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The foam and the matrix factorization sl3 link homologies
are equivalent

MARCO MACKAAY

PEDRO VAZ

We prove that the universal rational sl3 link homologies which were constructed by
Khovanov in [3] and the authors in [7], using foams, and by Khovanov and Rozansky
in [4], using matrix factorizations, are naturally isomorphic as projective functors
from the category of links and link cobordisms to the category of bigraded vector
spaces.

57M27; 57M25, 81R50, 18G60

1 Introduction

In [3] Khovanov constructed a bigraded integer link homology categorifying the sl3
link polynomial. His construction used singular cobordisms called foams. Working in a
category of foams modulo certain relations, the authors in [7] generalized Khovanov’s
theory and constructed the universal integer sl3 –link homology (see also Morrison
and Nieh [8] for a slightly different approach). In [4] Khovanov and Rozansky (KR)
constructed a rational bigraded theory that categorified the sln link polynomial for all
n> 0. They conjectured that their theory is isomorphic to the one in [3] for nD 3, after
tensoring the latter with Q. Their construction uses matrix factorizations and can be
generalized to give the universal rational link homology for all n> 0 (see Gornik [1],
Rasmussen [9] and Wu [10]). In this paper we prove that the universal rational KR link
homology for nD 3 is equivalent to the foam link homology in [7] tensored with Q.

One of the main difficulties one encounters when trying to relate both theories mentioned
above is that the foam approach uses ordinary webs, which are ordinary oriented trivalent
graphs, subject to the condition that at each vertex all edges have the same orientation,
inward or outward, whereas the KR theory uses KR–webs, which are trivalent graphs
containing two types of edges: oriented simple edges and unoriented thick edges. In
Khovanov and Rozansky’s setup in [4] there is a unique way to associate a matrix
factorization to each KR–web. In general there are several KR–webs that one can
associate to an ordinary web, so there is no obvious choice of a KR matrix factorization
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to associate to a web. However, we show that the KR–matrix factorizations for all these
KR–webs are homotopy equivalent and that between two of them there is a canonical
choice of homotopy equivalence in a certain sense. This allows us to associate an
equivalence class of KR–matrix factorizations to each ordinary web. After that it is
relatively straightforward to show the equivalence between the foam and the KR sl3
link homologies.

In Section 2 we review the category Foam=` and the main results of [7]. In Section
3 we recall some basic facts about matrix factorizations and define the universal KR
homology for nD 3. Section 4 is the core of the paper. In this section we show how to
associate equivalence classes of matrix factorizations to ordinary webs and use them to
construct a link homology that is equivalent to Khovanov and Rozansky’s. In Section 5
we establish the equivalence between the foam sl3 link homology and the one presented
in Section 4.

We assume familiarity with the papers [4] and [7].

2 The category Foam=` revisited

This section contains a brief review of the universal rational sl3 link homology using
foams as constructed by the authors [7] following Khovanov’s ideas in [3]. Here we
simply state the basics and the modifications that are necessary to relate it to Khovanov
and Rozansky’s universal sl3 link homology using matrix factorizations. We refer
to [7] for details.

The category Foam=` has webs as objects and QŒa; b; c�–linear combinations of foams
as morphisms divided by the set of relations `Df (3D), (CN), (S), (‚) g and the closure
relation, which are explained below. Note that we are using a different normalization
of the coefficients1 in our relations compared to [7]. These are necessary to establish
the connection with the KR link homology later on.

D a C b C c(3D)

D 4

0@� � � C a

0@ C

1AC b

1A(CN)

D D 0; D�
1

4
(S)

Let �.˛; ˇ; ı/ denote the theta foam in Figure 1, where ˛ , ˇ and ı are the number of

1We thank S Morrison for spotting a mistake in the coefficients in a previous version of this paper.
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˛

ˇ

ı

Figure 1: A theta-foam

dots on each facet. For ˛; ˇ; ı � 2 we have

(‚) �.˛; ˇ; ı/D

8̂<̂
:

1
8

.˛; ˇ; ı/D .1; 2; 0/ or a cyclic permutation

�
1
8

.˛; ˇ; ı/D .2; 1; 0/ or a cyclic permutation

0 else

The closure relation says that any QŒa; b; c�–linear combination of foams, all of which
have the same boundary, is equal to zero if and only if any common way of closing
these foams yields a QŒa; b; c�–linear combination of closed foams whose evaluation
is zero.

The category Foam=` is additive and graded. The q–grading in QŒa; b; c� is defined as

q.1/D 0; q.a/D 2; q.b/D 4; q.c/D 6

and the degree of a foam f with j � j dots is given by

q.f /D�2�.f /C�.@f /C 2j � j;

where � denotes the Euler characteristic.

Using the relations ` one can prove the identities (RD), (DR) and (CN), and Lemma
2.1 below (for detailed proofs see [7]). We note that Morrison and Nieh [8] have proved
that the relations (DR) and (SqR) are equivalent to the closure relation in the category
of webs and foams modulo `.

D 2

0@ �

1A(RD)

D 2

0BB@ �

1CCA(DR)

D� �(SqR)
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Lemma 2.1 (Khovanov–Kuperberg relations [3; 6]) We have the following decom-
positions in Foam=` :

Š f�1g˚ f1g(Digon Removal)

Š ˚(Square Removal)

where fj g denotes a positive shift in the q–grading by j .

The construction of the topological complex from a link diagram is well known by now
and uses the elementary foams in Figure 2, which we call the ’zip’ and the ’unzip’, to
build the differential. We follow the conventions in [7] and read foams from bottom to
top when interpreted as morphisms.

Figure 2: Elementary foams

The tautological functor C from Foam=` to the category Modgr of graded QŒa; b; c�–
modules maps a closed web � to C.�/DHomFoam=`.∅; �/ and, for a foam f between
two closed webs � and � 0 , the QŒa; b; c�–linear map C.f / from C.�/ to C.� 0/ is
the one given by composition. The QŒa; b; c�–module C.�/ is graded and the degree
of C.f / is equal to q.f /.

Denote by Link the category of oriented links in S3 and ambient isotopy classes of
oriented link cobordisms properly embedded in S3� Œ0; 1� and by Modbg the category
of bigraded QŒa; b; c�–modules. The functor C extends to the category Kom.Foam=`/

of chain complexes in Foam=` and the composite with the homology functor defines a
projective functor Ua;b;c W Link!Modbg .

The theory described above is equivalent to the one in [7] after tensoring the latter with
Q.

3 Deformations of Khovanov–Rozansky sl3 link homology

3.1 Review of matrix factorizations

This subsection contains a brief review of matrix factorizations and the properties that
will be used throughout this paper. We assume familiarity with [4]. All the matrix
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factorizations in this paper are Z=2Z�Z–graded. Let R be a polynomial ring over
Q. We take the degree of each polynomial to be twice its total degree. This way
R is Z–graded. Let W be a homogeneous element of R of degree 2m. A matrix
factorization of W over R is a Z=2Z–graded free R–module M DM0˚M1 with
R–homomorphisms of degree m

M0

d0
�!M1

d1
�!M0

such that d1d0 D W IdM0
and d0d1 D W IdM1

. The Z–grading of R induces a
Z–grading on M . The shift functor fkg acts on M as

M fkg DM0fkg
d0
�!M1fkg

d1
�!M0fkg:

A homomorphism f W M !M 0 of matrix factorizations of W is a pair of maps of the
same degree fi W Mi!M 0

i (i D 0; 1) such that the diagram

M0

d0 //

f0

��

M1

d1 //

f1

��

M0

f0

��
M 0

0

d 0
0 // M 0

1

d 0
1 // M 0

0

commutes. It is an isomorphism of matrix factorizations if f0 and f1 are isomorphisms
of the underlying modules. Denote the set of homomorphisms of matrix factorizations
from M to M 0 by

HomMF.M;M 0/:

It has an R–module structure with the action of R given by r.f0; f1/D .rf0; rf1/ for
r 2R. Matrix factorizations over R with homogeneous potential W and homomor-
phisms of matrix factorizations form a graded additive category, which we denote by
MFR.W /. If W D 0 we simply write MFR .

The free R–module HomR.M;M 0/ of graded R–module homomorphisms from M

to M 0 is a 2–complex

Hom0
R.M;M 0/

D // Hom1
R.M;M 0/

D // Hom0
R.M;M 0/

where

Hom0
R.M;M 0/D HomR.M0;M

0
0/˚HomR.M1;M

0
1/

Hom1
R.M;M 0/D HomR.M0;M

0
1/˚HomR.M1;M

0
0/
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and for f in Homi
R.M;M 0/ the differential acts as

Df D dM 0f � .�1/ifdM :

We define

Ext.M;M 0/D Ext0.M;M 0/˚Ext1.M;M 0/D Ker D= Im D;

and write Extfmg.M;M 0/ for the elements of Ext.M;M 0/ with Z–degree m.

Note that for f 2HomMF.M;M 0/ we have Df D 0. We say that two homomorphisms
f , g in HomMF.M;M 0/ are homotopic if there is an element h in Hom1

R.M;M 0/

such that f �g DDh.

Denote by HomHMF.M;M 0/ the R–module of homotopy classes of homomorphisms
of matrix factorizations from M to M 0 and by HMFR.W / the homotopy category of
MFR.W /.

We have

Ext0.M;M 0/Š HomHMF.M;M 0/

Ext1.M;M 0/Š HomHMF.M;M 0
h1i/

We denote by M h1i and M� the factorizations

M1

�d1
���!M0

�d0
���!M1

and .M0/
�
�.d1/

�

�����! .M1/
�
.d0/
�

���! .M0/
�

respectively. Factorization M h1i has potential W while factorization M� has potential
�W .

The tensor product M˝RM� has potential zero and is therefore a 2–complex. Denoting
by HMF the homology of matrix factorizations with potential zero we have

Ext.M;M 0/Š HMF.M
0
˝R M�/

and, if M is a matrix factorization with W D 0,

Ext.R;M /Š HMF.M /:

Koszul Factorizations For a and b homogeneous elements of R, the elementary
Koszul factorization fa; bg over R with potential ab is a factorization of the form

R
a
�!R

˚
1
2
.degZ b� degZ a/

	 b
�!R:
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When we need to emphasize the ring R we write this factorization as fa; bgR . It is
well known that the tensor product of matrix factorizations Mi with potentials Wi is a
matrix factorization with potential

P
i Wi . We restrict to the case where all the Wi

are homogeneous of the same degree. Throughout this paper we use tensor products of
elementary Koszul factorizations faj ; bj g to build bigger matrix factorizations, which
we write in the form of a Koszul matrix as8̂<̂

:
a1 ; b1
:::

:::

ak ; bk

9>=>;
We denote by fa;bg the Koszul matrix with columns .a1; : : : ; ak/ and .b1; : : : ; bk/.

Note that the action of the shift h1i on fa;bg is equivalent to switching terms in one
line of fa;bg:

fa;bgh1i D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

:::
:::

ai�1 ; bi�1

�bi ; �ai

aiC1 ; biC1
:::

:::

9>>>>>>=>>>>>>;
˚

1
2
.degZ bi � degZ ai/

	
:

If we choose a different row to switch terms we get a factorization which is isomorphic
to this one.

We also have that
fa;bg� Š fa;�bghkifskg;

where

sk D

kX
iD1

degZ ai �
k

2
degZ W:

Let R D QŒx1; : : : ;xk � and R0 D QŒx2; : : : ;xk �. Suppose that W D
P

i aibi 2 R0

and x1 � bi 2 R0 , for a certain 1 � i � k . Let fyai ; ybig be the matrix factorization
obtained from fa;bg by deleting the i th row and substituting x1 by x1� bi .

Lemma 3.1 (excluding variables) The matrix factorizations fa;bg and fyai ; ybig are
homotopy equivalent.

In [4] one can find the proof of this lemma and its generalization with several variables.

The following lemma contains three particular cases of [4, Proposition 3] (see also [5]):
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Lemma 3.2 (Row operations) We have the following isomorphisms of matrix factor-
izations�

ai ; bi

aj ; bj

�
Œi;j ��
Š

�
ai ��aj ; bi

aj ; bj C�bi

�
;

�
ai ; bi

aj ; bj

�
Œi;j �0

�

Š

�
ai C�bj ; bi

aj ��bi ; bj

�
for � 2R. If � is invertible in R, we also have

fai ; bj g
Œi��
Š f�ai ; �

�1big:

Recall that a sequence .a1; a2; : : : ; ak/ is called regular in R if aj is not a zero divisor
in R=.a1;a2;:::;aj�1/R , for j D 1; : : : ; k . The proof of the following lemma can be
found in [5].

Lemma 3.3 Let bD .b1; b2; : : : ; bk/, aD .a1; a2; : : : ; ak/ and a0D .a0
1
; a0

2
; : : : ; a0

k
/

be sequences in R. If b is regular and
P

i aibi D
P

i a0ibi then the factorizations

fa ;bg and fa0 ;bg

are isomorphic.

A factorization M with potential W is said to be contractible if it is isomorphic to a
direct sum of copies of

R
1
�!R

˚
1
2

degZ W
	 W
�!R and R

W
�!R

˚
�

1
2

degZ W
	 1
�!R:

3.2 Khovanov–Rozansky homology

Definition 3.4 A KR–web is a trivalent graph with two types of edges, oriented edges
and unoriented thick edges, such that each oriented edge has at least one mark. We
allow open webs which have oriented edges with only one endpoint glued to the rest of
the graph. Every thick edge has exactly two oriented edges entering one endpoint and
two leaving the other.

Suppose there are k marks in a KR–web � and let x denote the set fx1;x2; : : : ;xkg.
Denote by R the polynomial ring QŒa; b; c; x�, where a, b , c are formal parameters.
We define a q–grading in R declaring that

q.1/D 0; q.xi/D 2; for all i; q.a/D 2; q.b/D 4; q.c/D 6:

The universal rational Khovanov–Rozansky theory for N D 3 is related to the polyno-
mial

p.x/D x4
�

4a

3
x3
� 2bx2

� 4cx:
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y x

Figure 3: An oriented arc

xi xj

xk xl

Figure 4: A thick edge

As in [5] we denote by y� the matrix factorization associated to a KR–web � .

To an oriented arc with marks x and y , as in Figure 3, we assign the potential

W D p.x/�p.y/D x4
�y4

�
4a

3

�
x3
�y3

�
� 2b

�
x2
�y2

�
� 4c

�
x�y

�
and the arc factorization g, which is given by the Koszul factorization

gD f�xy ; x�yg DR
�xy

��!Rf�2g
x�y
���!R

where

�xy D
x4�y4

x�y
�

4a

3

x3�y3

x�y
� 2b

x2�y2

x�y
� 4c:

To the thick edge in Figure 4 we associate the potential

W D p.xi/Cp.xj /�p.xk/�p.xl/

and the dumbell factorization e, which is defined as the tensor product of the factor-
izations

Rf�1g
uijkl

���!Rf�3g
xiCxj�xk�xl

����������!Rf�1g

and
R

vijkl

���!R
xi xj�xkxl

��������!R

where

uijkl D
.xi Cxj /

4� .xk Cxl/
4

xi Cxj �xk �xl

� .2bC 4xixj /.xi Cxj Cxk Cxl/

�
4a

3

 
.xi Cxj /

3� .xk Cxl/
3

xi Cxj �xk �xl

� 3xixj

!
� 4c;

vijkl D 2.xixj Cxkxl/� 4.xk Cxl/
2
C 4a.xk Cxl/C 4b:
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We can write the dumbell factorization as the Koszul matrix

eD

�
uijkl ; xi Cxj �xk �xl

vijkl ; xixj �xkxl

�
f�1g:

The matrix factorization y� of a general KR–web � composed of E arcs and T thick
edges is built from the arc and the dumbell factorizations as

y� D
O
e2E

ge˝

O
t2T

et ;

which is a matrix factorization with potential W D
P
�ip.xi/ where i runs over all

free ends. By convention �i D 1 if the corresponding arc is oriented outward and
�i D�1 in the opposite case.

3.2.1 Maps �0 and �1 Let f and e denote the factorizations in Figure 5.
xi xj

xk xl

xi xj

xk xl

�0

�1

Figure 5: Maps �0 and �1

The factorization f is given by�
R

Rf�4g

�
P0
�!

�
Rf�2g

Rf�2g

�
P1
�!

�
R

Rf�4g

�
with

P0 D

�
�ik xj �xl

�jl �xi Cxk

�
; P1 D

�
xi �xk xj �xl

�jl ��ik

�
:

The factorization e is given by�
Rf�1g

Rf�3g

�
Q0
�!

�
Rf�3g

Rf�1g

�
Q1
�!

�
Rf�1g

Rf�3g

�
with

Q0D

�
uijkl xixj �xkxl

vijkl �xi �xj Cxk Cxl

�
; Q1D

�
xi Cxj �xk �xl xixj �xkxl

vijkl �uijkl

�
:

The maps �0 and �1 can be described by the pairs of matrices:

�0 D

�
2

�
�xk Cxj 0

�˛ �1

�
; 2

�
�xk xj

1 �1

��
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and

�1 D

��
1 0

�˛ xk �xj

�
;

�
1 xj

1 xk

��
where

˛ D�vijkl C
uijkl Cxivijkl ��jl

xi �xk

:

The maps �0 and �1 have degree 1. A straightforward calculation shows that �0 and
�1 are homomorphisms of matrix factorizations, and that

�0�1 Dm.2xj � 2xk/ Id.e/ �1�0 Dm.2xj � 2xk/ Id.f/;

where m.x�/ is multiplication by x� . Note that we are using a sign convention that is
different from the one in [4]. This choice was made to match the signs in the Digon
Removal relation in [7]. Note also that the map �0 is twice its analogue in [4]. This
way we obtain a theory that is equivalent to the one in [4] and consistent with our
choice of normalization in Section 2.

There is another description of the maps �0 and �1 when the webs in Figure 5 are
closed. In this case both f and e have potential zero. Acting with a row operation on
f we get

fŠ

�
�ik ; xi Cxj �xk �xl

�jl ��ik ; xj �xl

�
:

Excluding the variable xk from f and from e yields

fŠ
˚
�jl ��ik ; xj �xl

	
R
; eŠ

˚
vijkl ; .xi �xl/.xj �xl/

	
R
;

with RDQŒxi ;xj ;xk ;xl �=.xkCxiCxj �xl/. It is straightforward to check that �0

and �1 correspond to the maps .�2.xi �xl/;�2/ and .1;xi �xl/ respectively. This
description will be useful in Section 5.

For a link L, we denote by KRa;b;c.L/ the universal rational Khovanov–Rozansky
cochain complex, which can be obtained from the data above in the same way as in [4].
Let HKRa;b;c.L/ denote the universal rational Khovanov–Rozansky homology. We
have

HKRa;b;c.S/Š
�
QŒx; a; b; c�=x3�ax2�bx�c

�
h1if�2g:

3.3 MOY web moves

One of the main features of the Khovanov–Rozansky theory is the categorification
of the MOY web moves. For n D 3 these categorified moves are described by the
homotopy equivalences below.

Algebraic & Geometric Topology, Volume 8 (2008)
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Lemma 3.5 We have the following direct sum decompositions:

Š f�1g˚ f1g ;(1)

Š h1if�1g˚ h1if1g ;(2)

Š h1i˚ ;(3)

˚ Š ˚ :(4)

The last relation is a consequence of two relations involving a triple edge

Š ˚ ; Š ˚ :

The factorization assigned to the triple edge in Figure 6 has potential

W D p.x1/Cp.x2/Cp.x3/�p.x4/�p.x5/�p.x6/:

Let h be the unique three-variable polynomial such that
x1 x2 x3

x4 x5 x6

Figure 6: Triple edge factorization

h.xCyC z;xyCxzCyz;xyz/D p.x/Cp.y/Cp.z/

and let

e1 D x1Cx2Cx3; e2 D x1x2Cx1x3Cx2x3; e3 D x1x2x3;

s1 D x4Cx5Cx6; s2 D x4x5Cx4x6Cx5x6; s3 D x4x5x6:
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Define

h1 D
h.e1; e2; e3/� h.s1; e2; e3/

e1� s1

h2 D
h.s1; e2; e3/� h.s1; s2; e3/

e2� s2

h3 D
h.s1; s2; e3/� h.s1; s2; s3/

e3� s3

so that we have W D h1.e1�s1/Ch2.e2�s2/Ch3.e3�s3/. The matrix factorization
y‡ corresponding to the triple edge is defined by the Koszul matrix

y‡ D

8<:
h1 ; e1� s1

h2 ; e2� s2

h3 ; e3� s3

9=;
R

f�3g;

where RDQŒa; b; c;x1; : : : ;x6�. The matrix factorization y‡ is the tensor product of
the matrix factorizations

R
hi
�!Rf2i � 4g

ei�si
���!R; i D 1; 2; 3;

shifted down by 3.

3.4 Cobordisms

In this subsection we show which homomorphisms of matrix factorizations we associate
to the elementary singular KR–cobordisms. We will need these in Section 5. It is not
clear to us whether one can associate a homomorphism of matrix factorizations to
arbitrary singular KR–cobordisms.

Recall that the elementary KR–cobordisms are the zip, the unzip (see Figure 5) and the
elementary cobordisms in Figure 7. To the zip and the unzip we associate the maps
�0 and �1 , respectively, as defined in Section 3.2.1. For each elementary cobordism
in Figure 7 we define a homomorphism of matrix factorizations as below, following
Khovanov and Rozansky [4].

Figure 7: Elementary cobordisms

Algebraic & Geometric Topology, Volume 8 (2008)
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The unit and the trace map

{W QŒa; b; c�h1i !i

"W i!QŒa; b; c�h1i

are the homomorphisms of matrix factorizations induced by the maps (denoted by the
same symbols)

{W QŒa; b; c�!QŒa; b; c�ŒX �=X 3�aX 2�bX�cf�2g; 1 7! 1

"W QŒa; b; c�ŒX �=X 3�aX 2�bX�cf�2g !QŒa; b; c�; X k
7!

(
�

1
4
; k D 2

0; k < 2

using the isomorphisms

y∅ŠQŒa; b; c�! 0!QŒa; b; c�

and iŠ 0!QŒa; b; c�ŒX �=X 3�aX 2�bX�cf�2g ! 0:

Let d and c be the factorizations in Figure 8.

x1 x2

x3 x4

x1 x2

x3 x4

�

Figure 8: Saddle point homomorphism

The matrix factorization d is given by�
R

Rf�4g

� �
�13 x4�x2
�24 x3�x1

�
����������!

�
Rf�2g

Rf�2g

� �
x1�x3 x4�x2
�24 ��13

�
������������!

�
R

Rf�4g

�
and ch1i is given by�

Rf�2g

Rf�2g

� �
x2�x1 x3�x4
��34 �12

�
������������!

�
R

Rf�4g

� �
��12 x3�x4
��34 x1�x2

�
�����������!

�
Rf�2g

Rf�2g

�
To the saddle cobordism between the webs b and a we associate the homomorphism
of matrix factorizations �W d!ch1i described by the pair of matrices

�0 D

�
e123C e124 1

�e134� e234 1

�
; �1 D

�
�1 1

�e123� e234 �e134� e123

�
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where

eijk D
.xk �xj /p.xi/C .xi �xk/p.xj /C .xj �xi/p.xk/

2.xi �xj /.xj �xk/.xk �xi/

D
1

2

�
x2

i Cx2
j Cx2

k Cxixj Cxixk Cxj xk

�
�

2a

3

�
xi Cxj Cxk

�
� b:

The homomorphism � has degree 2. If b and a belong to open KR–webs the
homomorphism � is defined only up to a sign (see [4]). For closed KR–webs we do
not know whether there is a sign problem. In Section 5 we will deal with this problem
in a slightly different setting.

4 A matrix factorization theory for sl3 webs

As mentioned in the introduction, the main problem in comparing the foam and the
matrix factorization sl3 link homologies is that one has to deal with two different sorts
of webs. In the foam approach, where one uses ordinary trivalent webs, all edges are
thin and oriented, whereas for the matrix factorizations Khovanov and Rozansky used
KR–webs, which also contain thick unoriented edges. In general there are various
KR–webs that one can associate to a given web. Therefore it apparently is not clear
which KR matrix factorization to associate to a web. However, in Proposition 4.2 we
show that this ambiguity is not problematic. Our proof of this result is rather roundabout
and requires a matrix factorization for each vertex. In this way we associate a matrix
factorization to each web. For each choice of KR–web associated to a given web
the KR–matrix factorization is a quotient of ours, obtained by identifying the vertex
variables pairwise according to the thick edges. We then show that for a given web
two such quotients are always homotopy equivalent. This is the main ingredient which
allows us to establish the equivalence between the foam and the matrix factorization
sl3 link homologies.

Recall that a web is an oriented trivalent graph where near each vertex either all edges
are oriented into it or away from it. We call the former vertices of .�/–type and the
latter vertices of .C/–type. To associate matrix factorizations to webs we impose that
each edge have at least one mark.

x y

z

v

Figure 9: A vertex of .C/–type
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4.1 The 3–vertex

Consider the 3–vertex of (C)-type in Figure 9, with emanating edges marked x;y; z .
The polynomial

p.x/Cp.y/Cp.z/Dx4
Cy4
Cz4
�

4
3
a
�
x3
Cy3
Cz3

�
�2b

�
x2
Cy2
Cz2

�
�4c

�
xCyCz

�
can be written as a polynomial in the elementary symmetric polynomials

pv.xCyC z;xyCxzCyz;xyz/D pv.e1; e2; e3/:

Using the methods of Section 3 we can obtain a matrix factorization of pv , but if
we tensor together two of these, then we obtain a matrix factorization which is not
homotopy equivalent to the dumbell matrix factorization. This can be seen quite easily,
since the new Koszul matrix has 6 rows and only one extra variable. This extra variable
can be excluded at the expense of 1 row, but then we get a Koszul matrix with 5 rows,
whereas the dumbell Koszul matrix has only 2. To solve this problem we introduce a
set of three new variables for each vertex2. Introduce the vertex variables v1 , v2 , v3

with q.vi/D 2i and define the vertex ring

Rv DQŒa; b; c�Œx;y; z; v1; v2; v3�:

We define the potential as

Wv D pv.e1; e2; e3/�pv.v1; v2; v3/:

We have

Wv D
pv.e1; e2; e3/�pv.v1; e2; e3/

e1� v1

�
e1� v1

�
C

pv.v1; e2; e3/�pv.v1; v2; e3/

e2� v2

�
e2� v2

�
C

pv.v1; v2; e3/�pv.v1; v2; v3/

e3� v3

�
e3� v3

�
D g1

�
e1� v1

�
Cg2

�
e2� v2

�
Cg3

�
e3� v3

�
;

where the polynomials gi (i D 1; 2; 3) have the explicit form

g1 D
e4

1
� v4

1

e1� v1

� 4e2.e1C v1/C 4e3�
4a

3

�
e3

1
� v3

1

e1� v1

� 3e2

�
� 2b.e1C v1/� 4c(5)

g2 D 2.e2C v2/� 4v2
1 C 4av1C 4b(6)

g3 D 4.v1� a/:(7)

2M Khovanov had already observed this problem for the undeformed case and suggested to us the
introduction of one vertex variable in that case.
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We define the 3–vertex factorization hvC as the tensor product of the factorizations

Rv

gi
�!Rvf2i � 4g

ei�vi
����!Rv; .i D 1; 2; 3/

shifted by �3=2 in the q–grading and by 1=2 in the Z=2Z–grading, which we write
in the form of the Koszul matrix

hvC D

8<:
g1 ; e1� v1

g2 ; e2� v2

g3 ; e3� v3

9=;
Rv

˚
�3=2

	
h1=2i:

If Iv is a 3–vertex of �–type with incoming edges marked x;y; z we define

hv� D

8<:
g1 ; v1� e1

g2 ; v2� e2

g3 ; v3� e3

9=;
Rv

˚
�3=2

	
h1=2i;

with g1 , g2 , g3 as above.

Lemma 4.1 We have the following homotopy equivalences in EndMF .hv˙/:

m.xCyC z/Šm.a/; m.xyCxzCyz/Šm.�b/; m.xyz/Šm.c/:

Proof For a matrix factorization yM over R with potential W the homomorphism

R! EndMF. yM /; r 7!m.r/

factors through the Jacobi algebra of W and up to shifts, the Jacobi algebra of Wv is

JWv ŠQŒa; b; c;x;y; z�=fxCyCzDa; xyCxzCyzD�b; xyzDcg:

4.2 Vertex composition

The elementary webs considered so far can be combined to produce bigger webs.
Consider a general web �v composed by E arcs between marks and V vertices.
Denote by @E the set of free ends of �v and by .vi1

; vi2
; vi3

/ the vertex variables
corresponding to the vertex vi . We have

y�v D
O
e2E

ge˝

O
v2V

hv:

Factorization ge is the arc factorization introduced in Section 3.2. This is a matrix
factorization with potential

W D
X

i2@E.�/

�ip.xi/C
X

vj2V .�/

�vj pv.vj1
; vj2

; vj3
/DWxCWv
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where �i D 1 if the corresponding arc is oriented to it or �i D�1 in the opposite case
and �vj D 1 if vj is of positive type and �vj D�1 in the opposite case.

From now on we only consider open webs in which the number of free ends oriented
inwards equals the number of free ends oriented outwards. This implies that the number
of vertices of .C/–type equals the number of vertices of .�/–type.

Let R and Rv denote the rings QŒa; b; c�Œx� and RŒv� respectively. Given two vertices,
vi and vj , of opposite type, we can take the quotient by the ideal generated by vi � vj .
The potential becomes independent of vi and vj , because they appeared with opposite
signs, and we can exclude the common vertex variables corresponding to vi and vj as
in Lemma 3.1. This is possible because in all our examples the Koszul matrices have
linear terms which involve vertex and edge variables. The matrix factorization which
we obtain in this way we represent graphically by a virtual edge, as in Figure 10. A

Figure 10: Virtual edges

virtual edge can cross other virtual edges and ordinary edges and does not have any
mark.

If we pair every positive vertex in �v to a negative one, the above procedure leads to a
complete identification of the vertices of �v and a corresponding matrix factorization
�.y�v/. A different complete identification yields a different matrix factorization �0.y�v/.

Proposition 4.2 Let �v be a closed web. Then �.y�v/ and �0.y�v/ are isomorphic, up
to a shift in the Z=2Z–grading.

To prove Proposition 4.2 we need some technical results.

Lemma 4.3 Consider the web �v and the KR–web ‡ below.

�v ‡

:

Then �.y�vh1i/ is the factorization of the triple edge y‡ of Khovanov–Rozansky for
nD 3.
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Proof Immediate.

�v D

xi xj

xk xl

xr

Figure 11: A double edge

Lemma 4.4 Let �v be the web in Figure 11. Then �.y�v/ is isomorphic to the
factorization assigned to the thick edge of Khovanov–Rozansky for nD 3.

Proof Let y�C and y�� be the Koszul factorizations for the upper and lower vertex in
�v respectively and v˙i denote the corresponding sets of vertex variables. We have

y�C D

8<:
gC

1
; xi Cxj Cxr � v

C

1

gC
2
; xixj Cxr .xi Cxj /� v

C

2

gC
3
; xixj xr � v

C

3

9=;
RvC

f�3=2gh1=2i

and y�� D

8<:
g�

1
; v�

1
�xk �xl �xr

g�
2
; v�

2
�xkxl �xr .xk Cxl/

g�
3
; v�

3
�xkxlxr

9=;
Rv�

f�3=2gh1=2i:

The explicit form of the polynomials g˙i is given in Equations (5)–(7). Taking the
tensor product of y�C and y�� , identifying vertices vC and v� and excluding the vertex
variables yields

�.y�v/D
�
y�C˝ y��

�
=vC�v�

Š

8<:
g1; xiCxj�xk�xl

g2; xixj�xkxlCxr .xiCxj�xk�xl/

g3; xr .xixj�xkxl/

9=;
R

f�3gh1i;

where
gi D gCi

ˇ̌
fv
C

1
DxkCxlCxr ; v

C

2
DxkxlCxr .xkCxl /; v

C

3
Dxr xkxl g

:

This is a factorization over the ring

RDQŒa; b; c�Œxi ;xj ;xk ;xl ;xr ; v�=I ŠQŒa; b; c�Œxi ;xj ;xk ;xl ;xr �

where I is the ideal generated by

fv1�xr �xk �xl ; v2�xkxl �xr .xk Cxl/; v3�xkxlxr g:

Algebraic & Geometric Topology, Volume 8 (2008)



328 Marco Mackaay and Pedro Vaz

Using g3 D 4.xr CxkCxl �a/ and acting with the shift functor h1i on the third row
one can write

�.y�v/Š

8<: g1 ; xi Cxj �xk �xl

g2 ; xixj �xkxl Cxr .xi Cxj �xk �xl/

�xr .xixj �xkxl/ ; �4.xr Cxk Cxl � a/

9=;
R

f�1g

which is isomorphic, by a row operation, to the factorization8<: g1Cxr g2 ; xi Cxj �xk �xl

g2 ; xixj �xkxl

�xr .xixj �xkxl/ ; �4.xr Cxk Cxl � a/

9=;
R

f�1g:

Excluding the variable xr from the third row gives

�.y�v/Š

�
g1C .a�xk �xl/g2 ; xi Cxj �xk �xl

g2 ; xixj �xkxl

�
R0
f�1g

where R0 DQŒa; b; c�Œxi ;xj ;xl ;xr �=xr�aCxkCxl
ŠQŒa; b; c�Œxi ;xj ;xk ;xl �.

The claim follows from Lemma 3.3, since both are factorizations over R0 with the same
potential and the same second column, the terms in which form a regular sequence in
R0 . As a matter of fact, using a row operation one can write

�.y�v/Š

�
g1C.a�xk�xl/g2C2.a�xk�xl/.xixj�xkxl/; xiCxj�xk�xl

g2C2.a�xk�xl/.xiCxj�xk�xl/; xixj�xkxl

�
f�1g

and check that the polynomials in the first column are exactly the polynomials uijkl

and vijkl corresponding to the factorization assigned to the thick edge in Khovanov–
Rozansky theory.

Lemma 4.5 Let �v be a closed web and � and �0 two complete identifications that
only differ in the region depicted in Figure 12, where T is a part of the diagram whose
orientation is not important. Then there is an isomorphism �.y�v/Š �

0.y�v/h1i.

T

x1

x2
x3 x4

x5

x6

x7

x8x9x10
x11

x12

x1

x2
x3 x4

x5

x6

x7

x8x9x10
x11

x12

T

�.y�v/ �0.y�v/

Figure 12: Swapping virtual edges
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Proof Denoting by yM the tensor product of yT with the factorization corresponding
to the part of the diagram not depicted in Figure 12 we have

�.y�v/Š yM ˝

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

g1 ; x1Cx2Cx3�x4�x5�x6

g2 ; x1x2C .x1Cx2/x3�x5x6�x4.x5Cx6/

g3 ; x1x2x3�x4x5x6

g0
1
; x7Cx8Cx9�x10�x11�x12

g0
2
; x8x9Cx7.x8Cx9/�x10x11� .x10Cx11/x12

g0
3
; x7x8x9�x10x11x12

9>>>>>>=>>>>>>;
f�6g

with polynomials gi and g0i (i D 1; 2; 3) given by Equations (5)–(7). Similarly

�0.y�v/Š yM ˝

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

h1 ; x7Cx8Cx9�x4�x5�x6

h2 ; x8x9Cx7.x8Cx9/�x5x6�x4.x5Cx6/

h3 ; x7x8x9�x4x5x6

h0
1
; x1Cx2Cx3�x10�x11�x12

h0
2
; x1x2C .x1Cx2/x3�x10x11� .x10Cx11/x12

h0
3
; x1x2x3�x10x11x12

9>>>>>>=>>>>>>;
f�6g

where the polynomials hi and h0i (i D 1; 2; 3) are as above. The factorizations �.y�v/
and �0.y�v/ have potential zero. Using the explicit form

g3 D h3 D 4.x4Cx5Cx6� a/; g03 D h03 D 4.x10Cx11Cx12� a/

we exclude the variables x4 and x12 from the third and sixth rows in �.y�v/ and �0.y�v/.
This operation transforms the factorization yM into the factorization yM 0 , which again
is a tensor factor which �.y�v/ and �0.y�v/ have in common. Ignoring common overall
shifts we obtain

�.y�v/Š yM
0
˝

8̂̂<̂
:̂

g1 ; x1Cx2Cx3�a

g2 ; x1x2C.x1Cx2/x3�x5x6�.x5Cx6/.a�x5�x6/

g0
1
; x7Cx8Cx9�a

g0
2
; x8x9Cx7.x8Cx9/�x10x11�.x10Cx11/.a�x10�x11/

9>>=>>; ;

�0.y�v/Š yM
0
˝

8̂̂<̂
:̂

h1 ; x7Cx8Cx9�a

h2 ; x8x9Cx7.x8Cx9/�x5x6�.x5Cx6/.a�x5�x6/

h0
1
; x1Cx2Cx3�a

h0
2
; x1x2C.x1Cx2/x3�x10x11�.x10Cx11/.a�x10�x11/

9>>=>>; :
Using Equation (5) we see that g1 D h0

1
and g0

1
D h1 and therefore, absorbing in yM 0

the corresponding Koszul factorizations, we can write

�.y�v/Š yM
00
˝ yK and �0.y�v/Š yM

00
˝ yK0
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where

yK D

�
g2 ; x1x2C.x1Cx2/x3�x5x6�.x5Cx6/.a�x5�x6/

g0
2
; x8x9Cx7.x8Cx9/�x10x11�.x10Cx11/.a�x10�x11/

�
yK0 D

�
h2 ; x8x9Cx7.x8Cx9/�x5x6�.x5Cx6/.a�x5�x6/

h0
2
; x1x2C.x1Cx2/x3�x10x11�.x10Cx11/.a�x10�x11/

�
:

To simplify notation define the polynomials ˛i;j ;k and ˇi;j by

˛i;j ;k D xixj C .xi Cxj /xk ; ˇi;j D xixj C .xi Cxj /.aCxiCxj /:

In terms of ˛i;j ;k and ˇi;j we have:

yK D

�
2.˛1;2;3Cˇ5;6/C 4b ; ˛1;2;3Cˇ5;6

2.˛7;8;9Cˇ10;11/C 4b ; ˛7;8;9Cˇ10;11

�
(8)

yK0 D

�
2.˛7;8;9Cˇ5;6/C 4b ; ˛7;8;9Cˇ5;6

2.˛1;2;3Cˇ10;11/C 4b ; ˛1;2;3Cˇ10;11/

�
(9)

Factorizations yK and yK0h1i can now be written in matrix form as

yK D

�
R

R

�
P
�!

�
R

R

�
Q
�!

�
R

R

�
and yK0h1i D

�
R

R

�
P 0

�!

�
R

R

�
Q0

��!

�
R

R

�
;

where

P D

�
2.˛1;2;3Cˇ5;6/C 4b ˛7;8;9�ˇ10;11

2.˛7;8;9Cˇ10;11/C 4b �˛1;2;3Cˇ5;6

�
;

QD

�
˛1;2;3�ˇ5;6 ˛7;8;9�ˇ10;11

2.˛7;8;9Cˇ10;11/C 4b �2.˛1;2;3Cˇ5;6/� 4b

�
;

P 0 D

�
�˛7;8;9Cˇ5;6 �˛1;2;3Cˇ10;11

�2.˛1;2;3Cˇ10;11/� 4b 2.˛7;8;9Cˇ5;6/C 4b

�
;

Q0 D

�
�2.˛7;8;9Cˇ5;6/� 4b �˛1;2;3Cˇ10;11

�2.˛1;2;3Cˇ10;11/� 4b ˛7;8;9�ˇ5;6

�
:

Define a homomorphism  D .f0; f1/ from yK to yK0h1i by the pair of matrices  
1 �1

2

�1 �1
2

!
;

 
1
2
�

1
2

�1 �1

!!
:

It is immediate that  is an isomorphism with inverse .f1; f0/.

It follows that 1 yM 00 ˝ defines an isomorphism between �.y�v/ and �0.y�v/h1i.
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Although having  in this form will be crucial in the proof of Proposition 4.2 an
alternative description will be useful in Section 5. Note that we can reduce yK and
yK0 in Equations (8) and (9) further by using the row operations Œ1; 2�1 ı Œ1; 2�0�2

. We
obtain

yK Š

�
�4.˛7;8;9�ˇ5;6/; ˛1;2;3�ˇ5;6

2.˛7;8;9Cˇ10;11C˛1;2;3�ˇ5;6/; ˛1;2;3C˛7;8;9�ˇ5;6�ˇ10;11

�
and yK0 Š

�
�4.˛1;2;3�ˇ5;6/; ˛7;8;9�ˇ5;6

2.˛7;8;9Cˇ10;11C˛1;2;3�ˇ5;6/; ˛1;2;3C˛7;8;9�ˇ5;6�ˇ10;11

�
:

Since the second lines in yK and yK0 are equal we can write

yK Š
˚
�4.˛7;8;9�ˇ5;6/; ˛1;2;3�ˇ5;6

	
˝ yK2

and yK0 Š
˚
�4.˛1;2;3�ˇ5;6/; ˛7;8;9�ˇ5;6

	
˝ yK2:

An isomorphism  0 between yK and yK0h1i can now be given as the tensor product
between

�
�m.2/; �m.1=2/

�
and the identity homomorphism of yK2 .

Corollary 4.6 The homomorphisms  and  0 are equivalent.

Proof The first thing to note is that we obtained the homomorphism  by first
writing the differential .d0; d1/ in yK0 as 2� 2 matrices and then its shift yK0h1i using
.�d1;�d0/, but in the computation of  0 we switched the terms and changed the
signs in the first line of the Koszul matrix corresponding to yK0 . The two factorizations
obtained are isomorphic by a non-trivial isomorphism, which is given by

T D

��
�1 0

0 1

�
;

�
�1 0

0 1

��
:

Bearing in mind that  and  0 have Z=2Z–degree 1 and using

Œ1; 2�� D

��
1 0

0 1

�
;

�
1 ��

0 1

��
; Œ1; 2�0� D

��
1 0

�� 1

�
;

�
1 0

0 1

��
;

it is straightforward to check that the composite homomorphism

T Œ1; 2�1Œ1; 2�
0
�2 Œ1; 2�

0
2Œ1; 2��1

is ��
�2 0

0 �1=2

�
;

�
�1=2 0

0 �2

��
which is the tensor product of

�
�m.2/;�m.1=2/

�
and the identity homomorphism of

yK2 .
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Proof of Proposition 4.2 We claim that �0.y�v/ Š �.y�v/hki with k a nonnegative
integer. We transform �0.y�v/ into �.y�v/hki by repeated application of Lemma 4.5 as
follows. Choose a pair of vertices connected by a virtual edge in �.y�v/. Do nothing if
the same pair is connected by a virtual edge in �0.y�v/ and use Lemma 4.5 to connect
them in the opposite case. Iterating this procedure we can turn �0.y�v/ into �.y�v/ with
a shift in the Z=2Z–grading by (k mod 2) where k is the number of times we applied
Lemma 4.5.

It remains to show that the shift in the Z=2Z–grading is independent of the choices one
makes. To do so we label the vertices of �v of .C/– and .�/–type by .vC

1
; : : : ; vC

k
/ and

.v�
1
; : : : ; v�

k
/ respectively. Any complete identification of vertices in �v is completely

determined by an ordered set J� D .v
�
�.1/

; : : : ; v�
�.k/

/, with the convention that vCj is
connected through a virtual edge to v�

�.j/
for 1� j � k . Complete identifications of

the vertices in �v are therefore in one-to-one correspondence with the elements of the
symmetric group on k letters Sk . Any transformation of �0.y�/ into �.y�/ by repeated
application of Lemma 4.5 corresponds to a sequence of elementary transpositions
whose composite is equal to the quotient of the permutations corresponding to J�0

and J� . We conclude that the shift in the Z=2Z–grading is well-defined, because
any decomposition of a given permutation into elementary transpositions has a fixed
parity.

In Section 5 we want to associate an equivalence class of matrix factorizations to each
closed web and an equivalence class of homomorphism to each foam. In order to do
that consistently, we have to show that the isomorphisms in the proof of Proposition
4.2 are canonical in a certain sense (see Corollary 4.8).

Choose an ordering of the vertices of �v such that vCi is paired with v�i for all i and let
� be the corresponding vertex identification. Use the linear entries in the Koszul matrix
of �.y�v/ to exclude one variable corresponding to an edge entering in each vertex of
.�/–type, as in the proof of Lemma 4.5, so that the resulting Koszul factorization has
the form �.y�v/D yKlin˝ yKquad where yKlin (resp. yKquad ) consists of the lines in �.y�v/
having linear (resp. quadratic) terms as its right entries. From the proof of Lemma 4.5
we see that changing a pair of virtual edges leaves yKlin unchanged.

Let �i be the element of Sk corresponding to the elementary transposition, which sends
the complete identification .v�

1
; : : : ; v�i ; v

�
iC1

; : : : ; v�
k
/ to .v�

1
; : : : ; v�

iC1
; v�i ; : : : ; v

�
k
/,

and let ‰i D 1=i˝ be the corresponding isomorphism of matrix factorizations from
the proof of Lemma 4.5. The homomorphism  only acts on the i th and .iC1/th lines
in yKquad and 1=i is the identity morphism on the remaining lines. For the composition
�i�j we have the composite homomorphism ‰i‰j .
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Lemma 4.7 The assignment �i 7! ‰i defines a representation of Sk on �.y�/0 ˚
�.y�/1 .

Proof Let yK be the Koszul factorization corresponding to the lines i and i C 1 in
�.y�v/ and let j 00 i, j 11 i, j 01 i and j 10 i be the standard basis vectors of yK0˚

yK1 .
The homomorphism  found in the proof of Lemma 4.5 can be written as only one
matrix acting on yK0˚

yK1 :

 D

0BBBBB@
0 0 1

2
�

1
2

0 0 �1 �1

1 �1
2

0 0

�1 �1
2

0 0

1CCCCCA :

We have that  2 is the identity matrix and therefore it follows that ‰2
i is the identity

homomorphism on �.y�v/. It is also immediate that ‰i‰j D‰j‰i for ji � j j> 1. To
complete the proof we need to show that ‰i‰iC1‰i D ‰iC1‰i‰iC1 , which we do
by explicit computation of the corresponding matrices. Let yK0 be the Koszul matrix
consisting of the three lines i , iC1 and iC2 in yKquad . To show that ‰i‰iC1‰i D

‰iC1‰i‰iC1 is equivalent to showing that  satisfies the Yang–Baxter equation

(10) . ˝ 1/.1˝ /. ˝ 1/D .1˝ /. ˝ 1/.1˝ /;

with 1˝ and  ˝ 1 acting on yK0 . Note that, in general, the tensor product of two
homomorphisms of matrix factorizations f and g is defined by

.f ˝g/j v˝w i D .�1/jgjjvjjf v˝gw i:

Let j 000 i, j 011 i, j 101 i, j 110 i, j 001 i, j 010 i, j 100 i and j 111 i be the standard
basis vectors of yK0

0
˚ yK0

1
. With respect to this basis the homomorphisms  ˝ 1 and

1˝ have the form of block matrices

 ˝ 1D

0BBBBBBBBBBB@

0

0 1
2
�

1
2

0

1 0 0 �
1
2

�1 0 0 �
1
2

0 �1 �1 0

0 1
2
�

1
2

0

1 0 0 �
1
2

�1 0 0 �
1
2

0 �1 �1 0

0

1CCCCCCCCCCCA
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and

1˝ D

0BBBBBBBBBBB@

0

1
2
�

1
2

0 0

�1 �1 0 0

0 0 �1 1
2

0 0 1 1
2

1 �1
2

0 0

�1 �1
2

0 0

0 0 �
1
2

1
2

0 0 1 1

0

1CCCCCCCCCCCA
:

By a simple exercise in matrix multiplication we find that both sides in Equation (10)
are equal and it follows that ‰i‰iC1‰i D‰iC1‰i‰iC1 .

Corollary 4.8 The isomorphism �0.y�v/ Š �.y�v/hki in Proposition 4.2 is uniquely
determined by �0 and � .

Proof Let � be the permutation that relates �0 and � . Recall that in the proof of
Proposition 4.2 we defined an isomorphism ‰� W �

0.y�v/! �.y�v/hki by writing � as
a product of transpositions. The choice of these transpositions is not unique in general.
However, Lemma 4.7 shows that ‰� only depends on � .

From now on we write y� for the equivalence class of y�v under complete vertex
identification. Graphically we represent the vertices of y� as in Figure 13. We need to

y�v y�
Figure 13: A vertex and its equivalence class under vertex identification

neglect the Z=2Z grading, which we do by imposing that y� , for any closed web � ,
have only homology in degree zero, applying a shift if necessary.

Let � and ƒ be arbitrary webs. We have to define the morphisms between y� and yƒ.
Let �.y�v/ and �0.y�v/ be representatives of y� and �.yƒv/ and �0.yƒv/ be representatives
of yƒ. Let

f 2 HomMF
�
�.y�v/; �.yƒv/

�
and g 2 HomMF

�
�0.y�v/; �

0.yƒv/
�
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be two homomorphisms. We say that f and g are equivalent, denoted by f � g , if
and only if there exists a commuting square

�.y�v/

f

��

Š // �0.y�v/

g

��

�.yƒv/
Š // �0.yƒv/

with the horizontal isomorphisms being of the form as discussed in Proposition 4.2. The
composition rule for these equivalence classes of homomorphisms, which relies on the
choice of representatives within each class, is well-defined by Corollary 4.8. Note that
we can take well-defined linear combinations of equivalence classes of homomorphisms
by taking linear combinations of their representatives, as long as the latter have all the
same source and the same target. By Corollary 4.8, homotopy equivalences are also
well-defined on equivalence classes. We take

Hom.y�; yƒ/

to be the set of equivalence classes of homomorphisms of matrix factorizations between
y� and yƒ modulo homotopy equivalence. The additive category that we get this way is
denoted by

2Foam=` :

Note that we can define the homology of y� , for any closed web � . This group is
well-defined up to isomorphism and we denote it by yH.�/.

Next we show how to define a link homology using the objects and morphisms in
2Foam=` . For any link L, first take the universal rational Khovanov–Rozansky cochain
complex KRa;b;c.L/. The i th cochain group KRi

a;b;c
.L/ is given by the direct sum

of cohomology groups of the form H.�v/, where �v is a total flattening of L. By
the remark above it makes sense to consider cKR

i

a;b;c.L/, for each i . The differential
d i W KRi

a;b;c
.L/! KRiC1

a;b;c
.L/ induces a map

yd i
WbKR

i

a;b;c.L/!
bKR

iC1

a;b;c.L/;

for each i . The latter map is well-defined and therefore the homology

1HKR
i

a;b;c.L/

is well-defined, for each i .
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Let uW L!L0 be a link cobordism. Khovanov and Rozansky [4] constructed a cochain
map which induces a homomorphism

HKRa;b;c.u/W HKRa;b;c.L/! HKRa;b;c.L
0/:

The latter is only defined up to a Q–scalar. The induced map

1HKRa;b;c.u/W1HKRa;b;c.L/!1HKRa;b;c.L
0/

is also well-defined up to a Q–scalar. The following result follows immediately:

Lemma 4.9 HKRa;b;c and 1HKRa;b;c are naturally isomorphic as projective functors
from Link to Modbg .

In the next section we will show that Ua;b;c and 1HKRa;b;c are naturally isomorphic
as projective functors.

By Lemma 3.5 we also get the following

Lemma 4.10 We have the Khovanov–Kuperberg decompositions in 2Foam=` :

bS� Ši˝QŒa;b;c�
y�(Disjoint Union)

Š f�1g˚ f1g(Digon Removal)

Š ˚(Square Removal)

Although Lemma 4.10 follows from Lemma 3.5 and Lemma 4.4, an explicit proof will
be useful in the sequel.

Proof (Disjoint Union) is a direct consequence of the definitions. To prove (Digon
Removal) define the grading-preserving homomorphisms

˛W f�1g ! ˇW ! f1g

by Figure 14.

If we choose to create the circle on the other side of the arc in ˛ we obtain a homo-
morphism homotopic to ˛ and the same holds for ˇ . Define the homomorphisms

˛0W f�1g ! ˛1W f1g !
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˛W

x1

x2

{

x1

x2

–x3

x1

x2

–x4 –x3
�0

ˇW

x1

x2

–x4 –x3
�1

x1

x2

–x3

x1

x2

�

Figure 14: Homomorphisms ˛ and ˇ

by ˛0 D 2˛ and ˛1 D 2˛ ım.�x2/. Note that the homomorphism ˛1 is homotopic
to the homomorphism 2˛ ım.x1Cx3� a/. Similarly define

ˇ0W ! f�1g ˇ1W ! f1g

by ˇ0D�ˇım.x3/ and ˇ1D�ˇ . A simple calculation shows that ǰ˛i D ıij Id.g).
Since the cohomologies of the factorizations j and gf�1g ˚gf1g have the same
graded dimension (see [4]) we have that ˛0C˛1 and ˇ0Cˇ1 are homotopy inverses
of each other and that ˛0ˇ0C˛1ˇ1 is homotopic to the identity in End.j/. To prove
(Square Removal) define grading preserving homomorphisms

 0W �! ;  1W �! ;

'0W �! ; '1W �! ;

by the composed homomorphisms below

�1�
0
1 //

 0

((

�" //

�0�
0
0

oo
{

oo

'0

hh

�1�
0
1 //

 1

((

�" //

�0�
0
0

oo
{

oo

'1

hh

:

We have that  0'0 D Id.d/ and  1'1 D Id.c/. We also have  1'0 D  0'1 D 0

because Ext.d;c/ Š1HKRa;b;c.S/f4g which is zero in q–degree zero and so any
homomorphism of degree zero between d and c is homotopic to the zero homomor-
phism. Since the cohomologies of k and d˚c have the same graded dimension (see
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[4]) we have that  0C 1 and '0C'1 are homotopy inverses of each other and that
'0 0C'1 1 is homotopic to the identity in End.k/.

5 The equivalence functor

In this section we first define a functor

bWFoam=`!
2Foam=` :

Then we show that this functor is well-defined and an isomorphism of categories.
Finally we show that this implies that the link homology functors Ua;b;c and 1HKRa;b;c

from Link to Modbg are naturally isomorphic.

On objects the functor b is defined by

�! y�;

as explained in the previous section. We now define b on morphisms. Let f 2
HomFoam=`.�; �

0/. Suffice it to consider the case in which f can be given by one
singular cobordism, also denoted f . If f is given by a linear combination of singular
cobordisms, one can simply extend the following arguments to all terms. Slice f up
between critical points, so that each slice contains one elementary foam, i.e. a zip or
unzip, a saddle-point cobordism, or a cap or a cup, glued horizontally to the identity
foam on the rest of the source and target webs. For each slice choose compatible
vertex identifications on the source and target webs, such that in the region where
both webs are isotopic the vertex identifications are the same and in the region where
they differ the vertex identifications are such that we can apply the homomorphism of
matrix factorizations �0; �1; �; � or � . This way we get a homomorphism of matrix
factorizations for each slice. We can take its b equivalence class. Composing all these
morphisms gives a morphism yf between y�v and y� 0v . For its definition we had to
choose a representative singular cobordism of the foam f , a way to slice it up and
complete vertex identifications for the source and target of each slice. Of course we
have to show that yf 2 Hom 1Foam=`

.y�; y� 0/ is independent of those choices. But before
we do that we have to show that there is no sign problem in the definition of y� (see
the remark at the end of Section 3). Recall that � is the homomorphism of matrix
factorizations induced by a saddle-point cobordism.

Lemma 5.1 The morphism y� is well defined for closed webs.

Proof Let � and � 0 be two closed webs and †W� ! � 0 a cobordism which is the
identity everywhere except for one saddle-point. By a slight abuse of notation, let y�
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denote the homomorphism of matrix factorizations which corresponds to †. Note that
� and � 0 have the same number of vertices, which we denote by v . Our proof that y�
is well-defined proceeds by induction on v . If vD 0, then the lemma holds, because �
consists of one circle and � 0 of two circles, or vice-versa. These circles have no marks
and are therefore indistinguishable. To each circle we associate the complex i and
y� corresponds to the product or the coproduct in QŒa; b; c�ŒX �=X 3� aX 2� bX � c .
Note that as soon as we mark the two circles, they will become distinguishable, and a
minus-sign creeps in when we switch them. However, this minus-sign then cancels
against the minus-sign showing up in the homomorphism associated to the saddle-point
cobordism.

Let v > 0. This part of our proof uses some ideas from the proof of Jeong and Kim
[2, Theorem 2.4]. Any web can be seen as lying on a 2–sphere. Let V;E and F

denote the number of vertices, edges and faces of a web, where a face is a connected
component of the complement of the web in the 2–sphere. Let F D

P
i Fi , where Fi

is the number of faces with i edges. Note that we only have faces with an even number
of edges. It is easy to see that the following equations hold:

3V D 2E V �ECF D 2 2E D
X

i

iFi

Therefore, we get
6D 3F �E D 2F2CF4�F8� � � � ;

which implies

(11) 6� 2F2CF4:

This lower bound holds for any web, in particular for � and � 0 . Note that for F2 D 3

and F4 D 0 we have a theta-web, which is the intersection of a theta-foam and a plane.
Since all edges have to have the same orientation at both vertices, there is no way to
apply a saddle point cobordism to this web. For all other values of F2 and F4 there
is always a digon or a square in � and � 0 on which y� acts as the identity, i.e. which
does not get changed by the saddle-point in the cobordism to which y� corresponds.
To see how this follows from (11), just note that one saddle point cobordism never
involves more than three squares, one digon and two squares, or two digons and one
square. Since the MOY-moves in Lemma 4.10 are all given by isomorphisms which
correspond to the zip and the unzip and the birth and the death of a circle (see the
proof of Lemma 4.10), this shows that there is always a set of MOY-moves which
can be applied both to � and � 0 whose target webs, say �1 and � 0

1
, have less than v

vertices, and which commute with y�. Here we denote the homomorphism of matrix
factorizations corresponding to the saddle-point cobordism between �1 and � 0

1
by y�
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again. By induction, y�W y�1!
y� 01 is well-defined. Since the MOY-moves commute

with y�, we conclude that y�W y�! y� 0 is well-defined.

Lemma 5.2 The functor bWFoam=`!
2Foam=` is well-defined.

Proof The fact that yf does not depend on the vertex identifications follows imme-
diately from Corollary 4.8 and the equivalence relation � on the Hom–spaces in
2Foam=` .

Next we prove that yf does not depend on the way we have sliced it up. By Lemma
4.10 we know that, for any closed web � , the class y� is homotopy equivalent to a
direct sum of terms of the form ik . Note that bExt.∅;S/ is generated by X s�, for
0� s � 2, and that all maps in the proof of Lemma 4.10 are induced by cobordisms
with a particular slicing. This shows that bExt.∅; �/ is generated by maps of the form
yu, where u is a cobordism between ∅ and � with a particular slicing. A similar result
holds for bExt.�;∅/. Now let f and f 0 be given by the same cobordism between �
and ƒ but with different slicings. If yf ¤ yf 0 , then, by the previous arguments, there
exist maps yu and yv , where uW∅! � and vWƒ!∅ are cobordisms with particular
slicings, such that bvf u ¤ bvf 0u . This reduces the question of independence of slicing
to the case of closed cobordisms. Note that we already know that b is well-defined on
the parts that do not involve singular circles, because it is the generalization of a 2d
TQFT. It is therefore easy to see that b respects the relation (CN). Thus we can cut up
any closed singular cobordism near the singular circles to obtain a linear combination
of closed singular cobordisms isotopic to spheres and theta-foams. The spheres do
not have singular circles, so b is well-defined on them and it is easy to check that it
respects the relation (S).

Finally, for theta-foams we do have to check something. There is one basic Morse
move that can be applied to one of the discs of a theta-foam, which we show in Figure
15. We have to show that b is invariant under this Morse move.

Figure 15: Singular Morse move

In other words, we have to show that the composite homomorphism in Figure 16 is
homotopic to the identity. It suffices to do the computation on the homology. First we
note that the theta web has homology only in Z=2Z–degree 0. From the remark at the
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x1

x2

x1

x2 x2
x3

x2x3 x3

�0
�!

 
�!

�1
�!

"
�!

z 
�!

Figure 16: Homomorphism ˆ . To avoid cluttering only some marks are shown

end of Section 3.2.1 it follows that �0 is equivalent to multiplication by �2.x1�x2/

and �1 to multiplication by x2�x3 , where we used the fact that  has Z=2Z–degree
1. From Corollary 4.6 we have that  is equivalent to multiplication by �2 and from
the definition of vertex identification it is immediate that z is the identity. Therefore
we have that

ˆD "
�
4.x2�x3/.x1�x2/

�
D 1:

It is also easy to check that b respects the relation (‚).

Note that the arguments above also show that, for an open foam f , we have yf D 0 if
u1f u2D 0 for all singular cobordisms u1W∅! �v and u2W�

0
v!∅. This proves thatb is well-defined on foams, which are equivalence classes of singular cobordisms.

Corollary 5.3 The functor bWFoam=`!
2Foam=` is an isomorphism of categories.

Proof On objects b is clearly a bijection. On morphisms it is also a bijection by
Lemma 4.10 and the proof of Lemma 5.2.

Theorem 5.4 The projective functors Ua;b;c and 1HKRa;b;c from Link to Modbg are
naturally isomorphic.

Proof Let D be a diagram of L, CFoam=`.D/ the complex for D constructed with
foams in Section 2 and bKRa;b;c.D/ the complex constructed with equivalence classes
of matrix factorizations in Section 4. From Lemma 5.2 and Corollary 5.3 it follows
that for all i we have isomorphisms of graded QŒa; b; c�–modules C i

Foam=`.D/ ŠbKRi
a;b;c

.D/ where i is the homological degree. By a slight abuse of notation we

denote these isomorphisms by b too. The differentials in bKRa;b;c.D/ are induced
by �0 and �1 , which are exactly the maps that we associated to the zip and the unzip.
This shows that b commutes with the differentials in both complexes and therefore
that it defines an isomorphism of complexes.

The naturality of the isomorphism between the two functors follows from Corollary 5.3
and the fact that all elementary link cobordisms are induced by the elementary foams
and their respective images with respect to b.
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