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The Jacobi orientation and the two-variable elliptic genus

MATTHEW ANDO

CHRISTOPHER P FRENCH

NORA GANTER

Let E be an elliptic spectrum with elliptic curve C . We show that the sigma
orientation of the first author, Hopkins and Strickland [5] and Hopkins [24] gives rise
to a genus of SU–manifolds taking its values in meromorphic functions on C . As
C varies we find that the genus is a meromorphic arithmetic Jacobi form. When C

is the Tate elliptic curve it specializes to the two-variable elliptic genus studied by
Eguchi et al [15], Höhn [23] Krichever [28], Dijkgraaf et al [13] and Borisov and
Libgober [6; 7; 8]. We also show that this two-variable genus arises as an instance of
the S1 –equivariant sigma orientation.

55N34

1 Introduction

Stable homotopy theory singles out the Witten genus, also called the “sigma orientation”,
for special attention among elliptic genera. For example, it is uniquely characterized
by the fact that it refines to a map of E1 spectra

MString! tmf;

from the bordism spectrum of Spin manifolds with trivialized second Chern class to
the spectrum of “topological modular forms.” This spectrum maps canonically and
naturally to all elliptic spectra, so the Witten genus is in this sense “initial” among
elliptic genera; see Hopkins [25; 24] and Ando, Hopkins and Strickland [5].

On the other hand, the work on orbifold elliptic genera has focused attention on the
two-variable elliptic genus of Eguchi et al [15], Hirzebruch, Berger and Jung [22],
Höhn [23] and Krichever [28]. This is the genus for which Dijkgraaf et al produced
a product formula, expressing the elliptic genera of the symmetric product orbifolds
X n==†n as a function of the elliptic genus of X [13]. Borisov and Libgober have
proved several results about this genus. For example, they give a mathematical proof of
the product formula. Most strikingly, they produce a related “resolution of singularities”
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elliptic genus and prove a McKay correspondence result comparing their two genera
[6; 7; 8].

In this paper, we explain the relationship between the sigma orientation and the two-
variable elliptic genus. We express the relationship two ways. The first involves the
analysis of MUh2pi–orientations of [5], and gives new insight on the modularity
properties of the two-variable genus. The second uses the sigma orientation in S1 –
equivariant elliptic cohomology, and gives new insight on the “level N genera”.

Let E be a homotopy-commutative even periodic ring spectrum, so E is complex-
orientable, and

G D spf E0CP1

is a (commutative, one-dimensional) formal group over spec�0E: Let MUh2pi be
the bordism spectrum of manifolds M with complex tangent bundle and trivializations
of c1; : : : ; cp�1; so MUh2i DMU and MUh4i DMSU. In [5], the authors show that,
for p � 3, the set of maps of ring spectra (or genera, or orientations)

MUh2pi !E

is isomorphic to the set of “‚p –structures” on G . (See Breen [9], Ando, Hopkins
and Strickland [5] and Section 3.) Briefly, let A be either an elliptic curve or a one-
dimensional formal group, and let I D IA.0/ be the ideal of functions on A vanishing
at the identity. Let ‚0I D I; and, for p � 1; let ‚pI be the line bundle on Ap given
by the formulas

.‚1I/a D
I0

Ia

.‚2I/a;b D
I0IaCb

IaIb

.‚3I/a;b;c D
I0IaCbIaCcIbCc

IaIbIcIaCbCc

;

where a; b; c are points of A. A ‚p –structure on A is a trivialization of ‚pI which
is compatible with various bits of structure on ‚pI . We write C p.AI I/ for the set of
‚p –structures on A: There are natural maps

ıW C p.AI I/! C pC1.AI I/

which, in the case of the formal group GE ; correspond to the restriction of orientations

ısW MUh2pC 2i !MUh2pi
s
�!E:
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Notice that there are isomorphisms

.‚2I/a;b Š‚1Ia˝
IaCb

Ib

.‚3I/a;b;c Š‚2Ia;b˝
IaCcIbCc

IaCbCcIc
:

As we discuss in Section 4, a section of the right tensor factor can be viewed as an
element of OX ; where, in the ‚3 case for example, X �A3 is a subspace of

f.a; b; c/ 2A3
jaC bC c ¤ 0; c ¤ 0; aC c ¤ 0; bC c ¤ 0g:

For example, if C is an elliptic curve over a ring R, then we can take

X D yC 2
� .Cn0/;

by which we mean the pullback of the formal scheme yC 2 along

.Cn0/! spec R:

The case of a formal group G over R is more subtle. In Section 4, we consider

R1 D colim
k

I�kOG I

in terms of a coordinate on G we have

R1 ŠR..y//:

Let G1 and Gı be formal groups obtained by pulling back G in the diagram

Gı ����! G1 ����! G??y ??y ??y
spec R1 ����! specOG ����! spec R;

(we use ı to suggest the hole left over when the identity is removed from the G in the
base). Then we can use

X DG2
ı :

To see this, introduce a coordinate on G , and let F be the resulting formal group law.
Then

OX DR..y//ŒŒs; t ��;

and y CF s and y CF s CF t are units of OX : We show that a ‚2 –structure on
G determines a ‚1–structure on Gı; and a ‚3–structure determines a ‚2–structure
on Gı:
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As we explain in Section 5, if RD �0E and G DGE D spf E0CP1; then

R1 D �0ECP1�1 ;

so in terms of orientations, we find that an SU–orientation

t W MSU!E

gives rise to an orientation
t]W MU!ECP1�1 .

As the referee pointed out to us and as we explain in Example 5.7, there is a canonical
complex orientation

MU!MSUCP1�1 ;

so that t] is the composition

MU!MSUCP1�1
t
�!ECP1�1 :

In any case, starting with a complex orientation sW MU!E , we obtain an orientation

ısW MSU!E

by restriction, and so a new orientation

.ıs/]W MU!ECP1�1 :

This procedure, applied to the Witten genus, produces the two-variable genus: let KŒŒq��

be the spectrum representing complex K–theory with coefficients extended to ZŒŒq��;
and let

(1.1) ˆW MU!KŒŒq��

be the complex orientation which associates to a manifold M of complex dimension
d the genus

Todd
�

M I
O
n�1

Symqn.T �Cd /
O
n�1

Symqn. xT �Cd /

�
:

Its K–theory Euler class is

ˆ.u; q/D .1�u�1/
Y
n�1

.1� qnu/.1� qnu�1/

.1� qn/2
I

it is a version of the Witten genus.1

1The relationship is analogous to the relationship between the Todd genus and the yA genus. For
example, the genus (1.1) coincides with the Witten genus on SU–manifolds.
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As we explain in Section 6, the orientation .ıˆ/] sends a manifold M of dimension
d to the genus

(1.2) �.M;y; q/Dˆ.y�1; q/�d

�Todd
�

M I
O
n�1

Symqn T
O
n�1

Symqn
xT
O
n�1

ƒ�yqn.T /
O
n�1

ƒ�y�1qn. xT /

�
:

This is one of the standard formulas for the two-variable elliptic genus, and we give
precise comparisons to formulas in [23, p 59] and [6, p 4].

Our approach to the two-variable genus gives a new account of its modularity, analogous
to the account in [5] of the modularity of the Witten genus. Abel’s Theorem, or the
Theorem of the Cube, implies that an elliptic curve C has a unique ‚3 –structure s.C /.
An isomorphism of formal groups

 W G Š yC

then endows G with the ‚3 –structure . 3/�s.C /j yC 3 : The data .E;C;  / comprise
an elliptic spectrum, and the map of ring spectra

s.E;C;  /W MUh6i !E

arising from the ‚3 –structure is called the sigma orientation.

For example, the Tate curve is a (generalized) elliptic curve CTate over ZŒŒq��, equipped
with an isomorphism

TateW yGm Š
yCTate:

Now yGm is the formal group of complex K–theory, so .KŒŒq��;CTate; Tate/ is an
elliptic spectrum, denoted KTate for short. In [9] and [5, Section 2.6,2.7], it is shown
that2

(1.3) s.CTate/D ı
2ˆ 2‚3ICTate.0/:

Now observe that

s.CTate/
]
D .ı2ˆ/] D ı.ıˆ]/W MSU!KŒŒq��CP1�1 ;

so the two-variable elliptic genus of an SU–manifold is controlled by the canonical
‚3 –structure on the Tate curve. This leads to a new proof of the (known) fact that
the two-variable elliptic genus of an SU–manifold is a meromorphic Jacobi form. To
give a precise statement, let EJC be the cohomology theory formed by extending the
coefficients of E to �.OCn0/: In Section 7 we prove the following result.

2A generalized elliptic curve may have more than one ‚3 –structure, but there is a unique rule
C 7! s.C / which is natural in C .
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1.4 Theorem An elliptic spectrum .E;C;  / determines a canonical orientation of
SU–manifolds

J.E;C; /W MSU �!EJC :

The fact that the cubical structure on the Tate curve is of the form (1.3) implies that
JKTate factors through MU, and indeed the diagram

MSU
JKTate
����! KŒŒq��JTate??y ??y

MU
�

����! KŒŒq��..y//

commutes, where � is the genus (1.2).

We call J the Jacobi orientation, because, as we explain in Theorem 7.7, the naturality
of J in the elliptic spectrum implies that the genus associated to JKTate takes its values
in meromorphic Jacobi forms of index zero. We emphasize that J.E;C; / is canonically
determined by the elliptic spectrum .E;C;  /, and the variety of expressions for
two-variable genera in the literature reflects choices in how to expand it.

Let T be the circle group. Jacobi forms also appear as elements of the T –equivariant
elliptic cohomology of spheres of representations. In Section 8, we give another formula
for the two-variable elliptic genus in terms of the T –equivariant sigma orientation. If
V is a complex vector bundle over X , let Vy�1 denote V , considered as T –bundle
via the inverse of the standard action of T : We also write y�1 for the trivial bundle,
with the inverse of the standard action. Let d D rank T; where T is the complex
tangent bundle of X , and let

� D Ty�1
�T � dy�1

D .T � d/.y�1
� 1/� d:

For i � 0 let cT
i denote the Borel equivariant Chern classes. We note (Lemma 8.6) that

cT
1 .�/D 0;

and if c1.T /D 0 then
cT

2 .�/D 0:

It follows using [3; 2] that if c1.T /D 0, then � has an equivariant sigma orientation,
which is a Thom class U DU.�/ in ET .X

�/, the T –equivariant elliptic cohomology of
Grojnowski associated to a complex elliptic curve C of the form C=.2� iZC2� i�Z/
(the first author and John Greenlees prove an analogous result for Greenlees’s equivariant
spectrum [18] in [4]). If we compose the Pontrjagin–Thom map

S0
!X�T
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with the relative zero section

X�T
!X Ty�1�T

and then desuspend by dy�1 , we obtain a map

(1.5) gW S�dy�1

!X � :

By pulling back the Thom class along this map we obtain an element of

�ET .S
�dy�1

/Š �IC .0/
�d :

We show (Proposition 8.15) that this is the two-variable elliptic genus. We are grateful
to M Hopkins for suggesting this approach to the two-variable genus. The relationship
between our two approaches is explained in Remark 8.7.

A similar argument accounts for the level N elliptic genera of Hirzebruch [21], Witten
[35] and Hirzebruch, Berger and Jung [22]. If instead of c1.T /D 0 we have c1.T /� 0

mod N , then c
T ŒN �
2

.�/D 0: The work of [3; 2] then shows that � has an equivariant
sigma orientation UN 2ET ŒN �.X

�/. Pulling back this Thom class along g as in (1.5)
gives an element

g�UN 2 �ET ŒN �.S
�dy�1

/Š �OC ŒN �:

In Proposition 8.21, we show that the value of g�UN at a 2 C ŒN � is just the level N

elliptic genus of X evaluated at a.

In [17], the third author shows that H1 elliptic genera have a product formula like
that of [13]. Either of the accounts of the two-variable elliptic genus given here can
be used to prove that the two-variable genus is H1 , once one knows that the Witten
genus or sigma orientation from which it was constructed is H1: We will return to
that story at another time.

During their work on this paper, Ando was supported by NSF grant DMS-0306429, and
Ganter was supported by NSF grant DMS-0504539. Some of the work took place while
Ando and Ganter were visiting MSRI and Stanford University. We thank R Cohen
for his hospitality. We thank A Ghitza, J Greenlees, J de Jong, M Hopkins, J Lurie,
and H Sadofsky for useful conversations. We are grateful to the referee for catching a
mistake in an earlier version of the paper and helping us to correct it, and for several
helpful suggestions which improved the paper. We are responsible for the shortcomings
which remain.
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2 Notation

2.1 Groups

We record the notation for some constructions which make sense in any setting where
one has a notion of abelian group object G over an object S , and where the line bundles
over X form a Picard category. Our examples will be elliptic curves and formal groups.

If G is an abelian group over S , we write 0W S !G for its identity section. If I is a
set, we write GI for the product GI

S
. If f W I ! J , then we write �f for the induced

map
�f W G

J
!GI :

If I � J then we may abbreviate this as �I , and we may even indicate I by listing its
elements. It will also be convenient to write y�I for �J nI . Thus if J D f1; 2; 3g then
�13 and y�2 indicate the same map G3!G2 . As a special case we have

�∅ DGJ
! S:

We write �I W G
J �I
�!GI �

�!G

for projection to GI followed by multiplication. It is convenient to set �∅D 0W GJ !

S !G .

2.2 Change of base for formal groups

If G is a formal group over S D spec A; and T D spec B! S is an S –scheme, then
we can form the pullback

GT ����! G??y ??y
T ����! S:

If I.0/ denotes the ideal of the identity of G , then explicitly the ring of functions on
GT is the completed tensor product

OGT
D .B˝AOG/

^
I.0/:

2.3 Power series and Laurent series

Let R be a ring. Then RŒŒx�� will denote the ring of power series in x , and R..y//

will denote the ring of finite-tailed Laurent series in y: In this paper we will need to
consider rings like

ADR..y//ŒŒx��:
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Note that this is different from

B DRŒŒx��..y//:X
n�0

y�nxn
2AFor example

X
n�0

y�nxn
62 B:but

An important point is that series of the form

yC o.x/ 2A

are invertible in A; since y is a unit of R..y//.

Rings such as R..y//ŒŒx�� will arise in situations like the following. Let G Š spf RŒŒx��

be a formal group over spec R: If G0 denotes the formal group over R..y// which is
the pullback

G0 ����! G??y ??y
spec R..y// ����! spec R;

then OG0 D .R..y//˝R OG/
^
I.0/ ŠR..y//ŒŒx��:

2.4 Line bundles

If .X;OX / is some sort of ringed space, then a line bundle over X will mean an
invertible OX –module, and we write L� for the associated Gm –torsor of trivializations
of L; this participates in an equivalence of categories between the line bundles and
Gm –torsors over X .

2.5 Vector bundles and Thom spectra

If X is a space, and V is a vector bundle over X , then we write X V for the Thom
spectrum

X V def
D †1.D.V /=S.V //;

where D.V / is the disk bundle of V and S.V / is the sphere bundle. Notice that, if "
denotes the trivial bundle of rank 1 over X , then

(2.6) X "
Š††1XC;
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and if V =X and W =Y , then

(2.7) .X �Y /V˚W
ŠX V

^Y W :

The reason for using spectra rather than spaces is that one can extend the definition to
virtual bundles. For example, if V is a vector bundle over a finite complex, then there
is a vector bundle W over X such that

V ˚W ŠN ":

In view of (2.6) and (2.7), it is sensible to set

X�V
D†�N X W ;

and one shows that this stable homotopy type depends only on V . This definition
extends to vector bundles over infinite complexes; see for example Lewis et al [29] and
Rudyak [32].

We write BUh2pi for the connective cover of Z�BU with its bottom nonzero homotopy
group in degree 2p: So

BUh0i D Z�BU

BUh2i D BU

BUh4i D BSU :

We denote the associated Thom spectra by MUh2pi, so MUh2i DMU, and MUh0i D
MP is the two-periodic complex cobordism spectrum.

2.8 Cohomology

Let E be a homotopy commutative ring spectrum. If X is a space, then E�.X / will
denote its unreduced cohomology, which is a ring. If Z is a spectrum, then E�.Z/

will be its usual spectrum cohomology. Thus

E�.X /DE�.†1XC/:

With these conventions, a Thom isomorphism in E–cohomology for a vector bundle
V of rank d over X is an isomorphism of E�.X /–modules

E�.X /ŠE�Cd .X V /:

The reduced cohomology of a pointed space X will be written zE�.X /.
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3 ‚p –structures

We recall from [9; 5] the notion of a ‚p –structure on a line bundle L over G . For
p � 1 we define line bundles ‚pL over Gp by the formulas

‚pL def
D

O
I�f1;:::;pg

.��IL/
.�1/jIj(3.1)

.‚1L/a D
L0

La
Thus

.‚2L/a;b D
L0LaCb

LaLb

.‚3L/a;b;c D
L0LaCbLaCcLbCc

LaLbLcLaCbCc

:

We also define ‚0LD L, over G .

The formula (3.1) for ‚p exhibits the symmetry of ‚pL over Gp . Precisely, we have
the following.

3.2 Proposition (1) For p > 0, ‚p.L/ is a rigid line bundle, that is, it comes with
a trivialization of 0�‚p.L/.

(2) For each permutation � 2†p , there is a canonical isomorphism

�� W �
�
�‚

p.L/Š‚p.L/:

Moreover, these isomorphisms compose in the obvious way.

(3) There is a canonical identification (of rigid line bundles over G
pC1
S

)

(3.3) ‚p.L/a1;a2;:::˝‚
p.L/�1

a0Ca1;a2;:::
˝‚p.L/a0;a1Ca2;:::˝‚

p.L/�1
a0;a1;:::

Š 1:

With these observations, one makes the following definition:

3.4 Definition Let L be a line bundle over a group G . A ‚p –structure on L is a
trivialization s of the line bundle ‚p.L/ such that

(1) (rigidity) for p > 0, s is a rigid section;

(2) (symmetry) for p > 0, s is symmetric in the sense that for each � 2†p , we
have ����� s D s ;

(3) (cocycle condition) for p > 1, the section

s.a1; a2; : : :/˝ s.a0C a1; a2; : : :/
�1
˝ s.a0; a1C a2; : : :/˝ s.a0; a1; : : :/

�1

corresponds to 1 under the isomorphism (3.3).
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For simplicity a ‚p –structure on G will mean a ‚p –structure on the ideal sheaf
IG.0/: A ‚3 –structure is known as a cubical structure [9]. We write C p.GIL/ for
the set of ‚p –structures on L. Note that C 0.GIL/ is just the set of trivializations of
L, and C 1.GIL/ is the set of rigid trivializations of ‚1.L/. Suppose that G begins
life as a group over some base S . If X is another object over S , then we can write
GX for G considered as a group over the base X , and so forth. In that case, we may
write C p.G;X IL/ for the set of ‚p –structures on L over GX :

Note that ‚p can also be defined on sections: if s is a section of L, then ‚ps is a
section of ‚pL. In particular if s is a trivialization of L, then ‚ps is a ‚p –structure
on L.

It is important to observe that ‚pC1L can be constructed from ‚pL using the group
structure in only one factor of Gp . Precisely, if M is a line bundle over G �X , then
we write ıM for the line bundle over G �G �X given by the formula

ıM def
D

��
1
M��

2
M

��
12
M��∅M

:

That is, ıMa;b;x D
Ma;xMb;x

MaCb;xM0;x

:

Let’s write G _G for the “wedge”

G _G
def
D .G � f0g/[ .f0g �G/�G �G:

Notice that .ıM/j.G_G/�X is canonically trivialized, and that from a section s of M
we obtain a section ıs of ıM in the obvious way.

3.5 Proposition (1) For p � 1, there is a canonical isomorphism of rigid line
bundles

‚pC1LŠ ı‚pL;

‚pC1LŠ ıp‚1L:and so

(2) Using this identification, ı induces a homomorphism

ıW C p.Gp;L/! C pC1.GpC1;L/:

(3) For p � 1, ‚pL is trivialized over the “fat wedge”: if

i W Gp�1
!Gp
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is any of the p inclusions obtained using the identity of G , then i�‚pL is
canonically trivialized. Moreover, if s is a ‚p –structure, then i�s coincides
with this trivialization.

Proof Items (1) and (2) are straightforward.

For (3), the case p D 1 is obvious. For p > 1, observe that by symmetry it suffices to
treat the case that the identity goes to the first factor. In that case

‚pL0;a2��� D ı‚
p�1L0;a2;:::

is trivial. On sections we consider the case p D 2; the general case is similar. Using
the cocycle condition we have

s.0; 0/s.0; b/

s.0; b/s.0; b/
D 1;

and since s is rigid s.0; 0/D 1, and so s.0; b/D 1 as required.

3.6 Complex orientations and ‚p –structures

We recall how ‚p –structures arise in the study of multiplicative complex orientations.
The case pD 1 is the classical theory of MU–orientations, as in [1]. The cases pD 2; 3

(and p D 0) were studied in [5].

An even periodic ring spectrum is a ring spectrum such that �oddE D 0; and �2E

contains a unit of ��E: If E is such a spectrum, then

GE
def
D spf E0CP1

is a (commutative, one-dimensional) formal group over SE
def
D spec�0E: Let L denote

the tautological bundle over CP1 . The zero section

�W CP1C ! .CP1/L

identifies E0..CP1/L/ with the (global sections of the) ideal I.0/ of functions on
GE which vanish at the identity. The inclusion

S2
D .�/L! .CP1/L

induces isomorphisms
�2E D zE0S2

Š 0�I.0/Š !;
identifying �2E with the (global sections) of the sheaf ! of invariant differentials on
GE :
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A map of ring spectra
MUh2pi !E

gives rise to a map of spectra

..CP1/p/
Q
.1�Li /!MUh2pi !E:

The Thom isomorphism in this context can be interpreted as giving a natural isomor-
phism of

E0..CP1/p/DOG
p

E

modules
E0...CP1/p/

Q
.1�Li //Š �‚pI.0/;

inducing a map

RingSpectra.MUh2ki;E/! C p.G
p
E
I I.0//:

About this situation there is the following result of [5].

3.7 Theorem For 0� p � 3 the natural map

RingSpectra.MUh2pi;E/! C p.G
p
E
I I.0//

is an isomorphism. If s 2 C p.G
p
E
I I.0// corresponds to a map MUh2pi ! E; then

the map

(3.8) MUh2pC 2i !MUh2pi
s
�!E

corresponds to ıs 2 C pC1.G
pC1
E
I I.0//.

3.9 Example A map of ring spectra

MUh0i DMP!E

corresponds to generator x of I.0/, which is to say an coordinate on GE , or equiva-
lently an element

U 2E0..CP1/L/

whose image x D ��U is a generator of E0CP1:

3.10 Example A map of ring spectra

MUh2i DMU!E

Algebraic & Geometric Topology, Volume 8 (2008)



The Jacobi orientation and the two-variable elliptic genus 507

corresponds to a rigid trivialization of !˝ I.0/�1 , or equivalently of !�1˝ I.0/: In
topology this corresponds to a dotted arrow making the diagram

.CP1/L�1 //___ E

S0

OO ::uuuuuuuuuuu

commute, which is the description of complex orientations of E in [1].

Because of Theorem 3.7, if
sW MUh2pi !E

is an orientation, we write ıs for the induced map (3.8).

4 Sharp

For p � 1, a ‚pC1 –structure on G nearly defines a ‚p –structure in the first p

variables. We shall develop this idea in two ways, but, as we explain in the introduction,
the main point is the following. For concreteness we let G be a formal group over a
ring R, and consider the case p D 1: Let I D I.0/ be the ideal sheaf of functions
vanishing at the origin. In punctual notation, if a; b represent points of G then

.‚2I/a;b Š
Ia

I0

IaCb

Ib

Š .‚1I/a
IaCb

Ib

:

In pullback notation,

‚2I Š ��1 .‚
1I/ �

��I
��

2
I
:

Now suppose that we have a coordinate on G . Let

F.x;y/D xCyCO.xy/

be the resulting formal group law, so

OG�G ŠRŒŒx;y��;

with respect to which
��I D .F.x;y//:

4.1 Lemma F.x;y/ is a unit of R..y//ŒŒx��, and so under the ring homomorphism

f W RŒŒx;y��! S DR..y//ŒŒx��;
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we have f ���I D S:

That is, the ideal sheaf ��I becomes trivial after pulling back along

spec .R..y//ŒŒx��/! specOG�G ;

and so also over
spf .R..y//ŒŒx��/

Similar remarks hold for the ideal ��
2
I:

Proof If we expand F as a power series in x , with coefficients power series in y ,

F.x;y/D yC
X
i�1

ai.y/x
i

then the constant term y is a unit of R..y//:

In order to take advantage of this observation systematically, we introduce the following
variant of ‚p . For p� 0, let ‚p

�L be the line bundle over GpC1 given by the formula

(4.2) ‚
p
�L

def
D

O
I�f1;:::;pg

.��I[fpC1gL/
.�1/jIjC1

:

4.3 Example In punctual notation,

.‚1
�L/a;b D

LaCb

Lb

.‚2
�L/a;b;c D

LaCcLbCc

LcLaCbCc

:

The important relationships between ‚p and ‚p
� are given by the following result;

recall that
y�pC1W G

pC1
!Gp

denotes projection to the first p factors.

4.4 Proposition (1) For p > 0,

‚pLŠ
�
‚

p
�LjGp�0

��1
:

(2) (Pascal’s Triangle)

‚pC1LŠ y��pC1‚
pL˝‚p

�L:
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4.5 Example For example,

.‚2L/a;b D
L0

La

LaCb

Lb

Š .‚1L/a˝ .‚1
�L/a;b

.‚3L/a;b;c D
L0LaCb

LaLb

LaCcLbCc

LcLaCbCc

Š .‚2L/a;b˝ .‚2
�L/a;b;c :

We are guided by the idea that a section of ‚2
�I.0/ restricts to a holomorphic function

on the subspace X �G3 where a and b are small compared to c . After all, the divisor
of ‚2

�I.0/ is

(4.6) ŒaC c D 0�C ŒbC c D 0�� Œc D 0�� ŒaC bC c D 0�;

and this divisor intersects X trivially. In the case of an elliptic curve C over S , we
can take

X D yC 2
� .Cn0/:

By this we mean the formal scheme over U D .Cn0/ which is the pullback of yC 2 in
the diagram

X ����! yC 2??y ??y
U ����! S I

in particular OX is the completed tensor product

OX DO yC 2
y̋OS

OU :

The case of a formal group G over S D spec R is trickier. If y is a coordinate on G ,
then

OG ŠRŒŒy��;

with respect to which
I.0/D .y/:

One candidate for Gn0 is then “spf R..y//;” but if T is a discrete R–algebra, then the
set of continuous maps R..y// to T is the empty set of nilpotent units in T:

Let R1 D colim
k

I.0/�kOG ŠR..y//;

and let U1 D spec R1: Let G1 and Gı be formal groups obtained by pulling back G

in the diagram
Gı ����! G1 ����! G??y ??y ??y
U1 ����! specOG ����! S:
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By this we mean explicitly that

OGı ŠR..y//ŒŒx��:

The subscript 1 on indicates that G1 lives over a base with one power series variable.
The subscript 1 on U1 indicates that OU1

has one Laurent series variable, coming
from “removing the identity section” in specOG : The subscript ı indicates that Gı
lives over a base with a hole in it.

We write I for the ideal sheaf I.0/: If it is necessary to distinguish between IG.0/

and IGı.0/, then we write Iı for the latter.

The argument of Lemma 4.1 shows that ‚p
�I becomes trivial over G

p
ı , and so a section

of ‚pC1I Š y��
pC1

‚pI˝‚p
�I gives rise to a section of ‚pIı .

4.7 Definition If s is a section ‚pC1I , we write s] for resulting section of ‚pIı:

4.8 Proposition If s is a ‚pC1 –structure, then s] is a ‚p –structure, and so we have
a homomorphism

C pC1.GI I/! C p.GıI I/:

Proof We need to check the rigidity, symmetry, and cocycle conditions. Let s be a
‚p –structure on I:

The zero section of Gı is induced by the map

G �!G
p
1
ŠGpC1

c 7! .0; : : : ; 0; c/:

We showed in Proposition 3.5 that

s.0; : : : ; 0; c/D 1:

The symmetry condition for s] follows easily from the symmetry condition for s:

For pD 1 the cocycle condition is empty. For p � 2, the cocycle condition for s does
not involve the last variable and thus gives the cocycle condition for s]:

4.9 Example If s 2 C 2.GI I/, then s] 2 C 1.GıI I/. Note that then

ı.s]/ 2 C 2.GıI I/;

and so we have a homomorphism

(4.10) C 2.GI I/! C 2.GıI I/:
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4.11 Example If t 2 C 3.GI I/, then t] 2 C 2.GıI I/. In particular, if s 2 C 2.GI I/
then

.ıs/] 2 C 2.GıI I/;
and so again we have a homomorphism

(4.12) C 2.GI I/! C 2.GıI I/:

4.13 Proposition The homomorphisms (4.10) and (4.12) coincide: for s 2 C 2.GI I/
we have

ı.s]/D .ıs/]

in C 2.GıI I/:

Proof The formula for ıs involves only the first variable of s , while the construction
of s] involves only the last.

4.14 ‚l –structures of ‚k –structures

We describe another approach to the sharp construction which was the starting point
our investigation.

If G is a formal group over S , then we can regard Gl as a group in the first variable,
over the base Gl�1: In general, we write Gk

l�1
for the pullback

Gk
l�1
����! Gk??y ??y

Gl�1 ����! S:

Of course we have

(4.15) Gk
l�1 ŠGkCl�1;

and we shall consider the last l � 1 factors to be the “base.”

If L is a line bundle over G , then we can consider ‚lL as a line bundle Gl�1: We then
have two line bundles over Gk

l�1
; namely ‚k.‚l.L// and ‚kCl�1.L/: Explicitly,

‚k.‚l.L//D
O

I�f1;:::;kg

��I .‚
l.L//.�1/jIj ;

where �I W G
k
l�1 ŠGkCl�1

!Gl
ŠGl�1

is the map �I of Section 2 on the first k factors of GkCl�1 , and the identity on the
last l � 1.
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4.16 Proposition For k � 1 and l � 2, there is a canonical isomorphism

�l;k W ‚
kCl�1.L/�1

Š‚k.‚l.L//

of line bundles over GkCl�1 . In particular

‚kC1.L/�1
Š‚k.‚2.L//:

Proof Represent I � f1; : : : ; kg and J � f1; : : : ; lg by vectors .i1; : : : ; ik/ 2 Fk
2

and
.j1; : : : ; jl/ 2 F l

2
respectively. Then

�J ı�I D �J ıI ;

J ı I � f1; : : : ; kC l � 1gwhere

denotes the subset represented by

.i1j1; : : : ; ikj1; j2; : : : ; jl/ 2 FkCl�1
2

:Now

‚k‚l.L/D
O

I

��I

�O
J

��J .L/
.�1/jJjC1

�.�1/jIj

Š

O
I

O
12J

��J ıI .L/
.�1/jIjCjJjC1

;

because the factors coming from terms with 1 62 J all appear equally often with their
inverse and therefore cancel out.

4.17 Example We will mainly be interested in the case kD l D 2. At a point .a; b; c/
of G2

1
ŠG3; we have

‚2.‚2L/a;b;c Š
.‚2L/aCb;c.‚

2L/0;c
.‚2L/a;c.‚2L/b;c

Š
LaCbCcLaLbLc

L0LaCbLaCcLbCc

Š .‚3L/�1:

Along the same lines, we note that

‚2.‚2L/Š‚2

�
��L
��

1
L

�
;

and in general

(4.18) ‚p.‚2L/Š‚p

�
��L
��

1
L

�
:
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4.19 Definition For a ‚kC1 –structure s on L, let s[ be the section

s[ WD �2;ks�1

of ‚k.‚2.L//.

Now we can proceed as before. The proof of Proposition 4.8 applies to give the
following.

4.20 Proposition If s is a ‚kC1 –structure on L, then s[ is a ‚k –structure on
‚2.L/.

A ‚pC1 –structure
s 2 C pC1.GI I.0//

gives rise to a ‚p –structure on ‚2I.0/; and indeed using the isomorphism (4.18), an
element

s[ 2 C p.G1I�
�I.0/=��1I.0//:

After pulling back along
Gı ����! G1??y ??y
U1 ����! specOG ;

we find that the ideal ��I.0/ becomes trivial, and so s] D .s[/�1 can be considered
to be an element

s] 2 C p.GıI I.0//:

5 Application to complex orientations

In this section we apply the results of Section 4 to orientations of ring spectra. We
begin by describing the topological counterpart of the base change to U1:

5.1 The pro-spectrum CP1�1

We recall that just as
OGE

DE0CP1 D �0ECP1
C ;

the ring OU1
arises as the cohomology of Mahowald’s pro-spectrum

OU1
DE0CP1�1 D �0ECP1�1 ;

and so EOU1
DECP1�1 .
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In more detail, if L denotes the tautological line bundle over CP1 , then CP1
�k

is the
Thom spectrum of �kL, and

CP1�1
def
D .� � � !CP1

�k !CP1
�kC1 � � � !CP1

�1!CP1C /:

If t is a coordinate on G , so E0CP1 DE0ŒŒt ��, then

E0CP1
�k D t�kE0CP1;

and if we define

ECP1�1
def
D hocolim.ECP1

C !ECP1
�1 ! � � � /;

then �0ECP1�1 ŠE0..t//:

It turns out that ECP1�1 is a ring spectrum, in such a way that this is an isomorphism
of rings. Indeed, the ring structure is represented by a pro-diagonal. More precisely,
we have the following.

5.2 Proposition There are compatible counit maps

CP1
�k ! S0;

and diagonal maps
CP1
�k�l !CP1

�k ^CP1
�l ;

such that the obvious coassociativity, cocommutativity and counit diagrams commute,
giving CP1�1 the structure of a comonoid pro-spectrum.

Proof The counit map is given by

CP1
�k !CP1C ! S0

which is just the map of Thom spaces associated to the map of bundles:

�kL ����! 0??y ??y
CP1 ����! �

The diagonal is the map of Thom spectra associated to

�kL� lL ����! �kL˚ .�lL/??y ??y
CP1 ����! CP1 �CP1:
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Using the ring spectrum structure on E , we have compatible maps

ECP1
�k ^ECP1

�l !ECP1
�k
^CP1

�l !ECP1
�k�l ;

and passing to colimits we have the following.

5.3 Corollary If E is an even periodic ring spectrum, then ECP1�1 is a ring spectrum.
If G D spf E0CP1 is the formal group associated to E; then

�0ECP1�1 ŠOU1
;

and the formal group associated to ECP1�1 is Gı: A coordinate on G gives an element
y 2 �0ECP1�1 and x 2E0.CP1/, in terms of which

�0ECP1�1 ŠE0..y//

and .ECP1�1/0.CP1/ŠE0..y//ŒŒx��

More generally, .ECP1�1/�.X /ŠE�.X IE�..y///.

5.4 Remark The fact that ECP1�1 is a ring spectrum is well-known. For example,
this ring structure was studied by Cohen, Jones and Segal in [10]. Also, as we learned
from Hal Sadofsky, ECP1�1 is the T –fixed point spectrum of the Tate spectrum tT .E/

of E , considered as a T –spectrum with the trivial action. As such, it follows from
work of Greenlees and May, for example Proposition 3.5 of [19], that ECP1�1 is a ring
spectrum. Indeed, McClure shows in [30] that if E is an E1 ring spectrum, then so is
ECP1�1 Š .tT .E//

T :

5.5 New orientations from old

Let E be an even periodic ring spectrum with formal group G DGE . Suppose that
we are given a map of ring spectra

MUh2pi !E;

and so a ‚p –structure
s 2 C p.GI I.0//:

Proposition 4.8 gives the section

s] 2 C p�1.GıI I.0//:

Theorem 3.7 and Corollary 5.3 imply that in terms of orientations we have the following
result.

Algebraic & Geometric Topology, Volume 8 (2008)



516 Matthew Ando, Christopher P French and Nora Ganter

5.6 Proposition If p � 4, then the function

.� /]W C p.GI I/! C p�1.GıI I/

determines a function

RingSpectra.MUh2pi;E/! RingSpectra.MUh2.p� 1/i;ECP1�1/:

5.7 Example Thus an SU–orientation of a complex-orientable spectrum E gives
rise to a complex orientation of ECP1�1 : We thank the referee for pointing out to us
that this natural transformation arises from a canonical map of ring spectra

(5.8) MU!MSUCP1�1 :

Indeed, Adam’s theory of complex orientations (described in Example 3.10) says that
to give a map of ring spectra (5.8) is equivalent to giving a map

f W .CP1/1�L
!MSUCP1�1

making the diagram

.CP1/1�L //___ MSUCP1�1

S0

OO 77ooooooooooooo

commute. Our map arises from a compatible family of maps

fk W .CP1/1�L
^CP1

�k Š .CP1 �CP1/1�L�kM
!MSU;

where we have written M for the tautological bundle over the second factor CP1: To
give such a map, note that .1�L/.1�M / is an SU–bundle, and so we have a map

.CP1 �CP1/.1�L/.1�M /
!MSU :

Moreover for k � 1 the difference

.1�L/.1�M /� .1�L� kM /DLM C .k � 1/M

is a genuine vector bundle, and so we have the relative zero section � in the sequence

fk W .CP1/.1�L/
^CP1

�k Š .CP1 �CP1/1�L�kM

�
�! .CP1 �CP1/.1�L/.1�M /

!MSU :

Algebraic & Geometric Topology, Volume 8 (2008)



The Jacobi orientation and the two-variable elliptic genus 517

5.9 Example Similarly we can describe the map

MSU!MUh6iCP1�1

which corresponds to the natural transformation in the Proposition. Let Vk denote the
tautological bundle over BSU.k/: The bundle .k�Vk/.1�M / over BSU.k/�CP1

is classified by a map
BSU.k/�CP1! BUh6i:

The difference

.k �Vk/.1�M /� .k �Vk � kM /D .k � 1/M CVM

is a genuine bundle for k � 1, and so we have a map of Thom spectra

.BSU.k//.k�Vk/ ^CP1
�k ! .BSU.k/�CP1/.k�Vk/.1�M /

!MUh6i:

Taking adjoints and passing to colimits gives the desired map.

5.10 Two-variable genera

Suppose that E is an even periodic ring spectrum, and let G DGE : Let

i W S2
!CP1

denote the inclusion of the bottom cell. Then

E0S2
D �2E Š I=I2

is the dual Lie algebra of G , and if f 2 E0CP1 is considered as a function on G ,
then

i�f D df0:

If df0 is a generator of �2E , then by Theorem 3.7, f determines a map of ring spectra

MPDMUh0i !E;

and so a complex orientation

(5.11) MUDMUh2i !E;

for which the corresponding element of C 1.GI I.0// is

s D
df0

f
:

Again by Theorem 3.7, the SU–orientation

MSUDMUh4i !MU!E
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corresponds to the element

ıs D
df0�

�f

��
1
f ��

2
f

of C 2.GI I.0//:

Now Proposition 4.8 implies that

.ıs/] 2 C 1.GıI I.0//;

and so determines a complex orientation

MU!ECP1�1 :

5.12 Definition Let E be an even-periodic, homotopy-commutative ring spectrum,
and let

'W MU!E

be a multiplicative complex orientation, associated to a ‚1 –structure s2C 1.GE I I.0//:
The adjoint genus of ' is the map of ring spectra

y'W MU!ECP1�1

associated to the element .ıs/] 2 C 1.GıI I.0//:

It is illuminating to spell this out in terms of a coordinate t on G , so that E0CP1 Š

E0ŒŒt ��: Then OG�G D �0EŒŒt1; t2��, and the group structure of G can be expressed as
a formal group law

��t D F.t1; t2/:

We can write f D f .t/ 2E0ŒŒt ��

with f 0.0/ 2 .�0E/� , and then ıf is given by the expression

ıf .t1; t2/D
df0f .F.t1; t2//

f .t1/f .t2/
:

The adjoint genus is the genus associated to this expression, with t1 considered as the
coordinate on the group, and t2 considered as an element of �0ECP1�1 Š �0E..t2//.

5.13 Example If E is rational, then we can choose the coordinate t so that F is the
additive group. Set x D t1 and z D t2 above, and let

g.x; z/D
f .xC z/

f .x/f .z/
:
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If M is a complex manifold with total Chern class

c.M /D
Y
.1Cxi/

then by the topological Riemann–Roch theorem (see for example Dyer [14] and Rudyak
[32]), the adjoint genus of M associated to f isZ

M

Y
i

xi

g.xi ; z/
:

6 The sigma function and the two-variable elliptic genus

We mentioned in the introduction that the Tate elliptic curve CTate over ZŒŒq�� gives
rise to an elliptic spectrum KTate , whose underlying spectrum is KŒŒq��: In this section
we show that when the analysis in Section 5.10 is applied to the complex orientation of
KTate given by the Weierstrass sigma function, the resulting two-variable genus is the
two-variable elliptic genus.

6.1 The sigma function and ˆ

Let ˆ and � be the power series

ˆ.u; q/D .1�u�1/
Y
n�1

.1� qnu/.1� qnu�1/

.1� qn/2

�.u; q/D u1=2ˆ.u; q/

D .u1=2
�u�1=2/

Y
n�1

.1� qnu/.1� qnu�1/

.1� qn/2
:

By considering u to be a complex line bundle, one sees that they define the same genus

MSU!KŒŒq��:

The genus associated to ˆ factors through MU, while the genus associated to � factors
through MSpin; as such it is known as the Witten genus [22].

We may view ˆ and � as functions of variables x and � by setting

ur
D erx

q D e2� i�

for r 2 Q: They are variants of the Weierstrass sigma function. A number of the
following remarks apply to both � and ˆ, but for definiteness we focus on ˆ.
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For � 2 h, 0 < jqj < 1, and so ˆ is a holomorphic function of .x; �/ 2 C � h: For
fixed � , ˆ.x; �/ vanishes to first order when x is a point of the lattice

ƒD 2� iZC 2� i�Z;

and has no other zeroes. It is not invariant under translation by ƒ in x ; instead we
have

ˆ.uqn/D .�1/nu�nq�n.nC1/=2ˆ.u/:

It follows that ˆ descends to a holomorphic section of the line bundle

AD
C� �C

.u; v/� .uqn; v.�1/nunqn.nC1/=2/

over C DC�=qZ
ŠC=ƒ;

vanishing to first order at the origin. As such ˆ is a trivialization of A˝ I.0/, which
is to say an isomorphism of line bundles over C

AŠ I.0/�1:

6.2 The adjoint of the Witten genus is the two-variable elliptic genus

For the moment let’s write p for the projection

pW C! C:

The classical story of the sigma function implies that if y and z are two points of C ,

(6.3) W .x;y; z/D
ˆ.xCy/ˆ.xC z/

ˆ.x/ˆ.xCyC z/
;

considered as a function of x , descends to a meromorphic function on C with divisor

Œ�p.y/�C Œ�p.z/�� Œ0�� Œ�p.y/�p.z/�:

As a function of x we have

ˆ.x; �/D xCO.x2/;

and so via the isomorphism of formal groups

ypW yGa D
yC! yC ;

ˆ.x; �/ gives a coordinate on the formal group of C . As such,

s D
ˆ.0; �/

ˆ.x; �/
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defines an element of C 1. yC ; I.0//, and so by Theorem 3.7 determines an orientation

MU!Hƒ:

Here Hƒ�.X /DHP�.X IOh/DH�.X IOhŒv; v
�1�/

is periodic ordinary cohomology with coefficients in the holomorphic function on the
upper half plane.

The resulting MSU orientation corresponds by Theorem 3.7 to the ‚2 –structure

(6.4) ıs D
ˆ.0; �/ˆ.xC z; �/

ˆ.x; �/ˆ.z; �/
D
�.0; �/�.xC z; �/

�.x; �/�.z; �/
2 C 2. yC 2

I I.0//:

As in Section 5.10, we then have the adjoint orientation

MU!HƒCP1�1

associated to the expression (6.4), now written as

.ıs/] 2 C 1. yCıI I.0//:

The associated genus is often called the two-variable elliptic genus.

To compare the genus associated to .ıs/] to standard formulas for the two-variable
genus, it is convenient to use the q–expansion formula for ˆ and express our orientation
in K–theory, as a map

�W MU!KŒŒq��..y//;

where KŒŒq��.X /DK.X IZŒŒq��/: Borisov and Libgober use �z in (6.4) where we have
used z , and so when passing to K–theory it is appropriate to set yr D e�rz for r 2Q.
We then find that the genus of a manifold M with complex tangent bundle T of rank
d is related to the genus Elly of [6, equation (8)] by the formula

�.M;y; q/D �.y�1; q/�dy�
d
2 �

Todd
�
M I

O
n�1

Symqn T ˝Symqn
xT ˝ƒ�yqn�1. xT /˝ƒ�y�1qn.T /

�
D �.y�1; q/�d Elly.M /:

(6.5)

Höhn includes the factor of �.y�1; q/ in the genus. In Lemma 2.5.1 of [23] Höhn also
uses �z where we have used z . He then sets y D�ez , so our y is his �y . With this
understood, we find that

(6.6) 'Höhn.M;�y; q/D �.M;y; q/:
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6.7 Modularity of the two-variable genus of SU–manifolds

Something interesting happens when we restrict the orientation .ıs/] back to MSU:
this is the orientation

MSU!HƒCP1�1

associated to the section

(6.8) ı.ıs/] D
ˆ.0; �/ˆ.xCy; �/ˆ.xC z/ˆ.yC z/

ˆ.x; �/ˆ.y; �/ˆ.z/ˆ.xCyC z/
D .ıs/W .z;y;x/;

of ‚2I.0/ over yC 2
ı . We make two related observations about expression (6.8).

(1) It is precisely the formula for the canonical ‚3 –structure on C=ƒ, as explained
in [9; 5, Section 2.6].

(2) Up to the indicated permutation of x;y; z; the factor W in (6.8) is same as the
W in (6.3). Thus ı2s] gives in fact a section of

‚2I.0/˝Kƒ;

where Kƒ denotes the meromorphic functions on C=ƒ: As such it determines
an orientation

MSU!HKƒ:

These observations are both complex-analytic aspects of the role of the Theorem of the
Cube in the two-variable genus. In Section 7 we pursue this point of view and construct
a natural genus for SU–manifolds taking values in meromorphic Jacobi forms; for the
curve C=ƒ over h it specializes to give the two-variable genus.

7 The Jacobi orientation

Abel’s Theorem (a particular case of the Theorem of the Cube) implies that an elliptic
curve C has a canonical cubical structure, that is, an element s.C / 2 C 3.C; I.0//. If
.E;C;  / is an elliptic spectrum, so  is an isomorphism GE Š

yC ; then the “sigma
orientation” of .E;C;  / is the map of ring spectra

�.E;C;  /W MUh6i !E

associated to . 3/�.sj yC 3/ by Theorem 3.7 and [5].

The sigma orientation is modular in the following sense. A map of elliptic spectra

.f; ˛/W .E;C;  /! .E0;C 0;  0/
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is a map of ring spectra
f W E!E0

together with an isomorphism of elliptic curves

˛W C 0 Š .spec�0f /
�C

making the diagram

GE0
spff �
����! GE



??y ??y 0
yC 0

y̨
����! .spec�0f /

� yC

commute (recall that GE D spf E0CP1 ). Given a map .f; ˛/ of elliptic spectra, the
following diagram commutes:

MUh6i
�.E;C;/

||xx
xx

xx
xx

x �.E0;C 0; 0/

##GGGGGGGG

E
f

// E0

As explained in [5], the preceding discussion extends to generalized elliptic curves in
the sense of [12]: if C=S is a generalized elliptic curve, then its smooth locus C reg

is a group scheme over S , and there is a canonical cubical structure s.C / on C reg;

which restricts to a cubical structure on yC ; which is a one-dimensional formal group.3

The sigma orientation of the elliptic spectrum associated to the Tate curve is just the
Witten genus [22; 34; 5], and the modularity of the sigma orientation implies that the
Witten genus of an MUh6i–manifold is the q–expansion of a modular form.

In this section we show that the same argument gives for any elliptic spectrum .E;C;  /

a canonical, modular SU–orientation J.E;C; / , taking values in the spectrum of
meromorphic functions on the curve C . We call it the Jacobi orientation. Its value on
the Tate elliptic spectrum KTate is the restriction to MSU of the two-variable elliptic
genus � of (6.6), and its modularity gives a new proof of the fact that this two-variable
genus is a meromorphic weak Jacobi form of index zero and weight d .

Let C be an elliptic curve over S D spec R, or even a generalized elliptic curve in the
sense of [12]. The Jacobi orientation arises from the simple observation that in the

3In [5], a generalized elliptic curve over S is defined to be a pointed S –scheme which is Zariski
locally on S isomorphic to a (possibly singular) Weierstrass curve. The analysis of [11] discussed below
shows that this definition is equivalent to the definition of Deligne and Rapoport.
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isomorphism
‚3IC .0/Š‚

2IC .0/˝‚
2
�IC .0/

of line bundles over C 3 , the second tensor factor is a trivial subsheaf of the meromorphic
functions on the third factor C , by a trivialization which becomes a unit in O yC 2�.Cn0/

:

Let JC
def
D �.OCn0/;

and let XC D specJC : Suppose for simplicity that the formal group yC admits a
coordinate t over R: Then the Riemann–Roch Theorem (for a treatment which includes
generalized elliptic curves see Deligne [11]) implies that there are x 2 �.IC .0/

�2/

and y 2 �.IC .0/
�3/ and ai 2R such that

JC ŠRŒx;y�=.y2
C a1xyC a3y D x3

C a2x2
C a4xC a6/Š colim

k�0
�.IC .0/

�k/;

and the natural map
Cn0! XC

is an isomorphism. As in Section 4, let

U1 D spec colim
k

I.0/�kO yC Š spec R..t//:

Expansion of meromorphic functions at the identity gives a ring homomorphism

JC !OU1
;

and so we have the diagram of formal groups

yCı ����! yCXC
����! yC??y ??y ??y

U1 ����! XC ����! spec R:

Then we have the following.

7.1 Proposition The canonical cubical structure s.C / 2 C 3.C; I.0// determines a
canonical and natural ‚2 –structure

s.C /] 2 C 2. yC ;XC I I.0//:

This is compatible with the sharp construction on formal groups of Proposition 4.8 in
the sense that

s.C /]j yC 2
ı
D .s.C /j yC 3/

]
2 C 2. yCıI I.0//:
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If .E;C;  / is an elliptic spectrum, then yC admits a coordinate since

yC Š spf E0CP1 Š spf E0ŒŒt ��:

If we form the elliptic spectrum .EJC ;C;  /, where4

EJC DE˝�0E JC ;

then we have the ‚2 –structure

. 2/�s.C /] 2 C 2.GE ;XC I I.0//:

Theorem 3.7 associates to this ‚2 –structure a multiplicative orientation

(7.2) J.E;C;t/W MSU!EJC :

Thus we have the following.

7.3 Theorem An elliptic spectrum .E;C;  / determines a canonical map of ring
spectra

J.E;C; /W MSU!EJC :

Formation of J.E;C; / is natural, in the sense that if

.f; ˛/W .E;C;  /! .E0;C 0;  0/

is a map of elliptic spectra, then the following diagram commutes:

MSU
J.E;C;t/

{{vvv
vv

vv
vv J.E0;C 0;t0/

$$IIIIIIIII

EJC
f

// E0JC 0

7.4 Definition The Jacobi orientation of the elliptic spectrum .E;C;  / is the map
of ring spectra described by the Theorem.

Let MEll be the moduli stack of elliptic curves, with universal curve

� W C!MEll

and identity 0. Let
J D JC D colim

k�0
I.0/�k

be the indicated sheaf of algebras on C , and let ! D 0�I.0/ be the sheaf on MEll of
cotangent vectors at the origin in C:

4A generalized elliptic curve C=R is flat over spec R , and so JC Š �.OCn0/ is flat over R:
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7.5 Definition A meromorphic weak Jacobi form of index zero and weight d is a
global section of

J ˝��!d :

It is equivalent to give a rule f which associates to each pair .C=R; !/, consisting of
an elliptic curve C over a ring R and a trivialization ! of !C a meromorphic function

f .C=R; !/ 2 JC ;

subject to the following.

(1) If the following is a pullback diagram

C 0
˛

����! C??y ??y
spec R0

˛
����! spec R

then f .C 0; ˛�!/D ˛�f .C; !/:

(2) If � 2R� then
f .C; �!/D ��df .C; !/:

7.6 Remark This sort of Jacobi form, which might be called an arithmetic Jacobi
form, was introduced by Kramer [27]. Its relationship to the usual notion of Jacobi
form as in [16] is the same as the relationship of the arithmetic to the classical notions
of modular form as in [26].

7.7 Theorem If X is an SU–manifold of complex dimension d , then as C varies,
J.E;C; /.X / defines a meromorphic Jacobi form of index zero and weight d . If
.E;C;  /DKTate , and y is the formal function on the Tate curve corresponding to
u�1 on Gm D spec ZŒu;u�1�; then JKTate.X / admits an expansion in terms of y , and
as such

JKTate.X /y D �.X; q;y/

is the restriction to MSU of the two-variable elliptic genus � of (6.5). In particular,
�.X; q;y/ is the q–expansion of the meromorphic Jacobi form J.X /:

Proof Let X be an SU–manifold of complex dimension d . Then

J.E;C; /.X / 2 ��2dEJC Š �.!
d
˝JC /;

and so the claim that J.E;C; /.X / is a Jacobi form follows from the modularity of
the Jacobi orientation, together with the fact that MEll has a cover by elliptic spectra.
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Alternatively, one can use the argument in the introduction and Section 2.7 of [5] to
show that JTate.X / is the q–expansion of a meromorphic Jacobi form of weight d and
index 0.

The fact that .JKTate/y is the restriction to MSU of the two-variable elliptic genus
follows from the fact that, on the one hand, the formula (6.8) is the MSU–characteristic
series for the two-variable elliptic genus. On the other hand, (6.8) is also the formula
for the cubical structure on a complex elliptic curve of the form C=ƒ. Indeed in [5,
Sections 2.6–2.7] this fact is used to show that the q–expansion form of � also gives
rise to the cubical structure on the Tate elliptic curve over ZŒŒq��:

8 Anomaly cancellation and twists: the Jacobi genus via
circle-equivariant elliptic cohomology

In this section, which is independent of Section 3–Section 7, we show how to obtain the
two-variable elliptic genus of M by calculating the S1 –equivariant Witten genus of
M , twisted by the tangent bundle of M , considered as an S1 –bundle by the standard
action of S1 on TM . In fact this method also leads to an account of the “level N ”
genera of [21; 35; 22].

8.1 Umkehr maps and genera

Let f W X!Y be a proper map of smooth manifolds. The Becker–Gottlieb–Pontrjagin–
Thom construction associates to this situation a stable map

�.f /W YC!X�Tf ;

where Tf D Ker df W TX ! f �T Y

is the bundle of tangent vectors along the fiber, and X V is the Thom spectrum of the
virtual vector bundle V .

Associated to any cohomology theory E , then, we have a map

�.f /�W E�X�Tf
!E�Y:

If the bundle �Tf is oriented in E–theory, that is, we have a Thom class

U 2E�dX�Tf ;

where d D rank Tf , inducing an isomorphism

(8.2) E�X ŠE��dX�Tf ;
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then the composition of the Thom isomorphism (8.2) with �.f /� is the Umkehr
homomorphism

f!W E
�X !E��dY:

We have spelled this out in order to recall the role of the Thom class U in the construc-
tion of f! , since the notation does not indicate this dependence.

For example, if X is a compact manifold of dimension d , and T D TX is its tangent
bundle, then associated to the map

�X
W X !�

is the Pontrjagin–Thom map

�.�/W S0
�!X�T :

An E–orientation of �T gives an Umkehr map

�!W E
�X !E��d .�/:

The class �!.1/ 2 �dE is the “genus” of X associated to the orientation U . Actually
the term genus is appropriate only in the case that the Thom class U is an instance of
an exponential family of Thom classes, as we now explain.

To give a map of ring spectra
�W MU!E

is equivalent to giving, for every complex vector bundle V =X of rank d , an orientation

UV 2Ed .X V /;

which is exponential in the sense that
(1) if � is the trivial bundle of rank 1, then U� is the double suspension of 1 in

E2.X �/DE2.†2XC/I

(2) if V =X and W =Y are complex vector bundles of rank d and e , then

UV˚W D UV ^UW 2EdCe..X �Y /V˚W /ŠEdCe.X V
^Y W /:

The effect of � on homotopy groups is a ring homomorphism

ˆW MU�.S0/!E�.S0/:

The ring MU�.S0/ is the bordism ring of manifolds X with a complex structure on
its stable tangent bundle, and so the ring homomorphism ˆ is a genus.

Let X be such a manifold, of real dimension 2d . Thom’s theory [33] implies that

ˆ.X /D �X
! .1/:
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8.3 Twisted genera

We can apply �X
!

to classes other than 1. For example, if „ is a E–characteristic
class, then we can define a “twist” of the genus ˆ as

ˆ.X I„/
def
D �!.„.TX //:

Or, if X comes equipped with another vector bundle V , then we may form

ˆ.X I„.V //
def
D �!.„.V //:

8.4 Anomaly cancellation

A more interesting situation arises when the bundle �T (or more generally �Tf ) does
not admit a Thom class. In that case, we may hope to find another vector bundle V on
X , such that the virtual bundle V �Tf does admit a Thom class

U 2E�X V�Tf :

If so, then we may compose the Pontrjagin–Thom map �.f / with the zero section

X�Tf
!X V�Tf

to obtain a stable map
YC!X�Tf

!X V�Tf :

We write
f V

! W E
�.X /!E�.X V�Tf /!E�.X�Tf /!E�Y

for the associated Umkehr map. In the case of the map �X W X !�, we obtain a map

�X ;V
W E�.X /!E�S0;

and so we have another kind of twisted genus,

ˆ.X IV /D �
X ;V
!

.1/:

8.5 The two-variable elliptic genus as a specialization of the equivariant
Witten genus

Suppose that V is a complex vector bundle, and let k be an integer. The reader
interested only in the two-variable genus (6.5) can take k D�1 in the following. Let
T be the circle group, let yk be the one-dimensional complex representation of T in
which w 2T acts as wk , and let zD cT

1
y 2H 2BT : We write Vyk for V , considered

as a T –equivariant vector bundle using the indicated action of T �C . That is,

Vyk
D V ˝yk :
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8.6 Lemma If V is a complex vector bundle, then

cT
1 .Vyk

�V � .rank V /yk/D 0;

cT
2 .Vyk

�V � .rank V /yk/D�kzc1.V /:and

In particular, if c1.V /D 0, then

cT
2 .Vyk

�V � .rank V /yk/D 0:

8.7 Remark The Lemma implies that the map

BSU�CP1! BSU

classifying � ˝ .L� 1/ factors through BUh6i. One can see this using connective
K–theory, ku: Note that

fku
2p
.X /Š ŒX;BUh2pi�:

So L� 1 may be viewed as a class

.L� 1/ 2 fku
2
.CP1/;

while the tautological bundle � may be viewed as an element of

� 2 fku
4
.BSU/:

Thus �˝ .L� 1/ 2 fku
6
.BSU�CP1/Š ŒBSU�CP1;BUh6i�:

The same argument implies that
pY

iD1

.1�Li/ 2 fku
2p
..CP1/p/Š Œ.CP1/p;BUh2pi�;

which is one of the starting points of [5]. This sheds some light on the relationship
between our two approaches to the two-variable elliptic genus.

Proof Let d D rank.V /: Let

c D 1C c1C c2C � � �

denote the total Chern class, and let

cT
D 1C cT

1 C cT
2 C � � �

denote the total Borel Chern class. If

c.V /D
Y
.1Cxi/;

Algebraic & Geometric Topology, Volume 8 (2008)



The Jacobi orientation and the two-variable elliptic genus 531

cT .Vyk/D
Y
.1Cxi C kz/then

cT .dyk/D .1C kz/d

cT .Vyk
�V � dyk/D

Y 1Cxi C kz

.1Cxi/.1C kz/
:

Without any assumptions about c1V; we have

cT
1 .Vyk/D c1V C dkz D cT

1 .V C dyk/;

cT
1 .Vyk

�V � dyk/D 0:so

For c2; we find that

(8.8) cT
2 .Vyk/D c2V C .d � 1/kzc1V C

�
d

2

�
k2z2:

Taking V to be trivial of rank d in (8.8) gives

cT
2 .dyk/D

�
d

2

�
k2z2:

The Whitney sum formula then gives

cT
2 .V C dyk/D c2V C dkzc1V C

�
d

2

�
k2z2:

In general

(8.9) c2.V �W /D c2V � c1Vc1W � c2W C c1W 2;

which if c1V D c1W simplifies to

c2.V �W /D c2V � c2W:

In our case, this gives

cT
2 .Vyk

�V � dyk/D c2.V /C .d � 1/kzc1V C

�
d

2

�
k2z2

� c2V � dkzc1V �

�
d

2

�
k2z2

D�kzc1V:

We briefly recall some facts about the equivariant elliptic cohomology theory E DET

of Grojnowski; for more details see Grojnowski [20], Rosu [31], Ando and Basterra [3]
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and Ando [2].5 Let ƒ be the lattice

ƒD 2� iZC 2� i�;

and let C DC=ƒ: For a 2 C let

TaW C ! C

denote translation by a. If X is a T –space, then ET .X / is a sheaf of Z=2–graded
OC –algebras whose stalk at a point a 2 C of exact order k �1 is given by

(8.10)
�
T �a ET .X /

�
0
DH�T .X

T Œk�/˝H �BT OC;0;

where OC;0 is the stalk of OC at the identity, and

z 2H�BT ŠCŒz�

is regarded as an element of OC;0 via the projection

pW C! C:

Taking aD 0 gives
ET .X /

^
0 ŠHƒ�T .X /:

We also recall (see for example Grojnowski [20] or Ando [2, Lemma 7.4]) that if V is
a complex T –vector bundle V over a compact T –space X , then

E.V /
def
D E.X V /

is an invertible E.X /–module.

The main result of [3] and [2] is the construction of a Thom class in E.X �/ when � is
a virtual T –bundle with cT

1
� D 0D cT

2
�: Applied to the current situation, their results

give the following.

8.11 Proposition If c1V D 0, then the bundle Vy�1 � V � dy�1 has a canonical
Thom class

U 2 �
�
E.Vy�1/˝E.V /�1

˝E.y�1/�d
�
;

whose value in the stalk at the origin is the Borel-equivariant Thom class given by the
sigma orientation of Vy�1�V � dy�1:

5One can carry out the analysis in this section using Greenlees’s equivariant elliptic cohomology [18];
the necessary prerequisites are the subject of [4].
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In particular, if V D T D TX is the rank–d complex tangent bundle of a compact
manifold X , then we may consider the composition

S0
!X�T

!X Ty�1�T ;

where the first map is the Pontrjagin–Thom map, and the second is the relative zero
section. After desuspending by dy�1 this gives

(8.12) gW S�dy�1

!X�T�dy�1

!X Ty�1�T�dy�1

:

If c1X D 0, then Proposition 8.11 gives a class

U 2E.X Ty�1�T�dy�1

/;

which we may pull back along g . Recall the following.

8.13 Lemma E.Sy�1

/D I.0/;

and so E.S�dy�1

/D I.0/�d :

Proof It’s illuminating to give two proofs. First, consider the cofiber sequence of
T –spaces

(8.14) C�!C! Sy�1

:

Let S D spec C , and let � be the structure map

� W C ! S:

It’s easy to check using (8.10) that we have a commutative diagram

ET .C
�/  ���� ET .C/

Š

??y ??yŠ
��OS

0�

 ���� OC

in which the vertical arrows are isomorphism as indicated. It follows that

ET .S
y�1

/Š I.0/;

and the general case follows by taking tensor powers.

Alternatively, observe that (8.10) gives�
T �a ET .S

y�1

/
�

0
ŠOC;0

Algebraic & Geometric Topology, Volume 8 (2008)



534 Matthew Ando, Christopher P French and Nora Ganter

for a ¤ 0, while, letting L denote the line bundle over CP1 corresponding to the
representation y�1 ,

ET .S
y�1

/0 ŠH�..CP1/L/˝OC;0 Š I.0/0:

This is a description of the line bundle I.0/:

Let

E.X / def
D �

T;Ty�1�dy�1

!
.1/D g�U 2E.S�dy�1

/D �I.0/�d :

8.15 Proposition We have

E.X /D J.Hƒ;C=ƒ; yp/.X /D �.X;y
�1; q/;

where � is the two-variable genus of Equation (6.5).

Proof Let

c.T /D

dY
iD1

.1Cxi/:

Let w be a point of C , and suppose that z 2C is such that p.z/Dw: According to
[3, Section 6.2] or [2, Section 8.2], the class U at w is the Thom class associated to
the Euler class

dY
iD1

�.xi � z; �/

�.xi ; �/�.�z; �/
;

and we have already shown that this is the Euler class associated to the genus
�.M;y�1; q/:

8.16 Level N genera

If we know only that c1X � 0 mod N , then Lemma 8.6 shows that

c
T ŒN �
2

.Ty�1
�T � dy�1/D 0:

Noting that

ET �T T �T ŒN �X ŠEZ=n�T ŒN �X;

we make the following definition. Again let ET be Grojnowski’s equivariant elliptic
cohomology, associated to the complex curve C DC=ƒ.
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8.17 Definition Let X be an C –space. We define the T ŒN �–equivariant elliptic
cohomology of X to be

ET ŒN �.X /DET .T �T ŒN �X /;

where T �T ŒN �X is considered as a T space by acting only on the left of T .

We recall the following lemma:

8.18 Lemma ET ŒN �.�/DOC ŒN �:

More generally, if X is a T ŒN �–space, then

ET ŒN �.X /a D 0

unless a 2 C ŒN �, and if a has exact order k dividing N , then

T �a ET ŒN �.X /a ŠH�X T Œk�;

and the map

T �a ET .T �T ŒN �X /a ŠHT .T �T ŒN �X
T Œk�/!H�X T Œk�

corresponds to setting z D 0 in (8.10).

Proof The stalk of ET .Y / at a point a of exact order k �1 is

(8.19) T �a ET .Y /a DH�T .Y
T Œk�/˝H �BT OC;0:

If Y D T �T ŒN �X then Y T Œk� is empty unless kjN , and then

H�T .Y
T Œk�/DH�.BT ŒN ��X T Œk�/DH�.X T Œk�/

(recall that we are working with complex coefficients).

We still have

cT
1 .T �T ŒN � .Ty �T � dy//D 0

cT
2 .T �T ŒN � .Ty �T � dy//D 0

and so now [3] and [2] imply:

8.20 Proposition The bundle Ty�1�T � dy�1 has a canonical Thom class

UN 2

�
ET ŒN �.Ty�1/˝ET ŒN �.T /

�1
˝ET ŒN �.y

�1/�d
�
:
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We can now define

EN .X /D g�UN 2 �ET ŒN �.S
�dy�1

/:

where, as in (8.12), g is the map

gW S�dy�1

!X�T�dy�1

!X Ty�1�T�dy�1

:

Now .S�y/T ŒN � D S0;

so Lemma 8.18 implies that

ET ŒN �.S
�dy�1

/ŠOC ŒN �:

8.21 Proposition The value of EN .X / at a point a 2 C ŒN � is the level–N genus of
X , as in [21; 35], evaluated at a.

Proof The recipe for calculating g�UN at a2C ŒN � is the following [20]. Let’s write
W for our bundle

W D Ty�1
�T � dy�1:

Recall that Ta is the translation map

TaW C ! C:

The construction of ET is such that

T �a UN 2H�T ŒN �.M
W A

/:

We may calculate

(8.22) g�T �a UN 2H�T ŒN �.�/DC

using classical techniques, and this is the value of EN at a.

Let aD 2�i
N
.lCk�/; with 0� k �N � 1. According to [2, Section 9], T �a UN is the

class in

H�T ..T �T ŒN �X
W /T ŒN �/˝OC;0 ŠH�T ŒN �..T �T ŒN �X

W /T ŒN �/

whose Euler class in
H�T ..T �T ŒN �X /

T ŒN �/˝OC;0

is equal to

(8.23) exp
�
�

k

N

X
xi

�Y
i

�.xi � z� a/

�.xi/�.�z� a/
:
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By definition, the quantity g�T �a U in (8.22) is the genus associated to this expression,
with z D 0. Now observe that setting z D 0 in (8.23) gives the Euler class associated
to the level-N genus.
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