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On non fundamental group equivalent surfaces

MINA TEICHER

MICHAEL FRIEDMAN

In this paper we present an example of two polarized K3 surfaces which are not
Fundamental Group Equivalent (their fundamental groups of the complement of the
branch curves are not isomorphic; denoted by FGE) but the fundamental groups of
their related Galois covers are isomorphic. For each surface, we consider a generic
projection to CP 2 and a degenerations of the surface into a union of planes – the
“pillow" degeneration for the non-prime surface and the “magician" degeneration for
the prime surface. We compute the Braid Monodromy Factorization (BMF) of the
branch curve of each projected surface, using the related degenerations. By these
factorizations, we compute the above fundamental groups. It is known that the two
surfaces are not in the same component of the Hilbert scheme of linearly embedded
K3 surfaces. Here we prove that furthermore they are not FGE equivalent, and thus
they are not of the same Braid Monodromy Type (BMT) (which implies that they are
not a projective deformation of each other).

14J28, 14H30; 14H20, 57M12, 20F36, 14F35, 14Q05

1 Introduction

Given X �CPn a smooth algebraic surface of degree m, one can obtain information on
X by considering it as a branched cover of CP2 . It is well–known that for X �!CP2

a generic projection, the branch locus is a plane curve xS �CP2 which is, in general,
singular, and its singularities are nodes and cusps. Let S �C2 �CP2 be a generic
affine portion of xS .

It was proven in Kulikov–Teicher [8] that if the Braid Monodromy Factorizations (BMF)
of the branch loci of two surfaces X1 and X2 are Hurwitz-equivalent, then the surfaces
are diffeomorphic. Moreover, if the factorizations are not Hurwitz-equivalent, then X1

and X2 are not projectively deformation equivalent. Therefore, the BMT invariant (the
equivalence class of a BMF) is really in the “middle”, ie, between the diffeomorphism
equivalence and the projectively deformation equivalence. We need to find an algorithm
that decides whether two BMFs are equivalent. In general, it was shown in Liberman–
Teicher [9] that there is no finite algorithm which determines whether two positive
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factorizations are Hurwitz- equivalent. However, [9] did not examine the particular
case of the BMFs. Therefore, we have to extract the information contained in the braid
monodromy factorization via the introduction of more manageable (but less powerful)
invariants.

Two discrete invariants are induced from the BMF of the branch curve – S : the
fundamental group of the complement of the branch curve (see Amram–Friedman–
Teicher [2], Friedman–Teicher [7], Moishezon [11], Moishezon–Teicher [17]) and
its subquotient: the fundamental group of the Galois Cover of X (see Liedtke [10],
Moishezon–Robb–Teicher [12], Moishezon–Teicher [13]). We say that two surfaces are
Fundamental Group Equivalent (FGE) if their fundamental groups of the complement
of the branch curve are isomorphic.

In this article we present two surfaces, which are embeddings of a K3 surface with
respect to two different linear systems; therefore they are diffeomorphic. Due to the
nature of the particular linear systems, these embedded surfaces are not projectively
deformation equivalent. It is also known that any two K3 surfaces can be abstractly
deformed one into the other. Thus one can raise the questions: Are the surfaces FGE?
Are the fundamental groups of the corresponding Galois covers isomorphic? Here
we prove that although the latter groups are isomorphic, the surfaces are not FGE.
Therefore, these surfaces are also not BMT–equivalent, which means that the surfaces
are not in the same component of the Hilbert scheme of linearly embedded K3 surfaces.
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2 Preliminaries: The K3 surfaces and the BMT invariant

In this section we recall the main definitions and constructions regarding the two
embeddings of the K3 surface, and the braid monodromy factorization (BMF) related
to a (branch) curve. We begin with the introduction of the two embeddings of a K3

surface.
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2.1 Two embeddings of a K3 surface

Recall that the surfaces with Kodaira dimension which equals to 0, that are simply
connected, have in fact trivial canonical bundle, and are called K3 surfaces. The
invariants for such surfaces are pg D 1, q D 0, e D 24. The moduli space of all K3

surfaces is 20–dimensional.

Most K3 surfaces are not algebraic; the algebraic ones are classified by an infinite
collection (depending on an integer g � 2) of 19–dimensional moduli spaces. The
general member of the family has a rank one Picard group, generated by an ample class
H with H 2 D 2g� 2; the general member of the linear system jH j is a smooth curve
of genus g , and this linear system maps the K3 surface to Pg as a surface of degree
2g � 2. For example, a K3 surface is a smooth quartic surface in P3 . The quartic
surfaces in P3 form the family with g D 3. The integer g is called the genus of the
family.

The first embedded surface is a K3 surface of genus 9, embedded in CP9 by the
pillow (2,2)-pillow degeneration (see Ciliberto–Miranda–Teicher [6] for details). The
resulting embedding can be degenerated into a union of 16 planes, such that the whole
degenerated object would “resemble a pillow” (see Figure 1 for clarification). We
denote by X1 the embedded K3 surface, and by .X1/0 the degenerated surface (see
[17] for an explicit definition of a degeneration).

Figure 1: .X1/0 – the (2,2)–pillow degeneration: every triangle denotes a plane

The degeneration process has a “local inverse” – the regeneration process (see an
explanation in the following subsection), and for it we need to fix a numeration of
vertices (and the lines; see Amram–Ciliberto–Miranda–Teicher [1] for details). This is
done as shown in Figure 3.

The 16 planes meet each other along a total of 24 lines, each joining 2 of the 10
coordinate points. We numerate the lines as follows: if L has endpoints a< b and M

has endpoints c < d , then L <M if b < d or b D d and a < c . This gives a total
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Figure 2: A 2–dimensional figure of .X1/0 : the boundaries are identified
(top to top, bottom to bottom, side to side)
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Figure 3: The numeration of the singular points of .X1/0

ordering of the lines, which we interpret as a numbering from 1 to 24, as shown in
Figure 4.
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Figure 4: The numeration of the intersection lines of .X1/0

Under a general projection �1W .X1/0 ! CP2 , each of the 16 planes is mapped
isomorphically to CP2 . The ramification locus R1 of �1 is a local isomorphism. Here
R1 is exactly the 24 lines. Let .S1/0 D �1.R1/ be the degenerated branch curve. It is
a line arrangement, composed of the image of the 24 lines.

The second embedded surface is also an embedded K3 surface of genus 9 in CP9 . We
call this surface the “magician” surface, since its degeneration “resembles” a magician’s
hat. The surface and its degeneration into a union of 16 planes are described in Ciliberto–
Miranda [5]. The dual graph of the degenerated surface is presented explicitly in [5,
pg. 430] – and from it we can build the degenerated surface (see Figure 5).
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Figure 5: Every point in the dual graph represents a plane; every plane
represents a point

Denote by X2 this embedded surface, and by .X2/0 the degenerated surface. We can
depict a 2-dimensional graph of .X2/0 , where the boundaries are identified (see Figure
6).

Figure 6: .X2/0 – the boundaries are identified (top to bottom)

Once again, we numerate the vertices and then the edges. We note that the extreme
edges of the graph .X2/0 are actually 4–points: singular points in the degenerated
surface which are the intersection of four planes. In order to regenerate it (see Robb
[19] for the possible degenerations of this point), we need to numerate the vertices in
such a way that the number of “entering” and “exiting” lines from these points will
be equal. Therefore, we numerate them as vertices 5 and 6. Following the symmetry
appearing in the graph, we numerate the other vertices as follows (see Figure 7).

Note that .X2/0 also contains 24 intersection lines and 10 singular points. We denote
by .S2/0 D �2.R2/ the degenerated branch curve with respect to a generic projection
�2W .X2/0!CP2 .

Since every two K3 surfaces are diffeomorphic, X1 and X2 are also diffeomorphic.
Note that the Hilbert scheme of embedded linearly normal K3 surfaces can be reducible.
This is indeed the case here – the Picard group PicX1 is generated by 1

2
H (where H
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Figure 7: Numeration of .X2/0

is the hyperplane class; see Ciliberto–Miranda–Teicher [6]) and PicX2 is generated by
H (see Ciliberto–Miranda [5]).

Two polarized K3 surfaces are projectively deformation equivalent if and only if there
is a diffeomorphism which carries the hyperplane class to the hyperplane class. As
indicated above, this is not the case. We show in the following sections that these
surfaces are also not BMT–equivalent, and that the fundamental groups of complement
of the branch curve can also be used in order to differentiate between irreducible
components of the Hilbert scheme. Thus it is a topological invariant that arises in
algebro-geometric considerations.

2.2 The braid group and the BMF

Recall that computing the braid monodromy is the main tool to compute fundamental
groups of complements of curves. The reader who is familiar with this subject can skip
the following definitions. We begin by defining the braid monodromy associated to a
curve.

Let D be a closed disk in R2; K � Int.D/; K finite, nD #K . Recall that the braid
group BnŒD;K� can be defined as the group of all equivalent diffeomorphisms ˇ of
D such that ˇ.K/DK , ˇj@D D Id j@D .

Definition (H.�/, half-twist defined by � ) Let a; b 2 K; and let � be a smooth
simple path in Int.D/ connecting a with b s.t. �\KDfa; bg: Choose a small regular
neighborhood U of � contained in Int.D/; s.t. U \KD fa; bg. Denote by H.�/ the
diffeomorphism of D which switches a and b by a counterclockwise 180ı rotation
and is the identity on D n U . Thus it defines an element of BnŒD;K�; called the
half-twist defined by � .

Denote ŒA;B� D ABA�1B�1 , hA;Bi D ABAB�1A�1B�1 . We recall the Artin
presentation of the braid group.

Algebraic & Geometric Topology, Volume 8 (2008)
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Theorem 2.1 Bn is generated by the half-twists Hi of a frame Hi and all the relations
between H1; : : : ;Hn�1 follow from

ŒHi ;Hj �D 1 if ji � j j> 1

hHi ;Hj i D 1 if ji � j j D 1:

Assume that all of the points of K are on the X –axis (when considering D in R2 ).
In this situation, if a; b 2K , and za;b is a path that connects them, then we denote it
by Za;b DH.za;b/. If za;b is a path that goes below the X –axis, then we denote it
by Za;b , or just Za;b . If za;b is a path that goes above the x–axis, then we denote it

by Za;b . We also denote by
.c�d/

Za;b ( xZa;b
.c�d/

) the braid induced from a path connecting

the points a and b below (resp. above) the X –axis, going above (resp. below) it from
the point c till point d .

Definition (The braid monodromy w.r.t. S; �;u) Let S be a curve, S � C2 . Let
� W S !C1 be defined by �.x;y/D x: We denote deg� by m: Let N D fx 2C1

ˇ̌
#��1.x/ <mg: Take u …N; s.t. <.x/� u 8x 2N: Let C1

u D f.u;y/g: There is a
naturally defined homomorphism

�1.C
1
�N;u/

'
�! BmŒC

1
u;C

1
u \S �

which is called the braid monodromy w.r.t. S; �;u; where Bm is the braid group. We
sometimes denote ' by 'u . In fact, denoting by E , a big disk in C1 s.t. E � N ,
we can also take the path in E nN not to be a loop, but just a non-self-intersecting
path. This induces a diffeomorphism between the models .D;K/ at the two ends of
the considered path, where D is a big disk in C1

u , and K DC1
u \S �D .

Definition ( T , Lefschetz diffeomorphism induced by a path T ) Let T be a path in
E nN connecting x0 with x1 , T W Œ0; 1�!E nN . There exists a continuous family
of diffeomorphisms  .t/W D ! D; t 2 Œ0; 1�; such that  .0/ D Id,  .t/.K.x0// D

K.T .t// for all t 2 Œ0; 1�, and  .t/.y/ D y for all y 2 @D . For emphasis we write
 .t/W .D;K.x0//! .D;K.T .t//. A Lefschetz diffeomorphism induced by a path T

is the diffeomorphism

 T D  .1/W .D;K.x0// �
�! .D;K.x1//:

Since  .t/ .K.x0//DK.T .t// for all t 2 Œ0; 1�, we have a family of canonical isomor-
phisms

 �.t/W Bp ŒD;K.x0/� �
�! Bp ŒD;K.T .t//� ; for all t 2 Œ0; 1�:
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We recall Artin’s theorem on the presentation of the Dehn twist of the braid group as a
product of braid monodromy elements of a geometric-base (a base of �D�.C1�N;u/

with certain properties; see Moishezon–Teicher [14] for definitions).

Theorem 2.2 Let S be a curve transversal to the line in infinity, and ' is a braid
monodromy of S; 'W �! Bm . Let ıi be a geometric (free) base (g–base) of �; and
�2 is the generator of Center(Bm ). Then:

�2
D

Y
'.ıi/:

This product is also defined as the braid monodromy factorization (BMF) related to a
curve S .

Note that if x1; : : : ;xn�1 are the generators of Bn , then we know that �2D .x1 � � � � �

xn�1/
n and thus deg(�2 ) = n.n� 1/.

So in order to find out what is the braid monodromy factorization of �2
p , we have to

find out what are '.ıi/; 8i . We refer the reader to the definition of a skeleton (see
Moishezon–Teicher [15]) �xj ;xj 2N , which is a model of a set of paths connecting
points in the fiber, s.t. all those points coincide when approaching Aj D(xj ;yj )2 S ,
when we approach this point from the right. To describe this situation in greater detail,
for xj 2 N , let x0j D xj C ˛ . So the skeleton in xj is defined as a system of paths
connecting the points in K.x0j /\D.Aj ; "/ when 0< ˛� "� 1, D.Aj ; "/ is a disk
centered in Aj with radius ".

For a given skeleton, we denote by �h�xj i the braid which rotates by 180ı counter-
clockwise a small neighborhood of the given skeleton. Note that if �xj is a single path,
then �h�xj i DH.�xj /.

We also refer the reader to the definition of ıx0
, for x0 2N (see [15]), which describes

the Lefschetz diffeomorphism induced by a path going below x0 , for different types
of singular points (tangent, node, branch; for example, when going below a node, a
half-twist of the skeleton occurs and when going below a tangent point, a full-twist
occurs).

We define, for x0 2 N , the following number: "x0
D 1; 2; 4 when (x0;y0 ) is a

branch/node/tangent point (respectively). So we have the following statement (see [15,
Proposition 1.5]).

Let 
j be a path below the real line from xj to u, s.t. `.
j /D ıj . So

'u.ıj /D '.ıj /D�

�
.�xj /

� 1Y
mDj�1

ıxm

��"xj

:
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When denoting �xj D .�xj /

�
1Q

mDj�1

ıxm

�
we get –

'.ıj /D�h.�xj /i
"xj :

Note that the last formula gives an algorithm to compute the needed factorization.

For a detailed explanation of the braid monodromy, see [14].

We shall now define an equivalence relation on the BMF.

Definition (Hurwitz moves) Let Et D .t1; : : : ; tm/ 2Gm . We say that

Es D .s1; : : : ; sm/ 2Gm

is obtained from Et by the Hurwitz move Rk (or Et is obtained from Es by the Hurwitz
move R�1

k
) if

si D ti for i ¤ k; kC 1;

sk D tk tkC1t�1
k ;

skC1 D tk :

Definition (Hurwitz move on a factorization) Let G be a group t 2 G: Let t D

t1 � � � � � tm D s1 � � � � � sm be two factorized expressions of t: We say that s1 � � � � � sm

is obtained from t1 � � � � � tm by a Hurwitz move Rk if .s1; : : : ; sm/ is obtained from
.t1; : : : ; tm/ by a Hurwitz move Rk .

Definition (Hurwitz equivalence of factorization) Two factorizations are Hurwitz
equivalent if they are obtained from each other by a finite sequence of Hurwitz moves.

Definition (Braid monodromy type of curves (BMT)) Two curves S1 and S2 are of
the same BMT (denoted by Š) if they have related BMF that are equivalent.

In 1998, the following theorem was proved by Kulikov–Teicher [8].

Theorem 2.3 If S1 Š S2 , then S1 is isotopic to S2 (when S1;S2 are any curves).

Thus, an invariant of surfaces can be derived from the BMT of the branch curve of a
surface.

Definition (Braid monodromy type of surfaces (BMT)) The BMT of a projective
surface is the BMT of the branch curve of a generic projection of the surface embedded
in a projective space by means of a complete linear system.
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Consequently, the following was proved [8].

Theorem 2.4 The BMT of a projective surface X determines the diffeomorphism
type of X .

We recall now the regeneration methods.

The regeneration methods are actually, locally, the reverse process of the degeneration
method. When regenerating a singular configuration consisting of lines and conics, the
final stage in the regeneration process involves doubling each line, so that each point of
K corresponding to a line labelled i is replaced by a pair of points, labelled i and i 0 .
The purpose of the regeneration rules is to explain how the braid monodromy behaves
when lines are doubled in this manner. We denote by Zi;j DH.zi;j / where zi;j is a
path connecting points in K .

The rules are (see Moishezon–Teicher [16, pages 336-337]):

(i) First regeneration rule (the regeneration of a branch point of any conic): A
factor of the braid monodromy of the form Zi;j is replaced in the regeneration

by Zi0;j �

.j/

Z i;j 0 .

(ii) Second regeneration rule (the regeneration of a node): A factor of the form Z2
ij

is replaced by a factorized expression Z2
ii0;j WDZ2

i0j �Z
2
ij , Z2

i;jj 0 WDZ2
ij 0 �Z

2
ij

or by Z2
ii0;jj 0 WDZ2

i0j 0 �Z
2
ij 0Z

2
i0j �Z

2
ij .

(iii) Third regeneration rule (the regeneration of a tangent point): A factor of
the form Z4

ij in the braid monodromy factorized expression is replaced by

Z3
i;jj 0 WD .Z

3
ij /

Zjj 0 � .Z3
ij / � .Z

3
ij /

Z�1
jj 0 .

As a result, we get a factorized expression, which, by [8], determines the diffeomorphism
type of our surface, and, by Van Kampen [20], determines �1.CP2

� S/. This is
explained in the following paragraphs.

Assume that we have a curve xS in CP2 and its BMF. Then we can calculate the groups
�1.CP2

�S/ and �1.C
2�S/ (where S D xS \C2 ).

Recall that a g–base is an ordered free base of �.DnF; v/, where D is a closed disc,
F is a finite set in Int(D ), v 2 @D which satisfies several conditions; see [14; 15] for
the explicit definition.

Let f�ig be a g–base of GD�1.Cu�S;u/; where CuDC�u, and here S DCu\S .
We cite now the Zariski–Van Kampen Theorem (for cuspidal curves) in order to compute
the relations between the generators in G:
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Theorem 2.5 (Zariski–Van Kampen – cuspidal curves version) Let S be a cuspidal
curve in CP2 . Let S DC2\S : Let ' be a braid monodromy factorization w.r.t. S

and u: Let ' D
pQ

jD1

V
�j

j ; where Vj is a half-twist and �j D 1; 2; 3:

For every j D 1; : : : ;p , let Aj ;Bj 2 �1.Cu � S;u/ be such that Aj ;Bj can be
extended to a g–base of �1.Cu �S;u/ and .Aj /Vj D Bj : Let f�ig be a g–base of
�1.Cu�S;u/ corresponding to the fAi ;Big, where Ai ;Bi are expressed in terms of
�i . Then �1.C

2�S;u/ is generated by the images of f�ig in �1.C
2�S;u/ and the

only relations are those implied from fV �j
j g; as follows:8̂<̂

:
Aj �B

�1
j if �j D 1

ŒAj ;Bj �D 1 if �j D 2

hAj ;Bj i D 1 if �j D 3:

�1.CP2
�S ;�/ is generated by f�ig with the above relations and one more relationQ

i

�i D 1:

Figure 8 illustrates how to find Ai ;Bi from the half-twist Vi DH.�/.

1 2 3 4 5 6

�

u0

�

u0 u0

BV AV

Figure 8

So:
AV D �

�1
4 �6�4; BV D �1:

We finish this subsection by recalling the definition of zBn .

Definition

(i) Let X;Y be two half-twists in BnDBn.D;K/. We say that X;Y are transver-
sal if they are defined by two simple paths �; � which intersect transversally in
one point different from their ends.

(ii) Let N be the normal subgroup of Bn generated by conjugates of ŒX;Y �, where
X;Y is a transversal pair of half-twists. Define zBn D Bn=N .
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(iii) Let Yi , i D 1; : : : ; 4 be four half-twists in Bn (resp. zBn ) corresponding to
simple paths �1; : : : ; �4 . Assume that �i ; i D 1; : : : ; 4, could be chosen so that
they form a quadrangle without self intersections and such that in its interior there
are no points of K . Then we say that Y1;Y2;Y3;Y4 form a good quadrangle in
Bn (resp. in zBn ).

Lemma 2.6 If y1;y2;y3;y4 2
zBn form a good quadrangle then y2

1
y2

3
D y2

2
y2

4
.

Proof See Moishezon [11, section 1.1].

3 Computing the BMFs

Let '1; '2 be the BMF of the branch curve of the first (resp. second) K3 surface.
Before computing '1; '2 , we need some notation. Denote the intersection lines
on .Xi/0 as f yLi;j g

24
jD1

; i D 1; 2 (recall that .Xi/0 is the degeneration of the K3–
surfaces Xi ; i D 1; 2/, and by fyvi;j g

10
jD1

; i D 1; 2 the intersection points of these lines.
Take generic projections �i W .Xi/0 ! CP2 , and let .Si/0 be the branch curve in
CP2; .
i/0 – their braid monodromy, and Li;j D �i. yLi;j /; i D 1; 2, j ; : : : ; 24. So,

.Si/0 D
24S

jD1

Li;j ; vi;j
:
D �i.yvi;j /; i D 1; 2, j D 1; : : : ; 24 are the singular points of

.Si/0 . Let Ci be the union of all lines connecting pairs of the vi;j 2 .Si/0 . .Si/0
is a subcurve of Ci . By [14, Theorem IX], we get a full description of the braid
monodromy of Ci W �

2
Ci
D…1

jD10
Ci;j�

2
vi;j
.i D 1; 2/ with an appropriate description

of the corresponding braids. We use this formula to obtain a description of .'i/0
by deleting factors that involve lines which do not appear in .Si/0 . Thus, we get
.
i/0 D�

2
.Si /0

D…1
jD10

eC i;j
e�2

vi;j
. We describe each factor separately.

eC i;j : The factors eC i;j correspond to parasitic intersections; these are intersec-
tions created by lines that do not intersect in CP9 but may intersect in CP2 . By
[14] we know that eC i;j D

Q
vi;j2Li;t

Di;t , where Di;t D
Q

p<t

Li;p\Li;tD∅

eZ 2

pt . For

i D 1, the global BMF, together with the eC 1;j is presented in Amram–Ciliberto–
Miranda–Teicher [1, Section 4.1]. For i D 2, we have (by [14, Theorem X.2.1]):

D2;1 D Id D2;2 DZ2
1;2 D2;3 DZ2

2;3

D2;4 D

.2/

Z2
1;4 D2;5 D

xZ2
2;5
xZ2

3;5
Z2

4;5 D2;6 D

.2�3/

Z2
1;6

.4/

Z2
3;6Z2

4;6
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D2;7 D

Y
iD2;3;4;6

xZ2
i;7 D2;8 D

Q
iD1;3;4;5

xZ2
i;8
.7/

D2;9 D
xZ2

2;9
.7�8/

.5�6/

Z2
4;9

.6/

Z2
5;9Z2

6;9

D2;10 D

Y
iD1;2;3;4

xZ2
i;10

.7�9/

D2;11 D
Q

iD2;3;4;
6;8;9;10

xZ2
i;11

D2;12 D

Y
iD1;3;4;5

7;9;10

xZ2
i;12
.11/

D2;13 D

Y
iD1;3;5;
7;:::;10

xZ2
i;13

.11�12/

D2;14 D
Q

iD1;:::;4
7;8;9

xZ2
i;14

.11�13/

D2;15 D

Y
iD2;:::;14
1¤5;7;11

xZ2
i;15

D2;16 D

Y
iD2;:::;14

i¤3;9

xZ2
i;16
.15/

D2;17 D
Q

iD1;:::;14
i¤2;4;13

xZ2
i;17

.15�16/

D2;18 D

Y
iD1;:::;14

i¤3;4

xZ2
i;18

.15�17/

D2;19 D

Y
iD1;:::;10

xZ2
i;19

.15�18/

D2;20 D
Q

iD2;:::;19
i¤2;6;8;12

xZ2
i;20

D2;21 D

Y
iD2;:::;19
i¤3;9;16

xZ2
i;21
.20/

D2;22 D

Y
iD1;:::;19

i¤2;4;13;14

xZ2
i;22

.20�21/

D2;23 D
Q

iD1;:::;19
i¤3;4;18

xZ2
i;23

.20�22/

D2;24 D

Y
iD1;:::;19
i¤7;:::;10

xZ2
i;24

.20�23/

and eC 2;1 D

Y
tD5;7
11;15

D2;t
eC 2;2 D

Q
tD2;6;8

12;20

D2;t
eC 2;3 D

Y
tD3;9
16;21

D2;t

eC 2;4 D

Y
tD4;13
17;22

D2;t
eC 2;5 D

Q
tD18;23

D2;t
eC 2;6 D

Y
tD10;14

D2;t

eC 2;7 DD2;24
eC 2;18 DD2;19

eC 2;9 D
eC 2;10 D Id :

Recall that a point in a totally degenerated surface is called a k –point if it is a
singular point which is the intersection of k planes.e�2

vi;j
: In .S1/0 , we have six points, which are 6–point .v1;j ; j D 2; 4; 5; 7; 9; 10/

and four points which are 3–point .v1;j ; j D 1; 3; 6; 8 ; note that the regeneration
of this 3–point is not similar to the regular 3–point. See [1] for the braid
monodromy factorization of the regeneration of our 3–point.
In .S2/0 , we have eight points which are 5–point .v2;j ; 1� j � 10; j ¤ 5; 6/

and two points which are 4–point .v2;j ; j D 5; 6). Note that the original branch
curve, S2 , has also a few extra branch points. The existence of the extra branch
points will be proved later (see Proposition 3.7).
The local braid monodromies, which are e�2

v2;j
, are introduced and regenerated

in the following paragraphs. We denote the outcoming local BMF, resulting from
the total regeneration e�2

v2;j
, as '2;j . Thus after performing a total regeneration
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to the whole BMF, the resulting BMF will be of the form '2 D

1Q
iD10

Ci'i

Q
bi ,

where bi are braids corresponding to the extra branch points.
Before presenting the expressions for local and global BMFs, we give some
notation. Let a; b; c; d 2 Z; denote: Fu.a; b; c; d/ WD Fu.Fu/Z�1

a;a0
Z�1

d;d 0
; where

fb; cg< fa; dg, and c < b; a< d and

Fu DZ
.3/

bb0;a
Z2

a0d .Z
2
ad /Z2

bb0a

.Z3
bb0;d /Z2

bb0;a

.Zcb0/Z2
b0d

Z2
b0a

.Zc0b/Z2
bd

Z2
ba

Z2
bb0

Fm.a; b; c; d/ WDFm � .Fm/Z�1
a;a0

Z�1
d;d 0

where a< fb; cg< d and

Fm DZ
.3/
a0;cc0 �Z

.3/

bb0;d
� eZc;b0 �

eZb0;c.Z
2
a0;d /Z2

c0;cc0
�Z2

ad

where eZcb0 D.Zcb0/Z2
b0;d

Z2
cc0

Z2
a0c

and eZb0;c D .Zb0;c/Z2
b0d

Z2
a0c0

F`.a; b; c; d/ WDF` � .F`/Z�1
a;a0

Z�1
d;d 0

where fb; cg> fa; bg and

F` DZ2
a0d �Z

.3/

d 0;cc0
.Z2

a0d 0/Z2
d 0;cc0

Z2
a0d

.Z
.3/
a0;cc0/Z2

a0d

� . xZcb0/Z2
d 0;c

Z2
a0c

Z2
a0d

.Zcb0/Z2
cc0

Z2
d 0c0

Z2
a0c0

Z2
a0d

:

Note that for .'1/0 and the singular points of .S1/0 , the regeneration process was
already done [1], and thus we have the following theorem.

Theorem 3.1 The BMF of the branch curve of X1 is

'1 D

1Y
jD10

C1;j'1;j

where C1;j , '1;j can be found in [1].

Proof See [1].

Thus, we have to compute the BMF of the branch curve of X2 . We begin by citing the
results about the points v2;5 and v2;6 ; these are 4–points and for this type, the BMF
of a fully regenerated neighbourhood was computed in Amram–Teicher [3].

Proposition 3.2 The local braid monodromy '2;5 in a small neighbourhood around
v2;5 has the following form:

'2;5 D Fu.18; 4; 3; 23/
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and the local braid monodromy '2;6 (for v2;6 ) has the same form, when substituting
3! 5, 4! 6, 18! 10, 14! 23.

Proof See [3].

We now move on to compute the local braid monodromy around a small neighbourhood
of v2;3 , which is a 5–point. We will give – for this point – a detailed treatment for the
computation of the local BMF, while for the other points .v2;j ; j D 1; 2; 4; 7; : : : ; 10/

we will just give the final results.

We examine the point v2;3 in the degenerated surface .X2/0 . Drawing a local neigh-
bourhood of v2;3 and numerating the lines �Li.1 � i � 5/ locally, we get Figure
9.

5 3

1

4

2

Figure 9

By the degeneration process, line 3 is regenerated first. By the claim in Moishezon–
Teicher [16, Section 2], we know that line L3 is regenerated into a conic. More

explicitly, we get that after regenerating V D
5S

iD1

Li in a small neighbourhood U

of v2;3 , L3 turns into a conic Q3 such that Q3 is tangent to L1 and L5 . Denote
the resulting branch curve, after the regeneration by eV . Thus, the singularities of
T D eV \U are as in Figure 10.

Proposition 3.3 The local braid monodromy factorization of the above configuration
is e' DZ2

2;3Z2
30;4Z4

1;3
xZ4

30;5
eZ 2

30;4
eZ 2

2;3
eZ 2

3;30.�
2
h1; 2; 4; 5i/Z

�2
3;4

where the braids eZ 30;4; eZ 2;3; eZ 3;30 correspond to the paths shown in Figure 11.

Proof Let fpj g
8
jD1

be the singular points of a small neighbourhood (that is U ) of
v2;3 (see Figure 10) with respect to �1 (the projection to the X –axis) as follows.

(i) fp1;p2g; fp2;p5g – the intersection points of Q3 with L2;L4 .
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1
2

3

30
4

5

p1

p2

p3

p4

p5

p6

p7

p8

Figure 10

1 2 3 3' 4 5 1 2 3 3' 4 5

Figure 11

(ii) p3;p4 – the tangent points of Q3 and L1;L5 .

(iii) p7 – the branch point of Q3 .

(iv) p8 – the intersection point of fLigiD1;2;4;5 .

Let E (resp. D ) be a closed disk on the X –axis (resp. Y –axis). Let N D fx.pj /D

xj j1 � j � 8g; s.t. N � E � @E . Let M be a real point on the x–axis, s.t. xj �

M;8xj 2N; 1� j � 8. There is a g–base `.
j /8jD1
of �1.E �N;u/, s.t. each path


j is below the real line and the values of 'M with respect to this base and E�D are
the ones given in the proposition. We look for 'M .`.
j // for j D 1; : : : ; 8. Choose a
g–base `.
j /8jD1

as above and put all the data in the following table.
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j �j "j ıj

1 h2; 3i 2 �h2; 3i

2 h30; 4i 2 �h30; 4i

3 h1; 2i 4 �2h1; 2i

4 h4; 5i 4 �2h4; 5i

5 h30; 4i 2 �h30; 4i

6 h2; 3i 2 �h2; 3i

7 h3; 30i 1 �
1=2
IR
h2i

8 h1; 2; 4; 5i 2 –

So, we get the following:

�x1
D z2;3

'M .`.
1//DZ2
2;3

�x2
D z30;4

.�h2; 3i does not affect this path/

'M .`.
2//DZ2
3;4

�x3
D

1 2 3 3' 4 5

�h30;4i
�����!
�h2;3i 1 2 3 3' 4 5

D z1;3

'M .`.
3//DZ4
1;3

�x4
D

1 2 3 3' 4 5

�2h1;2i
�����!
�h30;4i 1 2 3 3' 4 5

D xz3;5

.�h2; 3i does not affect this path

'M .`.
4//D xZ
4
30;5

�x5
D

1 2 3 3' 4 5

�2h4;5i
�����!
�2h1;2i

�h30;4i

1 2 3 3' 4 5
D zz30;4

.�h2; 3i does not affect this path/

'M .`.
5//D zZ
2
30;4

�x6
D

1 2 3 3' 4 5

�h30;4i
�����!
�2h4;5i
�h1;2i

1 2 3 3' 4 5

�h30;4i
�����!
�h2;3i 1 2 3 3' 4 5

D zz2;3

'M .`.
6//D zZ
2
2;3
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�x7
D

1 2 3 3' 4 5

�h2;3i
�����!
�h30;4i 1 2 3 3' 4 5

�2h4;5i
�����!
�2h1;2i

1 2 3 3' 4 5

�h30;4i
�����!
�h2;3i 1 2 3 3' 4 5

D zz3;30

'M .`.
7//D zZ3;30

�x8
D

1 2 4 5

�
1
2
IR
h2i

�����!
1 2 3 3' 4 5

�h2;3i
�����!
�h30;4i 1 2 3 3' 4 5

�2h4;5i
�����!
�2h1;2i

1 2 3 3' 4 5

�h30;4i
�����!
�h2;3i 1 2 3 3' 4 5

D�h1; 2; 4; 5iZ˛ ;

where Z˛ is the braid induced from the motion
1 2 3

'M .`.
8//D�
2
h1; 2; 4; 5iZ˛ :

The following regeneration regenerates a small neighborhood of
S

iD1;2;4;5

Li , which is,

by definition, a 4–point. Since this type of 4–point and its BMF of its regeneration was
treated earlier [3], we can find out what is the BMF of v2;3 after the full regeneration.

Proposition 3.4 The local BMF '2;3 around a small neighborhood of v2;3 is:

'2;3 DZ2
20;3Z2

2;3Z2
30;40Z

2
30;4Z

.3/
110;3
� xZ

.3/
30;550

eZ2

30;40
eZ2

30;4
eZ2

20;3
eZ2

2;3eZ3;30.F3 � .F3/#/Z˛

where # DZ�1
4;40
�Z�1

5;50
, the braids eZ 30;40 ; eZ 30;4; eZ 20;3; eZ 2;3; eZ 3;30 correspond to

the following paths:

2 2' 3 3' 4 4'1 1' 5 5' 2 2' 3 3' 4 4'1 1' 5 5'

and Z˛ is the braid induced from the motion shown in Figure 12 and

F3 DZ
.3/
220;4

Z2
40;5.Z

2
4;5/Z2

220;4

.Z
.3/
220;5

/Z2
220;4

.Z1;20/Z2
20;5

Z2
20;4

.Z10;2/Z2
2;5

Z2
2;4

Z2
2;20
:

Proof Using the regeneration rules, we replace

(i) Z2
2;3

.Z2
3;4
; zZ2

3;4
; zZ2

2;3
/ by Z2

2 20;3
.resp. Z2

3;4 40
; zZ2

3;4 40
; zZ2

2 20;3
/ (by the sec-

ond regeneration rule)
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2 2' 31 1'

Figure 12

(ii) Z4
1;3

. xZ4
30;5
/ by Z

.3/
1 10;3

.resp. xZ.3/
30;5 50

/(by the third regeneration rule)

(iii) �2h1; 2; 4; 5i by F3 � .F3/# .

Remark 3.5 Note that the last BMF was given when numerating the lines in the
neighbourhood of v2;3 locally. So, when numerating globally, we get:

'2;3 DZ2
30;9Z2

3;9Z2
90;1 60Z

2
90;16Z

.3/
1 10;9

xZ
.3/
90;21 210

eZ2

90;160
eZ2

90;16
eZ2

30;9
eZ2

3;9eZ9;90 � .F3 � .F3/#/Z˛3

where # DZ�1
16;160

Z�1
21;210

, Z˛3
is the braid induced from the motion shown in Figure

13 and

F3 DZ
.3/
3 30;16

Z2
160;21.Z

2
16;21/Z2

3 30;16

.Z
.3/
3 30;21

/Z2
3 30;16

.Z1;30/Z2
30;21

Z2
30;16

� .Z10;3/Z2
3;21

Z2
3;16

Z2
3;30
:

2 2' 31 1' 3' 9

Figure 13

We now write the other BMFs.

Proposition 3.6 The local braid monodromy '2;1 is:

'2;1DZ
.3/
11 110;15

.Fu.11; 5; 1; 7//
Z2

11 110;15

.7�70

5�50/

Z110;15
eZ 15;150

.7�70/

Z2
5 50;15 150

eZ 2

7 70;150Z
2
7 70;15

where eZ 15;150 ; eZ 7 7;150 correspond to the paths shown in Figure 14.

1 1' 5 5' 7 7' 11 11' 15 15' 7 7' 11 11' 15 15'

Figure 14
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The local braid monodromy '2;2 is:

'2;2 DZ2
12 120;20Z

.3/
8 80;20

eZ2

12 120;20.Fu.8; 6; 2; 12//Z˛2

.6�60/

Z
.3/
2 2;200

eZ2

20;200eZ2

6 60;200Z
2
6 60;20

where eZ 12 120;20; eZ 20;200 ; eZ 6 60;200 correspond to the paths shown in Figure 15 and

Z˛2
is the braid induced from the motion:

8 8' 12 12' 20
.

2 2' 6 6' 8 8' 12 12' 20 20'8 8' 12 12' 20 20' 6 6' 8 8' 12 12' 20 20'

Figure 15

The local braid monodromy '2;4 is:

'2;4 DZ2
4 40;13Z

.3/
130;17 170

Z
.3/
2 20;13

Z2
4 40;13

eZ13;130

.17�170/

Z2
130;22 220eZ2

13;22 220.Fu.22; 4; 2; 17//Z˛4

where eZ 13;130 ; eZ 130;22 220 correspond to the paths shown in Figure 16 and Z˛4
is the

braid induced from the motion:
2 2' 3 3' 13

.

4 4' 13 13' 172 2' 17' 4 4' 13 13' 172 2' 17' 2222'

Figure 16

The local braid monodromy '2;7 is:

'2;7 DZ2
8 80;9Z2

10 100;90Z
.3/
7 70;9

.10�100/

Z
.3/
90;24 240

eZ 2

90;10 100
eZ 2

8 80;9
eZ 9;90.F`.7; 10; 24; 8//Z˛7

where eZ 90;10 100 ; eZ 8 80;90 ; eZ 9;90 correspond to the paths shown in Figure 17 and Z˛7

is the braid induced from the motion:
7 7' 8 8' 9

.

The local braid monodromy '2;8 is:

'2;8 DZ2
130;14 140Z

.3/
12 120;13

.14�140/

Z
.3/
130;19 190

eZ2

130;14 140
eZ13;130

eZ2

11 110;130

Z2
11 110;13F`.12; 14; 19; 11//Z˛8
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8 8' 9 9' 107 7' 10'24 24'8 8' 9 9' 107 7' 10'24 24'

Figure 17

where eZ 130;14 140 ; eZ 11 110;130 ; eZ 13;130 correspond to the paths shown in Figure 18

and Z˛8
is the braid induced from the motion:

11 11'12 12' 13
.

12 1414'19 19'12'1313'11 11' 12 1414'19 19'12'1313'

Figure 18

The local braid monodromy '2;9 is:

'2;9 DZ
.3/
150;16 160

F`.17; 19; 18; 16//Z2
150;16 160

.16�160/

Z
.3/
150;19 190

eZ15 150

eZ2

15;18 180

.16�160/

Z2
150;18 180

xZ2
150;17 170

eZ2

15;17 170

where eZ 15 150 ; eZ 15 18 180 ; eZ 15;17 170 correspond to the paths shown in Figure 19.

16 1818'19 19'16'1717'15 15' 16 1818'16'1717'15 15' 16 16'1717'15 15'

Figure 19

The local braid monodromy '2;10 is:

'2;10 DZ2
200;21 210

xZ
.3/
200;22 220

eZ 2

200;21 210.F`.21; 24; 23; 22//Z
1̨0

xZ
.3/
200;24 240

.23�230/

eZ 20 200
xZ2

200;23 230
eZ 2

20;23 230

where eZ 200;21 210 ; eZ 20 200 ; eZ 20;23 230 correspond to the paths shown in Figure 20 and

Z˛10
is the braid induced from the motion:

20' 2121'22 22'
.

Performing the regeneration affects also the braids induced from the parasitic line inter-
section. Denote by C2;i the braid, which is created from eC 2;i during the regeneration
process.
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21 2323'24 24'21'2222'20 20'21 21'2222'20' 21 2321'2222'20 20'

Figure 20

Every eC 2;i is a product of a 2–degree braid Z2
i;j , which becomes, as a consequence

of the second regeneration rule, an 8-degree braid: Z2
ii0;jj 0 D Z2

i0;j 0Z
2
i0;j Z2

i;j 0Z
2
i;j .

If the path representing the braid Z2
i;j was above/below a point p , then the induced

braids would be above/below the points p and p0 .

Before we present the global BMF, we have to check if there are extra branch points
in the branch curves, that are created during the regeneration of a line Li . An extra
branch point contributes to a factorization the factor Zi;i0 . (By “contributes” we mean
that one should multiply the old factorization Zi;i0 from the right).

X1 It was proven in [1, prop. 16] that the factorization '1D

1Q
jD10

C1;j'1;j is a BMF

of the branch curve of X1 . Thus, there are no missing braids in the factorization
above, and therefore there are no extra branch points.

X2 Denote by e� D 1Q
jD10

C2;j'2;j . If e� was the BMF of the branch curve of X2 ,

then deg(e�/ D deg.�2
48
/ D 48 � .48 � 1/ D 2256. We show that this is not

the situation here. deg.e�/D 10P
jD1

deg.C2;j /C
10P

jD1

deg.'2;j /.
P

deg.C2;j /D

8 � 184 D 1472 : For j D 5; 6; v2;j are 4–point, and by [16], deg.'2;5/ D

deg.'2;6/ D 48: For 1 � j � 10, j ¤ 5; 6 v2;j are 5–point. Although these
points have different configurations, their BMFs �'2;j still have 6 factors of
degree 3, 8 factors of degree 2, one factor of degree 1, and a factor representing
the BMF of the regeneration of a 4–point, whose degree is 48. Thus 8 1�j �10,
j ¤5; 6, deg.'2;j /D6�3C8�2C1C48D83. So, deg.e�/D1472C2�48C8�83D

2232< 2256.

Define the forgetting homomorphisms:

1� i � 24 fi W B48ŒD; f1; 1
0; : : : ; 24; 240g�! B2ŒD; fi; i

0
g�:

It is clear that if e� was a BMF, then 8 i; deg.fi.e�// D 2. However, this is not
the case in the current situation. It was proven in Robb [18] (see also [19]), that if
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deg.fi.e�// D k < 2, then there are .2� k/ extra branch points, and so there is a

contribution of the factorization
2�kQ
mD1

Zi;i0 to e� .

Proposition 3.7

(i) The regeneration of the lines L2;j ; j D 3; 4; 5; 6; 10; 14; 18; 23 contributes the
factors Zj ;j 0 �Zj ;j 0 to e� .

(ii) The regeneration of the lines L2;j j D 7; 8; 11; 12; 16; 17; 21; 22 contributes the
factor Zj ;j 0 to e� .

Proof

(i) We prove this case for j D 3I the other cases are done using the same method.
By Lemma 3.3.3 (or Proposition 3.3.4) in [19], it is enough to prove that
deg.f3.e�// D 0. The braids coming from the parasitic intersection are sent
by f3 (and by any fi , in fact) to Id, so it is enough to look only at the factors
'2;k ; 1� k � 10 that involve braids, one of whose end points are 3 or 30 . The
only suitable k 0s are k D 5 and k D 3. Since v2;3 and v2;5 are both of 4–point,
by Moishezon–Teicher [16, Lemma 8, (iv)], deg.f3.'2;3/D deg.f3.'2;5//D 0.
Therefore deg.f3.e�//D 0.

(ii) We prove for j D 7; the other cases are done using the same method. It is
enough to prove that deg.f7.e�//D 1 (by [19]).
As in (i), we only consider the factors '2;1 and '2;7 . v2;1 is a 5–point. The
first regeneration is of the line L2;15 , (which turns into a conic, that intersects
the line L2;7 at two nodes, which induce braids of the form Z2

7;15
and Z2

7;150
),

which does not contribute to the regeneration factors of the form Z7;70 . After
this regeneration, we are left with the regeneration of a 4–point, and by [16,
Lemma 8, (iv)], we get deg.f7.'2;1//D 0.
v2;7 is also a 5–point. The first regeneration is of the line L2;9 , which turns into
a conic, Q2;.9;90/ , that is tangent to L2;7 (by [16, Claim 1]). This tangency point
is regenerated into three cusps (see Moishezon–Teicher [15]) which induces the
product of three braids – Z3

70;9
�Z3

7;9
� .Z3

70;9
/Z�1

7;70
DWZ

.3/
7 70;9

. By [16, Lemma

2, (i)], we see that deg.f7.Z
.3/
7 70;9

//D 1. Again, the regeneration afterwards of
the 4–point does not contribute a factor of the form Z7;70 to the factorization.
Thus, we get deg.f7.'2;7//D 1, and deg.f7.e�//D 1.
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Define an ordered set

fing
16
nD1 WD f3; 4; 5; 6; 7; 8; 10; 11; 12; 14; 16; 17; 18; 21; 22; 23g;

and for 1� n� 16 let:

bn D

(
Zin;i

0
n
�Zin;i

0
n

in D f3; 4; 5; 6; 10; 14; 18; 23g

Zin;i
0
n

in D f7; 8; 11; 12; 16; 17; 21; 22g:

Proposition 3.8

'2 D

1Y
jD10

C2;j'2;j

16Y
nD1

bn

is a braid monodromy factorization for S2 .

The proof is divided into a number of lemmas.

Lemma 3.9 '2 D

1Q
jD10

C2;je' 2;j

16Q
nD1

bn is a braid monodromy factorization for S2 ,

where e' 2;j D .'2;j /hj for some hj 2 hZkk0 jv2;j 2L2;ki:

Proof Using [14, Proposition VI.2.1] on S2 , we get that '2 D

1Q
jD10

C2;je' 2;j

Q
b` .

hj 2 hZkk0 j v2;j 2L2;ki are determined by the regeneration of the embedding Bk ,!

B24 to B2k ,!B48 where kD4 when j D5; 6 and kD5 otherwise .1� j �10; j ¤

5; 6I see the definition of regeneration of an embedding in [16, Section 1]). b` are factors
that are not converted by

Q
C2;je' 2;j , and each bn is of the form Y

ti

i ;Yi , is a positive
half-twist, 0� ti � 3. Note that deg.e' 2;j /D deg.'2;j /. By the previous proposition,

we know part of the b` ’s; so we can say that '2 D

1Q
jD10

C2;je' 2;j

16Q
nD1

bn

Q
b`: We

compute deg
�

1Q
jD10

C2;je' 2;j

16Q
nD1

bn

�
. By earlier computations and the previous

proposition,

deg
� 1Y

jD10

C2;je' 2;j

16Y
nD1

bn

�
D 2232C2�8C8D2256D 48�47 Ddeg.�2

48/D deg'2:

Thus, we have to compute deg.
Q

b`/. Since 8`; b` is a positive power of a positive
half-twist, we get b` D 18`. So we have

'2 D

1Y
jD10

C2;je' 2;j

16Y
nD1

bn:
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Lemma 3.10 '2 D

1Q
jD10

C2;j'2;j

16Q
nD1

bn:

Proof Recalling the invariance rules for the BMF of 4- and 5- point (see [16] and

Section 5), we can apply them as in [16], and get that
1Q

jD10

C2;j'2;j

16Q
nD1

bn is also a

braid monodromy factorization.

Note that although the invariance rules for the 5–point are different from the invariance
rules of the standard 4/6 – point, what matters, as can be seen in [16, Section 4] is that
the invariance rule regarding the horizontal lines in the 5–point (the two lines that are
regenerated last) remains the same in this type of point.

4 Computing the fundamental groups

4.1 Computation for X2

By the Van Kampen theorem (Theorem 2.5), we can compute the relations between
the generators in the fundamental group of the complement of the branch curve.

We will prove that �1.C � S2/ is a quotient of zB16 . In order to do so, we have to
compute the local relations (or the local fundamental groups of the complement of the
branch curve) arising from each singular point of the branch curve. Note that points
v2;5; v2;6 are of the type 4–point, which was investigated by Moishezon [11] and Robb
[18]. Thus, we have to look at the remaining 5–points. We focus only on one 5–point –
v2;3 ; for the other 5–points, the procedure for deducing the relations is the same, and
we state (later) only the relations coming from the branch points for these points.

Recall that in the regeneration process, every line is “doubled”, and thus Si \C will
contain 48 D 2 � 24 points. The generators of �1.C

2 � S;u/ (see the Van Kampen
Theorem, Theorem 2.5) induced from this doubling are denoted as f�i ; �i0g

24
iD1

, where
each pair f�i ; �i0g originates from the same line.

Denote x�i D �i or �i0 . Before examining '2;3 we state the following remark.

Remark 4.1 8i;j s.t. L2;i

T
L2;j D∅, we have the following relations in �1.C

2�

S2/:
Œx�i ; x�j �D 1:

The proof of this remark is based on the parasitic intersection braids. From each braid of
the expressions C2;i .i D 1; : : : ; 10/, using complex conjugation and the Van Kampen
Theorem, we can induce the above relations.
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Proposition 4.2 The following relations in �1.C
2�S2/ are induced from '2;3 :

(i) hx�16; x�1i D h
x�1; x�9i D h

x�9; x�21i D h
x�21; x�3i D h

x�3; x�16i D 1

(ii) Œx�i ; x�j �D 1 where Li ;Lj do not bound the same triangle, besides .i D 10; j D

3/; .i D 1; j D 30/ and .i D 1; j D 21/

(iii) �1 D .�30/��1
16
��1

21
�9
:

Proof In the course of the proof we use the Van Kampen Theorem, the invariance
relations of the 5–point, and the complex conjugation method (see [16]). We prove the
proposition in several steps.

Step 1 By looking at the braids (in '2;3/Z2
3 30;9

;Z2
9 90;16

;Z
.3/
1 10;9

and xZ.3/
90;21 210

, we
induce immediately (using invariance relations and complex conjugation for the last
braid) the following relations:

Œx�9; x�16�D Œx�3; x�9�D hx�1; x�9i D h
x�9; x�21i D 1:

Step 2 Note that the factors in .F3 � .F3/#/ are conjugated by Z˛3
. Denote the

corresponding generators induced from .F3 � .F3/#/ (after the conjugation) by e� i .

So: e�3 D �9�3�
�1
9

by step 1
D �3

e�30 D �9�30�
�1
9 D �30e�1 D �9�1�

�1
9

e�10 D �9�10�
�1
9 ;

the other e� i are not changed. So, we have, by the braid Z
.3/
3 30;16

in F3 the relation

hx�3; x�16i D 1:

Step 3 From the braid Z2
160;21

in F3 , we get the relation: Œ�160 ; �21�D 1. Looking
on the complex conjugate of the braid .Z2

160;21
/# , we now get the relation

Œ�16; �
�1
21 �210�21�D 1

(inv. rel. �16�21/
�! Œ�160 ; �

�2
21 �210�

2
21�D Œ�160 ; �210 �D 1:

By performing another time the invariance relation .�16�21/, we get Œ�16; �21�D 1.
From Œ�160 ; �

�1
21
�210�21�D 1, we get Œ�16; �210 �D 1.

So we have the relation Œx�16; x�21�D 1.

Step 4 From the braid .Z.3/
3 30;2 1

/
Z
.3/

3 30;16

, we get the relation: h�21; �16�30�
�1
16
i D 1.

By step 3 we get h�21; �30i D 1; in the same way, we get h�21; �30i D 1 and by
invariance relation, we get: hx�21; x�3i D 1.
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Step 5 From the braid ..Z1;30/Z2
30;21

Z2
30;16

/Z˛3
, we get the relation:

�1 D .�30/��1
16
��1

21
�9
:

Thus

h�16; �1i D h�16; .�30/��1
16
��1

21
�9
i D h.�16/�21

; .�30/��1
16
i

Œ�16;�21�D1
D h�16; �16�30�

�1
16 i D h�16; �30i D 1:

By the invariance relations, we get: hx�16; x�1i D 1.

Step 6 We know that �1 D .�30/��1
16
��1

21
�9

and thus .�1/��1
9
�16
D .�30/��1

21
(by

Œ�16; �21�D 1/. From the braid ..Z2
16;21

/Z2
3 30;16

/Z˛3
, we get the relation:

Œ�16; .�21/�30�3
�D1 or

1DŒ�3�16�
�1
3 ; ��1

30 �21�30 �

h�3;�16iDh�30 ;�21i1
D Œ��1

16 �3�16; �21�30�
�1
21 �

DŒ��1
16 �3�16; �

�1
16 �9�1�

�1
9 ��1

16 �

Œ�9;�16�DŒ�9;�3�D1
D Œ�3; �1�

and by invariance we get Œ�30 ; �10 �D 1.

The following proposition proves the missing relations (eg, Œx�1; x�21�D 1/. The reason
for separating this proposition from the former is because we use now relations which
are not necessarily from '2;3 .

Proposition 4.3 The following relations in �1.C
2�S2/ hold

Œx�1; x�3�D Œx�1; x�21�D 1:

Proof Due to the invariance relations of v2;3 , it is enough to prove Œ�1; �30 �D 1 and
Œ�1; �21�D 1.

By the braid Z3;30 (induced from an extra branch point), we know that �3D�30 . Thus,
by the last Proposition 4.2, step 6, we have

1D Œ�1; �3�D Œ�1; �30 �:

Looking on the local BMF of v2;1 , we have the following relation from the braid
..Z1;50/Z2

50;11
Z2

50;7

/Z2
11 110;15

W

�1 D .�50/��1
7
�15�

�1
11
��1

15
:
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Since �21 commutes with �50 ; �7; �15 and �11 (due to the parasitic intersection
braids), we have that Œ�1; �21�D 1.

Proposition 4.4 8i; 1� i � 24; i ¤ 9; 13; 15; 20; �i D �i0 in �1.C
2�S2/.

We divide the proof into two lemmas.

Lemma 4.5 For i D 3; : : : ; 8; 10; 11; 12; 14; 16; 17; 18; 21; 22; 23 W �i D �i0 .

Proof The relation �i D �i0 is induced from the braids Zi;i0 which are created from
the extra branch points (by Proposition 3.8).

Lemma 4.6 For i D 1; 2; 19; 24 W �i D �i0 .

Proof We will prove in details only for i D 1; the proof for the other i is the same.
We know (from the braid ..Z1;50/Z2

50;7
Z2

50;11

/Z2
11 110;15

in '2;1 ) the relation: �1 D

�15�11�7�5�
�1
7
��1

11
��1

15
(we used the relation �5 D �5). Operating the invariance

relations .�1�5/.�7�11/ and taking the inverse, we get:

��1
1 D �15�110�70�

�1
50 �

�1
70 �

�1
110�

�1
15 :

Multiplying the above relations and using Lemma 4.5, we get ��1
10
�1D 1, or �1D�10 .

For i D 2, we use the braid ..Z2;60/Z2
60;8

Z2
60;12

/Z˛2
from '2;2 and the same method

as above.

For i D 19; 24, one can use the braids .. xZ100;24/:::/Z˛7
from '2;7 (or the braid

.. xZ140;19/:::/Z˛8
from '2;8 ) and continue as above.

Remark 4.7 For each 1 � i � 10 we denote by G2;i the local fundamental whose
generators are �j , such that one of the endpoints of L2;j is v2;i . Generalizing
Proposition 4.2 and Proposition 4.3, it is easy to prove that 8i;j s.t. L2;i and L2;j

do not bound a common triangle, Œx�i ; x�j �D 1; and 8i;j s.t. L2;i and L2;j bound a
common triangle, hx�i ; x�j i D 1 (in �1.C

2�S2//.

Remark 4.8 It is important to state which braids are coming from the branch points.
We list below (for each '2;i , for 1 � i � 10; i ¤ 5; 6/ which braid is induced from
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a branch point, that is created during the regeneration of the horizontal lines of the
5–point. We use the double and triple relations, and the last proposition, and we obtain

i D 1 W �1 D .�5/��1
7
��1

11
��1

15

i D 2 W �2 D .�6/��1
8
��1

12
��1

20

i D 3 W �1 D .�3/��1
16
��1

21
�9

i D 4 W �2 D .�4/��1
17
�13�

�1
22

i D 7 W �24 D .�10/��1
7
��1

8
��1

9

i D 8 W �19 D .�14/�11�12�13

i D 9 W �18 D .�17/��1
19
�150�

�1
16

i D 10 W �23 D .�24/�200�
�1
22
�21
:

Proposition 4.9 For i D 5; 6, there exist a homomorphism ˛i W
eB 4!G2;i :

Proof This proposition is proven in [18].

Proposition 4.10 For 1 � i � 10; i ¤ 5; 6, there exist a homomorphism ˛i W
eB 5!

G2;i :

Proof Using the Remark 4.8 we prove only for i D 1, and the proof for the other i is
done in the same way.

It is easy to check that ˛1W B5!G2;1 is well-defined:

˛1.X1/D �7 ˛1.X2/D �5 ˛1.X3/D �11 ˛1.X4/D �15:

Let x1; : : : ;x4 be the images of X1; : : : ;X4 in eB 5 . Consider

T DX4X3X1X2X�1
1 X�1

3 X�1
4

in B5 (see Figure 21).

T

X1 X2 X3 X4

Figure 21
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T is transversal to X2 . Let t be the image of T in eB 5 ; by the definition of eB 5 we
have Œt;x2�D 1. To show that ˛1W B5!G2;1 defines the desired ˛1W

eB 5!G2;1 , it
is enough to check that

Œ˛1.T /; ˛.X2/�D 1:

We claim that ˛.T /D �1 , because

˛.T /D ˛.X4X3X1X2X�1
1 X�1

3 X�1
4 /D .�5/��1

7
��1

11
��1

15
D �1:

So we have Œ˛.T /; ˛.X2/�D Œ�1; �5�D 1:

The last proposition deals with the relations between �i0 and �i in �1.C
2 � S2/,

where i D 9; 13; 15; 20.

Proposition 4.11 The following relations in �1.C
2�S2/ hold:

(i) �130 D .�
2
13
/�2

17
��1

13
,

(ii) �90 D .�
2
9
/�2

21
��1

9
,

(iii) �150 D �15 ,

(iv) �200 D �20 .

Proof

(i) From the braid eZ 13;130 in '2;3 , we induce:

�13 D �
�1
2 ��1

20 �
�1
4 ��1

40 �
�1
13 �

�1
170�17�130�

�1
17 �

�1
170�13�40�4�20�2:

Using Œx�4; x�2�D Œx�4; x�13�D 1 and �2 D �20 ; �17 D �170 , we get

1D ��2
2 ��1

13 �
2
17�130�

�2
17 �13�

2
2�
�1
13 or W

1D ��2
2 .�2

17/�13
� .��1

13 �130/�
�2
17 .�

2
2 /��1

13
:

By Œx�2; x�17�D 1, we get

��1
13 �130 D .�

�2
17 /�13

.��2
2 /��1

13
�2

2�
2
17

D .��2
17 /�13

..��2
17 /��1

13
/�1 .��2

17 /��1
13
.��2

2 /��1
13
�2

2�
2
17„ ƒ‚ …

F13

:
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By Proposition 4.10, the braids in F13 : �2; �17; .�2/��1
13
; .�17/��1

13
are images

of a good quadrangle by ˛4 in eB 5 , and thus F13 D 1 (by Lemma 2.6 on good
quadrangles in eB n ). Thus

��1
13 �130 D �

�1
13 �

�2
17 �

2
13�

2
17�
�1
13

or �130 D .�
�2
13 /��2

17
���1

13 :

(ii) We apply the same procedure as in (i) to the braid zZ9;90 from '2;3 .

(iii) Taking the complex conjugate of eZ 15;150 in '2;1 , we induce the relation (using
�1 D �10 ; �11 D �110/:

�150 D �
�2
1 ��2

11 �15�
2
11�

2
1

or

1D �2
11�

2
1 .�150�

�1
15 /.�

�2
1 /��1

15
.��2

11 /��1
15

�15 ��
�1
150 D .�

�2
1 /��1

15
.�2

11/��1
15
�2

11�
2
1 :

By the same method as in (i) (using ˛1W
eB 5!G2;1/, we get that

�15�
�1
150 D 1 or �15 D �150 :

(iv) Taking the complex conjugation of eZ 20;200 in '2;2 , we induce the relation
(using �2 D �20 ; �8 D �80/, and Œx�12; x�20�D 1/:

�200 D �
�2
2 ��2

8 �20�
2
8�

2
2

and we proceed as in (iii). Thus: �20 D �200 .

These propositions show that �1.C
2 �S2/ is generated only by f�ig

24
iD1

, since the
f�i0g

24
iD1

can be expressed only in terms of the .�i0/. Our last goal is to prove the
following theorem.

Theorem 4.12 G2 D �1.C�S2/ is a quotient of eB 16 .

Proof We need to build an epimorphism z̨W eB 16 ! G2 . But first we build a new
representation for B16 . Consider the geometric model (D;K ), #K D 16 as in Figure
22. Let ftigi2 I ; I D f1 � i � 24; i ¤ 1; 3; 5; 8; 11; 12; 16; 17; 22; i 2 Zg segments
that connect points in K and Ti be the half-twists corresponding to ti (that is, Ti D

H.ti/; i 2 I ).
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T18

T4

T23
T21

T15

T19
T13

T2
T20

T24
T9 T7

T10

T6

T14

Figure 22

Lemma 4.13 There exists a presentation of B16 when the generators are fTi j i 2 Ig

and the relations are:

hTi ;Tj i D 1 if Ti ;Tj are consecutive;

ŒTi ;Tj �D 1 if Ti ;Tj are disjoint;

ŒT9;T24T21T �1
24 �D 1:

Proof This is a standard consequence of the usual presentation of B16.D;K/ (see
[14]).

Let X;Y 2B16 be transversal half-twists and let eB 16DB16=hŒX;Y �i. By the previous
lemma, eB 16 is generated by f zTigi2I (where zTi are the images of Ti in eB 16 ), and
has same relations.

Using Remark 4.8 we can define the “missing” Tj (where 1 � j � 24; j … I ). We
begin with j D 8; 11; 12; 16; 17; 22 W

T8 D .T10/T�1
7

T�1
9

T24
T12 D .T6/T�1

8
T�1

20
T2

T11 D .T14/T12T13T�1
19

(we can use T8 and T12 since these T ’s are already defined)

T22 D .T24/T20T21T23
T17 D .T2/T22T�1

3
T4

T16 D .T17/T�1
19

T15T18

(we used �20 D �200 ).

In order to find out how to define T3 (and T5 ), we look at a relation induced from
'2;5 ('2;6 ). Looking at the braid .Z3;40/Z2

40;23
Z2

40;18

from '2;5 , we get the relation

�3 D .�4/��1
18
��1

23
. Thus we define T3 D .T4/T�1

18
T�1

23
. In the same way we define

T5 D .T6/T�1
10

T�1
14

. By Remark 4.8, let T1 D .T5/T�1
7

T�1
11

T�1
15

.
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Denoting by f zTj g
24
jD1

the images of fTj g
24
jD1

in eB 16 , we can say that eB 16 is generated

by f zTj g
24
jD1

with the same relations as above, and when the f zTj gj…I are defined as

above. Define z̨. zTj /D �j ; 1 � j � 24. By Remark 4.7, it is easy to see that 8i; j

such that Ti and Tj are consecutive, h�i ; �j i D 1; and when Ti and Tj are disjoint,
ŒTi ;Tj � D 1. The relations induced from the action of taking quotient by hŒX;Y �i
(when X;Y 2 B16 are transversal) are also preserved, due to Proposition 4.9 and
Proposition 4.10. Also, z̨ is an epimorphism, since for every generator �j of G2 there
exists a zTj s.t. z̨. zTj /D �j . Thus G2 '

eB 16= ker z̨ .

4.2 Computation for X1

As in Section 4.1, we can compute the local relations induced from each local braid
monodromy. However, a quotient of the fundamental group of X1 – called the stabilized
fundamental group – was already computed in Auroux–Donaldson–Katzarkov–Yotov
[4]. Noticing that X1 can be regarded as a double cover of CP1 �CP1 branched
along a smooth algebraic curve of degree (4,4), we can use [4, Theorem 4.6].

Let ‚1W �1.C
2�S1/! Sn be the geometric monodromy representation morphism

(here nD 16).

Theorem 4.14 Let K1 be the normal subgroup of �1.C
2 � S1/ generated by all

commutators Œ
1; 
2�; 
1; 
2 – geometric generators of �1.C
2�S1/, such that ‚1.
1/

and ‚1.
2/ are disjoint transpositions. Let

G0
1

:
D .ker.‚1W �1.C

2
�S1/! Sn/

\
ker.deg:�1.C

2
�S1/! Z//=K1 ;

where deg is the degree morphism. Then

Ab.G0
1/' .Z˚Z2/

15 and ŒG0
1 ;G

0
1 �' Z2˚Z2:

Proof See [4, Theorem 4.6].

The group �1.C
2�S1/=K1 is called the stabilized fundamental group. Note that the

stabilization procedure does not affect �1.C
2 �S2/D G2 , since G2 '

eB 16= ker z̨ ,
and eB 16 is already stabilized.

4.3 Comparing the BMTs

In this subsection we prove that the BMF of the branch curves X1 and X2 are not
equivalent. We will do this by looking at the stabilized fundamental groups, related
to X1 and X2 . We denote by K2 the normal subgroup of �1.C

2 � S2/ generated
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by all commutators Œ
1; 
2�; 
1; 
2 - geometric generators of �1.C
2�S2/, such that

‚2.
1/ and ‚2.
2/ are disjoint transpositions (here ‚2W �1.C
2�S2/! S16 is the

geometric monodromy morphism). As was noted, �1.C
2�S2/=K2 D �1.C

2�S2/.
We also note that K1DK2 ; since it is enough to pick one pair of geometric generators
(eg, x2 and .x2/x3x1

, when the xi are geometric generators), and define K1 DK2 D

hŒx2; .x2/x3x1
�i.

Theorem 4.15 G1=K1 6'G2=K2 .

Proof Note that eB 16= ker z̨ 'G2 'G2=K2 . Denote

G0
2

:
D .ker.‚2W �1.C

2
�S2/! Sn/

\
ker.deg:�1.C

2
�S2/! Z//=K2:

It is known from [18] what is the commutant subgroup of

zPn;0 D ker.eB n! Sn/
\

ker.degW eB ! Z/:

Explicitly, Œ zPn;0; zPn;0� is isomorphic to Z2 . Therefore, ŒG0
2
;G0

2
� is a subgroup of Z2 ,

whereas ŒG0
1
;G0

1
�' Z2˚Z2 . But if G1=K1 'G2=K2 were isomorphic, then these

two commutant subgroups would be equal.

Remark 4.16 We believe that an explicit computation of �1.C
2 � S1/ (as in [11;

17]) would have shown that K1 D feg.

4.4 Computation for the Galois covers

Let e� i W
eX i!C2 be the Galois covering corresponding to �1 (see [11] for definitions).

Recall that �1. eX i/D ker‚i=h�
2
i;j i where ‚i W �1.C

2�Si/! Sn; nD deg�i .i D

1 or 2I the degree is the same) and f�i;j g are the generators of �1.C
2 � Si/, for

i D 1; 2.

In [1] it was proved that �1. eX Aff

1 / D feg. This is also the case for X2 . We know
that the divisibility index of (the embedding of) X2 is 1. Since G2 is a quotient ofeB 16 , we can now use Liedtke [10, Theorem 4.1] to prove that �1. eX Aff

2 /D feg.

The Main Result Since the stabilized fundamental groups induced from them are
not isomorphic, '1 is not Hurwitz-equivalent to '2 . Therefore, X1 and X2 are not
BMT–equivalent. Note that this inequivalence cannot be deduced from the computation
of the fundamental groups of the Galois covers, as these groups are isomorphic.
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5 Appendix: Invariance rules for the BMF of a 5–point

This appendix shows that the BMF of a 5–point is invariant under certain braids. We
focus on the BMF '2;3 , where the invariance rules for the other 'i;j (i D 1; 2; 1 �

j � 10) are calculated in the same way.

Recall that two factorizations are Hurwitz equivalent if they are obtained from each
other by a finite sequence of Hurwitz moves.

Definition (A factorized expression invariant under h) Let t D t1 � � � � � tm be a
factorized expression in a group G . We say that t is invariant under h 2G if .t1/h �
� � � � .tm/h is Hurwitz equivalent to t1 � � � � � tm .

We recall now a few invariance rules (see [16, section 3]):
Invariance rule II: Z2

i;j j 0 (Z2
i i0;j j 0 ) is invariant under Z

q
j j 0 (resp. Z

q
j j 0Z

p
i i0 ).

Invariance rule III: Z
.3/
i;j j 0 is invariant under Z

q
j j 0 .

For our purposes (see the last paragraph in the proof of Lemma 3.10), it is enough to
prove the following proposition.

Proposition 5.1 '2;3 is invariant under .Z1 10Z3 30/
p.Z21 210Z16 160/

q 8p; q 2 Z.

Proof We first look at the factors outside .F3 � .F3/#/Z˛3
. By the Invariance rule II,

the factors Z2
3 30;9

;Z2
90;16 160

; zZ2
90;16 160

; zZ2
3 30;9

are invariant under Z3 30 and Z16 160 ;
by ([16, invariance remark (iv)]), these factors are also invariant under Z1 10 and
Z21 210 (since the paths are disjoint). Again, by the same invariance remark, zZ9;90 is
invariant under Zi i0 i D 1; 3; 16; 21. By the Invariance rule III, the factors Z

.3/
1 10;9

and
xZ
.3/
9;21 210

are invariant under Z1 10 and Z21 210 (and also under Z3 30 and Z16 160 by
the invariance remark (iv)).

We note that the conjugation by the braid Z˛3
is actually conjugation by Z2

3 30;9
Z2

1 10;9
,

so it is also invariant under Zi i0 i D 1; 3; 16; 21 (by invariance rule II and remark (iv)).
When looking at the expression F3 � .F3/# , we see that this case was already done
in [3, invariance property 8.7]; it was proved there that F3 � .F3/# is invariant under
.Z1 10Z3 30/

p.Z21 210Z16 160/
q .
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