
Algebraic & Geometric Topology 8 (2008) 693–728 693

Hochschild homology relative to a family of groups

ANDREW NICAS

DAVID ROSENTHAL

We define the Hochschild homology groups of a group ring ZG relative to a family
of subgroups F of G . These groups are the homology groups of a space which can
be described as a homotopy colimit, or as a configuration space, or, in the case F is
the family of finite subgroups of G , as a space constructed from stratum preserving
paths. An explicit calculation is made in the case G is the infinite dihedral group.

16E40, 55R35, 19D55

Introduction

The Hochschild homology of an associative, unital ring A with coefficients in an A–A

bimodule M is defined via homological algebra by HH�.A;M / WDTorA˝Aop

� .M;A/,
where Aop is the opposite ring of A. In the case ADZG , the integral group ring of
a discrete group G , and M DZG , the Hochschild homology groups HH�.ZG/ WD

HH�.ZG;ZG/ have the following homotopy theoretic description. The cyclic bar
construction associates to a group G a simplicial set N cyc.G/ whose homology is
HH�.ZG/. Viewing G as a category, G, consisting of a single object and with
morphisms identified with the elements of G , consider the functor N from G to the
category of sets given by N.�/D G and, for a morphism g 2 G DMorG.�;�/, the
map N.g/W G!G is conjugation, sending x to g�1xg . The geometric realization of
N cyc.G/ is homotopy equivalent to hocolim N , the homotopy colimit of N . There is
also a natural homotopy equivalence jN cyc.G/j!L.BG/ (see Loday [12, Theorem
7.3.11]), where BG is the classifying space of G and L.BG/ is the free loop space of
BG , ie, the space of continuous maps of the circle into BG . In particular, there are
isomorphisms:

HH�.ZG/ Š H�.hocolim N / Š H�.L.BG//:

A family of subgroups of a group G is a nonempty collection of subgroups of G

that is closed under conjugation and finite intersections. In this paper we define the
Hochschild homology of a group ring ZG relative to a family of subgroups F of G ,
denoted HHF

� .ZG/. This is accomplished at the level of spaces. We define a functor
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NF W Or.G;F/!CGH where Or.G;F/ is the orbit category of G with respect to F
and CGH is the category of compactly generated Hausdorff spaces. By definition,
HHF

� .ZG/ WDH�.hocolim NF /. If F is the trivial family, ie, contains only the trivial
group, then N ŠNF and so HHF

� .ZG/DHH�.ZG/.

For a discrete group G and any family F , let EFG be a universal space for G –actions
with isotropy in F . That is, EFG is a G –CW complex whose isotropy groups belong
to F and for every H in F , the fixed point set .EFG/H is contractible. Given a
G –space X , let F.X / be the configuration space of pairs of points in X which lie on
the same G –orbit. This space inherits a G –action via restriction of the diagonal action
of G on X �X .

Suppose that G is countable and that the family F of subgroups is also countable.

Theorem A There is a natural homotopy equivalence hocolim NF 'GnF.EFG/.

Indeed, this homotopy equivalence is a homeomorphism for an appropriate model of
the homotopy colimit (see Theorem 3.7 and Corollary 3.8).

Specializing to the case where F is the family of finite subgroups of G , we write
EG WD EFG and BG WD GnEG . Let P m

sp.BG/ denote the space of marked stratum
preserving paths in BG consisting of stratum preserving paths in BG (with the orbit
type partition) whose endpoints are “marked” by an orbit of the diagonal action of G

on EG �EG . We show (see Theorem 4.26(i)):

Theorem B There is a natural homotopy equivalence hocolim NF ' P m
sp.BG/.

Theorem B is a consequence of Theorem A and a homotopy equivalence GnF.X /'

P m
sp.GnX /, which is valid for any proper G –CW complex X (see Theorem 4.20). The

Covering Homotopy Theorem of Palais (Theorem 4.7) plays a key role in the proof of
the latter result.

If EG satisfies a certain isovariant homotopy theoretic condition then P m
sp.BG/ is

homotopy equivalent to a subspace Lm
sp.BG/� P m

sp.BG/, which we call the marked
stratified free loop space of BG (see Theorem 4.26(ii)). We show that this condition is
satisfied for appropriate models of EG in the following cases:

(1) G is torsion free (see Remark 4.25); note that in this case EGD EG , a universal
space for free proper G –actions.

(2) G belongs to a particular class of groups that includes the infinite dihedral group
and hyperbolic or Euclidean triangle groups (see Example 5.5 and Example 5.6).
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(3) finite products of such groups (see Remark 5.7).

When G is torsion free, Lm
sp.BG/ is homeomorphic to L.BG/ by Proposition 4.22

and so our result can be viewed as a generalization of the homotopy equivalence
jN cyc.G/j ' L.BG/.

There is an equivariant map EG!EG that is unique up to equivariant homotopy. It
induces a map GnF.EG/!GnF.EG/, equivalently, a map hocolim N! hocolim NF ,
where F is the family of finite subgroups of G . We explicitly compute this map in the
case G DD1 , the infinite dihedral group. In particular, this yields a computation of
the homomorphism HH�.ZD1/!HHF

� .ZD1/ (see Section 6).

The paper is organized as follows. In Section 1 we review some aspects of the theory
of homotopy colimits. The functor NF W Or.G;F/!CGH is defined in Section 2, thus
yielding the space N.G;F/ WD hocolim NF , which we call the Hochschild complex of
G with respect to the family of subgroups F . In Section 3 we study the configuration
space F.X / in a general context and give an alternative description of N.G;F/ as
the orbit space GnF.EFG/. The homotopy equivalence GnF.X /' P m

sp.GnX /, for
any proper G–CW complex X , is established in Section 4. We also show in this
section that if EG satisfies a certain isovariant homotopy theoretic condition, then
P m

sp.BG/ is homotopy equivalent to the subspace Lm
sp.BG/� P m

sp.BG/. In Section 5
we show that this condition is satisfied for a class of groups that includes the infinite
dihedral group and hyperbolic or Euclidean triangle groups. In Section 6 we analyze the
map GnF.EG/!GnF.EG/, and compute it explicitly in the case G DD1 thereby
obtaining a computation of the homomorphism HH�.ZD1/!HHF

� .ZD1/.

Acknowledgements Andrew Nicas is partially supported by a grant from the Natural
Sciences and Engineering Research Council of Canada. The authors thank the referee
for useful comments.

1 Homotopy colimits and spaces over a category

In this section we provide some categorical preliminaries, following Davis and Lück [7],
that will be used in Section 2 to define a Hochschild complex associated to a family
of subgroups. Throughout Sections 1 and 2 we work in the category of compactly
generated Hausdorff spaces, denoted by CGH. 1

1 Given a Hausdorff space Y , the associated compactly generated space kY is the space with the
same underlying set and with the topology defined as follows: a closed set of kY is a set that meets each
compact set of Y in a closed set. Y is an object of CGH if and only if Y D kY , ie, Y is compactly
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Let C be a small category. A covariant (contravariant) C–space, is a covariant (con-
travariant) functor from C to CGH. If X is a contravariant C–space and Y is a
covariant C–space, then their tensor product is defined by

X ˝C Y D
a

C2obj.C/

X.C /�Y .C / =�

where � is the equivalence relation generated by�
X.�/.x/;y

�
�
�
x;Y .�/.y/

�
for all � 2MorC.C;D/, x 2X.D/ and y 2 Y .C /.

A map of C–spaces is a natural transformation of functors. Given a C–space X and a
topological space Z , let X �Z be the C–space defined by .X �Z/.C /DX.C /�Z ,
where C is an object in C . Two maps of C–spaces ˛; ˇW X !X 0 are C–homotopic
if there is a natural transformation H W X � Œ0; 1�! X 0 such that H jX�f0g D ˛ and
H jX�f1g D ˇ . A map ˛W X !X 0 is a C–homotopy equivalence if there is a map of
C–spaces ˇW X 0!X such that ˛ˇ is C–homotopic to idX 0 and ˇ˛ is C–homotopic
to idX . The map ˛W X !X 0 is a weak C–homotopy equivalence if for every object
C in C , the map ˛.C /W X.C /!X 0.C / is an ordinary weak homotopy equivalence.
Two C–spaces X and X 0 are C–homeomorphic if there are maps ˛W X ! X 0 and
˛0W X 0!X such that ˛0˛D idX and ˛˛0D idX 0 . If X and X 0 are C–homeomorphic
contravariant C–spaces and Y and Y 0 are C–homeomorphic covariant C–spaces, then
X ˝C Y is homeomorphic to X 0˝C Y 0 .

A contravariant free C–CW complex X is a contravariant C–space X together with a
filtration

∅DX�1 �X0 �X1 � � � � �Xn � � � � �X D
[
n�0

Xn

such that X D colimn!1Xn and for any n� 0, the n–skeleton, Xn , is obtained from
the .n�1/–skeleton, Xn�1 , by attaching free contravariant C�n–cells. That is, there
is a pushout of C–spaces of the form`

i2In
MorC.�;Ci/�Sn�1

� _

��

// Xn�1� _

��`
i2In

MorC.�;Ci/�Dn // Xn

generated. The product of two spaces Y and Z in CGH is defined by Y �Z WD k.Y �Z/ , where Y �Z

on the right side has the product topology. Function space topologies in CGH are defined by applying k
to the compact-open topology. In Section 3 and Section 4 we work in the category TOP of all topological
spaces and will have occasion to compare the topologies on Y and kY (see Proposition 3.6).
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where In is an indexing set and Ci is an object in C . A covariant free C–CW complex
is defined analogously, the only differences being that the C–space is covariant and the
C–space MorC.Ci ;�/ is used in the pushout diagram instead of MorC.�;Ci/.

A free C–CW complex should be thought of as a generalization of a free G–CW
complex. The two notions coincide if C is the category associated to the group G , ie,
the category with one object and one morphism for every element of G .

Let EC be a contravariant free C–CW complex such that EC.C / is contractible for
every object C of C . Such a C–space always exists and is unique up to homotopy
type [7, Section 3]. One particular example is defined as follows.

Let BbarC be the bar construction of the classifying space of C , ie, BbarC D jN:Cj, the
geometric realization of the nerve of C . Let C be an object in C . The undercategory,
C # C , is the category whose objects are pairs .f;D/, where f W C!D is a morphism
in C , and whose morphisms, pW .f;D/! .f 0;D0/, consist of a morphism pW D!D0

in C such that p ı f D f 0 . Notice that a morphism �W C ! C 0 induces a functor
��W .C 0 # C/! .C # C/ defined by ��.f;D/D .f ı�;D/. Let EbarCW C! CGH be
the contravariant functor defined by:

EbarC.C /D Bbar.C # C/

EbarC.�W C ! C 0/D Bbar.��/

This is a model for EC . Moreover, EbarC˝C� is homeomorphic to BbarC [7, Section 3].

Lemma 1.1 [7, Lemma 1.9] Let F W D ! C be a covariant functor, Z a covari-
ant D–space and X a contravariant C–space. Let F�Z be the covariant C–space
MorC.F.�D/;�C/˝D Z , where �C denotes the variable in C and �D denotes the
variable in D . Then

X ˝C F�Z! .X ıF /˝D Z

is a homeomorphism.

Proof The map eW X ˝C
�
MorC.F.�D/;�C/˝D Z

�
�!.X ıF /˝D Z is defined by

e
��

x; Œf;y�
��
D ŒX.f /.x/;y�;

where x 2X.C /, y 2Z.D/ and f 2MorC.F.D/;C /, for objects C in C and D in
D . The inverse is given by mapping Œw; z� 2 .X ıF /˝D Z to

�
w; ŒidF.D/; z�

�
, where

w 2 .X ıF /.D/ and z 2Z.D/.
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Definition 1.2 Let Y be a covariant C–space. Then

hocolim
C

Y WD EbarC˝C Y:

A map ˛W Y ! Y 0 of C–spaces induces a map ˛�W hocolimC Y ! hocolimC Y 0 . If �
is the C–space that sends every object to a point, then

hocolim
C
� D EbarC˝C � Š BbarC:

Therefore, the collapse map, Y !�, induces a map x� W hocolimC Y ! BbarC .

There are several well-known constructions for the homotopy colimit, each yielding the
same space up to homotopy equivalence (see Talbert [22, Theorem 1.2]). In particular,
using the transport category, TC.Y /, one can define the homotopy colimit of Y to be
BbarTC.Y /. Recall that an object of TC.Y / is a pair .C;x/, where C is an object of C
and x 2 Y .C /, and a morphism �W .C;x/! .C 0;x0/ is a morphism �W C ! C 0 in
C such that Y .�/.x/D x0 . The following lemma shows that BbarTC.Y / is not only
homotopy equivalent to our definition of the homotopy colimit of Y , but is in fact
homeomorphic to hocolimC Y .

Lemma 1.3 Let Y be a covariant C–space. Then EbarTC.Y /˝TC.Y / � is homeomor-
phic to EbarC˝C Y .

Proof By Lemma 1.1, there is a homeomorphism

EbarC˝C ��.�/! .EbarC ı�/˝TC.Y / �

where � W TC.Y /! C is the projection functor which sends an object .C;x/ to C . We
will show that EbarC˝C��.�/ is homeomorphic to EbarC˝CY and .EbarCı�/˝TC.Y /�
is homeomorphic to EbarTC.Y /˝TC.Y / �.

Let C be an object of C . A point in ��.�/.C / D MorC.�.�/;C / ˝TC.Y / � is
represented by a morphism  W �.D;x/ ! C in C , where .D;x/ is an object of
TC.Y /. Define a natural transformation ˇW ��.�/! Y by ˇ.C /.Œ �/ D Y . /.x/.
The inverse, ˇ�1W Y !��.�/, is defined by ˇ�1.C /.y/D ŒidC �, where y 2Y .C / and
idC W �.C;y/! C is the identity. This induces a homeomorphism EbarC˝C ��.�/!
EbarC˝C Y .

Now let .C;x/ be an object of TC.Y /. Then we have .EbarC ı�/.C;x/D EbarC.C /D
Bbar.C #C/, and EbarTC.Y /.C;x/DBbar..C;x/#TC.Y //. For each .C;x/ there is an
isomorphism of categories F.C;x/W C # C! .C;x/ # TC.Y / given by F.C;x/.f;A/D�
f; .A;Y .f /.x//

�
, where f W C !A in C . If �W .f;A/! .f 0;A0/ is a morphism in
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C # C , then F.C;x/.�/ D �W
�
f; .A;Y .f /.x//

�
!

�
f 0; .A0;Y .f 0/.x//

�
is a mor-

phism in .C;x/ # TC.Y /, since f 0 D � ı f . The inverse of F is the obvious
one. Define the natural transformation ˛W EbarC ı�! EbarTC.Y / by sending .C;x/
to Bbar.F.C;x//W Bbar.C # C/ ! Bbar..C;x/ # TC.Y //, and define its inverse by
˛�1.C;x/D Bbar.F�1

.C;x/
/. This induces a homeomorphism .EbarC ı�/˝TC.Y / �!

EbarTC.Y /˝TC.Y / �.

If H W D ! C is a covariant functor and Y is a covariant C–space, then there is a
functor yH W TD.Y ıH /! TC.Y / given by yH .D;x/ D .H.D/;x/. This induces a
map Bbar. yH /W BbarTD.Y ı H / ! BbarTC.Y /. The functor H also induces a map
xH W EbarD˝D Y ıH ! EbarC ˝C Y given by xH .Œx;y�/ D ŒBbar.HD/.x/;y�, where

x 2 Bbar.D # D/, y 2 Y .H.D// and HD W .D # D/! .H.D/ # C/ is the obvious
functor induced by H . The maps Bbar. yH / and xH are equivalent via the homeomor-
phism from Lemma 1.3. It is also straightforward to check that the composition of
the homeomorphism from Lemma 1.3 with Bbar.�/W BbarTC.Y /! BbarC is equal to
x� W hocolimC Y ! BbarC .

The transport category definition of the homotopy colimit is employed to prove the
following useful lemma.

Lemma 1.4 Let H W D ! C be a covariant functor and Y be a covariant C–space.
Then

(1)

hocolimD Y ıH

x�
��

xH // hocolimC Y

x�
��

BbarD
Bbar.H / // BbarC

is a pullback diagram.

Proof Form the pullback diagram

P.H; �/

��

// TC.Y /

�

��
D H // C

in the category of small categories. The category P.H; �/ is a subcategory of
TC.Y / � D , where an object ..C;x/;D/ satisfies H.D/ D C , and a morphism
.˛; ˇ/W ..C;x/;D/! ..C 0;x0/;D0/ satisfies ˛ DH.ˇ/. If ..C;x/;D/ is an object
of P.H; �/, then .C;x/ is an object of TD.Y ıH /, and if .˛; ˇ/W ..C;x/;D/!
..C 0;x0/;D0/ is a morphism of P.H; �/, then ˇW .D;x/! .D0;x0/ is a morphism
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of TD.Y ıH /, since .Y ıH /.ˇ/.x/ D F.˛/.x/ D x0 . Hence, we have a functor
from P.H; �/ to the transport category TD.Y ıH / with inverse given by sending
.D;x/ to .H.D/;x/;D/ and ˇW .D;x/! .D0;x0/ 7! .H.ˇ/; ˇ/W .H.D/;x/;D/!

.H.D0/;x0/;D0/. Therefore, we have the pullback diagram:

TD.Y ıH /

�

��

yH // TC.Y /

�

��
D H // C

Applying Bbar produces the pullback diagram:

Bbar.TD.Y ıH //

��

// Bbar.TC.Y //

��
BbarD // BbarC

The result now follows from two applications of Lemma 1.3.

2 The orbit category and the Hochschild complex

Let G be a discrete group and F a family of subgroups of G that is closed under
conjugation and finite intersections. Let O D Or.G;F/ denote the orbit category of
G with respect to F . The objects of O are the homogeneous spaces G=H , with H

in F , considered as left G–sets. Morphisms are all G–equivariant maps. Therefore,
MorO.G=H;G=K/D frg j g

�1Hg �Kg, where rg is right multiplication by g , ie,
rg.uH /D .ug/H for uH in G=H . If F is the family of all subgroups of G , then O
is called the orbit category. If F is taken to be the trivial family, then O is the usual
category associated to the group G .

Definition 2.1 (Hochschild complex of a group associated to a family of subgroups)
Let O�O be the category whose objects are ordered pairs of objects in O and whose
morphisms are ordered pairs of morphisms in O . Let AdW O �O ! CGH be the
covariant functor defined by

Ad.G=H1;G=H2/ D H1nG=H2

Ad.rg1
; rg2

/.H1uH2/ D K1g1
�1ug2K2;

where H1nG=H2 is the set of .H1;H2/ double cosets in G with the discrete topology
and .rg1

; rg2
/W .G=H1;G=H2/! .G=K1;G=K2/ is a morphism in O�O . Let NF D
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Ad ı���, where ���W O!O�O is the diagonal functor, and define

N.G;F/D hocolim
O

NF :

We call N.G;F/ the Hochschild complex of G associated to the family F .

Remark 2.2 More generally, NF can be defined in the case G is a locally compact
topological group and the members of the family of subgroups F are closed subgroups
of G by giving H1nG=H2 the quotient topology.

If F is the trivial family, f1g, then N.G; f1g/ is homotopy equivalent to jN cyc.G/j, the
geometric realization of the cyclic bar construction [12, 7.3.10]; indeed, using the two-
sided bar construction as a model for the homotopy colimit of Nf1g yields a complex
homeomorphic to jN cyc.G/j. We refer to N.G; f1g/ as the classical Hochschild
complex of G .

Definition 2.3 The Hochschild homology of a group ring ZG relative to a family of
subgroups F of G is defined to be

HHF
� .ZG/ WDH�.N.G;F/IZ/:

Using diagram (1) with Ad and NF , we obtain the following pullback diagram

(2)

N.G;F/

��

// hocolimO�O Ad

x�
��

BbarO
Bbar.���/ // Bbar.O�O/

Lemma 2.4 Let ���W O!O�O denote the diagonal functor. Then hocolimO�O Ad
is homeomorphic to .Ebar.O�O/ ı���/˝O �.

Proof Let T W O�O! CGH denote the covariant functor

MorO�O.���.�O/;�O�O/˝O �:

Note that MorO.G=L;G=M /D frg j g
�1Lg �M g Š fgM j g�1Lg �M g. Using

this identification, let ˛W Ad! T be the natural transformation defined by

˛.HnG=K/.HgK/D Œr1; rg�;

where .r1; rg/ 2MorO�O..G=1;G=1/; .G=H;G=K//. The inverse of ˛ is given by

˛�1.G=H;G=K/.Œrg1
; rg2

�/DHg�1
1 g2K;

Algebraic & Geometric Topology, Volume 8 (2008)



702 Andrew Nicas and David Rosenthal

where .rg1
; rg2

/ 2MorO�O..G=L;G=L/; .G=H;G=K// and G=L is an object in O .
Thus, Ad is naturally equivalent to T . Therefore,

Ebar.O�O/˝O�O Ad
˛�

Š
// Ebar.O�O/˝O�O T

e

Š
// .Ebar.O�O/ ı���/˝O �

where e is the homeomorphism from Lemma 1.1.

Definition 2.5 Let G be a discrete group and F be a family of subgroups of G . A
universal space for G –actions with isotropy in F is a G –CW complex, EFG , whose
isotropy groups belong to F and for every H in F , the fixed point set .EFG/H is
contractible. Such a space is unique up to G –equivariant homotopy equivalence [14].

Davis and Lück [7, Lemma 7.6] showed that given any model for EO , EO˝O r is a
universal G –space with isotropy in F , where rW O! CGH is the covariant functor
that sends G=H to itself and rgW G=H !G=K to itself.

Theorem 2.6 Let G be a discrete group and F be a family of subgroups of G . Then

N.G;F/

��

// Gn.EFG � EFG/

���

��
GnEFG

� // GnEFG �GnEFG

is a pullback diagram, where EFG D EbarO˝O r , �W EFG ! GnEFG is the orbit
map, �� � is the map induced by �� � , and � is the diagonal map.

Proof There is a homeomorphism

f W .Ebar.O�O/ ı���/˝O �!Gn.EFG � EFG/

defined by f .Œ.x;y/�/D q.Œx; eK�; Œy; eK�/, where

.x;y/ 2 Bbar.G=K #O/�Bbar.G=K #O/Š .Ebar.O�O/ ı���/.G=K/

and qW EFG � EFG!Gn.EFG � EFG/ is the orbit map. The inverse of f is given by
f �1.q.Œx;g1K�; Œy;g2K�//D ŒBbar.��

g1K
/.x/;Bbar.��

g2K
/.y/�, where �gi K W G=1!

G=K is right multiplication by gi . Here we have identified Bbar.C �D/ with BbarC �
BbarD . Similarly, there is a homeomorphism

xf W BbarOŠ EbarO˝O �!GnEFG

defined by xf .Œx�/D �.Œx; eK�/, where x 2 Bbar.G=K #O/ and �W EFG!GnEFG

is the orbit map. The inverse of xf is given by . xf /�1.�.Œx;gK�//D ŒBbar.��
gK
/.x/�.
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Using the homeomorphism from Lemma 2.4, we get the commutative diagram

hocolimO�O Ad

��

Š

eı˛� // .Ebar.O�O/ ı���/˝O � Š

f // Gn.EFG � EFG/

���

��
Bbar.O�O/ Š // BbarO�BbarO

xf� xf

Š // GnEFG �GnEFG

where .�� �/.q.x;y// D .�.x/; �.y//. Since Bbar.���/ composed with the home-
omorphism Bbar.O �O/ ! BbarO � BbarO is just the diagonal map �W BbarO !
BbarO�BbarO , diagram (2) completes the proof.

Remark 2.7 When F is the trivial family, the main diagram of Theorem 2.6 becomes:

N.G; f1g/

��

// Gn.EG �EG/

���

��
BG

� // BG �BG

Furthermore, in this case, the map �� � is a fibration from which it follows that the
above square is also a homotopy pullback diagram. This observation is part of the
folklore of the subject; indeed, one method of establishing the homotopy equivalence
jN cyc.G/j ' L.BG/ involves replacing �� � with the fibration BGI ! BG �BG ,
given by evaluation at endpoints where BGI is the space of paths in BG . For a general
family F , Theorem 2.6 is, to our knowledge, new and we note that the map �� � in
Theorem 2.6 is typically not a fibration.

If F 0 � F , then there is an inclusion functor �W Or.G;F 0/ ! Or.G;F/. Clearly,
NF 0 D NF ı �, which induces a map N.G;F 0/! N.G;F/. This map is examined
in Section 6 in the case when F 0 is the trivial family and F is the family of finite
subgroups.

3 The configuration space F.X/

In this section we investigate, in a general context, some basic properties of the
configuration space, F.X /, of pairs of points in a G –space X which lie on the same
G –orbit.

Let G be a topological group. The category of left G–spaces, denoted by GTOP, is
the category whose objects are left G –spaces, ie, topological spaces X together with a
continuous left G –action G �X!X , written as .g;x/ 7! gx , and whose morphisms
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are continuous equivariant maps f W X!Y . Henceforth, we abbreviate “left G –space”
to “G –space.”

Given a G –space X , define AX W G�X!X �X by AX .g;x/ WD .x;gx/ for .g;x/2
G�X . Note that AX is continuous and G –equivariant, where G�X is given the left
G –action

(3) h.g;x/ WD .hgh�1; hx/ for h;g 2G and x 2X

and X �X is given the diagonal G –action. Hence the image of AX is a G –invariant
subspace of X �X .

Definition 3.1 Define F W GTOP!GTOP on an object X by F.X / WD image.AX /

with the left G –action inherited from the diagonal G –action on X �X . If f W X!Y

is equivariant, ie, a morphism in GTOP, then the diagram

G �X
AX
����! X �X

idG �f

??y ??yf�f
G �Y

AY
����! Y �Y

is commutative and so f � f restricts to an equivariant map F.f /W F.X /!F.Y /.
Clearly, F.idX /D idF.X / and F.f1f2/D F.f1/F.f2/ for composable morphisms
f1 and f2 . That is, F is a functor.

Note that F.X / is the subspace of X �X consisting of those pairs .x;y/ such that x

and y lie in the same orbit of the G –action.

There is an evident natural isomorphism F.X /� I Š F.X � I/, where I is the unit
interval with the trivial G–action, given by ..x;y/; t/ 7! ..x; t/; .y; t// for .x;y/ 2
F.X / and t 2 I . If H W X � I!Y is an equivariant homotopy then

F.X /� I
Š
����! F.X � I/

F.H /
����! Y

is an equivariant homotopy from F.H0/ to F.H1/, where Ht WDH.�; t/. Hence F

factors through the homotopy category of GTOP with the following consequence.

Proposition 3.2 If the map f W X!Y is an equivariant homotopy equivalence, then
F.f /W F.X /!F.Y / is an equivariant homotopy equivalence.

Definition 3.3 In the category TOP of all topological spaces we use the following
notation for the standard pullback construction. Given maps eW A!Z and f W B!Z ,
define E.e; f / WD f.x;y/2A�B j e.x/D f .y/g topologized as a subspace of A�B
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with the product topology. The maps p1W E.e; f /!A and p2W E.e; f /!B are given,
respectively, by the restriction of the projections A �B!A and A �B!B . The
square

E.e; f /
p2
����! B

p1

??y ??yf
A

e
����! Z

is a pullback diagram in TOP, which we refer to as a standard pullback diagram.

Proposition 3.4 There is a pullback diagram

F.X /
i

����! X � X

q

??y ??y���
GnX

�
����! GnX �GnX

where i is the inclusion F.X / D image.AX / � X � X , �W X!GnX is the orbit
map, � is the diagonal map and qW F.X /!GnX is given by q..x;y// D �.y/ for
.x;y/ 2 F.X /.

Proof The standard pullback construction yields

E.�; �� �/D f.�.x/;x1;x2/ 2 .GnX /�X �X j �.x/D �.x1/D �.x2/g:

The map j W F.X /!E.�; �� �/ given by j ..x;y//D .�.x/;x;y/ is a homeomor-
phism with inverse .�.x/;x;y/ 7! .x;y/. Also p1j D q and p2j D i , where
p1W E.�; � � �/!GnX and p2W E.�; � � �/!X � X are the restrictions of the
corresponding projections.

The space GnF.X / can also be described as a pullback as follows:

Theorem 3.5 There is a pullback diagram

GnF.X /
x{

����! Gn.X �X /

xq

??y ??y���
GnX

�
����! GnX �GnX

where x{ , xq and �� � are induced by i , q and ��� respectively (as in Proposition 3.4).
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Proof The pullback diagram of Proposition 3.4 factors as:

F.X /
i

����! X �X

q0
??y ??y�0

E.�; �� �/
p2
����! Gn.X �X /

p1

??y ??y���
GnX

�
����! GnX �GnX

where �0W X �X!Gn.X �X / is the orbit map, q0..x;y// D .�.x/; �0.x;y// for
.x;y/2F.X / and E.�; �� �/ together with the maps p1 , p2 is the standard pullback
construction. The outer square in the above diagram is a pullback by Proposition 3.4
and the lower square is a pullback by construction. It follows that the upper square is a
pullback. By Lemma 3.18, q0 induces a homeomorphism GnF.X / Š E.�; �� �/.

A Hausdorff space X is compactly generated if a set A� X is closed if and only if it
meets each compact set of X in a closed set.

Proposition 3.6 Suppose that G is a countable discrete group and that X is a count-
able G –CW complex, ie, X has countably many G –cells. Then F.X / and GnF.X /

are compactly generated Hausdorff spaces.

Proof Milnor showed that the product of two countable CW complexes is a CW
complex [18, Lemma 2.1]. Since X and GnX are countable CW complexes, the
product GnX � X � X is also a CW complex and thus compactly generated. By
Proposition 3.4, F.X / is homeomorphic to a closed subset of this space and hence
must be compactly generated. The space X �X is a CW complex and so Gn.X �X /

is also a CW complex because the diagonal G–action on X � X is cellular. By
Theorem 3.5, GnF.X / is homeomorphic to a closed subset of the CW complex
GnX �Gn.X �X / and hence must compactly generated.

Recall that for a discrete group G and family of subgroups F , we denote the bar
construction model for the universal space for G –actions with isotropy in F by EFG

(see Theorem 2.6).

Theorem 3.7 Suppose that G is a countable discrete group and that F is a countable
family of subgroups. Then there is a natural homeomorphism N.G;F/ŠGnF.EFG/.
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Proof By Theorem 3.5, there is a pullback diagram in TOP:

GnF.EFG/ ����! Gn.EFG � EFG/??y ??y���
GnEFG

�
����! GnEFG �GnEFG

Since G and F are countable, EFG is a countable CW complex. All the spaces
appearing the above diagram are compactly generated by Proposition 3.6 and its proof.
It follows that this diagram is also a pullback diagram in the category of compactly
generated Hausdorff spaces. A comparison with the pullback diagram in the statement
of Theorem 2.6 yields a natural homeomorphism N.G;F/ŠGnF.EFG/.

Corollary 3.8 Suppose that G is a countable discrete group and that F is a countable
family of subgroups. Let EFG be any G–CW model for the universal space for G–
actions with isotropy in F . Then there is a natural homotopy equivalence N.G;F/'
GnF.EFG/.

Proof There is an equivariant homotopy equivalence J W EFG!EFG , which is unique
up to equivariant homotopy. By Proposition 3.2, J induces a homotopy equivalence
GnF.EFG/!GnF.EFG/. Composition with the homeomorphism of Theorem 3.7
yields the conclusion.

Note that in Corollary 3.8, “natural” means that for an inclusion F 0 �F of families of
subgroups of G , the corresponding square diagram is homotopy commutative.

Recall that a continuous map f W Y!Z is proper if for any topological space W ,
f � idW W Y �W!Z �W is a closed map (equivalently, f is a closed map with
quasicompact fibers [4, I, 10.2, Theorem 1(b)]). There are several distinct notions
of a “proper action” of a topological group on a topological space; see Biller [2]
for their comparison. We will use the following definition (see Bourbaki [4, III, 4.1,
Definition 1]).

Definition 3.9 A left action of a topological group G on a topological space X is
proper provided the map AX W G �X!X �X is proper, in which case we say that X

is a proper G –space.

Proposition 3.10 Suppose that the topological group G acts freely and properly on
the G–space X . Then AX W G � X!F.X / is a homeomorphism. Consequently,
AX induces a homeomorphism xAX W Gn.G �X /!GnF.X /, where the G –action on
G �X is given by Equation (3).
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Proof Clearly AX is a continuous surjection. Since the G –action is proper, AX is a
closed map. If AX .g1;x1/DAX .g2;x2/, then x1D x2 and g1x1D g2x2 . Since the
G –action is free, g1 D g2 and so AX is injective. Thus, AX is a homeomorphism.

Let conj.G/ denote the set of conjugacy classes of the group G . For g 2 G , let
C.g/ 2 conj.G/ denote the conjugacy class of g , and let Z.g/ WD fh 2G j hg D ghg

denote the centralizer of g .

Proposition 3.11 Suppose that G is a discrete group acting on a topological space X .
Then there is a homeomorphism

Gn.G �X / Š
a

C.g/2conj.G/

Z.g/nX;

where the right side of the isomorphism is a disjoint topological sum.

Proof The space G�X is the disjoint union of the G –invariant subspaces C.g/�X ,
C.g/ 2 conj.G/. Since G is discrete, C.g/�X is both open and closed in G �X . It
follows that Gn.G �X / is the disjoint topological sum of the spaces Gn.C.g/�X /,
C.g/ 2 conj.G/. The map Gn.C.g/ �X /!Z.g/nX , which takes the G–orbit of
.hgh�1;x/ to the Z.g/–orbit of h�1x , is a homeomorphism whose inverse is the
map that takes the Z.g/–orbit of x 2X to the G –orbit of .g;x/.

Combining Proposition 3.10 and Proposition 3.11 yields:

Corollary 3.12 Suppose that G is a discrete group that acts freely and properly on a
topological space X . Then there is a homeomorphism

GnF.X / Š
a

C.g/2conj.G/

Z.g/nX;

where the right side of the isomorphism is a disjoint topological sum.

Remark 3.13 A discrete group G acts freely and properly on a space X if and only
if GnX is Hausdorff and the orbit map �W X!GnX is a covering projection.

As a consequence of Corollary 3.12, if a nontrivial discrete group G acts freely
and properly on a nonempty topological space X then GnF.X / is never connected.
However, if G acts properly but not freely, then F.X /, hence also GnF.X /, can be
connected (see Example 5.5 and Example 5.6).
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Definition 3.14 Let X be a G –space. The subspace F.X /0 �F.X / is defined to be
the union of the connected components of F.X / that meet the diagonal of X �X , ie,
the subspace �.X /D f.x;x/ 2X �X g. In particular, if X is connected, then F.X /0
is the connected component of F.X / containing �.X /.

Proposition 3.15 F.X /0 is a G –invariant subspace of F.X /.

Proof Let C be a component of F.X / such that C \�.X /¤∅. Left translation by
g 2G , LgW F.X /!F.X /, is a homeomorphism and so Lg.C / is also a component of
F.X /. Since ∅¤Lg.C \�.X //DLg.C /\�.X /, it follows that Lg.C /�F.X /0 .

Remark 3.16 Suppose that the discrete group G acts freely and properly on X . Then
by Proposition 3.10, the map AX W G �X!F.X / is an equivariant homeomorphism
and F.X /0 DAX .f1g �X /D�.X /.

The remainder of this section is devoted to the proof of various elementary lemmas
which have been employed above.

Lemma 3.17 Consider the standard pullback diagram:

E.f;p/
p2
����! Y

p1

??y ??yp

Z
f

����! X

If p is an open map, then p1 is also an open map.

Proof Let V � X and W � Y be open sets. Then p1..V �W / \ E.f;p// D

V \ f �1.p.W //. Note that f �1.p.W // is open, since the map p is open and f
is continuous and so V \ f �1.p.W // is also open. Since sets of the form .V �

W /\E.f;p/ give a basis for the topology of E.f;p/ and p1 preserves unions, the
conclusion follows.

Lemma 3.18 Let G be a topological group, let Y be a G –space and let f W Z!GnY

be a continuous map. Consider the standard pullback diagram:

E.f; �/
p2
����! Y

p1

??y ??y�
Z

f
����! GnY
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where �W Y!GnY is the orbit map and G acts on E.f; �/ by g.z;y/ WD .z;gy/ for
g 2G and .z;y/ 2E.f; �/. Then p1 induces a homeomorphism xp1W GnE.f; �/!Z

given by xp1.q.z;y//D z for .z;y/ 2E.f; �/, where qW E.f; �/!GnE.f; �/ is the
orbit map.

Proof The map xp1 is clearly well-defined and continuous since p1 D xp1q and
GnE.f; �/ has the identification topology determined by the orbit map q . Since � is
surjective, p1 is surjective and thus xp1 is also surjective. Suppose xp1.q.z1;x1//D

xp1.q.z2;x2//. Then z1 D z2 and so �.x1/ D f .z1/ D f .z2/ D �.x2/. Hence,
q.z1;x2/ D q.z2;x2/, demonstrating that xp1 is injective. Since � is an open map,
p1 is also an open map by Lemma 3.17. Let U � GnE.f; �/ be open. Since q is
surjective, U D q.q�1.U //. Thus,

xp1.U / D xp1q.q�1.U // D p1.q
�1.U //;

which is open since q�1.U / is open and p1 is an open map. Therefore, xp1 is an open
map. It follows that xp1 is a homeomorphism.

4 The marked stratified free loop space

Suppose that X is a proper G–CW complex, where G is a discrete group. In this
section, we show that the orbit space GnF.X / is homotopy equivalent to the space,
P m

sp.GnX /, of stratum preserving paths in GnX whose endpoints are “marked” by
an orbit of the diagonal action of G on X �X (see Theorem 4.20). The Covering
Homotopy Theorem of Palais plays a key role in the proof of this result. If X satisfies
a suitable isovariant homotopy theoretic condition, then P m

sp.GnX / is shown to be
homotopy equivalent to a subspace Lm

sp.GnX /�P m
sp.GnX /, which we call the marked

stratified free loop space of GnX (see Theorem 4.23). Applying these results to the
case X D EG , a universal space for proper G –actions, yields a homotopy equivalence
between the homotopy colimit, N.G;F/, of Section 2 and P m

sp.GnEG/ and also, for
suitable G , to Lm

sp.GnX / (see Theorem 4.26).

4.1 Orbit maps as stratified fibrations

We recall some of the basic definitions from the theory of stratified spaces following
the treatment in Hughes [11].

Definition 4.1 A partition of a topological space X consists of an indexing set J and
a collection fXj j j 2J g of pairwise disjoint subspaces of X such that X D

S
j2J Xj .

For each j 2 J , Xj is called the j –th stratum.
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A refinement of a partition fXj j j 2J g of a space X is another partition fX 0i j i 2J
0g

of X such that for every i 2J 0 there exists j 2J such that X 0i �Xj . The component
refinement of a partition fXj j j 2 J g of X is the refinement obtained by taking the
X 0i ’s to be the connected components of the Xj ’s.

Definition 4.2 A stratification of a topological space X is a locally finite partition
fXj j j 2 J g of X such that each Xj is locally closed in X . We say that X together
with its stratification is a stratified space.

If X is a space with a given partition, then a map f W Z�A!X is stratum preserving
along A if for each z 2 Z , f .fzg �A/ lies in a single stratum of X . In particular,
a map f W Z � I!X is a stratum preserving homotopy if it is stratum preserving
along I .

A class of topological spaces will mean a subclass of the class of all topological spaces,
typically defined by a property, for example, the class of all metrizable spaces.

Definition 4.3 Let X and Y be spaces with given partitions. A map pW X!Y is a
stratified fibration with respect to a class of topological spaces W if for any space Z

in W and any commutative square

Z
f

����! X

i0

??y ??yp

Z � I
H
����! Y

where i0.z/ WD .z; 0/ and H is a stratum preserving homotopy, there exists a stratum
preserving homotopy zH W Z � I!X such that zH .z; 0/ D f .z/ for all z 2 Z and
p zH DH .

Definition 4.4 Let X be a space with a given partition. The space of stratum preserv-
ing paths in X , denoted by Psp.X /, is the subspace of X I , the space of continuous
maps of the unit interval into X with the compact-open topology, consisting of stratum
preserving paths, ie, paths !W I!X such that !.I/ belongs to a single stratum of X .

Observe that a homotopy H W Z�I!X is stratum preserving if and only if its adjoint
yH W Z!X I , given by yH .z/.t/ WDH.z; t/ for .z; t/ 2Z � I , has yH .Z/� Psp.X /.

A group action on a space determines an invariant partition on that space as follows.
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Definition 4.5 (Orbit type partition) Let G be a topological group and let X be a
G–space. For a subgroup H � G , let XH WD fx 2 X j Gx DH g, where Gx is the
isotropy subgroup at x . Let .H / WD fgHg�1 j g2Gg, the set of conjugates of H in G ,
and X.H / WD

S
K2.H / XK . Let J denote the set of conjugacy classes of subgroups

of G of the form .Gx/. The subspaces X.H / are G –invariant and fX.H / j .H / 2 J g
is a partition of X called the orbit type partition of X . Let �W X!GnX denote the
orbit map. The set f�.X.H // j .H / 2 J g is a partition of GnX also called the orbit
type partition of GnX .

Remark 4.6 If G is a Lie group acting smoothly and properly on a smooth manifold
M , then the component refinement of the orbit type partition of M is a stratification
of M , which, in addition, satisfies Whitney’s Conditions A and B; see Duistermaat
and Kolk [8, Theorem 2.7.4].

An equivariant map f W X!Y between two G –spaces is isovariant if for every x 2X ,
Gx DGf .x/ . An equivariant homotopy H W X � I!Y is said to be isovariant if for
each t 2 I , Ht WDH.�; t/ is isovariant.

We make use of the following version of the Covering Homotopy Theorem of Palais.

Theorem 4.7 (Covering Homotopy Theorem) Let G be a Lie group, let X be a
G–space and let Y be a proper G–space. Assume that every open subset of GnX

is paracompact. Suppose that f W X!Y is an isovariant map and that F W GnX �

I!GnY is a homotopy such that F0 ı �X D �Y ı f , where �X W X!GnX and
�Y W Y!GnY are the orbit maps, and F.�X .X.H //�I/��Y .Y.H // for every compact
subgroup H �G . Then there exists an isovariant homotopy zF W X � I!Y such that
zF0 D f and F ı .�X � idI /D �Y ı

zF .

Remark 4.8 The Covering Homotopy Theorem (CHT) was originally demonstrated
by Palais in the case G is a compact Lie group and X and Y are second countable and
locally compact [19, 2.4.1]. Palais later observed [20, 4.5] that his proof of the CHT
generalizes to the case of proper actions of a noncompact Lie group. Bredon proved the
CHT under the hypotheses that G is compact and that GnX has the property that every
open subset is paracompact [5, II, Theorem 7.3]. A topological space is hereditarily
paracompact if every subspace is paracompact, equivalently, if every open subspace
is paracompact [16, Appendix I, Lemma 8]. The class of hereditarily paracompact
spaces includes all metric spaces (since any metric space is paracompact) and all CW
complexes [16, II, sec. 4]. The authors of [1] observed that Bredon’s proof of [5, II,
Theorem 7.1], from which the CHT is deduced, can be adapted to the case of a proper
action of a noncompact Lie group; see the discussion following [1, Theorem 1.5]. Also,
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note that it is not necessary to assume that the G–action on X is proper because the
induced G –action on the standard pullback E.F; �Y / is proper by Lemma 4.9 below.

Lemma 4.9 Suppose that G�Y!Y is a proper action of a topological group G on a
Hausdorff space Y . Let Z be a Hausdorff space and f W Z!GnY a continuous map.
Let �W Y!GnY denote the orbit map. Then the induced action of G on the standard
pullback E.f; �/ is proper.

Proof By hypothesis, the map AY W G �Y!Y �Y , AY .g;y/D .y;gy/, is proper.
Since Z is Hausdorff, the diagonal map �W Z!Z �Z is proper. The product of two
proper maps is proper and thus AY ��W G � Y �Z!Y � Y �Z �Z is proper. It
follows that AZ�Y D h2 ı .AY � idZ / ı h1W G �Z �Y!Z �Y �Z �Y is proper,
where h1W G �Z � Y!G � Y �Z and h2W Y � Y �Z �Z!Z � Y �Z � Y are
the “interchange” homeomorphisms h1.g; z;y/D .g;y; z/ and h2.y1;y2; z1; z2/D

.z1;y1; z2;y2/. Since the action of G on Y is proper, GnY is Hausdorff [4, III, 4.2,
Proposition 3] and so E.f; �/ is a closed subset of Z �Y . Hence the restriction of
AZ�Y to G �E.f; �/ is a proper map. This restriction map factors as i ıAE.f;�/

where i W E.f; �/ �E.f; �/ ,! Z � Y �Z � Y is inclusion and thus AE.f;�/ is a
proper map ([4, I, 10.2, Proposition 5(d)]).

Theorem 4.10 Suppose that G is a Lie group and that Y is a proper G –space. Let Y

and GnY have the orbit type partitions. Then the orbit map �W Y!GnY is a stratified
fibration with respect to the class of hereditarily paracompact spaces.

Proof Let Z be a hereditarily paracompact space, let F W Z�I!GnY be a homotopy
that is stratum preserving along I and let f W Z!Y be a map such that � ıf D F0 .
Consider the standard pullback diagram:

E.F0; �/
p2
����! Y

p1

??y ??y�
Z

F0
����! GnY

By Lemma 3.18, p1 induces a homeomorphism xp1W GnE.F0; �/!Z . The map
p2 is clearly isovariant. The CHT (Theorem 4.7) implies that there is an isovariant
homotopy zF W E.F0; �/�I!Y such that �ı zF DF ı.p1� idI / and zF0Dp2 . Define
yf W Z!E.F0; �/ by yf .z/ D .z; f .z// for z 2 Z . Let xF W Z � I!Y be given by
xF D zF ı. yf � idI /. Then �ı xF DF and xF0D f ; furthermore, xF is stratum preserving

along I .
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Corollary 4.11 Suppose that G is a Lie group and that Y is a proper G–space. Let
H �G be a subgroup. Then the orbit map �W Y.H /!GnY.H / is a Serre fibration.

Proof Suppose that Z is a compact polyhedron. Then Z is metrizable and thus hered-
itarily paracompact. Given a homotopy F W Z � I!GnY.H / and a map f W Z!Y.H /

such that F0D �ıf , apply Theorem 4.10 to j ıF and i ıf , where i W Y.H / ,!Y and
j W GnY.H / ,! GnY are the inclusions, to obtain zF W Z � I!Y.H / with � ı zF D F

and zF0 D f .

4.2 Spaces of marked stratum preserving paths

We apply the results of Section 4.1 in the case G is a discrete group to show that, for a
proper G–CW complex X , the orbit space GnF.X / is homotopy equivalent to the
space, P m

sp.GnX /, of stratum preserving paths in GnX whose endpoints are “marked”
by an orbit of the diagonal action of G on X �X ; see Theorem 4.20. That theorem
together with Corollary 3.8 and Corollary 4.24 are used to prove Theorem 4.26, which
subsumes Theorem B as stated in the introduction to this paper.

Lemma 4.12 Suppose that G is a discrete group and that Y is a proper G –space. Then
the orbit map �W Y!GnY has the unique path lifting property for stratum preserving
paths. That is, given a stratum preserving path !W I!GnY and y 2 ��1.!.0// there
exists a unique path z!W I!Y such that z!.0/D y and � ı z! D ! .

Proof Let !W I!GnY be a stratum preserving path, ie, there exists a finite subgroup
H �G such that !.I/� �.Y.H //DGnY.H / . By Corollary 4.11, the restriction of �
to Y.H / , �W Y.H /!GnY.H / , is a Serre fibration. The fiber over �.y/, where y 2Y.H / ,
is the orbit G � y , which is discrete since the G–action on Y is proper. By [21, 2.2
Theorem 5], a fibration with discrete fibers has the unique path lifting property (note
that in the cited theorem, the given fibration is assumed to be a Hurewicz fibration;
however, the proof of this theorem uses only the homotopy lifting property respect to
I and so remains valid for a Serre fibration).

Combining Theorem 4.10 and Lemma 4.12 yields:

Proposition 4.13 (Unique lifting) Suppose that G is a discrete group and that Y

is a proper G–space. Let Z be a hereditarily paracompact space. Suppose that
F W Z � I!GnY is stratum preserving homotopy and that f W Z!Y is a map such
that �ıf DF0 . Then there exists a unique stratum preserving homotopy zF W Z�I!Y

such that � ı zF D F and zF0 D f .
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We define a “stratified homotopy” version of F.X / as follows.

Definition 4.14 Let X be a G–space with its orbit type partition. The G–space
Fsp.X / is given by:

Fsp.X / WD f.!;y/ 2 Psp.X /�X j there exists g 2G such that y D g!.1/g;

where G acts on Fsp.X / by the restriction of the diagonal action of G on Psp.X /�X .

Note that there is a pullback diagram

Fsp.X /
i

����! Psp.X / � X

q

??y ??y.�ıev1/��

GnX
�

����! GnX �GnX

where i is the inclusion Fsp.X / ,! Psp.X / � X , �W X!GnX is the orbit map,
ev1W Psp.X /!X is evaluation at 1, � is the diagonal map and qW Fsp.X /!GnX is
given by q..!;y//D �.y/ for .!;y/ 2 Fsp.X /.

Proposition 4.15 The map `W F.X /!Fsp.X / given by `.x;y/D .cx;y/, where cx

is the constant path at x , is an equivariant homotopy equivalence with an equivariant
homotopy inverse j W Fsp.X /!F.X / given by j .!;y/D .!.1/;y/.

Proof Observe that j ı `D idF.X / . Define a homotopy H W Fsp.X /�I!Fsp.X / by
H..!;y/; t/D .!t ;y/, where !t 2 Psp.X / is the path !t .s/D !..1� s/t C s/ for
s 2 I . Then H is an equivariant homotopy from idFsp.X / to ` ı j .

Corollary 4.16 The map `W F.X /!Fsp.X / induces a homotopy equivalence

x̀W GnF.X /!GnFsp.X /:

If G is a Lie group, we say that a G –CW complex X is proper if G acts properly on
X . By [13, Theorem 1.23], a G–CW complex X is proper if and only if for each x

in X the isotropy group Gx is compact. In particular, if G is discrete, then X is a
proper G –CW complex if and only if Gx is finite for every x in X .

Proposition 4.17 Let G be a discrete group. Suppose that X is a proper G–CW
complex. Then there is a pullback diagram:

Fsp.X /
q2
����! X � X

q1

??y ??y���
Psp.GnX /

ev0;1

����! GnX �GnX
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where �W X!GnX is the orbit map, q1 and q2 are given, respectively, by q1.!;y/D

� ı! and q2.!;y/D .!.0/;y/ for .!;y/ 2 Fsp.X /, and ev0;1.�/D .�.0/; �.1// for
� 2 Psp.GnX /.

Proof Let Z be a hereditarily paracompact space. Suppose hD .h0; h1/W Z!X �X

and f W Z!Psp.GnX / are maps such that ev0;1 f D .���/h. Let Lf W Z�I!GnX

be the adjoint of f , ie, Lf .z; t/D f .z/.t/ for .z; t/ 2Z � I . Note that Lf is stratum
preserving along I . The diagram

Z
h0
����! X

i0

??y ??y�
Z � I

Lf
����! GnX

is commutative, where i0.z/ D .z; 0/ for z 2 Z . By Proposition 4.13, there exists
a unique F W Z � I!X that is stratum preserving along I such that �F D Lf and
Fi0 D h0 . Let yF W Z!Psp.X / be the adjoint of F . Then QW Z!Fsp.X /, given by
Q.z/D . yF .z/; h1.z// for z 2Z , is the unique map such that hD q2Q and f D q1Q.
In order to conclude that the diagram appearing in the statement of the proposition is a
pullback diagram in TOP, it suffices to show that the spaces Fsp.X / and

E.ev0;1; �� �/D f.!;x;y/ 2 Psp.GnX /�X �X j !.0/D �.x/; !.1/D �.y/g

are hereditarily paracompact. Since X and GnX are CW complexes, the main theorem
of [6] implies that the path spaces X I and .GnX /I are stratifiable in the sense of
[3, Definition 1.1] (despite the sound alike terminology, this notion of “stratifiable” is
not directly related to our Definition 4.2). It is shown in [3] that any CW complex
is stratifiable, that a countable product of stratifiable spaces is stratifiable and that a
stratifiable space is paracompact and perfectly normal, ie, normal and every closed set
is a countable intersection of open sets. Hence X I �X and .GnX /I �X �X are
stratifiable and thus paracompact and perfectly normal. A subspace of a paracompact
and perfectly normal space is also paracompact and perfectly normal [16, Appendix I,
Theorem 10]. In particular, Fsp.X /�X I �X and E.ev0;1; ���/� .GnX /

I �X �X

and all of their subspaces are paracompact.

Definition 4.18 The space P m
sp.GnX / of marked stratum preserving paths in GnX

consists of stratum preserving paths in GnX whose endpoints are “marked” by an orbit
of the diagonal action of G on X �X . More precisely, P m

sp.GnX /DE.ev0;1; �� �/,

Algebraic & Geometric Topology, Volume 8 (2008)



Hochschild homology relative to a family of groups 717

where
E.ev0;1; �� �/

p2
����! Gn.X �X /

p1

??y ??y���
Psp.GnX /

ev0;1

����! GnX �GnX

is a standard pullback diagram and �� � is induced by ���W X �X!GnX �GnX .

Proposition 4.19 Let G be a discrete group. Suppose that X is a proper G –CW com-
plex. Then the map qW Fsp.X /!P m

sp.GnX / given by q.!;y/D .� ı!; �0.!.0/;y//,
where �0W X � X!Gn.X � X / is the orbit map of the diagonal action, induces a
homeomorphism xqW GnFsp.X /!P m

sp.GnX /.

Proof The pullback diagram of Proposition 4.17 factors as:

Fsp.X /
q2
����! X � X

q

??y ??y�0
P m

sp.GnX /
p2
����! Gn.X �X /

p1

??y ??y���
Psp.GnX /

ev0;1

����! GnX �GnX

The outer square in the above diagram is a pullback by Proposition 4.17 and the lower
square is a pullback by definition. It follows that the upper square is a pullback. By
Lemma 3.18, q induces a homeomorphism xqW GnFsp.X /!P m

sp.GnX /.

Combining Corollary 4.16 and Proposition 4.19 yields:

Theorem 4.20 Let G be a discrete group. Suppose that X is a proper G –CW complex.
Then the map xq ı x̀W GnF.X /!P m

sp.GnX / is a homotopy equivalence.

Definition 4.21 The stratified free loop space of GnX , denoted by Lsp.GnX /, is
the subspace of Psp.GnX / consisting of closed paths, ie, ! 2 Psp.GnX / such that
!.0/D !.1/. The marked stratified free loop space of GnX , denoted by Lm

sp.GnX /,
is the subspace of P m

sp.GnX / given by:

Lm
sp.GnX /D f.!; �

0.x;y// 2 P m
sp.GnX / j .x;y/ 2 F.X /0g:

(Recall that �W X!GnX and �0W X �X!Gn.X �X / are the orbit maps and that
F.X /0 is the union of the components of F.X / meeting the diagonal.) Note that if
.!; �0.x;y// 2 Lm

sp.GnX /, then !.0/D �.x/D �.y/D !.1/ and so ! 2 Lsp.GnX /.
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There is a standard pullback diagram:

Lm
sp.GnX /

p2
����! GnF.X /0

p1

??y ??yp

Lsp.GnX /
ev0
����! GnX

where p is given by p.�0.x;y//D �.x/ for �0.x;y/ 2GnF.X /0 .

Let x�W GnX!Gn.X �X / denote the map induced by the diagonal map, �W X!X �

X . Define the map �W Lsp.GnX /!Lm
sp.GnX / by �.!/D .!; x�.!.0///. The compos-

ite p1� is the identity map of Lsp.GnX / and so Lsp.GnX / is homeomorphic to a
retract of Lm

sp.GnX /. In general, � is not a homotopy equivalence; for example, in the
case of the infinite dihedral group, D1 , acting on R as in Example 5.5, Lsp.D1nR/
is contractible, whereas Lm

sp.D1nR/ is not simply connected.

Proposition 4.22 If the discrete group G acts freely and properly on X , then the map
�W Lsp.GnX /!Lm

sp.GnX / is a homeomorphism; furthermore, Lsp.GnX /D L.GnX /,
the space of closed paths in GnX .

Proof Since the G–action on X is free and proper, by Remark 3.16, F.X /0 is
the diagonal of X � X and so pW GnF.X /0!GnX is a homeomorphism. Thus,
p1W Lm

sp.GnX /!Lsp.GnX / is also homeomorphism, since it is a pullback of p . Hence,
�D .p1/

�1 is a homeomorphism. Since the G –action is free, there is only one stratum
and so Lsp.GnX /D L.GnX /.

Define zS to be the image of the map G � Psp.X /!X � X given by .g; �/ 7!

.�.0/;g�.1//. Note that zS is a G –invariant subset of X �X and that F.X /� zS .

Theorem 4.23 Suppose that the pair . zS ;F.X /0/ can be deformed isovariantly into
the pair .F.X /0;F.X /0/, ie, there is an isovariant homotopy H W zS � I!zS such
that H.�; 0/ is the identity of zS and H. zS � f1g [F.X /0 � I/ � F.X /0 . Then the
inclusion i W Lm

sp.GnX / ,! P m
sp.GnX / is a homotopy equivalence.

Proof Let H W zS�I!zS be an isovariant homotopy such that H.�; 0/ is the identity of
zS and H. zS�f1g[F.X /0�I/�F.X /0 . Write H D .H1;H2/, where Hj W

zS�I!X

for j D 1; 2. Define the homotopy bW P m
sp.GnX /� I!Psp.GnX / by

b..!; �0.x;y//; s/.t/D

8<:
� ıH1..x;y/; s� 3t/ if 0� t � s=3

!..3t � s/=.3� 2s// if s=3� t � 1� s=3

� ıH2..x;y/; sC 3t � 3/ if 1� s=3� t � 1
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where �W X!GnX and �0W X � X!Gn.X � X / are the orbit maps. Define the
homotopy BW P m

sp.GnX /� I!P m
sp.GnX / by

B..!; �0.x;y//; s/D .b..!; �0.x;y//; s/; �0.H..x;y/; s///:

The hypotheses on H imply that B is a deformation of the pair .P m
sp.GnX /;Lm

sp.GnX //

into the pair .Lm
sp.GnX /;Lm

sp.GnX // and so i W Lm
sp.GnX / ,! P m

sp.GnX / is a homo-
topy equivalence.

The inclusion F.X /0 ,! zS is an isovariant strong deformation retract if there is a
homotopy H W zS � I!zS as in Theorem 4.23 with the additional property that H is
stationary along F.X /0 .

Corollary 4.24 If F.X /0 ,! zS is an isovariant strong deformation retract then
i W Lm

sp.GnX / ,! P m
sp.GnX / is a homotopy equivalence.

Remark 4.25 Suppose in Theorem 4.23 that the discrete group G acts freely and
properly. Then zS DX �X and F.X /0 D�.X /, the diagonal of X �X ; see Remark
3.16. The hypothesis of Theorem 4.23 asserts that .X �X; �.X // is deformable into
.�.X /;�.X // and so the diagonal map �W X!X �X is a homotopy equivalence.
This implies that X is contractible and hence a model for the universal space, EG , for
free G –actions, provided X has the equivariant homotopy type of a G –CW complex.
Conversely, suppose that EG is a G–CW model for the universal space such that
EG � EG with the product topology and the diagonal G–action is also a G–CW
complex and has an equivariant subdivision such that �.EG/ is a subcomplex. Then
�.EG/ � EG �EG is an equivariant, hence isovariant (since the G–action is free),
strong deformation retract.

In Section 5 we show that the hypothesis of Corollary 4.24 is satisfied for a class of
groups, which includes the infinite dihedral group and hyperbolic or Euclidean triangle
groups, and where X is a universal space for G –actions with finite isotropy.

Theorem 4.26 Suppose that G is a countable discrete group and that F is its family
of finite subgroups. Let EG WD EFG , a universal space for proper G–actions, and
BG WDGnEG .

(i) There is a homotopy equivalence N.G;F/' P m
sp.BG/.

(ii) If EG satisfies the hypothesis of Corollary 4.24, then there is a homotopy
equivalence N.G;F/' Lm

sp.BG/.
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Proof Conclusion (i) of the theorem is a direct consequence of Corollary 3.8 and
Theorem 4.20. Conclusion (ii) follows from (i) and Corollary 4.24.

If G is torsion free, then the family F of finite subgroups of G is the trivial family
and so jN cyc.G/j 'N.G;F/ and Lm

sp.BG/ŠL.BG/ (Proposition 4.22); furthermore,
by Remark 4.25, Theorem 4.26(ii) applies, thereby recovering the familiar result
jN cyc.G/j ' L.BG/.

5 Examples

Let EG denote the universal space for proper G–actions and BG D GnEG . In this
section, we show that if G is the infinite dihedral group or a hyperbolic or Euclidean
triangle group, then the hypothesis of Corollary 4.24 is satisfied; that is, F.EG/0 ,!
zS is an isovariant strong deformation retract. By Theorem 4.26, this implies that
N.G;F/ ' P m

sp.BG/ ' Lm
sp.BG/, where F is the family of finite subgroups of G .

This is accomplished by showing that, for these groups, F.EG/ is path connected and
F.X / ,! zS is a G �G –isovariant strong deformation retract.

Let G be a discrete group and X a proper G –space. Recall that F.X / is the image of
AX W G �X!X �X , where AX .g;x/ WD .x;gx/ for .g;x/ 2G �X , and zS is the
image of the map G�Psp.X /!X �X given by .g; �/ 7! .�.0/;g�.1//. Notice that
F.X / and zS are each G�G –invariant subsets of X�X . Let �W X!GnX denote the
orbit map. Then F.X /D .���/�1.�.GnX //, and zS D .���/�1.f.�.0/; �.1// j � 2

Psp.GnX /g/ by Lemma 4.12.

Proposition 5.1 Let G be a discrete group and X a proper G–space. Assume that
GnX is homeomorphic to a subset of Rn for some n, and that the images of the strata
of GnX in Rn are convex. Then F.X / ,! zS is a G�G –isovariant strong deformation
retract.

Proof Let h be a homeomorphism from GnX to D � Rn such that the images of
the strata of GnX under h are convex. Define H 0W Rn � Rn � I ! Rn � Rn by
H 0..a; b/; t/D .a; taC .1� t/b/. Notice that H 0.a; a; t/D .a; a/ for every a 2 Rn

and every t 2 I . Let S D f.�.0/; �.1// j � 2 Psp.GnX /g, and let H D .h� h/�1 ı

H 0 ı ..h� h/jS � idI /. Since the images of the strata of GnX under h are convex,
H W S � I ! S is a homotopy such that H0 ı .� � �/j zS D .� � �/j zS ı id zS and
H..�� �/. zS.K�K g//� I/� .���/. zS.K�K g// for every finite subgroup K of G and
every g 2G . Observe that if .x;y/ 2 zS , then .G�G/.x;y/DGx �Gy DK�Kg for
some finite subgroup K of G and some g 2G . Therefore, by the Covering Homotopy
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Theorem (Theorem 4.7), there exists a G �G–isovariant homotopy zH W zS � I ! zS

covering H such that zH0 D id zS . Since .�� �/�1.�.GnX //D F.X /, it follows that
zH1. zS/� F.X /. Thus, zH is the desired homotopy.

Corollary 5.2 Let G be a discrete group and X a proper G–space. Assume that
GnX is homeomorphic to a subset of Rn for some n, and that the images of the strata
of GnX in Rn are convex. If F.X / is path connected, then F.X /0 D F.X / ,! zS is
an isovariant strong deformation retract.

Next we determine when F.X / is path connected.

Theorem 5.3 Let G be a discrete group and X a path connected G–space. Then,
F.X / is path connected if every element of G can be expressed as a product of elements
each of which fixes some point in X . If, in addition, G acts properly on X , then the
converse is true.

Proof Let S D fs 2G j sy D y for some y 2X g. Clearly, if s 2 S and y 2X such
that sy D y , then AX .s;y/DAX .1;y/. Since X is path connected, this implies that
AX .S �X /� F.X / is path connected.

Suppose S generates G . Let .g;x/ 2 G �X be given. We will show that there is a
path in F.X / connecting AX .g;x/ to a point in AX .S �X /. Write g D sn � � � s2s1 ,
where si 2 S . For each i , there is an xi 2X such that sixi D xi . Therefore,

AX .g;x1/DAX .gs�1
1 ;x1/ and AX .gs�1

1 � � � s
�1
i ;xiC1/DAX .gs�1

1 � � � s
�1
iC1;xiC1/

for each i , 1� i � n�1. Since X is path connected, AX .fhg�X / is path connected
for every h 2G . Thus, AX .g;x/ and AX .1;xn/ are connected by a path in F.X /.

Now assume that G acts properly on X and that F.X / is path connected. Let N

be the subgroup of G generated by S . Since S is closed under conjugation, N is a
normal subgroup of G . Therefore, G=N acts on N nX by gN ��.x/D �.gx/, where
�W X !N nX is the orbit map. It is easy to check that the action is free. The fact that
G acts properly on X implies that N acts properly on X and that X is Hausdorff;
furthermore, N nX is Hausdorff [4, III, 4.2, Proposition 3]. Recall that a discrete group
G acts properly on a Hausdorff space X if and only if for every pair of points x;y 2X ,
there is a neighborhood Vx of x and a neighborhood Vy of y such that the set of
all g 2G for which gVx \Vy ¤∅ is finite [4, III, 4.4, Proposition 7]. This implies
that G=N acts properly on N nX . Therefore, AG=N W G=N �N nX !N nX �N nX

is a homeomorphism onto its image, F.N nX /. Thus, F.N nX / is path connected
if and only if G=N is trivial. Since the map �F W F.X / ! F.N nX /, defined by
�F .x;gx/D .�.x/; �.gx//, is onto and F.X / is path connected, it follows that G=N

is trivial. That is, G DN .
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An immediate consequence of this theorem is the following.

Corollary 5.4 Let G be a discrete group and F a family of subgroups of G . If there
exists a set of generators, S of G , with the property that for every s 2 S , there is an
H 2 F such that s 2H , then F.EFG/ is path connected.

Example 5.5 (The infinite dihedral group) Let G DD1 D ha; b j a
2 D 1; aba�1 D

b�1i and X DR, where a acts by reflection through zero and b acts by translation
by 1. Since R is a model for ED1 and D1 is generated by two elements of order
two, namely a and ab , F.R/ is path connected by Corollary 5.4. The quotient of R
by D1 is homeomorphic to the closed interval Œ0; 1=2�. The strata are f0g, f1=2g and
.0; 1=2/. Therefore, Corollary 5.2 implies that F0.R/ ,! zS is an isovariant strong
deformation retract.

Example 5.6 (Triangle groups) Let

G D ha; b; c j a2
D b2

D c2
D .ab/p D .bc/q D .ca/r D 1i;

where p; q; r are natural numbers such that 1=pC1=qC1=r � 1. The group G can be
realized as a group of reflections through the sides of a Euclidean or hyperbolic triangle
whose interior angles measure �=p , �=q and �=r , where the generators a, b and c

act by reflections through the corresponding sides. Thus, the triangle group G produces
a tessellation of the Euclidean or hyperbolic plane by these triangles. Therefore, this
plane is a model for EG , whose quotient, D , is equivalent to the given triangle. By
Corollary 5.4, F.EG/ is path connected. There are seven strata of D , namely VD , VSa ,
VSb , VSc , and each of the three vertices, where VD denotes the interior of D , and VSa ,
VSb , and VSc are the interiors of the sides of the triangle, Sa , Sb , and Sc , respectively,

through which a, b , and c reflect. It follows from Corollary 5.2 that F0.EG/ ,! zS is
an isovariant strong deformation retract.

Remark 5.7 Let X be a G–space and Y an H –space. Clearly, FG�H .X � Y /Š

FG.X /�FH .Y / and FG�H .X �Y /0 Š FG.X /0 �FH .Y /0 . (Here, the group that
is acting has been added to the notation of the configuration space.) Furthermore, since
.x;y/ and .x0;y0/ are in the same stratum of X � Y if and only if x and x0 are in
the same stratum of X and y and y0 are in the same stratum of Y , it follows that
zSX�Y Š

zSX �
zSY . Therefore, if FG.X /0 ,! zSX is a G –isovariant strong deformation

retraction and FH .Y /0 ,! zSY is an H –isovariant strong deformation retraction, then
FG�H .X �Y /0 ,! zSX�Y is a G �H –isovariant strong deformation retraction. This
observation produces interesting examples for which Theorem 4.26 is true. If X DR,
G DZ, Y DR and H DD1 , then FZ�D1.R�R/ŠFZ.R/�FD1.R/ is not path
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connected, since FZ.R/ is not path connected. Moreover, FZ�D1.R�R/0 ¤�.R/
and FZ�D1.R � R/0 ¤ FZ�D1.R � R/. Despite this, Theorem 4.26 applies to
Z�D1 .

6 A comparison of G nF.EG / and G nF.EG /

In this section we examine the map N.G; f1g/! N.G;F/, where G is a discrete
group and F is the family of finite subgroups of G . This enables us to compute the
induced map HH�.ZG/!HHF

� .ZG/.

Let E be a model for EG and E be a model for the universal space for proper G –actions.
Then, GnF.E/ is homeomorphic to N.G; f1g/, and N.G;F/ is homeomorphic to
GnF.E/ by Theorem 3.7. The universal property of E implies that there is a G–
equivariant map, f W E! E, that is unique up to G–homotopy equivalence. Then
F.f /W F.E/!F.E/ induces a map xf W GnF.E/!GnF.E/. Note that for a different
choice of f , the induced map will be homotopy equivalent to xf . The corresponding
map on homology groups is denoted xf�W HH�.ZG/!HHF

� .ZG/. Recall that

xAEW Gn.G �E/!GnF.E/

is a homeomorphism, since G acts freely and properly on E (Proposition 3.10). By
Proposition 3.11, there is a homeomorphism

hW
a

C.g/2conj.G/

Z.g/nE!Gn.G �E/;

which sends the orbit Z.g/ �x to the orbit G � .g;x/. This produces a map

�W
a

C.g/2conj.G/

Z.g/nE!GnF.E/;

where � D xf ı xAE ıh. That is, the image of Z.g/ �x under � is G � .f .x/;g �f .x//,
where g is in G and x is in E. Thus, we have the following commutative diagram.

HH�.ZG/
xf� // HHF

� .ZG/

M
C.g/2conj.G/

H�.BZ.g/IZ/

��

66nnnnnnnnnnnn
Š

OO

If H is a finite group, then the Sullivan Conjecture, proved by Miller [17], implies that
a map from BH to a finite dimensional CW complex is null homotopic. If E is finite
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dimensional, then F.E/ is homotopy equivalent to a finite dimensional CW complex.
Thus, if Z.g/ is finite, then the image of H�..BZ.g/IZ/ under �� is zero.

For an illustrative example, consider the infinite dihedral group, D1 D ha; b j a
2 D

1; aba�1 D b�1i. Let EDR, where a acts by reflection through zero and b acts by
translation by 1. That is, ax D�x and bx D xC 1. The space F.R/ is the image of
ARW D1�R!R�R. Thus, F.R/D f.x;gx/ j x 2R and g 2D1g. Every element
of D1 can be expressed as bj or abj , for some j in Z. Since bj x D xC j and
abj x D �x � j , F.R/ � R2 is the union of the lines of slope 1 and �1 that cross
the y –axis at an integer. A picture of D1nF.R/ is given in Figure 1 below.

:::
:::

� �

� �

� �

� �

� �

Figure 1: The space D1nF.R/

To see that this is in fact the picture, consider the diagonal action of hbi on R2 . The
orbit of the set

D D f.x;y/ j x 2R and �x� 1� y � �xC 1g

under this action is all of R2 . Observe that the lines y D�x� 1 and y D�xC 1 get
identified in the quotient of R2 by hbi and that the rest of the set is mapped injectively
into the quotient. Thus, hbinR2 is an infinite cylinder. Since a acts on the set D by a
rotation of 180ı , we see that the quotient D1nR2 D hain

�
hbinR2

�
is obtained from

f.x;y/ 2 D j y � xg by identifying the endpoints of the line segments y D x C t ,
where t � 0 (that is, the points ..�t � 1/=2; .t � 1/=2/ and ..�t C 1/=2; .t C 1/=2/),
as well as by identifying the points .x;x/ and .�x;�x/, where �1=2 � x � 1=2.
Thus, D1nR2 looks like an “infinite chisel,” and D1nF.R/�D1nR2 is as shown
above.

The nontrivial finite subgroups of D1 are of the form habii, where i 2 Z. For each
i , habii fixes �i=2 2R. Beginning with the action of D1 on R, construct a model
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for ED1 by replacing each half-integer with an S1 . Denote this “string of pearls”
model for ED1 by E, and let f W E! E be the equivariant map that collapses each
S1 to a point. The conjugacy classes of D1 are:

C.1/D f1g

C.a/D fab2i
W i 2 Zg

C.ab/D fab2iC1
W i 2 Zg

C.bj /D fbj ; b�j
g; j 2N

The corresponding centralizers are:

Z.1/DD1

Z.a/D f1; ag

Z.ab/D f1; abg

Z.bj /D hbi; j 2N

Note that D1nE is an “interval” with an RP1 at each end; hainE is a “ray” that
begins with an RP1 at 0 and has an S1 at every positive half-integer; habinE is
a “ray” that begins with an RP1 at 1=2 and has an S1 at every other positive
half-integer; and ZnE is a “circle” with two S1 ’s in place of vertices.

The image of � is broken into the pieces

�.D1 �x/DD1 � .f .x/; f .x//(4)

�.Z.a/ �x/DD1 � .f .x/;�f .x//(5)

�.Z.ab/ �x/DD1 � .f .x/;�f .x/� 1/(6)

�.Z.bj / �x/DD1 � .f .x/; f .x/C j /(7)

where j is a positive integer and x 2 E. Referring to Figure 1, the base of D1nF.E/
is (4), the pieces (5) and (6) are the sides of D1nF.E/, and (7) provides each of the
circles. Therefore, � is a gluing of the disjoint pieces, Z.g/nE, after each S1 and
each RP1 is collapsed to a point. Observe that,

HH�.ZD1/ŠH�.BD1IZ/˚H�.BZ.a/IZ/

˚H�.BZ.ab/IZ/˚
M
j>0

H�.BZ.bj /IZ/:

Since Z.a/ Š Z=2 Š Z.ab/, the Sullivan Conjecture implies that the image of
H�.BZ.a/IZ/ and H�.BZ.ab/IZ/ under �� is zero. By the above analysis, we
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have �.BD1/DD1nRŠ Œ0; 1�. Therefore, the image of Hi.BD1IZ/ under �i is
0, for i � 1. The rest of HHi.ZD1/ is mapped injectively into HHF

i .ZD1/, i � 1.

Classical Hochschild homology has been used to study the K–theory of group rings
via the Dennis trace, dtrW K�.RG/!HH�.RG/. In [15], Lück and Reich were able
to determine how much of K�.ZG/ is detected by the Dennis trace. A natural question
is to determine the composition of the Dennis trace with the map xf�W HH�.ZG/!

HHF
� .ZG/. From Lück and Reich [15, p 595], we have the following commutative

diagram

H G
� .EIKZ/

��

A // K�.ZG/

dtr
��

H G
� .EIHHZ/

B // HH�.ZG/

where the maps A and B are assembly maps in the equivariant homology theories
with coefficients in the connective algebraic K–theory spectrum, KZ , associated to
Z, and the Hochschild homology spectrum HHZ , respectively. Each assembly map
is induced by the collapse map E! pt. Lück and Reich used the composition of the
Dennis trace with the assembly map in algebraic K–theory, dtr ıA, to achieve their
detection results. In particular, they observed [15, p 630] that the assembly map in
Hochschild homology factors as:

H G
� .EGIHHZ/

B // HH�.ZG/

M
C.g/2conj.G/
hgi2F

H�.BZ.g/IZ/

Š

OO

� � //

M
C.g/2conj.G/

H�.BZ.g/IZ/

Š

OO

Given the discussion above, in the case G DD1 ,

H G
� .ED1IHHZ/ŠH�.BD1IZ/˚H�.BZ.a/IZ/˚H�.BZ.ab/IZ/:

Therefore, xf� ıB D 0, which implies that the image of xf� ı dtr ıA is zero.

We conclude with speculation about a possible geometric application of the groups
HHF

� .ZG/. Associated to a parametrized family of self-maps of a manifold M , there
are geometrically defined “intersection invariants,” in particular, the framed bordism
invariants of Hatcher and Quinn [10], which take values in abelian groups that are
known to be related to the Hochschild homology groups HH�.ZG/, where G is the
fundamental group of M [9]. It appears plausible that the groups HHF

� .ZG/, where
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F is the family of finite subgroups, could play an analogous role in the yet to be
developed homotopical intersection theory of orbifolds.
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