <

n.kC 1/

2
;

then xs and ys are the two Spinc structures over W 0.k/ with fixed restriction to
Yn.kC1/.K/ for which the function c1.s/

2C1
4

takes on its two largest values (cf Lemma
4.4).

Observe that xsCPDŒbF �D ys , and hence

(20) m.xs/�m.ys/D�n.kC 1/��n .mod nk/;

and also
m.xsCn/�m.xs/� n .mod nk/:

Thus, if we write bBs D T s
˝bCF .Y /�bCF .Y IZ=mZ/

(with respect to the direct sum decomposition of (18)), then, after multiplying f C
2

with
an overall factor of T c for some constant c , the components bf 2 corresponding to the
Spinc structures xs and ys for integers s in the range of inequality (19) give maps

bvsW
bAs �!

bBs and bhsW
bAs �!

bBsCn(21)

respectively.
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Now, apply Lemma 4.4 in the case where ı D 0, so that CF ı DbCF , and choose s to
satisfy inequality (19). In this case, for all sufficiently large k , the lemma combined
with the dimension shift formula (1) proves that xs and ys are the only two Spinc

structures which may induce non-trivial maps from bCF .Yn.kC1/.K/; s/ into bCF .Y /.

In sum, we have identified bf 2 , the map on bCF induced from the map f C
2

from (9),
with the map bf 02 M

s2Z=n.kC1/Z

bAs �!

M
s2Z=nkZ

bBs

induced by adding all the bvs and bhs in the range specified (19) (compare (10)).

Moreover, according to the second statement in Lemma 4.4, there is an integer b

(independent of k ) with the property that for all s � b , we have that

bv�sW
bA�s �!

bB�s andbhsW
bAs �!

bBsCn

are null-homotopic. This, together with the integer surgeries long exact sequence (and
the fact that HFC.S3

0
.K/; s/D 0 for s � b for some b ), also shows that

bvsW
bAs �!

bBs andbh�sW
bA�s �!

bB�sCn

are quasi-isomorphisms. It follows that the mapping cone of f 0
2

is quasi-isomorphic to
the mapping cone ofbf 002W M

fs2Z
ˇ̌
s�i .mod n/;�b�s�bg

bAs �!

M
fs2Z

ˇ̌
s�i .mod n/;�bCn�s�bg

bBs

obtained by adding all the bvs and bhs in the given range.

Theorem 2.3 gives interpretations of these objects in terms of the knot Floer homology.
Indeed, we have identifications (provided that k is sufficiently large)

bAs

bvs
����! bBs

‰
C

n.kC1/;s

??y ??y
bAs

bvs
����! Bs

and

bAs

bhs
����! bBsCn??y‰Cn.kC1/;s

??y
bAs

bhs
����! BsCn:

This in turn shows that the mapping cone of bf 002 is quasi-isomorphic to the mapping
cone ofbf 0002 W M

fs2Z
ˇ̌
s�i .mod n/;�b�s�bg

bAs �!

M
fs2Z

ˇ̌
s�i .mod n/;�bCn�s�bg

bB s
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obtained by adding bv s and bhs in the given range (cf Lemma 2.1). But this mapping cone
is identified the truncation bXi.n; b/�XCi .n; b/ from Section 4.1. Finally, applying
Lemma 4.3, we see that bCF .Yn; i/ is quasi-isomorphic to the mapping cone bXi.n/.

4.4 The case of CF ı

A direct application of the argument from Section 4.3 proves the following proposition.

Proposition 4.5 Fix integers n > 0 and ı � 0. Then, there is a constant b with
the property that CF ı.Yn.K/; i/ is quasi-isomorphic to Xıi .nI b/ (in the notation of
Section 4.1).

Proof Apply the proof of Section 4.3, only now apply Lemma 4.4 with ı� 0 arbitrary
(rather than D 0).

Of course, according to Lemma 4.3, the truncation is unnecessary, and we see that
HF ı.Yn.K/; i/ŠH�.Xıi .n//. Moreover, when working with Floer homology with
coefficients in a field, this statement for all ı� 0 suffices to prove a version of Theorem
1.1 in an ungraded sense. We do not pursue this direction, but instead turn to gradings
to establish the stronger form of the result stated in Theorem 4.1.

4.5 More gradings

We turn our attention now to the map f C
1

from (8), gotten by counting holomorphic
triangles in the four-manifold X˛;
;ı belonging to the Heegaard triple .†; ˛; ı ; ˇ /.
This four-manifold has three boundary components,

Yn.K/; Y
;ı ŠL.nk; 1/#.#g�1.S2
�S1//; and Yn.kC1/.K/:

We abbreviate this four-manifold by X.k/. We will always fix the canonical Spinc

structure over the boundary component Y
;ı (cf Definition 3.2).

For s 2 Z, let

…A
s W CFC.Yn.kC1/.K// �! CFC.Yn.kC1/.K/; s/

denote the natural projection map. Consider the map

f C
1
W CFC.Yn.K// �! CFC.Yn.kC1/.K//D

M
s2Z=n.kC1/Z

CFC.Yn.kC1/.K/; s/;

from (8) and let f ı
1

denote its restriction to CF ı.Yn.K//.

In this subsection, we prove the following result.
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Proposition 4.6 Fix an absolute lift of the relative Z–grading on CFC.Yn.K//,
and an integer ı � 0. There exists a constant b so that, for all sufficiently large k ,
there are absolute lifts of the relative Z–gradings on both CF ı.Yn.kC1/.K/; s/ �

CF ı.Yn.kC1/.K// and T s˝CF ı.Y /� CF ı.Y IZŒZ=nkZ�/ for all jsj � b , with the
property that …A

s ı f
ı

1
and also the restriction of f ı

2
to CF ı.Yn.kC1/.K/; s/ have

degree zero.

We give the proof after setting up some terminology and establishing a lemma.

Sometimes, we find it convenient to pass between the absolute Q–gradings on
CF ı.Yn.kC1/.K//, CF ı.Y IZŒZ=nkZ�/ and the absolute gradings induced from the
above proposition (eg induced from the absolute Q–grading on CF ı.Yn/). We call the
absolute Q–grading from before the “old gradings”, and we call the induced gradings
the “new gradings”.

Lemma 4.7 Fix a constant C0 . For all sufficiently large k , the following statement
holds. Each Spinc structure over Yn.kC1/.K/, has at most one extension s over X.k/

whose restriction to Y
;ı is the canonical Spinc structure and for which

(22) C0 � c1.s/
2
C nk:

Proof It is easy to see that a generator † for H2.X.k/IZ/ has

†2
D�nk.kC 1/:

Thus, if s satisfies inequality (22), then c1.s/D ˛ �PDŒ†�, where ˛ satisfiesˇ̌̌
˛
ˇ̌̌
�

s
nk �C0

nk.kC 1/
�

1

2

for all sufficiently large k .

Note that any other Spinc structure which interpolates between the same two Spinc

structures on Yn and Yn.kC1/ has the form sC ` �PDŒ†� for some integer `¤ 0; now,

.c1.sC ` �PDŒ†�//2� c1.s/
2
D 4.`2† �†C ` � hc1.s/; Œ†�i/

� �4`2nk.kC 1/

�
1�

1

2`
j˛j

�
� �2nk.kC 1/

if k is sufficiently large. In particular, for sufficiently large k , inequality (22) is
violated.
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Proof of Proposition 4.6 Fix an absolute lift of the relative Z–grading on
CFC.Yn.K//, and fix some integer ı � 0. Observe that f ı

1
can be decomposed as a

sum of homogeneous terms, indexed by Spinc structures s over the four-manifold X.k/

whose restriction to Yı;
 is the canonical Spinc structure. Each term is homogeneous,
and with respect to the natural Q–gradings on CFC.Yn.K// and CFC.Yn.kC1/.K//

(ie the “old gradings”), they are homogeneous of degree

c1.s/
2C nk

4

(compare (1); observe that we have a third boundary component in this four-manifold,
where we use a fixed generator ‚ı;
 ). In view of Corollary 2.4 there are constants C1

and C2 with the property that for all sufficiently large k ,

min grCF ı.Yn.kC1/.K//�max grCF ı.Yn.K//

�min grCF ı.Yn.kC1/.K//�max grCF ı.Yn.kC1/.K//

Cmax grCF ı.Yn.kC1/.K//�min grCF ı.Y /

Cmin grCF ı.Y /�max grCF ı.Yn.K//

� �C1�C2C min
i2Z=n.kC1/Z

d.n.kC 1/; i/

Cmin grCF ı.Y /�max grCF ı.Yn.K//

� �
1

4
�C1�C2Cmin grCF ı.Y /�max grCF ı.Yn.K//:

Applying Lemma 4.7 with

C0 D�.1C 4.C1CC2�min grCF ı.Y /Cmax grCF ı.Yn//;

we see that for all sufficiently large k , there is at most one Spinc structure which
interpolates between given Spinc structures on CF ı.Yn.K// and CF ı.Yn.kC1/.K//

and which satisfies the inequality

min grCF ı.Yn.kC1/.K//�max grCF ı.Yn.K//�
c1.s/

2C nk

4
:

Clearly, if this inequality is not satisfied, then the Spinc structure s induces a trivial
map from CF ı.Yn.K// to CF ı.Yn.kC1/.K//. Thus, in view of Lemma 4.7, when k

is sufficiently large, the map

…A
s ıf

ı
1 W CF ı.Yn.K// �! CF ı.Yn.kC1/.K/; s/

Algebraic & Geometric Topology, Volume 8 (2008)



134 Peter S Ozsváth and Zoltán Szabó

is homogeneous, and hence there is an induced grading on CF ı.Yn.kC1/.K// for
which f ı

1
is a degree zero map. This induced grading, of course, depends on the

intersection form on X.k/.

In the proof of Proposition 4.5, the mapping cone of f ı
2

is identified with the mapping
cone of

Dı
n;iIbW

M
fs2Z

ˇ̌
s�i .mod n/;�b�s�bg

Aıs �!
M

fs2Z
ˇ̌
s�i .mod n/;�bCn�s�bg

Bıs ;

gotten by adding the maps

vıs W A
ı
s �! Bıs and hıs W A

ı
s �! BısCn

in the given range. Having just endowed CF ı.Yn.kC1/.K/; s/ŠAıs with an absolute
grading, there are absolute gradings on Bıs for which vıs have degree zero. We claim
that for these choices of absolute gradings, the map hıs is also a grading-preserving
map for jsj � b . This amounts to establishing that vıs ı…

A
s ıf

ı
1

and hısCn ı…
A
sCn ıf

ı
1

are both homogeneous maps with the same degree (for brevity, we suppress here the
identification of Aıs Š CF ı.Yn.kC1/; s/ from the notation). Note first that both these
maps are homogeneous, and that their degree difference is some constant c depending
on i , s , n, and k (but independent of the knot K ). Thus, to verify that cD 0, it suffices
to verify that cD 0 in a single model case. More precisely, we need a particular K�Y

and chains � 2 CFC.Yn.K/; i/ so that for all sufficiently large k , vCs ı…
A
s ı f

ı
1
.�/

and hCsCn ı…
A
sCn ıf

ı
1
.�/ are homogeneous elements of the same degree.

To this end, we consider the unknot in S3 . Although …A
s ı f

ı
1

is, in general, difficult
to calculate, in the case of the unknot, it is straightforward.

Specifically, fix any ı � 0 and any b � 0. According to Proposition 4.5, for all
sufficiently large k , the map �ı D .f ı

1
;H ı

1
/ induces a quasi-isomorphism

CF ı.S3; i/ �!Xıi .nI b/:

It follows from Section 2.6 that the induced map on homology must agree (up to an
overall sign) with the map � from (5) or, more precisely, the restriction of � to HF ı.S3/.
By taking ı sufficiently large, the map � has non-trivial components in both H�.A

ı
s/

and H�.A
ı
sCn/ Moreover, provided s > 0, the map vıs induces an isomorphism in

homology, and hence there is some cycle � representing a non-trivial homology class (of
arbitrary even degree). Since � is a cycle, so is its image under the quasi-isomorphism
with Xıi .nI b/. In particular, for any integral s , we can choose ı sufficiently large for
…A

s ıf
ı

1
.�/ to be non-trivial, and even for its image under vıs to be a non-trivial cycle

in Bıs . Since f ı
1
.�/ is a cycle in the mapping cone, it follows that hCs�nı…

A
s�nıf

ı
1
.�/
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is homologous to vCs ı…
A
s ıf

ı
1
.�/, and in particular, they are supported in the same

degree.

4.6 Completion of the proof of Theorem 4.1 in the case where n> 0

According to Proposition 4.6, an absolute grading on CF ı.Yn/ induces absolute
gradings on both M

�b�s�b

CF ı.Yn.kC1/; s/

and M
�bCn�s�b

T s
˝CF ı.Y /� CF ı.Y IZŒZ=nkZ�/

so that the maps f ı
1

and f ı
2

both are graded maps with degree zero. Let

…B
s W CF ı.Y IZŒZ=nkZ�/ �! CF ı.Y /Š Bıs

denote projection onto the summand of the form T s˝CF ı.Y /.

Lemma 4.8 With respect to the above gradings, given ı � 0, we have that for any k

sufficiently large and jsj � b , the map

…B
s ıH ı

1 W CF ı.Yn/ �! Bıs Š CF ı.Y /

is a homogeneous map of degree C1.

Proof H ı
1

splits as a sum of homotopy classes of maps of holomorphic quadrilaterals.
These homotopy classes in turn correspond to Spinc structures over the cobordism from
Yn to Y . Since the intersection form on the composite cobordism X.k/[Yn.kC1/

W 0.k/

is negative-definite, it follows that, H ı
1

is a sum of homogeneous maps, whose top
order part corresponds to Spinc structures over the composite cobordism whose first
Chern classes have maximal square.

If the s component of H ı
1

is non-trivial, then we claim that sjX.k/ is a maximal
Spinc structure over X.k/ in the sense that it appears in a component of f ı

1
; and also,

sjW 0.k/ is one of the top two Spinc structures over W 0.k/ in the sense that it appears
as a component of f ı

2
.

To this end, note that with respect to the usual gradings on CFC.Yn/ and CFC.Y I

ZŒZ=nkZ�/, the component of H ı
1

using the Spinc structure s is a homogeneous map
of degree

1C
c1.sjX.k//

2C nk

4
C

c1.sjW
0.k//2C 1

4
:
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Thus, this map is non-trivial only if
(23)

min grCFC.Y /�max grCFC.Yn/� 1C
c1.sjX.k//

2C nk

4
C

c1.sjW
0.k//2C 1

4

However,

1C
c1.sjX.k//

2C nk

4
C

c1.sjW
0.k//2C 1

4
� 1C

c1.sjX.k//
2C nk

4
C

1

4
;

and since the left-hand-side of (23) is independent of k , it follows from Lemma 4.7
that (provided that k is sufficiently large) sjX.k/ is one of the distinguished Spinc

structures on X.k/ satisfying inequality (22).

Similarly,

1C
c1.sjX.k//

2C nk

4
C

c1.sjW
0.k//2C 1

4
� 1C

nk

4
C

c1.sjW
0.k//2C 1

4
:

For k sufficiently large, this means also that sjW 0.k/ is one of the Spinc structures
satisfying (16); for if it were not, then by (17),

1C
nk

4
C

c1.sjW
0.k//2C 1

4
�

5� 4n

4
�

3nk

4
;

which, if k is sufficiently large, violates (23).

We have thus verified that if the s–component of H ı
1

is non-trivial, then the restriction
of s to X.k/ and W .n.kC1// are the ones which induce the map …A

s ıf
ı

1
and f ı

2
jAıs

(with jsj � b ) respectively.

Thus, it follows that H ı
1

is a homogeneous map from CFC.Yn.K// to CFC.Y I

ZŒZ=nkZ�/ with respect to the “new gradings” (from Proposition 4.6) with degree
C1.

Proof of Theorem 4.1 for n > 0 We endow the mapping cone M.Dı
n/ with an

absolute grading where Aı has the inherited absolute grading, while Bı has the
inherited grading, shifted up by one (this is done so that the differential on the mapping
cone is a graded map which shifts grading down by �1).

According to Proposition 4.5, the chain complex CF ı.Yn; i/ is quasi-isomorphic
to the mapping cone Xıi .nI b/ D M.Dı

n;iIb
/ via a quasi-isomorphism induced by

�ı D .f ı
1
;H ı

1
/ which, according to the above lemma, is a grading-preserving map.

In view of Lemma 4.3, this gives, for any ı � 0 a grading-preserving isomorphism of
HF ı.Yn; i/ with H�.Xıi .n//. It follows from Lemma 2.7 that in fact HFC.Yn; i/Š

H�.X
C
i .n//.
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4.7 Negative integral surgeries

In fact, the above proof of Theorem 4.1 for positive surgery coefficients adapts with
minor changes to the case of negative surgery coefficients. We outline the changes
presently.

Proof of Theorem 4.1 for negative surgery coefficients We will continue to assume
n> 0, only now, we shall consider the three-manifold Y�n.K/.

We start by considering the changes to Section 4.3. In the present case, we apply
Theorem 3.1, only now focusing on the maps

CFC.Yn.k�1//
f
C

2
����! CFC.Y IZŒZ=nkZ�/

f
C

3
����! CFC.Y�n.K//;

where again we take k to be sufficiently large.

In place of (21), we have

m.xs/�m.ys/D�n.k � 1/� n .mod nk/:

Thus, it follows that, unlike the conventions specified in (21), the components of f C
1

corresponding to xs and ys are maps

bvsW
bAs �!

bBs and bhsW
bAs �!

bBs�n:

Proceeding as in Section 4.3, for all sufficiently large k , we identify the mapping cone
of f C

2
with the mapping cone of

bf 002W M
fs2Z

ˇ̌
s�i .mod n/;�b�s�b�ng

bAs �!

M
fs2Z

ˇ̌
s�i .mod n/;b�n�s�b�ng

bBs

This is then identified with the mapping cone bXi.�nI b/, via Theorem 2.3 as before.

Indeed, the modifications from Section 4.4 carry over, to prove the analogue of Propo-
sition 4.5, using surgery coefficient �n.

When studying gradings (cf Section 4.5), now, we study the map f C
3

belonging to the
cobordism W�n.K/, rather than the map f C

1
, since now W�n.K/ is a negative-definite

cobordism.

Of course, for fixed ı � 0 and k large enough, f ı
2

remains a homogeneous map
according to Lemma 4.4, as before. Moreover, we claim that the same holds for f ı

3
. To

see this, consider the cobordism W�n.K/W Y �! Y�n.K/. Now, (cf (12)) f ı
3
.�˝T i/

consists of a sum of maps associated to Spinc structures s which differ by addition
of k � ŒbF � (where here bF represents a generator for H2.W�n.K//, and in particular
ŒbF � � ŒbF �D�n).

Algebraic & Geometric Topology, Volume 8 (2008)



138 Peter S Ozsváth and Zoltán Szabó

Lemma 4.9 Fix an integer ı � 0 and a constant C0 . For all sufficiently large k , the
following holds. For each s0 2 Spinc.W�n.K//, there is at most one Spinc structure
s 2 s0C kPDŒbF �Z for which

C0 � c1.s/
2
C nk:

Proof Let s be a Spinc structure as above. In this case, c1.s/D ˛ � PDŒbF �, where ˛
satisfies

j˛j �

r
nk �C0

n
� 2
p

k

if k is sufficiently large. But then, for any other Spinc structure, of the form s0C

.k`/PDŒbF � (with ` 2 Z), we have that

c1.s
0/2� c1.s/

2
� 4.khc1.s/; ŒbF �i � k2n/

� �4k2n.1�
2
p

k
/

� �nk2;

if k is sufficiently large.

Now, if
f ıW�n.K /;s

W CF ı.Y / �! CF ı.Y�n.K//

is non-trivial, then according to (1),

c1.s/
2
� �1C 4.min grCF ı.Y�n.K//�max grCF ı.Y //;

so the above lemma shows that for large enough k , there is a unique Spinc structure
which contributes non-trivially to f ı

3
.� ˝T i/. (This is the analogue of Lemma 4.7.)

Thus, a grading on CFC.Y�n.K// induces gradings on CFC.Y IZŒZ=nkZ�/ and from
there also on CFC.Yn.k�1// (note that f ı

2
remains a graded map for all sufficiently

large k by Lemma 4.4). To check that these gradings are compatible, now, we use the
example of the unknot with framing �n.

Finally, it remains to show that quasi-isomorphism

 ıW M.f ı2 / �! CFC.Y�n.K//

defined by  ı.x;y/DH ı
2
.x/C f ı

3
.y/ is a relatively graded map. This follows from

an analogue of Lemma 4.8.

To this end, note that H ı
2
W CF ı.Yn.k�1// �! CF ı.Y�n/ is defined as a count of

quadrilaterals. Thus, if the map

H ı
2 W CF ı.Yn.k�1/.K// �! CF ı.Y�n.K//
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is non-trivial, then

min grCFC.Y�n.K//�max grCFC.Yn.k�1/.K//

� 1C
c1.sjW //2C c1.sjW

00.k//2C 2

4
;

where here W 00.k/ indicates the cobordism W 0
n.k�1/

W Yn.k�1/ �! Y . But the left-
hand-side is bounded below by constants (independent of k ) plus �nk=4 (cf Corollary
2.4). It follows now from Lemma 4.9 that sjW 00.k/ is one of the distinguished Spinc

structures satisfying the inequality in Lemma 4.9; it also follows from Lemma 4.4 that
sjW .k/ is one of the distinguished Spinc structures satisfying (16). Thus, H ı

2
shifts

grading up by �1, and  ı is a relatively graded map. This completes the proof of
Theorem 4.1 for negative integer surgeries.

4.8 The case where n D 0

We have not treated the case where n D 0, as it follows more quickly from the
existing exact sequences. Specifically, the integer surgeries long exact sequence (of
[15, Theorem 10.19]) shows that HFC.Y0.K/; i/ is identified with the homology of
the mapping cone of

vCi C hCi W A
C
i �! BC:

Indeed, considering the integer surgeries exact sequence with twisted coefficients [15,
Theorem 10.23], we see that H�.X

C
i .0// calculates HFC.Y0.K/; i/.

4.9 Maps induced by cobordisms

The mapping cone XC.n/ provides also a model for the maps induced by the cobordism
from Y to Yn.K/, according to Theorem 4.2. The proof of this result follows quickly
from our proof of Theorem 4.1.

Proof of Theorem 4.2 Observe that in Theorem 3.1 (in the notation of Section 3), the
following square commutes:

HFC.Y IZŒZ=mZ�/
F
C

3
����! HFC.Yn.K//??yD ˆC

??y
HFC.Y IZŒZ=mZ�/

I
����! H�.M.f C

2
//;

where here ˆC is the map in homology induced by the quasi-isomorphism �C of (13),
I is the map on homology induced by the canonical map � to the mapping cone, and
FC

3
is the map on homology induced by the map f C

3
from (11).
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Let mD jnjk with k sufficiently large, as we have done above. Fix also s 2 Z and
ı � 0. Although the restriction of

f ı3 W CF ı.Y IZŒZ=nkZ�/ �! CF ı.Yn.K//

to T s ˝ CF ı.Y / � CF ı.Y IZŒZ=nkZ�/ in principle is a sum of maps induced by
Spinc structures over Wn.K/; all these are in the kPDŒbF � �Z–orbit of a given one (cf
(12)). Thus, for fixed ı and k sufficiently large, it is easy to see that there is in each
such orbit, a single chain map which could conceivably be non-trivial, and that is the
map FC

W ;s induced by the Spinc structure with hc1.s/; ŒbF �iC nD 2s .

Thus, we have the following commutative square:

HF ı.Y /
F ı

W ;s
����! HF ı.Yn.K//

D

??y ˆı

??y
T s˝HF ı.Y /

I
����! H�.Xı.nI b//

(here, b is a truncation as usual, which now we choose so that b > s ). Note that ı
here is arbitrary, and all maps are graded. Thus, Lemma 2.7 provides the canonical
extensions making the following square commute:

HFC.Y /
F
C

W ;s

����! HFC.Yn.K//

D

??y Š

??y
T s˝HFC.Y /

I
����! H�.XC.n//;

proving the theorem.

4.10 Generalizations

The proof of Theorem 1.1 applies immediately in any context where Y has a relatively
Z–graded Floer homology.

Specifically, let Y be a closed, oriented three-manifold, and fix a Spinc structure t

over Y with torsion first Chern class. Let K � Y be a null-homologous knot in Y ,
and fix a Seifert surface F � Y for K .

In this case, the space of Spinc structures over Yn.K/ which are Spinc –cobordant to t

over the cobordism W 0n.K/ is identified with Z=nZ, as in Lemma 2.2. For i 2Z=nZ,
let CFC.Yn.K/; i; t/ denote the corresponding summand of CFC.Yn.K//. In this
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case, we let ACs;t denote the corresponding chain complex associated to the knot
filtration on CFC.Y; t/, and let BCs;t denote CFC.Y; t/. Write

ACi;t D
M

fs2Z
ˇ̌
s�i .mod n/g

ACs;t and BCi;t D
M

fs2Z
ˇ̌
s�i .mod n/g

BCs;t:

Theorem 4.10 Fix a Spinc structure t over Y whose first Chern class is torsion, and
a null-homologous knot K � Y . For each i 2 Z=nZ, the mapping cone XCi;t.n/ of

DCn;i;tW A
C
i;t �! BCi;t;

is identified with CFC.Yn.K/; i; t/ as graded ZŒU �–modules.

Of course, when nD˙1, Spinc.Yn.K//Š Spinc.Y /, and there is no additional choice
of i 2 Z=nZ. In this case, we write simply XCt .n/ for the mapping cone.

The theorem follows at once from the methods of this section: specifically, our proof
of Theorem 4.1 uses the fact that Y is an integer homology three-sphere only in that
CFC.Y / has a relative Z–grading.

5 Sample calculations

We give some calculations to illustrate the techniques of this paper. In Section 5.1, we
use Theorem 4.1 to calculate the Heegaard Floer homology groups of ˙1–surgeries
on the torus knot T3;4 in the three-sphere. (Of course, ˙1 surgeries on torus knots are
Brieskorn spheres, and as such their Heegaard Floer homology groups can be calculated
using the techniques of Ozsváth–Szabó [13]; however, we find it instructive to sketch
here the calculations using present methods.) In Section 5.2, we include a calculation
of the Heegaard Floer homology of a non-trivial circle bundle over a closed, oriented
two-manifold.

5.1 Surgeries on the torus knot T3;4

Sufficiently large surgeries on torus knots have particularly simple Heegaard Floer
homology groups – in each Spinc structure, HFC.S3

N
.K//Š T C , ie these spaces are

“Heegaard Floer homology lens spaces”, or L–spaces in the terminology from [18].
As such, the filtered homotopy type of the knot filtration of torus knots is immediately
determined by the Alexander polynomial, cf [18, Theorem 1.2].
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For example, that result shows that the filtered chain complex C for the torus knot
K D T3;4 has five generators as a ZŒU;U�1�–module, fxig

5
iD1

, with

F.x1/D .0; 3/ gr.x1/D 0

F.x2/D .0; 2/ gr.x2/D�1

F.x3/D .0; 0/ gr.x3/D�2

F.x4/D .0;�2/ gr.x4/D�5

F.x5/D .0;�3/ gr.x5/D�6:

Moreover, the non-trivial differentials are

@x2 D U �x1Cx3 and @x4 D U 2
�x3Cx5:

The filtrations and the differentials are illustrated in Figure 2.

From this, we quickly see the following Lemma.

Lemma 5.1 H�.A
C
s / Š H�.B

C
s / Š T C . Moreover, under this identification, the

maps on homology induced by

hCs W A
C
s �! BCsCn and vC�sW A

C
�s �! BC�s

are identified with multiplication by8̂̂<̂
:̂

U 3 if s D 2

U 2 if s D 1

U if s D 0;�1;�2

1 if s < �2:

Proof From the above description of C , we see that ACs D BCs and AC�s D BC
�s�1

whenever s > 2. It remains to consider the remaining cases with jsj � 2. For example,
AC

1
contains three additional generators not contained in BC

1
: Ux1 , U 2x1 , and Ux2 .

However, these latter two generators do not contribute to H�.A
C

1
/: @Ux2 D U 2x1

(in AC
1

). The bottom-most non-trivial homology class in H�.A
C

1
/ is represented by

any of the three cycles Ux1 , x3 , or U�2x5 . However, these cycles are boundaries in
BC

1
. It follows quickly that vC

1
W T C ŠH�.A

C

1
/ �!H�.B

C

1
/Š T C is modeled on

multiplication by U .

The other cases follow similarly.

The chain complex for XC.1/ is summarized in Figure 3.
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i

j

Figure 2: The doubly-filtered knot complex for the torus knot T3;4 . We
have illustrated here the plane, representing filtration levels of generators. A
dot at a lattice point .i; j / represents a group Z with filtration .i; j / . The
five generators of C as a ZŒU;U�1�–module are represented by the five dots
on the vertical axis.

In view of Lemma 5.1, the map on homology H�.AC/ �! H�.BC/ induced by
DC is surjective, and hence H�.XC.1// can be identified with its kernel. Indeed,
H�.XC.1// consists of a submodule isomorphic to AC

0
, and also four additional

generators represented by 1 2 T C Š H�.A
C
s / for 0 < jsj � 2. According to the

grading conventions, the two bottom-most generators of AC
˙1

are supported in degree
�2 and the two in AC

˙2
are supported in degree 0. Thus, in light of Theorem 4.1, these
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Figure 3: Chain complex for S3
C1
.T3;4/: The results of Lemma 5.1 can be

summarized by this diagram, which represents the chain complex XC.1/ .
(Note that we have illustrated here a truncated portion; which carries all
of the homology of XC.1/ .) The arrows represent the differential. This
diagram contains information about gradings as well: the relative grading is
characterized by the requirement that the differential drops grading by one.

calculations show that:

HFC.S3
1 .T3;4//Š T C�2

˚Z2
.�2/˚Z2

.0/:

Here, T C
d

denotes a copy of T C , thought of as a graded ZŒU �–module, graded so that
its element of lowest degree is supported in degree d ; while Z.d/ denotes ZŠZŒU �=U ,
supported in degree d .

For .�1/–surgery on T3;4 , Lemma 5.1 gives rise to the chain complex for XC.�1/

illustrated in Figure 4.
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Figure 4: Chain complex for S3
�1.T3;4/: This is an illustration of the com-

plex XC.�1/ , with the same conventions as in Figure 3.

In this case, we can calculate:

HFC.S3
�1.T3;4//Š T C0 ˚Z.�1/˚Z2

.�3/˚Z2
.�7/:

(These can be compared with the calculations from [13], bearing in mind that
S3
C1
.T3;4/ Š �†.3; 4; 11/ and S3

�1
.T3;4/ Š †.3; 4; 13/, where †.p; q; r/ denotes

the Brieskorn sphere with multiplicities p , q , and r , given its orientation as the
boundary of a negative-definite plumbing.)
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5.2 Non-trivial circle bundles over Riemann surfaces

Recall that for any closed, oriented three-manifold, the groups U d � HFC.Y / �

HFC.Y / stabilize for sufficiently large d , and hence we can define the “reduced Floer
homology group” HFCred.Y /DHFC.Y /=U d �HFC.Y / for all sufficiently large d .
As an illustration of Theorem 1.1, or more precisely, its generalization in Theorem
4.10, we calculate the reduced Floer homology of a non-trivial circle bundle over a
Riemann surface of genus g , with coefficients in Z=2Z.

To explain how this is done, recall that there is a genus g fibered knot in #2g.S2�S1/,
the “Borromean knot”, constructed as follows. Consider the Borromean link, with
a distinguished component. Form the g–fold connected sum of the Borromean link,
where the connected sum is performed along the distinguished components. Then, form
zero-surgeries on all the remaining components, viewing the distinguished component
as a knot inside #2g.S2 �S1/. The three-manifold which is an Euler number n circle
bundle over the genus g Riemann surface is obtained from n–framed surgery on this
knot.

The knot Floer complex for the Borromean knot is calculated in [14, Proposition 9.2].
It is proved there that C Šƒ�H 1.†IZ/˝ZŒU;U�1�. The Z˚Z filtration is given
by

(24) C fi; j g D U�i
˝ƒg�iCj H 1.†IZ/;

and the entire group C fi; j g is supported in dimension i C j . All the differentials on
this knot complex are trivial, and indeed, so are all the higher differentials; ie

HF1.#2g.S2
�S1//Š

M
i;j

C fi; j g:

Indeed, these groups have some additional structure which can be identified. Specifically,
recall (cf [16, Subsection 4.2.5]) that if Y is an oriented three-manifold, then there is
an action of ƒ�H1.Y IZ/=Tors on all the versions of Floer homology. For the case
where Y Š #2g.S2 �S1/, under the identification H1.†IZ/ Š H1.#2g.S2 �S1//

and HF1.#2g.S2�S1//Šƒ�H1.†IZ/˝Z ZŒU;U�1� described above, the action
of 
 2H1.†IZ/ is given by the formula

(25) 
 � .!˝U j /D .�
!/˝U j
CPD.
 /^!˝U jC1;

where here �
 denotes contraction (cf the proof of [14, Theorem 9.3]).

It is significantly easier to work with coefficients in F D Z=2Z, because in that case,
the induced homotopy equivalence between C fi � 0g and C fj � 0g takes a particularly

Algebraic & Geometric Topology, Volume 8 (2008)



146 Peter S Ozsváth and Zoltán Szabó

simple form. Write C for C ˝F (and writing, for example, C fi; j g for C fi; j g˝F .
In this case, we have the following Proposition.

Proposition 5.2 Consider the natural homotopy equivalence

�W C fi � 0g �! C fj � 0g:

Its induced map �W C fi � 0g �! C fj � 0g sends C fi; j g to C fj ; ig.

The above proposition does not hold over Z. A description of the involution over Z is
given in Jabuka–Mark [3].

In fact we will be able to calculate the homotopy equivalence � , but first, we need a
lemma.

Lemma 5.3 Consider the graded module

M Dƒ�H 1.†IZ/˝ZŒU;U�1�=ZŒU �

over the ring ƒ�H1.†IZ/˝Z ZŒU � with the action defined in (25). The only automor-
phisms of M are multiplication by ˙1. Similarly, if we consider M DM ˝F over
the ring ƒ�H1.†IZ/˝Z F ŒU �, where F D Z=2Z, the only automorphism of M is
the identity map.

Proof Let � be an automorphism of M as a module over ƒ�H1.†IZ/˝Z ZŒU �.
Consider the filtration of M by the submodules fMig

1
iD1

where Mi is the set of
elements annihilated by U i . Clearly, these submodules exhaust M , and �i preserves
this filtration.

Consider the summand Z Š ƒ2gH 1.†IZ/˝ U�i � Mi . This consists of those
elements of Mi with maximal grading, and hence it is preserved by � . Thus, � must
induce multiplication by ˙1 on this summand. However, this summand generates
all of Mi as a module over ƒ�H1.†IZ/˝ZŒU �. It follows at once that � induces
multiplication by ˙1 on all of Mi .

The same argument shows that an automorphism � of M is the identity map.

Proof of Proposition 5.2 We describe the homotopy equivalence � explicitly (up
to an overall sign). For a fixed orientation on †, let fAi ;Big

g
iD1

be a symplectic
basis of homology classes; ie #.Ai \Bj /D ıi;j (Kronecker ı ), while #.Ai \Aj /D

#.Bi \Bj /D 0 for all i; j . There is an induced map

I W ƒkH 1.†IZ/ �!ƒkH 1.†IZ/;
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which commutes with wedge product and satisfies I.A�i /D�B�i and I.B�i /D A�i .
Also, there is a Hodge star operator

�W ƒkH 1.†IZ/ �!ƒ2g�kH 1.†IZ/

belonging to a metric where Ai and Bi have length one.

Consider the map
�0W C fi; j g �! C fj ; ig

induced by
!˝U�i

7! .�I!/˝U�j :

It is easy to see that �0 extends to an isomorphism of Z–modules, which commutes
up to sign with the action by U and ƒ�H1.†IZ/.

As such, it induces a graded ƒ�H1.†IZ/˝Z F ŒU �–equivariant isomorphism from
C fi � 0g to C fj � 0g. It follows from Lemma 5.3 that this map is the only
ƒ�H1.†IZ/˝F ŒU �–equivariant isomorphism from C fi � 0g to C fj � 0g.

It will be useful to have the following terminology in place before stating our results.

Definition 5.4 Let M be a module over F ŒU �, and m2M . The length of m, LM .m/,
is the largest integer ` with the property that U ` �m¤ 0.

Note that if m 2 C fi; j g �ACs , then

(26) L
A
C
s
.m/Dmax.i; j � s/:

Let X.g; d/ be the module over ZŒU � given by

X.g; d/D

dM
iD0

ƒ2g�iH 1.†g/˝Z .ZŒU �=U d�iC1/:

In fact, this is a module over the ring ZŒU � ˝Z ƒ
�H1.†g/, where the action of


 2H1.†g/ is given by (25). We can endow X.g; d/ with a grading which is lowered
by one by D
 , lowered by two by multiplication with U , and centered at zero, in
the sense that the summand ƒ2g�dH 1.†g/ is supported in degree zero. Note that if
Symd .†g/ denotes the d –fold symmetric product of the surface †g , then

H�.Symd .†g//ŠX��2d .g; d/;

cf Macdonald [8].

In order to apply Proposition 5.2, we will use coefficients in F DZ=2Z. In the interest
of clarity, we restrict attention here to the case where the Euler number nD 1. The
general case is addressed in Theorem 5.6 below.
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Theorem 5.5 Let Y be the circle bundle over a Riemann surface of genus g with Euler
number 1. Let F DZ=2Z, and consider Heegaard Floer homology with coefficients in
F . Then, there is an isomorphism of graded F ŒU �–modules

HFCred;�.Y IF/Š
M

1�s�g�1

�
X��s2C1.g;g� 1� s/˚X��s2C1.g;g� 1� s/

�
:

Proof Note that Spinc.Y /ŠZ2g . However, all of the homology of Y is represented
by embedded tori, and hence the adjunction inequality (cf [15, Theorem 8.1]) ensures
that HFC.Y; t/ is non-trivial only for the Spinc structure t with trivial first Chern
class. Now, we apply Theorem 4.10 to n D 1 surgery on the Borromean knot in
#2g.S2 �S1/, to see that HFC.Y; t/ is isomorphic to the homology of the mapping
cone XCt .1/. This is particularly simple to do, since all the internal differentials in ACs
and BCs can be taken to vanish, and hence, we are left with calculating the kernel and
cokernels of DC

1
. To simplify notation, we write simply XC for XCt .1/. In fact, we

consider the reductions of all of these complexes modulo 2, which we suppress from
the notation; for example, writing simply ACs when we mean that this should be taken
modulo 2, ie ACs ˝Z=2Z.

Observe that for all s � 0, the map vCs resp. hC�s is surjective; and we denote its kernel
by Ks resp. K�s . Indeed, if jsj is sufficiently large, then Ks D 0.

There is a chain map …0W X
C �! AC

0
. We claim that this defines a surjection on

homology. Specifically, any element a02AC
0

can be extended inductively to a sequence
fasgs2ZDa2KerDC

1
as follows: if s� 0, choose asC1 so that vC.asC1/D�hC.as/,

and a�s�1 so that hC.a�s�1/D�v
C.a�s/. This can be done since vCs and hC�s are

surjective if s � 0. Note also that the sequence has finite support.

Indeed, we claim that the projection …0 induces an isomorphism between the image
of the U d on H�.XC/ for all sufficiently large d , and AC

0
,

(27)
�
U dH�.X

C/�H�.X
C/
�
Š
�!AC

0
:

This can be seen as follows. Observe that in all sufficiently large degrees (ie with
respect to the integral grading on XC ), we have that for all s > 0, both

vC� W A
C
s �! BCs and hC� W A

C
�s �! BC

�sC1

are injective. It follows at once that all homogeneous elements of H�.XC/ in suffi-
ciently large degrees have non-trivial component in AC

0
. Suppose now that a is such

a homology class, and as denotes its component in ACs , so that a0 is supported in
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C fi; j g. Then it is a straightforward consequence of Proposition 5.2 and (26) that if
L

A
C

0

.a0/Dmax.i; j /, then for any positive k � 0,

L
A
C
s
.as/D

(
max.i � s.s�1/

2
; j � s.sC1/

2
/ if s is even

max.j � s.s�1/
2

; i � s.sC1/
2

/ if s is odd

In particular, L.as/ � L.a0/ for all s and hence L.a0/ D L.a/. It follows at once
that projection …0 induces an injective map from U dH�.XC/ �H�.XC/ �! AC

0
.

It is straightforward now to see that the map U W AC
0
�!AC

0
is surjective. This then

verifies the isomorphism from (27).

Thus, it follows that for all sufficiently large d ,

(28)
H�.XC/

U d �H�.XC/
Š Ker…0jH�.XC/:

Now, for integers i � 0, let XC
j�j�i

denote the quotient complex of XC generated by
ACs with �i � s � i and BCs with �i C 1� s � i . We have projection maps

…j�j�i W X
C
�!XC

j�j�i
;

which, when i D 0, coincides with the projection …0 considered earlier. Letting
Fi D Ker…j�j�i , we have

F0 � F1 � F2 � F3 � � � � � Fi � FiC1 � � �

Moreover, we claim that for all s � 1, there is a short exact sequence

(29) 0 �!H�.Fs/ �!H�.Fs�1/
�
�!Ks˚K�s �! 0:

To see this, note that the restriction of …j�j�s to Fs�1 naturally induces a short exact
sequence

0 �! Fs �! Fs�1 �!M
�
vCs ˚ hC�sW A

C
s ˚AC�s �! BCs ˚BC

�sC1

�
�! 0;

and it is easy to see that the homology of the mapping cone of vCs ˚ hC�s is identified
with Ks ˚K�s . It remains to show that the map from H�.Fs�1/ �!Ks ˚K�s is
surjective. But this follows at once from the fact that for all t > s , vCt W A

C
t �!BCt and

hC�t W A
C
�t �! BC

�tC1
are surjective. For instance, given as 2Ks with s > 0, we can

use the surjectivity of vC
k

for all k > 0 to inductively define a sequence fak 2AC
k
gk2Z
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by

(30) ak D

8<:
0 if k < s

as if k D s

�Rk ı hC
k�1

.ak�1/ if k > s,

where Rk W B
C

k
�! AC

k
is a right inverse for the map vC

k
W AC

k
�! BC

k
(for k � 0)

viewed as a F –module map. This element determines a cycle in Fs�1 �XC whose
restriction to As is the given element as 2Ks . An element a�s 2K�s can be similarly
extended to a sequence fakgk2Z supported in ak for k � �s , by switching the roles
of vC and hC . From the above description of C for the Borromean knot, it follows
that Ks ŠX.g;g� 1� s/. Indeed, with respect to the induced grading from XC , it is
easy to see that Ks ŠX��s2C1.g;g�1� s/. Combining this with the exact sequence
of (29), we have proved the isomorphism claimed in the theorem as F –modules.

In effect, the sequence of elements fakgk2Z defined above gives a right inverse to the
map � in (29). To verify the theorem on the level of F ŒU �–modules, it suffices to show
that a careful choice of elements fakgk2Z provides a ZŒU �–equivariant splitting of
� . Since Ks D C fi < 0; j � sg, in view of Proposition 5.2, the image of hC.Ks/ is
C fi � 0; j <�sg. Now, the inclusion map of C fi � 0g �! C fmax.i; j � s�1/� 0g

provides a right inverse Rs to vCs which, of course, is not a ZŒU �–module map.
However, it is easy to see that its restriction to C fi � 0; j < �sg is ZŒU �–equivariant.
Moreover, this image is contained in the kernel of hC

kC1
. Thus, the sequence of

elements fakgk2Z constructed from as using this right inverse has at most two non-
zero elements, and it is clearly a ZŒU �–equivariant splitting. When s < 0, we use an
analogous right inverse for hCs , to complete the F ŒU �–module splitting of short exact
sequence (29). This completes the proof of the theorem.

It is suggestive to compare the above result with Seiberg–Witten theory over circle
bundles, compare Mrowka–Ozsváth–Yu [9] and Nicolaescu [10]; see also Kronheimer–
Mrowka [6] for a construction of the Floer theory in this context. Results from [9]
and [10] show that the moduli space of irreducible solutions to the Seiberg–Witten
equations are identified with a disjoint union of symmetric products of the underlying
Riemann surface, a

1�s�g�1

�
Symg�1�s.†//

a
Symg�1�s.†//

�
:

Theorem 5.5 can be thought of as an algebraic reflection of this geometric phenomenon.

According to the following result, increasing the Euler number n of the circle bundle,
causes the total rank of HFCred to drop. This corresponds, in gauge theory, to the
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existence of flow-lines which connect the vortex moduli spaces with the Jacobian torus,
compare Ozsváth–Szabó [11].

Let Y .g; n/ denote the Euler number n circle bundle over an oriented two-manifold of
genus g . In this case, Spinc.Y .g; n//Š Z2g˚Z=nZ. By the adjunction inequality,
however, only those Spinc structures whose first Chern class is torsion have non-trivial
HFC . Indeed, realizing Y .g; n/ as Cn–surgery on the Borromean knot induces an
identification of Z=nZ with these Spinc structures.

We have the following generalization of Theorem 5.5 which allows us to calculate
the Heegaard Floer homology for any non-trivial circle bundle over an oriented two-
manifold. Note that the hypothesis is that the Euler number n> 0; but the general case
follows at once since �Y .g; n/Š Y .g;�n/, and hence, by the behaviour of Heegaard
Floer homology under orientation reversal, cf [16], we see that

HFCred;k.Y .g;�n/; i/ŠHFCred;�k
.Y .g;�n/; i/:

Theorem 5.6 Let Y .g; n/ denote the circle bundle with Euler number n > 0 over
a surface of genus g . Then, for any choice of Œi � 2 Z=nZ, let j be an integer with
minimal absolute value among all integers congruent to i .mod n/. We have that

HFCred;�.Y .g; n/; i IZ=2Z/Š
M

fs�i .mod n/
ˇ̌
s¤jg

Xc.i;s/.g;g� 1� jsj/;

where here

c.i; s/D

8<: d.n; i/� 1� sC
P
f0�t�s

ˇ̌
t�i .mod n/g

2t if s � 0

d.n; i/� 1C s�
P
fs�t�0

ˇ̌
t�i .mod n/g

2t if s � 0

Proof This is a straightforward adaptation of the proof of Theorem 5.5 above.
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