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Rings of symmetric functions
as modules over the Steenrod algebra

WILLIAM M SINGER

We write P˝s for the polynomial ring on s letters over the field Z=2 , equipped with
the standard action of †s , the symmetric group on s letters. This paper deals with the
problem of determining a minimal set of generators for the invariant ring .P˝s/†s as
a module over the Steenrod algebra A . That is, we would like to determine the graded
vector spaces Z=2˝A .P˝s/†s . Our main result is stated in terms of a “bigraded
Steenrod algebra” H . The generators of this algebra H , like the generators of the
classical Steenrod algebra A , satisfy the Adem relations in their usual form. However,
the Adem relations for the bigraded Steenrod algebra are interpreted so that Sq0 is
not the unit of the algebra; but rather, an independent generator. Our main work is to
assemble the duals of the vector spaces Z=2˝A .P˝s/†s , for all s � 0 , into a single
bigraded vector space and to show that this bigraded object has the structure of an
algebra over H .

13A50, 55S10; 18G15, 55Q45, 55T15, 18G10

1 Introduction

We write P for the polynomial ring in one variable over the finite field Z=2 and
P˝s D Z=2Œt1; :::ts � for its s–fold tensor product with itself. We grade P˝s by
assigning degree 1 to each generator. The general linear group GLs.Z=2/ acts in
the usual way on P˝s as a group of algebra automorphisms. A central problem of
invariant theory is to determine the ring of invariants .P˝s/Hs for a given subgroup
Hs �GLs.Z=2/. Because we are working over Z=2 we are interested in more than
just the ring structure of .P˝s/Hs . We also want to understand the action of the
Steenrod algebra A on the invariant ring. It is well-known how this action comes
about. P˝s is the Z=2–cohomology of the classifying space of the elementary abelian
2–group of rank s :

(1–1) P˝s
DH�.B.Z=2/�s;Z=2/:

This representation of P˝s defines it as an A–module. The Steenrod operations are
natural with respect to maps of topological spaces, so they commute with the action
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of GLs.Z=2/ on P˝s . Then for each subgroup Hs �GLs.Z=2/, the invariant ring
.P˝s/Hs is stable under the action of A, and becomes an A–module in its own right.
Then it is natural to ask: what is a minimal set of generators for .P˝s/Hs as an
A–module? Equivalently, can one write down a basis for the graded vector space:

(1–2) Z=2˝A .P
˝s/Hs :

Even in cases in which .P˝s/Hs is well understood as a ring, this problem has proved
surprisingly difficult. In the case in which Hs D feg, the trivial group, the vector
space (1–2) is completely known if s D 3: see Kameko [10] and Boardman [3]. The
case s D 4 has been treated by Kameko [9] and by Sum [24]; both manuscripts are
unpublished at the time of this writing. But when Hs D feg and s � 5, the vector
space (1–2) is not yet known. Approaches to the problem when Hs D feg, for general
s , can be found in the work of Alghamdi–Crabbe–Hubbuck [2], Crabbe–Hubbuck [5],
Carlyle–Wood [4], Meyer–Silverman [13], Nam [15], Peterson [16], Silverman [17],
Silverman–Singer [18], Wood [25; 26] and the present writer [20]. Applications to
homotopy theory are discussed by Peterson [16], and by the present writer [19]. For
the case in which Hs DGLs.Z=2/ the vector space (1–2) is known if s D 2 [19], and
if s D 3; 4 from the work of Hung–Peterson [6].

The present paper is a study of the graded vector spaces:

(1–3) Z=2˝A .P
˝s/†s ; s � 0;

where †s is the symmetric group on s letters. Work on this problem was begun by
Janfada and Wood in [7; 8]. In particular these authors find a basis for Z=2˝A.P˝3/†3 :

In the present work we assemble the duals of the graded vector spaces (1–3) for all
s � 0, into a single, bigraded vector space. Our main result, given formally in Theorem
1.3 and Theorem 1.4, is that this bigraded vector space can be given the structure of an
algebra over a “bigraded Steenrod algebra”.

In order to state our main result precisely we need to define the “bigraded Steenrod
algebra”, and distinguish it from the classical one. The bigraded Steenrod algebra H
is generated by symbols fSql

j l � 0g, and is subject to Adem relations as they are
usually written:

(1–4) SqaSqb
D

X
j�0

�
b� 1� j

a� 2j

�
SqaCb�j Sqj

I 0� a< 2b:

In interpreting these relations we understand that Sq0 is a generator on the same
footing as the others; so, for example, Sq1Sq2

D Sq3Sq0 . Because the relations
(1–4) are homogeneous of length 2 in the generators, H is graded not only by the
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superscripts of the Steenrod squares, but also by the length of a monomial in the
generators: deg.Sql/ D .l; 1/: This bigraded Steenrod algebra was introduced by
Liulevicius in [11]. Its properties were developed further by May [12] and by the
present writer [21].

The classical Steenrod algebra A is generated by symbols fSql j l � 0g and subject to
the Adem relations:

(1–5) SqaSqb
D

X
j�0

�
b� 1� j

a� 2j

�
SqaCb�j Sqj ; 0� a< 2b;

as well as the important relation Sq0 D 1. For example, Sq1Sq2 D Sq3 . A is a
singly graded algebra, with the grading determined by deg.Sql/D l . Steenrod and
Epstein [23] is a standard reference for the properties of A.

We make the following definition.

Definition 1.1 Let H be the bigraded Steenrod algebra, as defined above. By an
H–algebra we mean a bigraded Z=2–algebra � that is also a left H–module, in such
a way that:

(1) the generators Sql treat the bigrading on � according to the formula:

(1–6) Sql
W �s;t !�sCl;2t I

(2) the action of H on �, and the product on �, are related by the Cartan formula:

(1–7) Sql.˛ˇ/D
X

iCjDl

.Sqi˛/.Sqjˇ/I

(3) if ˛ 2�s0;� then:

(1–8) Sqs˛ D

(
˛2 if s D s0

0 if s > s0:

In Section 2 we will recall the context in which Liulevicius introduced his Steenrod
operations, thereby providing some motivation for the above definition.

In stating our results it is convenient to work with the duals of the vector spaces (1–1)
and (1–3). So we define a bigraded vector space � D f�s;t j s � 0; t � 0g by writing:

(1–9) �s;t DHt�s.B.Z=2/
�s;Z=2/:

(In particular, �0;� is the homology of a point.) Motivation for this choice of grading
will be given in Section 2. For each k � 0 we will write


k 2 �1;kC1 DHk.B.Z=2/;Z=2/
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for the canonical generator. The cross product:

(1–10) H�.B.Z=2/
�s;Z=2/˝H�.B.Z=2/

�s0 ;Z=2/!H�.B.Z=2/
�.sCs0/;Z=2/

makes � into a connected, bigraded algebra. We will write ˛ � ˇ for the image of
˛˝ˇ under this pairing. For each s � 0 the vector space �s;� is the dual of the vector
space P˝s , except for the shift in grading. So �s;� acquires an A–action that is dual
to the A–action on P˝s . This action is from the right and lowers internal degree. As
is well known we have the Cartan formula for Steenrod operations on cross products:

(1–11) .˛�ˇ/Sql
D

X
iCjDl

˛Sqi
�ˇSqj :

We will write .�s;�/
A for the “A–annihilated” elements of �s;� :

(1–12) .�s;�/
A
D f8˛ 2 �s;� j .˛/Sql

D 0;8l > 0g:

We assemble these graded vector spaces into a single, bigraded vector space �A by
writing .�A/s;�D .�s;�/

A . The Cartan formula (1–11) implies that �A is a subalgebra
of � .

We define a bigraded vector space Z=2˝† � by writing:

(1–13) .Z=2˝† �/s;� D Z=2˝†s
�s;�; all s � 0:

As above, 
k 2 .Z=2˝†�/1;kC1 is the generator, for each k � 0. It is easy to see that
Z=2˝† � is a commutative quotient algebra of � . We will write ˛ˇ for the product
of elements ˛; ˇ 2 Z=2˝† � . For each s � 0 the vector space .Z=2˝† �/s;� is the
dual of the vector space .P˝s/†s , except for the shift in grading. So .Z=2˝† �/s;�

acquires an A–action that is dual to the A–action on .P˝s/†s . This action is clearly
the same as that obtained from the action of A on �s;� by passage to the quotient.
Consequently we have from (1–11) a Cartan formula for the A–action on Z=2˝† � :

(1–14) .˛ˇ/Sql
D

X
iCjDl

.˛Sqi/.ˇSqj /:

Finally we write .Z=2˝† �/
A for the bigraded vector space defined by:

(1–15) ..Z=2˝† �/
A/s;� D ..Z=2˝† �/s;�/

A; all s � 0:

Here the right-hand side refers to the A–annihilated elements of .Z=2˝† �/s;� , as
in (1–12). The Cartan formula (1–14) implies that .Z=2˝† �/

A is a subalgebra of
Z=2˝† � .
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Remark 1.2 For each s � 0, ..Z=2˝† �/
A/s;� is the dual of the vector space (1–3),

except for our shift in the grading. Thus, the determination of ..Z=2˝† �/
A/s;�

would be equivalent to finding a minimal set of generators for P˝s as an A–module.

The bigraded algebra .Z=2˝† �/
A is the main subject of our paper.

We can now state our two theorems.

Theorem 1.3 There exists a left action of the bigraded Steenrod algebra H on the
bigraded algebra Z=2˝† � , such that

(1–16) Sq0
k D 
2kC1; all k � 0;

and such that Z=2˝† � becomes an H–algebra in the sense of Definition 1.1. The
action of H on Z=2˝† � that satisfies these conditions is unique.

Theorem 1.4 The subalgebra .Z=2˝† �/
A � Z=2˝† � is stable under the action

of H that is described in Theorem 1.3. Therefore .Z=2˝† �/
A itself becomes an

H–algebra.

We remark that the vector spaces .Z=2˝† �/s;� have a topological interpretation. It
is well known that the cohomology of the classifying space of the orthogonal group is
the invariant ring: H�.BO.s/;Z=2/D .P˝s/†s . Consequently:

.Z=2˝† �/s;t DHt�s.BO.s/;Z=2/; 8 s; t � 0:

Our statement that Z=2˝† � can be given the structure of an H–algebra says in
particular that the Steenrod squares treat bidegree according to the rule:

Sql
W .Z=2˝† �/s;t ! .Z=2˝† �/sCl;2t ;

and so: Sql
W Hn.BO.s/;Z=2/!H2nCs�l.BO.sC l/;Z=2/:

It would be interesting to have a geometric interpretation of these operations.

The plan of the paper is as follows. In Section 2 we describe earlier constructions
of Liulevicius [11], May [12] and the author [19] that motivate our Definition 1.1
and our Theorem 1.3 and Theorem 1.4. In Section 3 we recall from our paper [21]
some results on the structure of H . These will turn out to be helpful in the proofs of
Theorem 1.3 and Theorem 1.4. In Section 4 we prove Theorem 1.3, and in Section 5
we prove Theorem 1.4. In Section 6 we do some sample computations, showing how
the operators Sql can be applied to low dimensional elements of .Z=2˝† �/

A to
obtain interesting elements of higher degree.
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2 Motivation

The purpose of this section is to describe some earlier work of Liulevicius [11] in which
the bigraded Steenrod operations were introduced, some earlier work of May [12] on
the structure of the bigraded Steenrod algebra, and some earlier work of the author
[19] which related invariant theory to the cohomology of the singly graded Steenrod
algebra. From a strictly logical point of view this section is not prerequisite to the rest
of the paper. Nevertheless we hope it will explain the provenance of Definition 1.1,
explain how the author was led to formulate Theorem 1.3 and Theorem 1.4, and help
to place those theorems in a broader context.

We begin by recalling a construction due to Liulevicius [11]. Let C be any graded,
cocommutative Hopf algebra over Z=2. We write:

(2–1) ExtC.Z=2;Z=2/D fExts;t
C .Z=2;Z=2/ j s � 0; t � 0g

for the usual bigraded cohomology ring of C . Here s labels the homological degree,
and t labels the internal degree that comes from the grading of C . In [11], Liulevicius
constructs Steenrod squaring operations:

(2–2) Sql
W Exts;t

C .Z=2;Z=2/! ExtsCl;2t
C .Z=2;Z=2/; l � 0:

(Actually Liulevicius is working over odd primes in [11], but the analogous constructions
at pD 2 are easily inferred from his work. They are written out explicitly, for example,
in May [12], Milgram [14] and our book [22].) The definition of the operations
(2–2) uses “cup-i products” on a projective resolution of Z=2 as a C–module. In
particular one has immediately from the definitions that if ˛ 2 Exts

0;�
C .Z=2;Z=2/ then

the following relations hold:

(2–3) Sqs˛ D

(
˛2 if s D s0

0 if s > s0:

Further, May shows in [12] that the operations (2–2) satisfy the Cartan formula (1–7)
and the Adem relations (1–4), without the relation Sq0

D 1. Thus, the work of
Liulevicius and May can be summarized by saying that, under the operations (2–2),
the cohomology of an arbitrary cocommutative Hopf algebra over Z=2 becomes an
H–algebra, in the sense of Definition 1.1.

The operation Sq0 in (2–2) has an interesting description. Since the Hopf algebra C
is cocommutative one can define the degree-halving “Verschiebung” homomorphism
V W C! C . (If C is locally finite one can describe V as dual to the Frobenius mapping
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on the dual of C .) The Verschiebung satisfies: V .xy/D V .x/V .y/ for all x;y 2 C ,
and so induces a homomorphism of cohomology groups:

(2–4) Ext.V /W Exts;t
C .Z=2;Z=2/! Exts;2t

C .Z=2;Z=2/; s � 0; t � 0:

It is not hard to show that the operation Sq0 of (2–2) is given by:

(2–5) Sq0
D Ext.V /:

A proof can be found in [22, Proposition 1.114].

In the paper [1], J F Adams invented his celebrated spectral sequence that converges
to the stable homotopy groups of spheres, completed at p D 2. Adams showed that
the E2 –term of his spectral sequence could be identified with ExtA.Z=2;Z=2/, the
cohomology ring of the classical, singly-graded Steenrod algebra A. This cohomology
ring is still largely unknown. In the paper [19] the present writer studied the relationship
of the cohomology of the Steenrod algebra A to the action of A on the polynomial
rings P˝s . The present work originated in some of the ideas of that paper. We review
here the parts that are relevant.

If C is any algebra (assumed graded here), and if M;N; and R are (graded) left C–
modules, Yoneda defines in [27] the “composition pairing”. This is a degree-preserving
map of bigraded vector spaces:

(2–6) ExtC.N;R/˝ExtC.M;N /! ExtC.M;R/:

Of interest to us now are the special cases:

(2–7) ExtA.P˝s;Z=2/˝ExtA.Z=2;P˝s/! ExtA.Z=2;Z=2/

for all s � 0. In [19] this writer defined for each s � 0 a particular cohomology class:

(2–8) �s 2 Exts;s
A .Z=2;P

˝s/;

and defined a homomorphism of graded Z=2–vector spaces, of degree s :

(2–9) fsW Ext0;�
A .P˝s;Z=2/! Exts;�

A .Z=2;Z=2/

by setting:

(2–10) fs.˛/D ˛ ı �s

for each ˛ 2 Ext0;�.P˝s;Z=2/. Here we are writing ˛ ı �s for the image of ˛˝ �s

under the composition pairing (2–7). We can make the identifications:

(2–11) Ext0;�
A .P˝s;Z=2/D Hom�A.P

˝s;Z=2/D .�s;�/
A;
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where .�s;�/
A is an in (1–12). Using (2–11) and our definition (1–9) of the bigrading on

� , we see that for each s� 0 the mapping (2–9) can be interpreted as a homomorphism
of graded vector spaces of degree 0:

(2–12) fsW .�s;�/
A
! Exts;�

A .Z=2;Z=2/:

In particular it is easy to compute f1 , and we have done so in [19]. This mapping is
an isomorphism of vector spaces, and is given by:

(2–13) f1.
2i�1/D hi ; i � 0:

Here hi 2 Ext1;2i

A .Z=2;Z=2/ is the well-known generator: the element represented by
�2i

1
in the cobar construction on the dual of A.

The collection ffs j s � 0g can be interpreted as a homomorphism of bigraded vector
spaces:

(2–14) f W �A! ExtA.Z=2;Z=2/:

of degree .0; 0/. In [19] we show that f is actually a homomorphism of bigraded
algebras [19, Proposition 4.2].

Knowing that ExtA.Z=2;Z=2/ is an H–algebra, and knowing that f is a homomor-
phism of algebras, one is naturally led to ask the following question.

Question 2.1 Is it possible to define an action of H on �A in such a way that �A is
an H–algebra, and f becomes a morphism of H–algebras?

Since we do not know a vector basis for �A , Question 2.1 is probably unanswerable,
unless one asks first an apparently easier question.

Question 2.2 Is it possible to define an action of H on � , in such a way that:

(1) � becomes an H–algebra;

(2) the subalgebra �A�� is stable under the action of H , so that �A also becomes
an H–algebra;

(3) f is a morphism of H–algebras.

We will see that the answer to both questions is almost certainly no.

Observe that one has in ExtA.Z=2;Z=2/ the relations Sq0.hi/D hiC1 for all i � 0.
So in view of (2–13), the requirement that f be a H–linear map forces the equation
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Sq0.
2i�1/D 
2iC1�1 for each i � 0. Trying to answer Question 2.2 in the affirmative
one is therefore led to a provisional definition:

(2–15) Sq0.
k/D 
2kC1; k � 0:

On the other hand the requirement that � be an H–algebra forces:

(2–16) Sql.
k/D

(

k � 
k ; if l D 1

0 if l > 1.

Now, the equation Sq1Sq1
D 0 is one of the Adem relations that define the algebra

H . Calculating from the above formulas and imposing the Cartan formula we get:

Sq1.Sq1
k/D Sq1
k �Sq0
k CSq0
k �Sq1
k(2–17)

D 
k � 
k � 
2kC1C 
2kC1 � 
k � 
k :

The result of this calculation is surely not zero in � , so the attempt via (2–15) and
(2–16) to define an action of H has failed.

The attempt fails for yet another reason. The squaring operations on � that are defined
by (2–15) and (2–16), and by the Cartan formula, fail to carry �A to �A . For example,
one checks easily that 
1 � 
2C 
2 � 
1 lies in �A . Then (2–15) and (2–16) and the
Cartan formula give:

(2–18) Sq1.
1�
2C
2�
1/D
1�
1�
5C
3�
2�
2C
2�
2�
3C
5�
1�
1:

But the element on the right-hand side of (2–18) does not lie in �A : it detects the
polynomial Sq1.t3

1
t2
2

t3/ 2 P˝3 . So the obvious attempt to answer Question 2.2 in the
affirmative does not succeed.

How could our goals be modified to give a positive result? A moment’s consideration
shows that if (2–17) were interpreted, not as an equation in � , but rather as an equation
in Z=2˝† � , then the right hand side would read “zero”, as required by the Adem
relations in H . Similarly, if (2–18) were interpreted as an equation in Z=2˝†� then it
would simply read Sq1.0/D 0, and would not provide any obstruction to our defining
an action of H on .Z=2˝† �/

A . So we are led to modify Questions 2.1 and 2.2.

Question 2.3 Is it possible to define an action of H on Z=2˝† � , in such a way
that:

(1) Equation (2–15) is satisfied;

(2) Z=2˝† � becomes an H–algebra;

(3) the subalgebra .Z=2˝† �/
A is stable under the action of H , so that

.Z=2˝† �/
A becomes an H–algebra.
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In the remainder of the paper we will prove Theorem 1.3 and Theorem 1.4 and so
answer this question in the affirmative.

3 Structure of the bigraded Steenrod algebra

We would like to construct proofs of Theorem 1.3 and Theorem 1.4 that are free of
computation. For this purpose we develop some information in this section about the
structure of the bigraded Steenrod algebra H . In fact, knowing that the operations
(2–2) satisfy the Cartan formula (1–7), one is naturally led to ask if the association
Sqk
!
P

iCjDk Sqi
˝Sqj extends to some kind of coproduct on H that is compatible

with the multiplication. The precise structure one needs to accommodate such a
coproduct has been worked out in [21], and the first few definitions and results in this
section are quoted from that paper. The main result of this section is Equation (3–5).

Definition 3.1 Fix a commutative ground ring k . By a “k –algebra with coproducts”
we mean a bigraded k –algebra DD fDs;t j s; t � 0g, together with degree-preserving
k –linear mappings �W D�;t ! k and  t W D�;t !D�;t ˝D�;t , defined for each t � 0.
We impose the following requirements.

(1) For each t � 0, D�;t is a graded coalgebra, with counit �t and coproduct  t .

(2) The algebra unit �W k!D�;0 is a map of coalgebras.

(3) For each pair of integers t; t 0 � 0, the multiplication �W D�;t ˝D�;t 0!D�;tCt 0

is a map of graded coalgebras.

Let H be the bigraded Steenrod algebra, as defined in Section 1. The main result of
[21] is the following proposition.

Proposition 3.2 The bigraded Steenrod algebra H admits a unique structure as a
Z=2–algebra with coproducts, with  1W H�;1!H�;1˝H�;1 given by:

(3–1)  1.Sql/D
X

iCjDl

Sqi
˝Sqj :

Note that the counit �t W H�;t ! Z=2 is necessarily given by:

(3–2) �.Sql1Sql2 : : :Sqlt /D

(
1 if l1 D l2 D : : : lt D 0;

0 otherwise:

In Section 1 we defined H by giving a presentation for it as an algebra. We will find it
useful to “present” H as an algebra with coproducts. To this end, we write F for the
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free associative algebra (“tensor algebra”) generated by the symbols fSql
j l � 0g, and

bigraded by the rule deg.Sql/D .l; 1/. For each t � 0 we make F�;t into a coalgebra,
defining the coproduct  t W F�;t ! F�;t ˝F�;t by:

(3–3)  t .Sql1 : : :Sqlt /D
X

i1Cj1Dl1

� � �

X
itCjtDlt

.Sqi1 : : :Sqit /˝ .Sqj1 : : :Sqjt /:

We define the counit �W F�;t ! Z=2 by a formula that is formally identical to (3–2).
It is easy to check that these definitions make F�;t into a graded coalgebra, for each
t � 0. It is also easy to see that the product F�;t ˝F�;t 0 ! F�;tCt 0 is a morphism of
coalgebras, for all t; t 0 � 0. We conclude that our definitions make F into an algebra
with coproducts.

We write � W F !H for the unique homomorphism of bigraded algebras that carries
Sql
2F to Sql

2H . For each t � 0 it is clear that � W F�;t !H�;t is a morphism of
coalgebras; hence, that � W F !H is a morphism of algebras with coproducts.

For each pair of integers a; b with 0� a< 2b we define an element R.a; b/ of F by
writing:

(3–4) R.a; b/D SqaSqb
C

X
j�0

�
b� 1� j

a� 2j

�
SqaCb�j Sqj 0� a< 2b:

We write I � F for the homogeneous, two-sided ideal that is generated by the el-
ements (3–4). For each t � 0 we consider the following diagram of vector space
homomorphisms:

0 - I�;t - F�;t
� - H�;t - 0

0 - I�;t ˝F�;t CF�;t ˝ I�;t - F�;t ˝F�;t

 t

?

� ˝�
- H�;t ˝H�;t

 t

?
- 0:

The exactness of the top row is the definition of H; the exactness of the bottom row
follows by elementary linear algebra, and the commutativity of the square follows from
(3–3) and Proposition 3.2. It follows that for each t � 0 we have:

(3–5)  t .I�;t /� I�;t ˝F�;t CF�;t ˝ I�;t :

This result will be useful to us in the next section, in defining the action of H on
.Z=2˝† �/.
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4 Action of H on Z=2 ˝† �

The purpose of this section is to prove Theorem 1.3.

We begin by establishing vector bases for � and Z=2˝† � . As is well known one
has H�.B.Z=2/;Z=2/D Spanf 
k j k � 0g, with 
k 2Hk.B.Z=2/;Z=2/. This is an
algebra of divided powers under Pontryagin product. Thus our choice of the letter
“gamma” to denote the generators. However, this Pontryagin product will play no
further role in our work. On the other hand the cross product (1–10) will be crucial for
us. From the Eilenberg–Zilber and Künneth theorems we have:

(4–1) H�.B.Z=2/
�s;Z=2/D Spanf
i1

� 
i2
� � � � � 
is

j i1; i2; : : : is � 0g:

It follows from our definition (1–9) that � D Tensf
0; 
1; : : : ; 
s; : : : g, the free asso-
ciative algebra on the symbols f
k j k � 0g, bigraded according to the rule: deg.
k/D

.1; kC 1/.

The effect of dividing �s;� by the action of the symmetric group †s is to identify any
two elements of the basis (4–1) that can be obtained from one another by permutation
of the factors. So we have from the definition (1–13):

(4–2) Z=2˝† � D Z=2Œ
0; 
1; : : : ; 
k ; : : : �;

the polynomial algebra on the symbols f
k j k � 0g, with deg.
k/D .1; kC 1/.

Our next task is to define an action of H on Z=2˝† � that satisfies the conditions of
Theorem 1.3. We recall from Section 3 the free algebra F on the symbols fSql

j l � 0g.
We will begin by defining an appropriate action of F on Z=2˝† � , and then show
that this action passes to an action of the quotient algebra HD F=I .

For the action of H on Z=2˝† � we will need:

(4–3) Sql
k D

8̂<̂
:

2kC1 if l D 0


 2
k

if l D 1

0 if l > 1:

So we impose these conditions on the action of F . We will also want the action of H
to obey the Cartan formula (1–7), so we begin by imposing this requirement on the
action of F . We are forced to set:

(4–4) Sql.
 a
k /D

�
a

l

�

 2l

k 
 a�l
2kC1 8 a; k; l � 0:
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Imposing the Cartan formula one more time leads to our definition of the action of F
on Z=2˝† � :

(4–5) Sql.

a0

0



a1

1
: : : 
 am

m /

D

X
i0C:::imDl

�
a0

i0

��
a1

i1

�
: : :

�
am

im

�
.


i0

0
: : : 
 im

m /2.

a0�i0

1



a1�i1

3
: : : 


am�im

2mC1
/

for all l;m� 0; a0; : : : am � 0.

We arrived at (4–5) by applying the Cartan formula to particular kinds of products.
However, one must check that the Cartan formula holds in general.

Proposition 4.1 The action of F on Z=2˝† � that is defined by (4–5) obeys the
Cartan formula (1–7) for all l � 0 and all ˛; ˇ 2 Z=2˝† � .

The proof is a simple computation that uses a well-known property of binomial coeffi-
cients. More generally we have the following result.

Proposition 4.2 Suppose the coproduct  t W F�;t ! F�;t ˝ F�;t maps a given
X 2 F�;t according to:

(4–6)  t .X /D
X

i

Xi ˝X 0i :

Then for any ˛; ˇ 2 Z=2˝† � one has:

(4–7) X.˛ˇ/D
X

i

Xi.˛/X
0
i .ˇ/:

The proof is by induction on t . The case t D 1 is Proposition 4.1. One carries out the
inductive step by appeal to the fact that the multiplication F�;1˝F�;t�1! F�;t is a
morphism of coalgebras.

Corollary 4.3 The action of F on Z=2˝† � satisfies:

(4–8) Sql.˛2s

/D

(
.Sql=2s

˛/2
s

if 2sjl;

0 otherwise;

for all l; s � 0 and all ˛ 2 Z=2˝† � .
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This follows immediately from Proposition 4.1 and the commutativity of the algebra
Z=2˝† � . As an immediate consequence of this result, and Equation (4–3) we have
for all l; k; s � 0:

(4–9) Sql.
 2s

k /D

8̂<̂
:

 2s

2kC1
if l D 0


 2sC1

k
if l D 2s

0 otherwise :

Corollary 4.4 Let Y 2 F be any monomial in the generators fSql
jl � 0 g, and let

j � 0 be an integer. Then either Y .
j /D 0 or there exist integers k � j and s � 0 for
which Y .
j /D 


2s

k
.

This follows from (4–9) by induction on the length of the monomial Y in the generators.

We want to pass from the action of F on Z=2˝† � that we have just defined, to an
action of H . So we need to show that:

(4–10) I.Z=2˝† �/D 0;

where I is the two-sided ideal of F that is generated by the elements (3–4). We start
with the following proposition.

Proposition 4.5 Let a; b; s; k be integers with 0� a< 2b , and 0� k; s . Then:

(4–11) R.a; b/
 2s

k D 0:

Proof Consider first the case b ¤ 2s . Then we must show that:

(4–12)
X
j�0

�
b� 1� j

a� 2j

�
SqaCb�j Sqj .
 2s

k /D 0:

But according to (4–9) the only terms in the sum that could possibly be nonzero are
those for which either j D 0 or j D 2s . We will show that both terms are in fact zero.
For the case j D 0 we must show that:

(4–13)
�

b� 1

a

�
SqaCb.
 2s

2kC1/D 0:

We note that SqaCb.
 2s

2kC1
/ could be nonzero only if aC b D 2s . But if aC b D 2s

and b ¤ 2s then it is easy to show by using properties of binomial coefficients modulo
2, as in [23, Lemma 2.6], that

�
b�1

a

�
D 0 . So (4–13) is true. We must next consider

the term j D 2s in the sum (4–12). We must show that:

(4–14)
�

b� 1� 2s

a� 2sC1

�
SqaCb�2s

.
 2sC1

k /D 0:
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According to (4–9) we need only consider the cases aCbD 2s and aCbD 2sC2sC1 .
In the former case (4–14) is surely true, because the lower entry in the binomial
coefficient is negative. In the latter case the lower entry in the binomial coefficient is
again negative, because the statements aCbD 2sC2sC1 and a< 2b imply a< 2sC1 .
So (4–11) has been established in the case b¤ 2s . We consider finally the case bD 2s .
We have from (4–9):

(4–15) SqaSq2s

.
 2s

k /D Sqa.
 2sC1

k /D

(

 2sC1

2kC1
if aD 0

0 otherwise :

(The second case of (4–9) will not occur here, since we are assuming a< 2b .) So in
order to show that (4–11) holds we must show:

(4–16)
X
j�0

�
2s � 1� j

a� 2j

�
SqaC2s�j Sqj .
 2s

k /D

(

 2sC1

2kC1
if aD 0;

0 if 0< a< 2sC1:

The case aD 0 is obvious, since only the term j D 0 will contribute to the sum. For
the case a> 0 we know from (4–9) that Sqj .
 2s

k
/ can be nonzero only if either j D 0

or j D 2s . But if j D 2s then a� 2j < 0 and the binomial coefficient vanishes. So
we need only consider the term in the sum for which j D 0. It will suffice to show
that SqaC2s

Sq0.
 2s

k
/D SqaC2s

.
 2s

2kC1
/D 0. But since a > 0 this is obvious from

(4–9).

We continue toward a proof of (4–10) with the following proposition.

Proposition 4.6 Let X 2 I be any element of the ideal I , and let j � 0. Then
X.
j /D 0.

Proof It suffices to consider the case in which X D R.a; b/Y for any Y 2 F and
0 � a < 2b . If Y .
j / D 0 we are done. Otherwise we have from Corollary 4.4
that X.
j / D R.a; b/.
 2s

k
/ for some integers k; s � 0, so our result follows from

Proposition 4.5.

Now we can prove (4–10).

Proposition 4.7 Let ˛ be any element of Z=2˝†� , and suppose that X 2F belongs
to the ideal I . Then X.˛/D 0.

Proof Supposing ˛ 2 .Z=2˝† �/s;� , we will prove the result by induction on s .
The case s D 1 is just the previous proposition. Suppose the result proved for all
˛ 2 .Z=2˝†�/r;� for all r with 1� r < s , for some s � 2. Given ˛ 2 .Z=2˝†�/s;�
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we can write ˛ D 
jˇ for some j � 0 and some ˇ 2 .Z=2˝† �/s�1;� . Further, by
Equation (3–5) we can write:  .X / D

P
i Xi ˝X 0i , where for each index i either

Xi 2I or X 0i 2I . If we then use the right-hand side of (4–7) to expand X.˛/DX.
jˇ/

it is clear from our inductive assumption that X.˛/D 0.

Proof of Theorem 1.3 By Proposition 4.7, the action of F upon Z=2˝† � that is
defined by (4–5) passes to an action of the quotient algebra HD F=I: This quotient
action satisfies all the requirements of Theorem 1.3. For example, the action of H
satisfies the Cartan formula, because the action of F does (Proposition 4.1). That we
have satisfied the requirement that Sqs˛D˛2 if ˛ 2 .Z=2˝†�/s;� is clear from (4–5).
In fact, suppose ˛D 
 a0

0



a1

1
: : : 


am
m with a0C� � �CamD s . Taking lD s in (4–5) one

sees that the product
�
a0

i0

��
a1

i1

�
: : :
�
am

im

�
is nonzero if and only if i0 D a0; : : : im D am .

So Sqs˛ D ˛2 . The uniqueness of the action of H satisfying the requirements of
Theorem 1.3 is also clear. In fact, since the action satisfies the Cartan formula (1–7), it
is uniquely determined by the values of the Sql upon the algebra generators 
k , as
specified in (4–3).

5 Action of H on .Z=2 ˝† �/A

The purpose of this section is to prove Theorem 1.4.

Recall from Section 1 that we have defined a right action of A, the singly graded
Steenrod algebra, on the bigraded vector space Z=2˝† � . We review here some
details about this action. For each s � 0, A is acting on the right of .Z=2˝† �/s;� ,
and lowers the internal degree. Since the action of A on Z=2˝†� satisfies the Cartan
formula (1–14), and since Z=2˝† � is generated as an algebra by .Z=2˝† �/1;� ,
the action of A on .Z=2˝† �/s;� for each s � 0 is completely determined by its
action on .Z=2˝† �/1;� . But this is just the right action of A on the homology of
real projective space, so we record:

(5–1) .
k/Sqp
D

�
k �p

p

�

k�p; k;p � 0:

Theorem 1.4 will follow immediately from the following technical result, which de-
scribes how the actions of A and H on Z=2˝† � commute. The reader will notice
the several places in the proof where we must use the commutativity of the algebra
Z=2˝† � . The argument would not work if, rather than working in Z=2˝† � , we
were working in � .

In the diagram accompanying Proposition 5.1 we intend the symbol Sqp=2 to mean
“zero” if p is odd.
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Proposition 5.1 For all values of s; t; l;p � 0 the diagram commutes:

(5–2)

.Z=2˝† �/s;t
Sql

- .Z=2˝† �/sCl;2t

.Z=2˝† �/s;t�p
2

Sqp=2

?

Sql
- .Z=2˝† �/sCl;2t�p:

Sqp

?

Proof We consider first the case in which p is odd; we must show that for each
˛ 2 .Z=2˝† �/s;� we have:

(5–3) .Sql˛/Sqp
D 0 if l � 0; p odd:

The proof is by induction on s . If s D 1 we have ˛ D 
k for some k � 0. Since
Sql.
k/D 0 if l > 1, we need to check only the cases l D 0; 1. If l D 0 we have from
(5–1):

.Sq0
k/Sqp
D .
2kC1/Sqp

D

�
2kC 1�p

p

�

2kC1�p:

The binomial coefficient is zero modulo 2 if p is odd, so (5–3) is true. If l D 1 we
have .Sq1
k/Sqp D .
 2

k
/Sqp . But if p is odd the Cartan formula (1–14) implies

that .
 2
k
/Sqp D 0, so (5–3) is satisfied in this case as well. Now suppose we have

proved (5–3) for all ˛ 2 .Z=2˝† �/r;� for all r with 1 � r < s for some s � 2.
Let ˛ 2 .Z=2˝† �/s;� be given. Then we can write ˛ D 
kˇ for some k � 0 and
some ˇ 2 .Z=2˝† �s�1;�/. Then Sql˛ D .Sq0
k/.Sqlˇ/C .Sq1
k/.Sql�1ˇ/, so
by (1–14):

.Sql˛/Sqp
D

X
aCbDp

Œ.Sq0
k/Sqa� � Œ.Sqlˇ/Sqb �(5–4)

C

X
aCbDp

Œ.Sq1
k/Sqa� � Œ.Sql�1ˇ/Sqb �:

But p is odd, so that in each term of each sum, at least one of the integers a; b must
be odd. So by the inductive hypothesis we have .Sql˛/Sqp D 0, as claimed.

We consider next the case in which p is even; say p D 2q for some q � 0. We will
prove the commutativity of (5–2) by induction on s . If s D 1 we need only consider
the cases l D 0; l D 1. In case l D 0 we find from (5–1):

(5–5) .Sq0
k/Sqp
D .
2kC1/Sq2q

D

�
2kC 1� 2q

2q

�

2kC1�2q:
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On the other hand,

(5–6) Sq0Œ.
k/Sq
p
2 �D

�
k � q

q

�
Sq0
k�q D

�
k � q

q

�

2kC1�2q:

The binomial coefficients on the right-hand sides of equations (5–5) and (5–6) are
equal modulo 2, so we have shown commutativity of (5–2) if s D 1; l D 0;p even.
If s D 1; l D 1 and p D 2q we use (1–8) and (1–14), and the commutativity of the
algebra Z=2˝†� : .Sq1
k/Sq2q D .
 2

k
/Sq2q D Œ.
k/Sqq �2DSq1Œ.
k/Sqq �. So

the commutativity of (5–2) is established in this case as well. Now we proceed with
the inductive step. Writing p D 2q we assume that the equation

(5–7) .Sql˛/Sq2q
D Sql Œ.˛/Sqq �

has been established for all ˛ 2 .Z=2˝† �/r;� , for all r with 1� r � s�1, for some
s � 2. Let ˛ 2 .Z=2˝† �/s;� be given. We write ˛D 
kˇ for some k � 0 and some
ˇ 2 .Z=2˝† �s�1;�/. We compute using the Cartan formulas (1–7) and (1–14):

.Sql˛/Sq2q
D .Sq0
k �SqlˇCSq1
k �Sql�1ˇ/Sq2q

D

X
aCbDq

Œ.Sq0
k/Sq2a
� .Sqlˇ/Sq2b

C .Sq1
k/Sq2a
� .Sql�1ˇ/Sq2b �;(5–8)

where we have also used the newly established (5–3). So by (1–7) and (1–14) and the
inductive hypothesis we have:

.Sql˛/Sq2q
D

X
aCbDq

ŒSq0.
kSqa/ �Sql.ˇSqb/CSq1.
kSqa/ �Sql�1.ˇSqb/�

D

X
aCbDq

Sql.
kSqa
�ˇSqb/D Sql

X
aCbDq

.
kSqa
�ˇSqb/(5–9)

D Sql Œ.
kˇ/Sqq �D Sql Œ.˛/Sqq �:

This completes the inductive proof of (5–7), and the proof of Proposition 5.1.

Proof of Theorem 1.4 That the subalgebra .Z=2˝† �/
A � Z=2˝† � is stable

under the action of H follows immediately from Proposition 5.1.

6 Sample computations

We want to write down some interesting examples of the action of H on elements
of .Z=2˝† �/

A . First we need elements of .Z=2˝† �/
A ! One family is easily

identified. A monomial ˛ 2 Z=2˝† � is called a “spike” if it has the form:

(6–1) ˛ D 
2p1�1
2p2�1 � � � 
2ps�1
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for integers p1;p2 � � �ps � 0. It is immediately clear from (5–1) that any spike is A–
annihilated (here of course we are using properties of binomial coefficients modulo two,
as in [23, Lemma 2.6]). Under the pairing of the vector space ..Z=2˝†�/

A/s;� with its
dual, the spikes detect the elements of Z=2˝A .P˝s/†s that are called “symmetrized
spikes” by Janfada and Wood in [8].

For any l � 0 we have from (4–3) and the Cartan formula:

(6–2) Sql˛ D
X

0�i1�1

� � �

X
0�is�1

Sqi1
2p1�1 � � �Sqis
2ps�1

where the sum is over all sequences of zeros and ones fi1; � � � isg with i1C � � � is D l .
But Sq0
2p�1 D 
2pC1�1 and Sq1
2p�1 D .
2p�1/

2 , so it is clear from (6–2) that
the operations of H upon .Z=2˝† �/

A carry spikes to linear combinations of spikes.

We have recorded this result in the interests of completeness; but the most interesting
elements of .Z=2˝† �/

A are those which are not linear combinations of spikes. We
get some examples by writing duals of some of the elements in Z=2˝A .P˝3/†3 that
are found in [8] by Janfada and Wood. Then we will see that the algebra H can act
nontrivially on these dual classes. We will adopt from [8] the notation �.f / for the
“symmetrization” of a monomial f 2P˝s . �.f / is the smallest symmetric polynomial
in P˝s that contains f as a term.

Consider ˛ 2 .Z=2˝† �/3;10 defined by: ˛ D 
3

2
2
C 
5


2
1

. This element is clearly
A–annihilated, since we have .
3


2
2
/Sq1 D .
5


2
1
/Sq1 D 0 and .
3


2
2
/Sq2 D

.
5

2
1
/Sq2 D 
3


2
1

from (5–1). The element ˛ detects the element

�.t3
1 t2

2 t2
3 / 2 ŒZ=2˝A .P

˝3/†3 �

of [8, Theorem 1.2], under the pairing of a vector space with its dual:

(6–3) Œ..Z=2˝† �/
A/3;�� ˝ ŒZ=2˝A .P

˝3/†3 �! Z=2:

We can generate more elements in ..Z=2˝† �/
A/3;� by operating repeatedly upon ˛

with the bigraded Steenrod square Sq0 . Using (4–3) we find:

(6–4) .Sq0/
q

˛ D 
2qC2�1

2
2qC2qC1�1

C 
2qC2C2qC1�1

2
2qC1�1

; q � 0:

Under the pairing (6–3), .Sq0/
q

˛ detects the element

�.t2qC2�1
1 t2qC2qC1�1

2
t2qC2qC1�1
3

/

of [8, Theorem 1.2].
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One is naturally interested in the result of applying the higher squaring operations to
˛ . From (4–3) and the Cartan formula we get:

Sq1˛ D .Sq1
3/.Sq0
 2
2 /C .Sq1
5/.Sq0
 2

1 /D .

2
3 /.


2
5 /C .


2
5 /.


2
3 /D 0:

However:

Sq2˛ D .Sq0
3/.Sq2
 2
2 /C .Sq0
5/.Sq2
 2

1 /

D .Sq0
3/.Sq1
2/
2
C .Sq0
5/.Sq1
1/

2
D 
7


4
2 C 
11


4
1 ;

a nonzero element of ..Z=2˝† �/
A/5;20 . More generally we find for each r � 1:

Sq2r

Sq2r�1

� � �Sq2˛ D 
2rC2�1

2rC1

2 C 
2rC2C2rC1�1

2rC1

1 :

More generally still we can calculate the results of applying the “admissible” monomial
Sq2r

Sq2r�1

� � �Sq2 to the element .Sq0/
q

˛ 2 ..Z=2˝† �/
A/3;�/ by using the fact

that Sq0 lies in the center of H:

Sq2r

Sq2r�1

� � �Sq2.Sq0/
q

˛ D .Sq0/
q

Sq2r

Sq2r�1

� � �Sq2˛

D 
2rCqC2�1

2rC1

2qC1C2q�1
C 
2rCqC2C2rCqC1�1


2rC1

2qC1�1
;(6–5)

a nonzero element of ..Z=2˝† �/
A/.2rC1C1;10�2qCr / . If we write

ˇ.r; q/D Sq2r

Sq2r�1

� � �Sq2.Sq0/
q

˛

for all r � 1; q � 0, and ˇ.0; q/ D .Sq0/
q

˛ , then the set fˇ.r; q/ j r � 0; q � 0g is
linearly independent in .Z=2˝† �/

A . Indeed, different pairs .r; q/ correspond to
different bidegrees.
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