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sl(2) tangle homology with a parameter and
singular cobordisms

CARMEN LIVIA CAPRAU

We construct a bigraded cohomology theory which depends on one parameter a , and
whose graded Euler characteristic is the quantum sl.2/ link invariant. We follow
Bar-Natan’s approach to tangles on one side, and Khovanov’s sl.3/ theory for foams
on the other side. Our theory is properly functorial under tangle cobordisms, and a
version of the Khovanov sl.2/ invariant (or Lee’s modification of it) corresponds to
aD 0 (or aD 1/: In particular, the construction naturally resolves the sign ambiguity
in the functoriality of Khovanov’s sl.2/ theory.

57M27, 57M25; 18G60

1 Introduction

Khovanov classified in [12] all possible Frobenius systems of rank two which give rise
to link homologies via his construction in [9], and showed that there is a universal one
corresponding to ZŒX; a; b�=.X 2 � bX � a/ (refer to Kadison [7] for a definition of
Frobenius systems). The original Khovanov homology categorifying the unnormalized
Jones polynomial corresponds to the choice a D b D 0; while Lee’s [13] variant of
it corresponds to aD 1; b D 0: Bar-Natan [1] extended the Khovanov homology to
tangles by using a setup with cobordisms modulo relations, which in particular leads
to an improvement in computational efficiency (see [2]). It was independently proved
by Bar-Natan [1], Jacobsson [6] and Khovanov [11] that the Khovanov homology is
functorial for link cobordisms, in the sense that given a link cobordism S 2R3� Œ0; 1�

between links L1 and L2; there is an induced map between their Khovanov homologies
Kh.L1/ and Kh.L2/; well-defined up to overall minus sign, under ambient isotopy of
S relative to @S:

In [10], Khovanov showed how to construct a link homology theory whose graded Euler
characteristic is the sl.3/ link invariant. Instead of .1C 1/–dimensional cobordisms
he uses webs and foams modulo a finite set of relations. Following his approach,
Mackaay and Vaz [14] defined the universal sl.3/ link homology which depends
on 3 parameters, and their theory arises from a Frobenius system corresponding to
ZŒX; a; b; c�=.X 3� aX 2� bX � c/:
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We construct a bigraded sl.2/ cohomology theory for oriented tangles over ZŒi �Œa�;
where a is a formal variable and i is the primitive fourth root of unity. The construction
follows closely the work by Bar-Natan [1], with the main difference that we keep track
of orientations. More precisely, we start from the oriented state model for the Jones
polynomial and work with webs and foams modulo local relations, much as it is done in
[10] and [14], but instead of using planar trivalent graphs we consider bivalent graphs.
Consequently, our foams are 2–dimensional CW–complexes with singularities where
two 2–cells are joining, as opposed to three 2–cells.

Restricting to the case of links, we obtain a categorification of the sl.2/ link invariant,
and a geometric approach to the link cohomology theory corresponding to a Frobenius
system given by ZŒi �ŒX; a�=.X 2�a/: The advantage of working with the oriented state
model for the Jones polynomial (as opposed to the classical approach) on one side, and
of considering the fourth root of unity i in the ground ring on the other side, is that we
obtain a cohomology theory that satisfies functoriality in the proper way, with no sign
indeterminacy.

Adding the relation aD 0 (or aD 1), our construction yields a cohomology theory
that is isomorphic to a version of the Khovanov homology theory (or Lee’s variant of
it). In particular, it naturally resolves the sign ambiguity in functoriality property of
Khovanov’s sl.2/ theory. For each oriented link L, there is an isomorphism

Hi;j .L/Š Khi;�j .L!/˝Z ZŒi �

where L! is the mirror image of L; and Kh is the homology theory defined in [9].

We note that our construction and main result for aD 0 case are close to that by Clark,
Morrison and Walker in [5], and that the two pieces of work were done independently.
However, we borrowed from [5] the excellent idea of working with “homotopically
isolated” objects when checking the functoriality property of our invariant, which
makes the calculations much easier.

2 Webs and foams

Webs Let B be a finite set of points on a circle, such as the boundary @T of a tangle.
A web with boundary B is a planar graph � properly embedded in a disk D2 , with
bivalent vertices—called singular points—near which the two arcs are oriented as
follows: either or . We also allow webs without vertices, thus closed
oriented loops. Each singular point has a neighborhood homeomorphic to the letter V,
and there is an ordering of the arcs corresponding to it; namely, the arc that goes in or
goes out from the right is called the preferred arc of that singular point. Notice that
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this definition corresponds to the case when the arcs are oriented from south to north;
otherwise, the word “right” above should be replaced by “left”. Two adjacent singular
points are called of the same type if their common arc is either the preferred one or
not. The middle arc in the picture is the preferred arc for both vertices, while in
the drawing ; the preferred arcs are those in the left and right. Otherwise, the
singular points are called of different type (like these two ). A closed
web is a web with empty boundary.

There is a unique way to assign a Laurent polynomial h�i 2ZŒq; q�1� to a closed web
�; so that it satisfies the skein relations explained in Figure 1. Notice that this gives
the oriented state model for the Jones polynomial, with t1=2 D�q (see Kauffman [8,
Section 6]). Note that for a k –component closed web, h�i D .qC q�1/k :

h
S
�i D .qC q�1/h�i D h

S
�i

h i D h i; h i D h i

Figure 1: Web skein relations

Let L be a link in S3: We fix a generic planar diagram D of L and form the sum over
all closed web diagrams � which are obtained by replacing each crossing of D by one
of the two pictures on the right side of Figure 2. We define hDi D

P
� ˙q˛.�/h�i,

where the weights ˛.�/ are determined by the rules given in Figure 2. If D1 and D2

are related by a Reidemeister move, then hD1i D hD2i: Consequently, we obtain an
invariant of L, denoted by P2.L/ WD hDi:

D q � q2

D q�1 � q�2

Figure 2: Decomposition of crossings

Excluding the rightmost terms in Figure 2, we obtain the following skein relation:

q2
� q�2

D .q� q�1/
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Therefore, our P2.L/ is nothing else but the sl.2/ link invariant, or equivalently, the
unnormalized Jones polynomial. Its categorification was introduce by Khovanov in [9].

Foams Let �0 and �1 be two webs with boundary points B: A foam is an abstract
cobordism from �0 to �1 , regarded up to boundary-preserving isotopies, which is a
piecewise oriented 2–dimensional manifold S with boundary @SD��1[�0[B�Œ0; 1�

and corners B � f0g [ B � f1g, where the manifold ��1 is �1 with the opposite
orientation. A cobordism between closed webs �0 and �1 is embedded in R2 � Œ0; 1�

and its boundary lies entirely in R2�f0; 1g: We read foams as morphisms from bottom
to top by convention, and we compose them by placing one on top the other.

Foams have singular arcs or singular circles where orientation disagrees. A point on
a singular arc has a neighborhood homeomorphic to the product of the letter V and
an interval. The facets of a foam are compatibly oriented near each singular arc or
circle, and this compatibility induces orientations on singular arcs. Specifically, the
orientation of singular arcs and circles is as in Figure 3, which shows examples of
basic foams. For each singular arc, there is a preferred facet that it bounds, and each
singular arc connects only singular points of the same type. Finally, if the preferred
facet is at the left of the singular arc—where the concept of “left” and “right” is given
by the orientation of the singular arc—we represent that arc by a continuous red curve.
Otherwise, a dashed red curve is used. We remark that this notion of preferred side
coincides with an ordering of the facets meeting at a singular arc (circle), and that it is
a local property.

Figure 3: Singular saddles and ufo-foams

A cobordism from the empty web to itself gives rise to a foam with empty boundary,
called closed foam. The last two drawings in Figure 3 show examples of closed foams,
called ufo–foams. Notice the different ordering of their facets; in what follows we will
always consider ufo–foams with the lower hemisphere as the preferred facet.

Foams can have dots that are allowed to move freely along the facet they belong to,
but can’t cross singular arcs or singular circles.
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If B is a finite set of points on a circle, we denote by Foams.B/ the category whose
objects are webs with boundary B and whose morphisms are foams between such
webs. If B D∅; the corresponding category is denoted by Foams.∅/:

2.1 A (1 + 1)–dimensional TQFT with dots

Let i be the primitive fourth root of unity and let ZŒi �Œa� be the graded ring of polyno-
mials in indeterminate a and Gaussian integer coefficients, with deg.1/D 0D deg.i/
and deg.a/D 4: Consider the commutative Frobenius ring AD ZŒi �Œa;X �=.X 2� a/

with trace map �W A! ZŒi �Œa�, �.1/D 0, �.X /D 1. Multiplication mW A˝A!A
and comultiplication �W A!A˝A are defined by the rules(

m.1˝X /Dm.X ˝ 1/DX

m.1˝ 1/D 1; .X ˝X /D a;

(
�.1/D 1˝X CX ˝ 1

�.X /DX ˝X C a1˝ 1:

We make A graded by setting deg(1/ D �1 and deg(X / D 1. The trace � and unit
�W ZŒi �Œa�!A; �.1/D 1 are maps of degree �1, while multiplication and comultipli-
cation are maps of degree 1.

The Frobenius algebra A gives rise to a well-defined 2–dimensional TQFT, denoted
here by F; from the category of oriented .1 C 1/–dimensional cobordisms to the
category of graded ZŒi �Œa�–modules. F assigns ZŒi �Œa� to the empty 1-manifold and
A˝k to the disjoint union of oriented k circles. On the generating morphisms, the
functor is defined by: F. /D �; F. /D �; F. /Dm and F. /D�:

A dot on a surface denotes multiplication by X endomorphism of A: For example, the
functor F applied to the ‘cup’ with a dot produces the map ZŒi �Œa�!A which takes 1

to X: A twice dotted surface is the multiplication by X 2 D a endomorphism of A:
Therefore, F(twice dotted surface) = a F(surface with no dots). Dots can move freely
on a connected component of an oriented surface. A singular cylinder (a cylinder with
singular circles) may be regarded as the endomorphism defined in Figure 4.

1
2

A

A

1

X

�i1

iX
1

2

A

A

1

X

i1

�iX

Figure 4: The meaning of singular arcs
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In particular, W ZŒi �Œa� �!A; 1! i and W ZŒi �Œa� �!A; 1!�i .

F extends to a functor from the category of dotted, singular 2–dimensional cobordisms
to the category of graded ZŒi �Œa�–modules. The homomorphism F.S/ associated with
a cobordism S with d dots has degree given by the formula deg(S/D��.S/C 2d ,
where � is the Euler characteristic of S . Note that F is degree-preserving.

2.2 Local relations

We mod out the morphisms of the category Foams by the local relations ` = (2D, SF,
S, UFO) below, and denote the corresponding quotient category by Foams=`:

(2D) D a ; D C (SF)

D 0; D 1 (S)

D 0D ; D i D� (UFO)

The surgery formula (SF) implies the genus reduction formula D 2 . In
particular we have D 2; D 0; D 8a:

A closed foam S can be viewed as a morphism from the empty web to itself. By the
relations `; we assign to S an element F.S/2ZŒi �Œa�; called the evaluation of S . We
view F as a functor from the category Foams=`.∅/ to the category of ZŒi �Œa�–modules.

Lemma 2.1 The functors F and F behave similarly. In particular, F descends to a
functor Foams=`.∅/! ZŒi �Œa�–Mod.

Proof We have already seen in Section 2.1 that F satisfies the (2D) relation. It only
remains to show that F satisfies relations (S), (SF) and (UFO). That F satisfies the (SF)
relation follows from Id D .m.X / ı �/ ı �C � ı .� ım.X //; where m.X / stands for
multiplication by X endomorphism of A: The (S) relations follow from � ı �D 0 and
� ım.X / ı �D 1: A ufo–foam without dots is a cup with a clockwise oriented singular
circle followed by a cap; we have: 1 ! i ! i�.1/ D 0: Moreover, the ufo–foam
with a dot on each facet is a cup with a dot followed by a cylinder with a clockwise
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oriented singular circle and then followed by a cap with a dot. Composing these we

obtain: 1
m.X /�
�! X �! iX

�m.X /
�! ia�.1/D 0: The other two (UFO) relations are proved

similarly.

The proof of [10, Proposition 3] can be extended to our setting, to get the following
lemma.

Lemma 2.2 The set of local relations ` are consistent and determine uniquely the
evaluation of every closed foam.

Remark The evaluation of closed foams is multiplicative with respect to the disjoint
union of closed foams: F.S1[S2/DF.S1/F.S2/: Moreover, if a closed foam S 0 is
obtained from a closed foam S by reversing the ordering of the facets at a singular circle,
then F.S 0/D�F.S/: The local relations ` imply a set of useful relations depicted in
Figure 5, which establish the way of exchanging dots between two neighboring facets.

C D 0 and D�a

Figure 5: Exchanging dots between facets

Definition 2.3 For webs �; � 0 , foams Si 2 HomFoams=`
.�; � 0/ and ci 2 ZŒi �Œa� we

say that
P

i ciSi D 0 if and only if
P

i ciF.V 0SiV / D 0 holds for any foam V 2

HomFoams=`
.∅; �/ and V 0 2 HomFoams=`

.� 0;∅/:

Definition 2.4 If S 2 Foams.B/ is a foam with d dots we define the grading of S

by deg(S/D��.S/C 1
2
jBjC 2d; where � is the Euler characteristic and jBj is the

cardinality of B:

Note that the local relations ` are degree-preserving, and that given any composable
foams S1 and S2; we have deg.S1S2/D deg.S1/C deg.S2/:

Example deg
� �

D deg
� �

D deg
� �

D deg
� �

D�1;

deg
� �

D deg
� �

D deg
� �

D deg
� �

D 1: Also deg
� �

D 1:

With the previous definition at hand, the category Foams is graded, and so is Foam=`:
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Lemma 2.5 The following relations hold in Foams=` :

C D C (3C)

D i � i (RSC)

Proof These follow from relation (SF). Applying a surgery on each tube in (3C) we
end up with the same combination of foams in both sides of the identity. Similarly,
doing surgeries above and below the singular circle of the left-hand side in (RSC) and
then using the (UFO) relations, we get the right-hand side of (RSC).

Lemma 2.6 The following relations hold in Foams=` W

D �i and D i (CI)

D�i � i (CN)

where the dots in (CN) are on preferred facets, the facets in the back.

Proof (CI) and (CN) are proved similarly as in [10, Proposition 8], using our local
relations `: We let the details to the reader.

Lemma 2.7 The following relations hold in Foams=`:

D i D�i

D�i 21 D i

From the above identities and those in (CI), we obtain that �i and (as well

as i and ) are mutually inverse isomorphisms in Foam=` .
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Corollary 2.8 The following isomorphisms hold in the category Foam=`:

and

and

The previous corollary says that we can ‘remove’ or ‘create’ pairs of adjacent singular
points of the same type. From relations (CI) and Lemma 2.7 we also have the following
corollary.

Corollary 2.9 The following isomorphisms hold in the category Foam=`:

and

3 From tangles to formal complexes

We start with a generic tangle diagram T with boundary points B , and denote by nC
and n� the number of positive and negative crossings in T: We replace each crossing
by one of its two resolutions (see Figure 2) and form a commutative n–dimensional
cube of resolutions (where nD nCC n� ), similar to the one in Bar-Natan’s work [1].
The chain objects are finite formal direct sums of webs and differentials are matrices
of foams. The construction of ŒT � is explained in Figure 6, where the numbers �1; 0

and 1 under resolutions indicate the cohomological degrees, and fmg is the grading
shift by m:
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Figure 6: Constructing the chain complex [T]

We borrow some notations from Bar-Natan [1] and denote the category of com-
plexes over Foams by Kom(Mat(Foams// and its ‘modulo homotopy’ subcategory by
Kom=h (Mat(Foams//: Moreover, we define KofWDKom(Mat(Foams=`// and Kof=h WD

Kom=h (Mat(Foams=`//: We remark that the later ones are analogous to Bar-Natan’s
Kob = Kom(Mat(Cob3

= l
// and Kob=h = Kom=h (Mat(Cob3

= l
//: All these categories

are graded by degree.

3.1 Invariance under the Reidemeister moves

Theorem 3.1 The chain complex ŒT �, regarded as an object in Kof=h , is invariant
under the Reidemeister moves.

Proof We work diagrammatically and show the invariance under Reidemeister moves
for the small tangles representing these moves, using the local relations ` and the
identities from Lemma 2.6 and Lemma 2.7. The invariance under Reidemeister moves
within larger tangles follows from Bar-Natan’s discussion [1] on planar algebras and
‘canopolies’.

Reidemeister 1a Consider diagrams D1 D and D0 D : We give the ho-

motopy equivalence between complexes ŒD0�D .0 �! �! 0/ and ŒD1�D .0 �!
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f�1g �! f�2g �! 0/ in Figure 7 (underlined objects are at the cohomological
degree zero).

ŒD0� W

f

��
ŒD1� W

g

OO

f 0 D

��

0 //
0

d D

//

g0 D

OO

��

0

OO

hD i

oo

Figure 7: Invariance under Reidemeister 1a

f and g are morphisms, since df 0 D 0 (it follows from the first relation of Figure 5).
Using relations (S) we have g0f 0D Id. /: From (CI) we obtain dhD Id. /; while
f 0g0C hd D Id. / follows from relation (SF) and Lemma 2.7. Thus ŒD1�� ŒD

0�:

Reidemeister 1b Consider diagrams D2 D and D0 D : The homotopy

equivalence between complexes ŒD2� D .0 �! f2g
d
�! f1g �! 0/ and

ŒD0�D .0 �! �! 0/ is given in Figure 8.

g0f 0 D Id. / follows from (S), and g0d D 0 is implied by the first identity in
Figure 5. From (CI) we have hd D Id. /; while f 0g0CdhD Id. / follows from
relation (SF), the first relation in Lemma 2.7 and identities given in Figure 5. Hence
ŒD2�� ŒD

0�:

Reidemeister 2a Consider diagrams DD and D0D : We give the homotopy

equivalence between ŒD� and ŒD0� in Figure 9. The following identities hold.

� d�1
1
Cg0

2
d�1

2
D 0; d0

1
C d0

2
f 0

2
D 0 (it uses isotopies).

� h0d�1
2
D Id. /; d0

2
h1 D Id. / (it uses isotopies).

Algebraic & Geometric Topology, Volume 8 (2008)
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ŒD0� W

f

��
ŒD2� W

g

OO 0
0 //

f 0 D

����

0

OO

d D

//

g0 D

OO

hD i

oo

Figure 8: Invariance under Reidemeister 1b

� f 0
2

g0
2
C d�1

2
h0C h1d0

2
D Id. /; g0

2
f 0

2
D 0 (by (CN) and (UFO), respec-

tively).

Reidemeister 2b Consider diagrams D D and D0 D : Figure 10 explains

the homotopy equivalence between the formal complexes ŒD2� and ŒD0�: We have the
following.

� g0
1
d�1

1
Cg0

2
d�1

2
D 0; d0

1
f 0

1
C d0

2
f 0

2
D 0 (it uses isotopies).

� h0
2
d�1

2
D Id. /; d0

2
h1

2
D Id. /; f 0

1
g0

1
D Id. / (by relations (CI)).

� f 0
2

g0
2
C d�1

2
h0

2
C h1

2
d0

2
D Id. / (by relation (SF) and Lemma 2.7).

� g0
1
f 0

1
Cg0

2
f 0

2
D Id. / (by relations (S) and Lemma 2.7). Thus ŒD�� ŒD0�:

The proof of invariance under Reidemeister 2 moves shows, in particular, that the
morphisms gW ! and gW ! are strong deformation retracts.

We will prove the invariance under the Reidemeister 3 move using mapping cones and
strong deformation retracts, in Bar-Natan’s spirit [1], but before we proceed, we need
to show a few moves involving tangles with singular points.
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d�1
2
D

d0
2
D

h0 D
D h1

d�1
1
D �

D d0
1

g0
2
D�

D f 0
2

ŒD� W

g f

ŒD0� W

0

0 0

0

I

�1 0 1

Figure 9: Invariance under Reidemeister 2a

Moves involving singular points

Lemma 3.2 The following isomorphisms hold in the category Kof=h .

and
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d�1
2
D

d0
2
D

h0
2
D�i

�i
D h1

2

d�1
1
D

�
D d0

1

g0
1
D�

D f 0
1

D g0
2

f 0
2
D

0 0

0 0

�1 0 1

fg

ŒD� W

ŒD0� W

Figure 10: Invariance under Reidemeister 2b
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Proof The isomorphisms of the corresponding chain complexes are given in Figure
11 and Figure 12. One can easily verify, using Corollary 2.8 and Corollary 2.9, that the
maps ˛ and ˛�1 , as well as ˇ and ˇ�1; are mutually inverse isomorphisms.

W

W

˛ ˛�1
�Id Id

�

�

�1 0 1

Figure 11: Isomorphism ˛

Lemma 3.3 The associated chain complexes corresponding to the diagrams that differ
in a circular region, as in the figure below, are isomorphic in the category Kof=h .

and

Given a morphism of complexes  , we denote its mapping cone by M. /.
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W

W

ˇ ˇ�1
� �

�

�

�1 0 1

Figure 12: Isomorphism ˇ

Lemma 3.4 Œ � D M. Œ � �! Œ � / and Œ � D M. Œ � �! Œ � /Œ�1�,
where [s ] is the shift operator that shifts complexes s steps to the left; that is, if C i is
the chain object in the i th position of some complex C , then C sCi is the chain object
in the i th position of C [s].

Reidemeister 3 Each side of the Reidemeister move R3 can be realized as the mapping
cone over the morphism switching between the two resolutions of a crossing. Using
our moves with singular points, we are ready to apply the ‘categorified Kauffman
trick’. For this, we use that the cone construction is invariant under composition
with isomorphisms. On the other hand, it was shown in [1] that the mapping cone
construction is invariant, up to homotopy, under composition with strong deformation
retracts, and under composition with inclusions in strong deformation retracts.

Algebraic & Geometric Topology, Volume 8 (2008)



sl(2) tangle homology with a parameter and singular cobordisms 745

Consider the two tangles and , and the mapping cones corresponding to

crossings labeled 2. We have:

Œ �DM
�
Œ �

 1
��! Œ �

�
Œ�1�

Š
��!
G1

M
�
Œ �

f1
�! Œ �

 1
��! Œ �

�
Œ�1�

Š
�!
ƒ

M
�
Œ �

f1
�! Œ �

 1
��! Œ �

˛
�! Œ �

�
Œ�1�D

M
�
Œ �

f 0
1
�! Œ �

 0
1
��! Œ �

�
Œ�1�

Š
��!
F 0

1

M
�
Œ �

 0
1
��! Œ �

�
Œ�1�D Œ �

Morphisms f1 and f 0
1

are the inclusions in the strong deformation retracts g1 and g0
1

from the proof of invariance under R2 moves, and F 0
1
D

�
f 0

1
0

0 I

�
;G1D

�
g1 0

 1h1 I

�
for some homotopy h1: Moreover, ƒD

�
I 0

0 ˛

�
, where ˛ is the isomorphism from

Lemma 3.2. We are left to show that the third and fourth morphisms above are the
same. These are analyzed below (starting with the third one).

R2a saddle ˛

Id
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and
R2a saddle

Id

Composing and applying the first (CI) relation, we obtain that both morphisms have the

same components, namely and . The other oriented versions of Reidemeister
3 are done similarly (see the author’s work [3] for more details).

3.2 Functoriality

The categories Foams and Foams=` are examples of canopolies, as well as are the
categories Kof;Kof=h and Cob4 (for a definition of canopolies see [1]). Cob4 is the
category of cobordisms between oriented tangle diagrams, and is generated by the
cobordisms corresponding to the Reidemeister moves and the Morse moves: birth or
death of an oriented circle, and oriented saddles (regarded as sitting in 4D ).

Theorem 3.5 There is a degree preserving canopoly morphisms LW Cob4
=i! Kof=h

from the canopoly of up to isotopy cobordisms in the 4–dimensional space between
oriented tangle diagrams to the canopoly of formal complexes between them, up to
homotopy.

Proof We define a degree-preserving functor LW Cob4
! Kof=h which associates to

a tangle diagram T the formal chain complex ŒT �. To each Reidemeister move it asso-
ciates the chain morphism inducing the homotopy equivalence between the complexes
associated to the initial and final frame of the corresponding move (as constructed in
the proof of Theorem 3.1). Moreover, the Morse moves induce morphisms between
the one step corresponding formal complexes, interpreted in a skein-theoretic sense
where each symbol represents a small neighborhood within a larger context.

We show that L descends to a functor (denoted by the same symbol) LW Cob4
=i!Kof=h .

For this, we need to verify that L respects the relations in the kernel of the map
Cob4

! Cob4
=i , namely the movie moves of Carter and Saito [4]. Specifically, we need
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to check that the morphisms of complexes corresponding to each movie are homotopic
to identity morphism (for type I and II of movie moves) or to each other (for type III).

Type I: Reidemeister moves and inverses

These are equivalent to identity clips. The morphisms obtained by applying L are
homotopic to identity (it follows from Theorem 3.1), since the induced maps between
two successive frames are a homotopy equivalence and its inverse.

Type II: Reversible circular clips

These circular clips have the same initial and final frames and are equivalent to identity.
Our goal is to show that, at the level of chain complexes, the associated morphisms are
homotopy equivalent to the identity morphism. We do this in two steps.

Lemma 3.6 For each 6� i � 10; L.MMi/ is homotopy equivalent to ik Id, where
k 2 f0; 1; 2; 3g:

Proof One can prove this as Bar-Natan does in [1, Lemmas 8.6–8.9], by showing that
the space of degree 0 automorphisms of the complexes corresponding to the tangles in
the initial (and final) frames appearing in the type II movie moves is 1–dimensional. The
main difference with [1] is that we use our local relations `, and homotopy equivalences
constructed in Section 3.1.
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Next step is to show that actually L.MMi/ is homotopy equivalent to identity, for
each 6� i � 10: There are many oriented representatives that one needs to check for
each movie move, but we approach here only one of them for each particular movie,
and we refer the reader to author’s exposition in [3], for more details. We choose a
direct summand in the chain complex associated to the first frame of the clip, having
the property that has no homotopies in or out, and we observe its image under the
clip. This is the method used by Clark, Morrison and Walker in [5], from where we
recall the following results (which hold in our case as well). If A is a resolution in a
formal complex ŒT �; so that A does not contain closed webs and is not connected by
differentials to resolutions containing closed webs, then A is homotopically isolated;
that is, for any homotopy h, the restriction of dhChd to A is zero. Moreover, if f
and g are chain maps so that f � cg for some constant c , and if f and g agree on
some homotopically isolated object A, then f � g:

MM6 Let’s have a look at the following oriented representative of MM6:

R2b R3 R3 R2b�1

ˇ ˛

Id

We start at the height zero object of the complex associated to the first—which is
also the last—tangle of the clip. Composing the maps above, we obtain in the first

row D .�i/4 Id D Id; and in the second row ı D 0:

Therefore the induced chain map is the identity.

MM7 We consider the case with a negative crossing in the second frame. After
composing the morphisms and applying relations (S), the corresponding cobordism is
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a vertical “curtain”, thus the morphism is the identity.

R1a R1b R2b�1

MM8 Let’s consider the case when the Reidemeister move R1 introduces a positive
crossing.

R1b R2b R3 R2a�1 R1b�1

1 1

0

C

1

2

3 1 2

3

From the proof of invariance under R3 move we know that the map in the lower row
above is the zero map, while in the upper row is the identity map.

MM9 Below we considered two oriented representatives of the movie move; we can
easily see that after composition, we obtain in both cases the identity map.

R2b R2b�1

0
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and

R2a R2a�1

Id Id

0

MM10 Let’s assume that we have oriented all strings in this movie move from right
to left, thus each crossing is negative. We pick the complete oriented resolution—each
crossing was given the oriented resolution— at each step, the map from this resolution
to the similar one in the next complex is the identity. Moreover, at each stage, there
are no other maps from other resolutions going into this oriented one. Therefore, this
representative of MM10 movie move induces the identity morphism.

Type III: Non-reversible clips
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Each pair of a type III clip should produce the same morphisms when read from top to
bottom or from bottom to top. As before, we show only one oriented representative for
each movie move, but we point out that the others give similar results (see [3]).

MM11

Going down along the left side of MM11 we get the morphism which is the composition
of the two maps in the above row; but this composition is isotopic to the cobordism
obtained by going down along the right side of MM11. Going up along the clip, we
just need to turn all these cobordisms upside down. Reversing the orientation of the
string, the induced maps are the same as those we just obtained.

MM12 Going down along the left side of MM12 we get the morphism
∅ ! ; which from the proof of invariance under Reidemeister 1 move

is . Similarly, going down along the right side we get the morphisms .
But these two morphisms are the same, up to isotopy. On the other hand, going up we

get the morphism
� �

�!∅, which on the first component is the zero map on

both sides, and on the second component is

 !
ı on the left side

of the clip and
� �

ı on the right. Up to isotopy, these cobordisms

are just .

MM13 Orienting both strings upwards and going down along the clip, we have the

map on the left, and
on the right. Composing, we obtain in both cases two vertical “curtains”. Going up
both maps are zero on the singular resolution, since the chain map corresponding to
the R1 move is zero on this resolution. On the oriented resolution, the map on the left
is C ; while on the right is C I these are the same, up to isotopy.

MM14 Consider the oriented representative for MM14 in which the vertical string
in oriented upwards and the circle is oriented counterclockwise. From the proof of
invariance under Reidemeister 2, we know that going down along MM14, we have on
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the left and right, respectively, the following maps:

and

Both maps are equal to
�

;

�t

. Going up we then obtain0@ ;�

1A.

MM15 We pick the oriented representative given below. Going down we have on the
left and right, respectively, the following:

R2b saddle
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and
R2a saddle

Id

These maps are the same, namely, the first component is a saddle involving the two
upper strands, and the second component is a singular saddle involving the lower two
strands. Going up, the corresponding maps are the previous saddles turned upside-down,
with a minus sign on the second component.

4 Web homology and the algebraic invariant

Let �0 be a fixed web with boundary B (note that if B D∅; we choose �0 to be the
empty web diagram). We define a functor F�0

W Foams=`.B/!ZŒi �Œa�–Mod, which
extends to Kof = Kom(Mat(Foams=`//:

Definition 4.1 Given � 2 Foams=`.B/, we define F�0
.�/D HomFoam=`.B/.�0; �/,

and call it the ‘homology’ of � . For a foam S 2 HomFoam=`.B/.�
0; � 00/ we define the

ZŒi �Œa�–linear map

F�0
.S/W HomFoam=l .B/.�0; �

0/! HomFoam=`.B/.�0; �
00/

given by composition. This homomorphism has degree equal to deg.S/:

By definition, the functor associates to the empty web the ground ring ZŒi �Œa�: Moreover,
F�0

.�1[�2/Š F�0
.�1/˝ZŒi�Œa�F�0

.�2/; for any disjoint union of webs �1; �2:

4.1 Web homology skein relations

Consider B D∅ and �0D∅: Firstly, by relations (SF) and (CN) and secondly, by (S),
(UFO) and (2D) we have F∅. / D V D h ; iZŒi�Œa� . Likewise, F∅. / D

V 0 D h ; iZŒi�Œa� (where we fix the dot, once and for all, say on the back facet).

Algebraic & Geometric Topology, Volume 8 (2008)



754 Carmen Livia Caprau

Note that we can identify V (or V 0 ) with A via the canonical isomorphism V ŠA,
! 1; !X (or V 0 ŠA; ! 1; !X ).

Lemma 4.2 There are canonical isomorphisms of graded abelian groups, that mimic
the web skein relations given in Figure 1.

(1) F∅. /ŠAŠ F∅. /

(2) F�0
.� [ /Š F�0

.�/˝ZŒi�Œa�AŠ F�0
.� [ /

(3) F�0
. /Š F�0

. / and F�0
. /Š F�0

. /.

In particular, F∅.�/ is a free ZŒi �Œa�–module of graded rank h�i:

Proof These follow from the isomorphisms V ŠAŠ V 0 described above, relations
(SF) and (CN) and Corollary 2.8.

Corollary 4.3 The functor F∅ is the same as the functor F defined in Section 2.1.

F extends to a functor F W Kof! ZŒi �Œa�–Mod. For any tangle diagram T;F.ŒT �/
is an ordinary complex, and applying the functor to all homotopies we obtain that
F.ŒT �/ is an invariant of the tangle T; up to homotopy. The isomorphism class of the
homology H.F.ŒT �// is a bigraded invariant of T , which we denote by H.T /:

It is clear from construction that for the case of links, the graded Euler characteristic
of the complex F.ŒL�/ equals P2.L/; the quantum sl.2/ polynomial of L: In other
words,

P2.L/D
X

i;j2Z

.�1/iqj rk.Hi;j .L//:

4.2 Relationship with Khovanov’s sl.2/ invariant

We show now that adding the relation aD 0 (or aD 1) and considering closed tangles,
thus knots and links, our invariant is isomorphic to a version of the original Khovanov’s
invariant (or Lee’s modification of it), after the latter is tensored with ZŒi �. Since our
construction is properly functorial under link cobordisms (relative to boundary), it
naturally resolves the sign ambiguity in the functoriality property of the Khovanov
homology. Note that Clark, Morrison and Walker [5] obtained a similar result as ours
for the aD 0 case.

Let’s consider a link diagram L and its corresponding formal complex [L�: Each
resolution of L is a collection of webs (with an even number of vertices) and oriented
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loops. Applying the isomorphisms from the end of Section 2.2, we can ‘erase’ pairs
of adjacent singular points of the same type, so that each resolution is replaced, via
an isomorphism, by a disjoint union of basic closed webs with bivalent vertices (as

) and oriented loops. Moreover, applying the isomorphisms from Corollary 2.8,
we can replace each basic closed web by an oriented loop, in such a way that starting
from outside, the orientation of the loop is (say) clockwise, and as we go inside of
a nesting set of loops, orientations alternate. After this operation we are left with a
formal complex whose objects are column matrices of nested oriented loops, so that
the outermost loop is oriented (say) clockwise and then the orientations alternate.

We consider now the Khovanov formal chain complex associated to L with its un-
oriented objects, and orient them such that we end up with the same chain complex
described above. Notice that this way of orienting the circles yields well-defined
oriented cobordisms between oriented loops. Finally, recalling how our TQFT is
defined for aD 0 and aD 1; and that is the same as the functor F∅; we reach our
goal.
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