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The classification and the conjugacy classes
of the finite subgroups of the sphere braid groups

DACIBERG L GONÇALVES

JOHN GUASCHI

Let n� 3 . We classify the finite groups which are realised as subgroups of the sphere
braid group Bn.S2/ . Such groups must be of cohomological period 2 or 4 . Depend-
ing on the value of n , we show that the following are the maximal finite subgroups of
Bn.S2/: Z2.n�1/ ; the dicyclic groups of order 4n and 4.n�2/; the binary tetrahedral
group T� ; the binary octahedral group O� ; and the binary icosahedral group I� . We
give geometric as well as some explicit algebraic constructions of these groups in
Bn.S2/ and determine the number of conjugacy classes of such finite subgroups. We
also reprove Murasugi’s classification of the torsion elements of Bn.S2/ and explain
how the finite subgroups of Bn.S2/ are related to this classification, as well as to the
lower central and derived series of Bn.S2/ .

20F36; 20F50, 20E45, 57M99

1 Introduction

The braid groups Bn of the plane were introduced by E Artin in 1925 [2; 3]. Braid
groups of surfaces were studied by Zariski [41]. They were later generalised by Fox
to braid groups of arbitrary topological spaces via the following definition [16]. Let
M be a compact, connected surface, and let n 2N . We denote the set of all ordered
n–tuples of distinct points of M , known as the n–th configuration space of M , by:

Fn.M /D f.p1; : : : ;pn/ j pi 2M and pi ¤ pj if i ¤ j g:

Configuration spaces play an important rôle in several branches of mathematics and
have been extensively studied; see Cohen and Gitler [9] and Fadell and Husseini [14],
for example.

The symmetric group Sn on n letters acts freely on Fn.M / by permuting coordinates.
The corresponding quotient will be denoted by Dn.M /. The n–th pure braid group
Pn.M / (respectively the n–th braid group Bn.M /) is defined to be the fundamental
group of Fn.M / (respectively of Dn.M /).
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Together with the real projective plane RP2 , the braid groups of the 2–sphere S2 are
of particular interest, notably because they have nontrivial centre (see Gillette and Van
Buskirk [17] and the authors’ work [24]), and torsion elements [34; 40]. Indeed, Van
Buskirk showed that among the braid groups of compact, connected surfaces, Bn.S2/

and Bn.RP2/ are the only ones to have torsion [40]. Let us recall briefly some of the
properties of Bn.S2/—see the papers of Van Buskirk with Fadell [15], with Gillette
[17] and alone [40] for more details.

If D2 ,�! S2 is an embedding of a topological disc, there is a group homomorphism
�W Bn �! Bn.S2/ induced by the inclusion. If ˇ 2Bn , we shall denote its image �.ˇ/
simply by ˇ . Then Bn.S2/ is generated by �1; : : : ; �n�1 which are subject to the
following relations:

�i�j D �j�i if ji � j j � 2 and 1� i; j � n� 1;

�i�iC1�i D �iC1�i�iC1 if 1� i � n� 2,

�1 � � � �n�2�
2
n�1�n�2 � � � �1 D 1:

Consequently, Bn.S2/ is a quotient of Bn . The first three sphere braid groups are finite:
B1.S

2/ is trivial, B2.S
2/ is cyclic of order 2. The group B3.S

2/ is a ZS–metacyclic
group (a group whose Sylow subgroups, commutator subgroup and commutator quotient
group are all cyclic) of order 12, isomorphic to the semi-direct product Z3 Ì Z4 of
cyclic groups with nontrivial action, which in turn is isomorphic to the dicyclic group
Dic12 of order 12. The abelianisation of Bn.S2/ is isomorphic to the cyclic group
Z2.n�1/ . The kernel of the associated projection �W Bn.S2/ �! Z2.n�1/ (which is
defined by �.�i/Dx1 for all 1� i � n�1) is the commutator subgroup �2.Bn.S2//. If
w 2Bn.S2/ then �.w/ is the exponent sum (relative to the �i ) of w modulo 2.n�1/.

Gillette and Van Buskirk showed that if n� 3 and k 2N then Bn.S2/ has an element
of order k if and only if k divides one of 2n, 2.n� 1/ or 2.n� 2/ [17]. The torsion
elements of Bn.S2/ and Bn.RP2/ were later characterised by Murasugi [34]. For
Bn.S2/, these elements are as follows:

Theorem 1.1 [34] Let n � 3. Then the torsion elements of Bn.S2/ are precisely
powers of conjugates of the following three elements:

(1) ˛0 D �1 � � � �n�2�n�1 (which is of order 2n)

(2) ˛1 D �1 � � � �n�2�
2
n�1

(of order 2.n� 1/)

(3) ˛2 D �1 � � � �n�3�
2
n�2

(of order 2.n� 2/)

The three elements ˛0 , ˛1 and ˛2 are respectively n–th, .n � 1/–th and .n � 2/–
th roots of �n , where �n is the so-called “full twist” braid of Bn.S2/, defined by
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�n D .�1 � � � �n�1/
n . So Bn.S2/ admits finite cyclic subgroups isomorphic to Z2n ,

Z2.n�1/ and Z2.n�2/ . In [25], we showed that Bn.S2/ is generated by ˛0 and ˛1 . If
n� 3, �n is the unique element of Bn.S2/ of order 2, and it generates the centre of
Bn.S2/. It is also the square of the Garside element (or “half twist”) defined by:

Tn D .�1 � � � �n�1/.�1 � � � �n�2/ � � � .�1�2/�1:

For n � 4, Bn.S2/ is infinite. It is an interesting question as to which finite groups
are realised as subgroups of Bn.S2/ (apart of course from the cyclic groups h˛ii and
their subgroups given in Theorem 1.1). Another question is the following: how many
conjugacy classes are there in Bn.S2/ of a given abstract finite group? As a partial
answer to the first question, we proved in [25] that Bn.S2/ contains an isomorphic
copy of the finite group B3.S

2/ of order 12 if and only if n 6� 1 .mod 3/.

While studying the lower central and derived series of the sphere braid groups, we
showed that �2.B4.S

2// is isomorphic to a semi-direct product of Q8 by a free group
of rank 2 [23]. After having proved this result, we noticed that the question of the
realisation of Q8 as a subgroup of Bn.S2/ had been explicitly posed by R Brown [7] in
connection with the Dirac string trick and the fact that the fundamental group of SO.3/
is isomorphic to Z2 [13; 28; 35]. The case nD 4 was studied by J G Thompson [39].
In a previous paper, we provided a complete answer to this question:

Theorem 1.2 [26] Let n 2N , n� 3.

(1) Bn.S2/ contains a subgroup isomorphic to Q8 if and only if n is even.

(2) If n is divisible by 4 then �2.Bn.S2// contains a subgroup isomorphic to Q8 .

As we also pointed out in [26], for all n� 3, the construction of Q8 may be generalised
in order to obtain a subgroup h˛0;Tni of Bn.S2/ isomorphic to the dicyclic group
Dic4n of order 4n.

It is thus natural to ask which other finite groups are realised as subgroups of Bn.S2/.
One common property of the above subgroups is that they are finite periodic groups of
cohomological period 2 or 4. In fact, this is true for all finite subgroups of Bn.S2/.
Indeed, by [25], the universal covering X of Fn.S2/ is a finite-dimensional complex
which has the homotopy type of S3 (we were recently informed by V Lin that X

is biholomorphic to the direct product of SL.2;C/ by the Teichmüller space of the
n–punctured Riemann sphere [31]). Thus any finite subgroup of Bn.S2/ acts freely on
X , and so has period 2 or 4 by [6, Proposition 10.2, Section 10, Chapter VII]. Since �n

is the unique element of order 2 of Bn.S2/, and it generates the centre Z.Bn.S2//, the
Milnor property must be satisfied for any finite subgroup of Bn.S2/. Recall also that a
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finite periodic group G satisfies the p2 –condition (if p is prime and divides the order
of G then G has no subgroup isomorphic to Zp �Zp ), which implies that a Sylow
p–subgroup of G is cyclic or generalised quaternion, as well as the 2p–condition
(each subgroup of order 2p is cyclic). The classification of finite periodic groups is
given by the Suzuki–Zassenhaus theorem (see Adem and Milgram [1] and Thomas [38]
for example), and thus provides a possible line of attack for the subgroup realisation
problem. The periods of the different families of these groups were determined in a
series of papers by Golasiński and Gonçalves [18; 19; 20; 21; 22], and so in theory
we may obtain a list of those of period 4. A list of all periodic groups of period 4 is
provided in [38]. However, in the current context, a more direct approach is obtained
via the relationship between the braid groups and the mapping class groups of S2 ,
which we shall now recall.

For n 2N , let M0;n denote the mapping class group of the n–punctured sphere. We
allow the n marked points to be permuted. If n� 2, a presentation of M0;n is obtained
from that of Bn.S2/ by adding the relation �n D 1 [32; 33]. In other words, we have
the following central extension:

(1–1) 1 �! h�ni �! Bn.S
2/

p
�!M0;n �! 1:

If n D 2, B2.S
2/ ŠM0;2 Š Z2 . For n D 3, since M0;3 Š S3 , this short exact

sequence does not split, and in fact for n� 4 it does not split either [17].

Following Birman, this exact sequence may also be obtained in the following manner [5].
Let HC.S2/ denote the group of orientation-preserving homeomorphisms of S2 , and
let X 2 Dn.S2/. Then HC.S2;X / D ff 2 HC.S2/ jf .X / D X g is a subgroup of
HC.S2/, and we have a fibration HC.S2;X / �!HC.S2/ �! Dn.S2/, where the
basepoint of Dn.S2/ is taken to be X , and where the second map evaluates an element
of HC.S2/ on X . The resulting long exact sequence in homotopy yields:

(1–2) � � � �! �1.HC.S2;X // �! �1.HC.S2//„ ƒ‚ …
Z2

�! �1.Dn.S
2//„ ƒ‚ …

Bn.S2/

@
�! �0.HC.S2;X //„ ƒ‚ …

M0;n

�! �0.HC.S2//„ ƒ‚ …
Df1g

The homomorphism @W Bn.S2/ �!M0;n is the boundary operator which we shall
use in Section 3 in order to describe the geometric realisation of the finite subgroups
of Bn.S2/. If n � 3 then �1.HC.S2;X // D f1g [12; 27; 36], and we thus recover
extension (1–1) (the interpretation of the Dirac string trick in terms of the sphere braid
groups [13; 28; 35] gives rise to the identification of �1.HC.S2// with h�ni).
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In a recent paper, Stukow applies Kerckhoff’s solution of the Nielsen realisation
problem [30] to classify the finite maximal subgroups of M0;n [37]. Applying his
results to extension (1–1), we shall see in Section 2 that their counterparts in Bn.S2/

are cyclic, dicyclic and binary polyhedral groups:

Theorem 1.3 Let n� 3. The maximal finite subgroups of Bn.S2/ are:

(1) Z2.n�1/ if n� 5.

(2) the dicyclic group Dic4n of order 4n.

(3) the dicyclic group Dic4.n�2/ if nD 5 or n� 7.

(4) the binary tetrahedral group, denoted by T� , if n� 4 .mod 6/.

(5) the binary octahedral group, denoted by O� , if n� 0; 2 .mod 6/.

(6) the binary icosahedral group, denoted by I� , if n� 0; 2; 12; 20 .mod 30/.

Remarks 1.4 (1) If n is odd then the only finite subgroups of Bn.S2/ are cyclic
or dicyclic. In the latter case, the dicyclic group Dic4n (resp. Dic4.n�2/ ) is ZS–
metacyclic [11], and is isomorphic to Zn Ì Z4 (resp. Zn�2 Ì Z4 ), where the action is
multiplication by �1.

If n is even then one of the binary tetrahedral or octahedral groups is realised as a
maximal finite subgroup of Bn.S2/. Further, since T� is a subgroup of O� , T� is
realised as a subgroup of Bn.S2/ for all n even, n� 4.

(2) The groups of Theorem 1.3 and their subgroups are the finite groups of quater-
nions [10]. Indeed, for p; q; r 2N , let us denote

hp; q; ri D hA;B;C jAp
D Bq

D C r
DABC i:

Then Z2.n�1/ D hn� 1; n� 1; 1i, Dic4n D hn; 2; 2i, Dic4.n�2/ D hn� 2; 2; 2i, T� D
h3; 3; 2i, O� D h4; 3; 2i and I� D h5; 3; 2i. It is shown in Coxeter [10] and Coxeter
and Moser [11] that for T� , O� and I� , this presentation is equivalent to:

hp; 3; 2i D hA;B jAp
D B3

D .AB/2i;

for p 2 f3; 4; 5g, and that the element Ap is central and is the unique element of
order 2 of hp; 3; 2i.

(3) Some finite subgroups of the braid groups and mapping class groups of the
sphere were studied by D Benson and F Cohen in connection with the homology and
cohomology of subgroups of certain mapping class groups [4; 8], notably those of
orientable surfaces of genus 2.
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In Section 2, we also generalise another result of Stukow concerning the conjugacy
classes of finite subgroups of M0;n to Bn.S2/:

Proposition 1.5

(1) Two maximal finite subgroups of Bn.S2/ are isomorphic if and only if they are
conjugate.

(2) Each abstract finite subgroup G of Bn.S2/ is realised as a single conjugacy
class within Bn.S2/, with the exception, when n is even, of the following cases,
for which there are precisely two conjugacy classes:

(a) G D Z4 .
(b) G D Dic4r , where r divides n=2 or .n� 2/=2.

In Section 3, we explain how to obtain geometrically the subgroups of Theorem 1.3,
and we also give explicit group presentations of the cyclic and dicyclic subgroups, as
well as in the special case of T� for nD 4 and nD 6.

In order to understand better the finite subgroups of Bn.S2/, it is often useful to know
their relationship with the three classes of elements described in Theorem 1.1. This
shall be carried out in Proposition 4.1 (see Section 4).

The two conjugacy classes of part (2)(a) of Proposition 1.5 are realised by the subgroups
h˛n=2

0
i and h˛.n�2/=2

2
i (they are non conjugate since they project to nonconjugate

subgroups in Sn ). In Section 5, we construct the two conjugacy classes of part (2)(b):

Theorem 1.6 Let n � 4 be even. Let N 2 fn; n� 2g, and let x D ˛0 (resp. x D

˛0˛2˛
�1
0

) if N D n (resp. N D n� 2). Set N D 2lk , where l 2 N , and k is odd.
Then for j D 0; 1; : : : ; l , and q a divisor of k , we have the following:

(1) Bn.S2/ contains 2j copies of Dic2lC2�j k=q of the form hx2j q;xiqTni, where
i D 0; 1; : : : ; 2j � 1.

(2) If 0� i; i 0� 2j �1, hx2j q;xiqTni and hx2j q;xi0qTni are conjugate if and only
if i � i 0 is even.

Another question arising from Theorem 1.2 is the existence of copies of Q8 lying in
�2.Bn.S2//. More generally, one may ask whether the dicyclic groups constructed
above (and indeed the other finite subgroups of Bn.S2/) are contained in �2.Bn.S2//.
In the dicyclic case, we have the following result, also proved in Section 5:
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Proposition 1.7 Let n� 4 be even, let N 2 fn; n� 2g, and let r divide N . If r does
not divide N=2 then the subgroups of Bn.S2/ abstractly isomorphic to Dic4r are not
contained in �2.Bn.S2//. If r divides N=2 then up to conjugacy, Bn.S2/ has a two
subgroups abstractly isomorphic to Dic4r , one of which is contained in �2.Bn.S2//,
and the other not. In particular, Bn.S2/ exhibits the two conjugacy classes of Q8 , one
of which lies in �2.Bn.S2//, the other not.

The corresponding result for the binary polyhedral groups may be found in Proposition
5.1. As a corollary of our results we obtain an alternative proof of Theorem 1.1 (see
Section 6).
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2 The classification of the finite maximal subgroups of Bn.S2/

In this section, we prove Theorem 1.3. We start by making some remarks concerning
the central extension (1–1). We denote the order of a finite group G by jGj.

Remarks 2.1 Let G be a finite subgroup of Bn.S2/.

(1) If H is a finite subgroup of M0;n then p�1.H / is a finite subgroup of Bn.S2/

of order 2 jH j.

(2) If jGj is odd then �n … G , and so G Š p.G/. Conversely, if G Š p.G/ then
pjG is injective, and thus �n …G , so jGj is odd.

(3) If jGj is even then �n 2G , and so we obtain the following short exact sequence:

(2–1) 1 �! h�ni �!G
pjG
�! p.G/ �! 1;

where p.G/ is a finite subgroup of M0;n of order jGj=2.
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(4) If G is a maximal finite subgroup of Bn.S2/ then jGj is even, and p.G/ is a
maximal finite subgroup of M0;n . Conversely, if H is a maximal finite subgroup of
M0;n then p�1.H / is a maximal finite subgroup of Bn.S2/.

We recall Stukow’s theorem:

Theorem 2.2 [37] Let n� 3. The maximal finite subgroups of M0;n are:

(1) Zn�1 if n¤ 4.

(2) the dihedral group D2n of order 2n.

(3) the dihedral group D2.n�2/ if nD 5 or n� 7.

(4) A4 if n� 4; 10 .mod 12/.

(5) S4 if n� 0; 2; 6; 8; 12; 14; 18; 20 .mod 24/.

(6) A5 if n� 0; 2; 12; 20; 30; 32; 42; 50 .mod 60/.

Remark 2.3 In the case nD 3, M0;3 is isomorphic to D6 , obtained as a maximal
subgroup in part (2) of Theorem 2.2, and so its subgroup isomorphic to Z2 is not max-
imal. This explains the discrepancy between the value of n in part (1) of Theorems 1.3
and 2.2.

Proof of Theorem 1.3 By Remarks 2.1, we just need to check that the given groups
are those obtained as extensions of h�ni by the groups of Theorem 2.2. We start by
making some preliminary remarks. Let H be one of the finite maximal subgroups of
M0;n , and let G be a finite (maximal) subgroup of Bn.S2/ of order 2 jH j which fits
into the following short exact sequence:

(2–2) 1 �! h�ni �!G
pjG
�!H �! 1;

where �n 2G belongs to the centre of G , and is the unique element of G of order 2.
Then G D p�1.H /, and so is unique.

Suppose that y 2H is of order k � 2. Then y has two preimages in G , of the form
x and x�n , say, and x is of order k or 2k . If k is even then by Remarks 2.1(3), x

must be of order 2k , xk D�n and �n 2 hxi. If k is odd then x is of order k (resp.
2k ) if and only if x�n is of order 2k (resp. k ).

A presentation of G may be obtained by applying standard results concerning the
presentation of an extension [29, Theorem 1, Chapter 13]. If H is generated by
h1; : : : ; hk then G is generated by g1; : : : ;gk ; �n , where p.gi/Dhi for i D 1; : : : ; k .
One relation of G is just �2

nD1, that of Ker.p/. Since Ker.p/�Z.G/, the remaining
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relations of G are obtained by rewriting the relators of H in terms of the coset
representatives, and expressing the corresponding element in the form �"

n , where
" 2 f0; 1g.

We consider the six cases of Theorem 2.2 as follows.

(1) H Š Zn�1 : let y be a generator of H , and let x 2 G be such that p.x/ D y .
Then G D h�n;xi and jGj D 2.n� 1/. If n is odd then �n 2 hxi, G D hxi, and x

is of order 2.n� 1/. If n is even then G D hx�ni (resp. G D hxi) if x is of order
n� 1 (resp. 2.n� 1/), and G Š Z2.n�1/ in both cases.

(2) H ŠD2n : let y; z 2H be such that o.y/D n, o.z/D 2 and zyz�1 D y�1 , and
let x; w 2G be such that p.x/D y and p.w/D z . So GD h�n;x; wi and jGj D 4n.
From above, it follows that w2 D�n , so G D hx; wi. If n is even then x is of order
2n and xnD�n . The same result may be obtained if n is odd, replacing x by x�n if
necessary. Further, wxw�1x 2Ker.p/. If wxw�1xD�n then .wx/2D 1. So either
wD x�1 or wxD�n , and in both cases we conclude that G D hxi which contradicts
jGj D 4n. Hence wxw�1x D 1, and since jGj D 4n, G is isomorphic to Dic4n .

(3) H Š D2.n�2/ : the previous argument shows that G Š Dic4.n�2/ .

(4) Suppose that H is isomorphic to one of the remaining groups A4 , S4 or A5 of
Theorem 2.2. Let p D 3 if H ŠA4 , p D 4 if H Š S4 , and p D 5 if H ŠA5 . Then
H has a presentation given by [10; 11]:

H D hu; v ju2
D v3

D .uv/p D 1i:

Let x; w 2 G be such that p.x/ D u and p.w/ D v . Then G D hx; w;�ni. From
above, we must have x2 D �n . Further, replacing w by w�n , we may suppose
that w3 D �n . If p D 4 then .xw/p D �n , while if p 2 f3; 5g, replacing x by
x�n if necessary, we may suppose that .xw/p D �n . It is shown in [10; 11] that
x2 D w3 D .xw/p D�n implies that �2

n D 1, so G admits a presentation given by:

G D hx; w jx2
D w3

D .xw/pi:

Thus G Š T� if p D 3, G Š O� if p D 4 and G Š I� if p D 5. This completes the
proof of the theorem.

Remarks 2.4 Let G1;G2 be finite subgroups of Bn.S2/.

(1) If they are of odd order then by Remarks 2.1, G1 and G2 are isomorphic if and
only if p.G1/ and p.G2/ are isomorphic. So suppose that G1 and G2 are of even
order. If p.G1/ and p.G2/ are isomorphic then it follows from the construction of
Theorem 1.3 that G1 and G2 are isomorphic. Conversely, suppose that G1 and G2
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are isomorphic via an isomorphism ˛W G1 �!G2 . Since �n belongs to both, and
is the unique element of order 2, we must have ˛.�n/D�n , and thus ˛ induces an
isomorphism z̨W p.G1/ �! p.G2/ satisfying z̨ ıp D p ı˛ .

(2) If G1;G2 are conjugate then clearly so are p.G1/ and p.G2/. Conversely, suppose
that p.G1/;p.G2/ are conjugate subgroups of M0;n . Then there exists g 2M0;n

such that p.G2/D gp.G1/g
�1 . If G1 and G2 are of even order, the fact that Equation

(1–1) is a central extension implies that G1;G2 are conjugate. If G1 and G2 are of
odd order, let Li D p�1.p.Gi// for i D 1; 2. Then ŒLi WGi �D 2, and it follows from
the even order case that L1 and L2 are conjugate in Bn.S2/. But Li D Gi

`
�nGi ,

and its odd order elements are precisely those of Gi . So the conjugacy between L1

and L2 must send G1 onto G2 .

We are now able to prove Proposition 1.5.

Proof of Proposition 1.5 Part (1) follows from Remarks 2.1 and 2.4. To prove part (2),
let G1;G2 be abstractly isomorphic finite subgroups of Bn.S2/, and for i D 1; 2, let
Hi D p.Gi/. Then H1 ŠH2 : if the Gi are of odd order then Hi ŠGi , so H1 ŠH2 ,
while if the Gi are of even order, any isomorphism between them must send �n 2G1

onto �n 2 G2 , and so projects to an isomorphism between the Hi . From Remarks
2.4(2), G1 and G2 are conjugate if and only if H1 and H2 are, and so the number of
conjugacy classes of subgroups of Bn.S2/ isomorphic to G1 is the same as the number
of conjugacy classes of subgroups of M0;n isomorphic to H1 . The result follows from
the proof of Theorem 1.3 by remarking that a subgroup of M0;n isomorphic to Z2

(resp. D2r ) lifts to a subgroup of Bn.S2/ which is isomorphic to Z4 (resp. Dic4r ).

3 Realisation of the maximal finite subgroups of Bn.S2/

In this section, we analyse the geometric and algebraic realisations of the subgroups
given in Theorem 1.3.

3.1 The algebraic realisation of some finite subgroups of Bn.S2/

The maximal cyclic and dicyclic subgroups of Bn.S2/ may be realised as follows:

(1) Z2.n�1/ Š h˛1i.

(2) Dic4n Š h˛0;Tni (see the authors’ work [26]).

(3) The algebraic realisation of Dic4.n�2/ is given by the following proposition:
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Proposition 3.1 For all n� 3, the subgroup h˛0˛2˛
�1
0
;Tni of Bn.S2/ is isomorphic

to Dic4.n�2/ .

Proof Let x D ˛0˛2˛
�1
0

. We know that x is of order 2.n� 2/, and that xn�1 D

�n D T 2
n . Further, by standard properties of the corresponding elements in Bn [5],

˛0�i˛
�1
0
D �iC1 for all i D 1; : : : ; n�2, and Tn�iT

�1
n D �n�i for all i D 1; : : : ; n�1.

Hence x D �2 � � � �n�2�
2
n�1

, and

TnxT �1
n D �n�2 � � � �2�

2
1 D �

�2
n�1�

�1
n�2 � � � �

�1
2 D x�1:

Thus hx;Tni is isomorphic to a quotient of Dic4.n�2/ . But Tn … hxi, so hx;Tni

contains the 2.n� 2/C 1 distinct elements of hxi [ fTng, and the result follows.

Remark 3.2 In the special case nD4, the binary tetrahedral group T� may be realised
as follows. Let y D �1�

�1
3

. From [26], we know that hy;T4i Š Q8 . In B4.S
2/,

we also have .�2�1/
3 D .�2�3/

3 D �4 D T 2
4

. Then h˛2
1
i Š Z3 acts on hy;T4i as

follows:

˛2
1 �T4 �˛

�2
1 D ˛

2
1.T4˛

�2
1 T �1

4 /T4 D ˛
2
1.�
�2
1 ��1

2 ��1
3 /2T4 (by the action of T4)

D ˛2
1.�2�3/

2T4 (using the surface relation of Bn.S
2/)

D .�1�2�
2
3 /

2
� ��1

3 ��1
2 � .�2�3/

3T4

D �1�2�3�1�2�1 � �
�1
1 ��1

2 ��1
1 � �3�1�2�3�

�1
2 T 3

4 (as T 2
4 D .�2�3/

3)

D T4�
�1
1 ��1

2 �3�2�3�
�1
2 T 3

4 (as �1 commutes with �3)

D T4�
�1
1 �3T 3

4 (by the Artin braid relations)

D T4y�1T �1
4 D y (by the action of T4 on y).

Further,

˛2
1 �y �˛

�2
1 D .�

�1
1 ��1

2 /2 � �1�
�1
3 � .�2�1/

2

D .��1
1 ��1

2 /2 � ��1
3 ��1

2 � .�2�1/
3 (as �1 commutes with �3)

D ��1
1 ��1

2 ��1
1 � �

�1
2 ��1

3 ��1
2 �T

2
4 (as T 2

4 D .�2�1/
3)

D ��1
1 ��1

2 ��1
1 ��1

3 ��1
2 ��1

3 �T
2
4 (by the Artin braid relations)

D ��1
1 ��1

2 ��1
1 ��1

3 ��1
2 ��1

1 � �1�
�1
3 T 2

4

D T �1
4 yT 2

4 D T4y (since T 2
4 is central).

Hence T� DQ8 Ì Z3 Š hy;T4iÌ h˛2
1
i.
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Remark 3.3 We also have an algebraic representation of T� in B6.S
2/. Let


 D �5�4�
�1
1 ��1

2 ;

ı D ��1
3 ��1

4 ��1
5 .��1

2 ��1
1 ��1

2 /�5�4�3:

Then we claim that h
; ıi ŠQ8 Ì Z3 Š T� , where the action permutes the elements
i; j ; k of Q8 . First, 
 3 D ı2 D�6 . We now consider the subgroup H D hı; 
 ı
�1i.
The action of conjugation by 
 permutes cyclically the elements ı , 
 ı
�1 and

 ı2
�1 , so is compatible with the action of Z3 on Q8 . It just remains to show that
H ŠQ8 . Clearly ı2 D .
 ı
�1/2 D�6 . Let us now prove that

ı�1
� 
 ı
�1

� ı D 
 ı�1
�1:

Set �D �5�4�3 , 
 0 D �
��1 and ı0 D �ı��1 . Then the above equation is equivalent
in turn to the following relations:

ı0�1
� 
 0ı0
 0�1

� ı0 D 
 0ı0�1
 0�1

ı0�1
 0ı0
 0�1ı02ı0�1
 0ı0
 0�1
D 1

Œı0�1; 
 0�2 D ı0�2
D�6:

We shall show that the latter relation holds. Notice that


 0 D �5�4�3�5�4�
�1
1 ��1

2 ��1
3 ��1

4 ��1
5 D �5�4�5�3�4˛0:

Setting � D ˛0�5˛
�1
0

, we have that:

Œı0�1; 
 0�D ��1
5 ��1

4 ��1
5 �2�1�2 � �5�4�5�3�4˛0 � �

�1
2 ��1

1 ��1
2 �5�4�5�

˛�1
0 ��1

4 ��1
3 ��1

5 ��1
4 ��1

5

D �2˛0�
�1
5 ˛0�

�1
2 ��1

1 ��1
2 �5�4�5�5�4�3�2�1�

�1
4 ��1

3 ��1
5 ��1

4 ��1
5

D �2˛0�
�1
5 ˛0�

�1
2 ��1

1 ��1
2 �5�

�1
3 ��1

2 ��1
1 ��1

4 ��1
3 ��1

5 ��1
4 ��1

5

D �2˛0�
�1
5 ˛0�

�1
2 �5�

�1
1 ��1

2 ��1
3 ��1

4 ��1
5 �1�

�1
1 ��1

2 ��1
1 ��1

3 ��1
4 ��1

5

D �2˛0�
�1
5 ˛0�

�1
2 �5˛0�1�

�1
2 ˛0

D �2˛0�
�1
5 ˛�1

0 ˛2
0�
�1
2 �5˛

�2
0 ˛3

0�1�
�1
2 ˛�3

0 ˛4
0

D �2�
�1��1

4 �1�4�
�1
5 ˛4

0 D �2�
�1�1�

�1
5 ˛4

0 ;

since conjugation by ˛0 permutes cyclically the elements �1; �2; �3; �4; �5 and � .
Thus

Œı0�1; 
 0�2 D �2�
�1�1�

�1
5 ˛4

0�2�
�1�1�

�1
5 ˛�4

0 ˛8
0 D �2�

�1�1�
�1
5 ���1

4 �5�
�1
3 ˛8

0 :
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Let � D �2�
�1�1�

�1
5
���1

4
�5�
�1
3

. To prove that Œı0�1; 
 0�2 D�6 D ˛
6
0

, it suffices to
show that �˛2

0
D 1. Now

�˛2
0 D �2�

�1�1�
�1
5 ���1

4 �5�
�1
3 ˛2

0 D �2˛0�
�1
5 ˛�1

0 �1�
�1
5 ˛0�5˛

�1
0 ��1

4 �5�
�1
3 ˛2

0

D �2˛0�
�1
5 ˛0�5˛

�1
0 ��1

4 �5�
�1
3 �4�

�1
2 ˛0 D �2˛0�

�1
5 ˛0�5�

�1
3 �4�

�1
2 �3�

�1
1

D �2�1�2�3�4�1�2�3�4�
2
5�4�3�

�1
3 ��1

4 ��1
3 �4�

�1
2 �3�

�1
1

D �1�2�1�3�4�
�1
1 ��1

2 ��1
4 ��1

3 ��1
2 �3�

�1
1 D 1:

This proves the claim, so h
; ıi Š T� .

3.2 The geometric realisation of the finite subgroups of Bn.S2/

The geometric realisation of the finite subgroups may be obtained by letting the
corresponding subgroup of M0;n act on the sphere with the n strings attached in
an appropriate manner. For the subgroups Dic4n , Z2.n�1/ and Dic4.n�2/ , we attach
strings to n symmetrically distributed points (resp. n� 1, n� 2 points) on the equator,
and 0 (resp. 1, 2) points at the poles. For T� , O� and I� , the n strings are attached
symmetrically with respect to the associated regular polyhedron (for the values of n

given by Theorem 1.3) in the following manner.

(4) Let H DA4 be the group of orientation-preserving symmetries of the tetrahedron.
Then nD 6kC 4, k � 0, and we take k equally spaced points in the interior of each
edge, plus one point at each vertex (or face).

(5) Let H D S4 be the group of orientation-preserving symmetries of the cube (or
octahedron).

(a) nD 12k , k 2N : take k equally spaced points in the interior of each edge.

(b) nD 12kC 2, k 2N : take k � 1 equally spaced points in the interior of each
edge, plus one point at each vertex and on each face.

(c) nD 12kC 6, k � 0: take k equally spaced points in the interior of each edge,
plus one point on each face.

(d) nD 12kC 8, k � 0: take k equally spaced points in the interior of each edge,
plus one point at each vertex.

(6) Let H DA5 be the group of orientation-preserving symmetries of the dodecahe-
dron (or icosahedron), which has 12 faces, 30 edges and 20 vertices.
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(a) nD 30k , k 2N : take k equally spaced points in the interior of each edge.

(b) nD 30kC 2, k 2N : take k � 1 equally spaced points in the interior of each
edge, plus one point at each vertex and on each face.

(c) nD 30kC 12, k � 0: take k equally spaced points in the interior of each edge,
plus one point on each face.

(d) nD 30kC 20, k � 0: take k equally spaced points in the interior of each edge,
plus one point at each vertex.

In each case, the action of the given group H of symmetries yields the corresponding
maximal finite subgroup of Bn.S2/. This follows essentially from the definition
of the boundary operator @W �1.Dn.S2// �! �0.HC.S2;X // in the long exact se-
quence (1–2) which we now describe in detail in our setting. As in Section 1, let X

be the basepoint in Dn.S2/, and let  W HC.S2/ �!Dn.S2/ denote evaluation on
X . So if g 2 HC.S2/ then  .g/ D g.X /. Let IdS2 be the basepoint in HC.S2/,
so that  .IdS2/ D X . Let ˇ 2 Bn.S2/ be a braid, and let f W Œ0; 1� �!Dn.S2/ be
a geometric braid which represents ˇ . So f .0/ D f .1/ D X , and the loop class
hf i in Bn.S2/ is equal to ˇ . Then f lifts to zf W Œ0; 1� �!HC.S2/ which satisfies
zf .0/D IdS2 and  ı zf D f . Hence  ı zf .1/D f .1/DX , and thus zf .1/ belongs

to the fibre HC.S2;X /. Geometrically, zf is an isotopy of S2 which realises ˇ on the
points of X . Neither zf nor the corresponding endpoint zf .1/ are unique, however all
of the possible zf .1/ belong to the same connected component of HC.S2;X /, and so
determine a unique element, denoted Œ zf .1/�, of �0.HC.S2;X //, which is the image
under @ of ˇ . Thus, if zf is an isotopy of S2 that realises ˇ , @.ˇ/ is the mapping class
of the homeomorphism zf .1/, and corresponds geometrically to just remembering the
final homeomorphism (in particular, one forgets the strings of ˇ ).

Conversely, if g 2 HC.S2/ satisfies g.X / D X , let hW Œ0; 1� �!HC.S2/ be an
isotopy from h.0/D IdS2 to h.1/D g . Then  ı h is a loop in Dn.S2/ based at X ,
so describes a geometric braid obtained by attaching strings at the points of X and
following the isotopy h. In S2� Œ0; 1�, the strings are given by f. ıh.t/; t/gt2Œ0;1� D

f.h.t/.X /; t/gt2Œ0;1� . Thus h ıhi 2Bn.S2/ is a braid, and by the above construction,
@.h ıhi/D Œh.1/�D Œg�. In other words, a choice of isotopy h between the identity
and g 2HC.S2;X / allows us to lift the mapping class Œg� to a preimage ˇ D h ıhi

under @ which is obtained geometrically by attaching strings to X during the isotopy
h.

Let r W Œ0; 1� �!HC.S2/ denote rigid rotation through an angle 2� . So r.0/D r.1/D

IdS2 , the loop class hri generates �1.HC.S2//ŠZ2 , and thus h ıriD �.hri/D�n

since  �W �1.HC.S2// �! Bn.S2/ is injective. The second preimage of Œg� under
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@ is obtained by considering the isotopy h0W Œ0; 1� �!HC.S2/ that is the isotopy h

followed by r . The braids h ıhi and h ıh0i differ by h ıri D�n , and thus define
the two preimages of Œg� under @.

Finally, each finite subgroup H of M0;n is realised by a finite subgroup of isometries
of S2 (which are the finite subgroups of SO.3/) [30]. Each element of H admits two
preimages in Bn.S2/ which differ by �n . These preimages thus make up the finite
subgroup @�1.H / of Bn.S2/ whose order is twice that of H .

4 Position of the finite subgroups of Bn.S2/ relative to Mura-
sugi’s classification

Let n � 4 be even. For i D 0; 1; 2, let Gi be the set of torsion elements of Bn.S2/

whose order divides 2.n� i/. Equivalently, by Theorem 1.1, Gi is the set of conjugates
of powers of ˛i . Notice that Gi is invariant under conjugation, Gi \Gj D h�ni for
all 0 � i < j � 2, and G0 [G1 [G2 is the set of torsion elements of Bn.S2/. For
many purposes, it is often useful to know where a finite subgroup H of Bn.S2/ lies
relative to the Gi . In this section, we carry out this calculation for all such subgroups.

Proposition 4.1 Let H be a finite subgroup of Bn.S2/ of order greater than or equal
to 3.

(1) Suppose that H is cyclic.
(a) If jH j D 4 and n is even then there exists a subgroup H 0 of Bn.S2/

isomorphic to Z4 nonconjugate to H . One of H;H 0 lies in G0 , while the
other lies in G2 .

(b) If either jH j D 4 and n is odd, or if jH j ¤ 4 then H � Gi , where jH j j
2.n� i/, and i 2 f0; 1; 2g.

(2) Suppose that H is a subgroup of a maximal noncyclic subgroup of Bn.S2/.
(a) If H is a noncyclic subgroup contained in Dic4n or Dic4.n�2/ then it is itself

dicyclic, of the form Dic4k , where k > 1 divides n or n� 2 respectively.
Further:
(i) If n is odd then H �Gi [G1 , where i 2 f0; 2g and jH j j 4.n� i/.

(ii) Suppose that n is even.
(A) If k j n (resp. k j n�2) but k − .n=2/ (resp. k − ..n�2/=2/) then

H lies in G0[G2 and meets both G0 and G2 .
(B) If k j .n=2/ (resp. k j ..n�2/=2/) then there exists another subgroup

H 0 of Bn.S2/ isomorphic to Dic4k but non conjugate to H . In
this case, one of H;H 0 is contained wholly within G0 (resp. G2 ),
and the other lies in G0[G2 and meets both G0 and G2 .
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(b) Suppose that H is a subgroup of a copy of T� in the case that T� is maximal.
(i) If H Š T� then H lies in G0[G1 (resp. G2[G1 ) if n� 4 .mod 12/

(resp. n� 10 .mod 12/), and meets both G0 (resp. G2 ) and G1 .
(ii) If H is isomorphic to Z3 or Z6 then it is contained in G1 .

(iii) If H is isomorphic to Z4 or Q8 then it is contained in G0 if n � 4

.mod 12/, and in G2 if n� 10 .mod 12/.

(c) Suppose that H is a subgroup of a copy of I� in the case that I� is maximal.
(i) If H is isomorphic to I� then H is contained in G0 (resp. G2 ) if n� 0

.mod 60/ (resp. n� 2 .mod 60/), and lies in G0[G2 and meets both
G0 and G2 if n� 12; 20; 30; 32; 42; 50 .mod 60/.

(ii) If H is isomorphic to Z3 or Z6 then it is contained in G0 if n� 0; 12

.mod 30/, and in G2 if n� 2; 20 .mod 30/.
(iii) If H is isomorphic to Z5 or Z10 then it is contained in G0 if n� 0; 20

.mod 30/, and in G2 if n� 2; 12 .mod 30/.
(iv) If H is isomorphic to Z4 or Q8 then it is contained in G0 if n �

0; 12; 20; 32 .mod 60/, and in G2 if n� 2; 30; 42; 50 .mod 60/.
(v) If H is isomorphic to T� or to Dic12 then it lies in G0 if n � 0; 12

.mod 60/, in G2 if n� 2; 50 .mod 60/, and lies in G0[G2 and meets
both G0 and G2 if n� 20; 30; 32; 42 .mod 60/.

(vi) If H is isomorphic to Dic20 then it lies in G0 if n� 0; 20 .mod 60/,
in G2 if n� 2; 42 .mod 60/, and lies in G0[G2 and meets both G0

and G2 if n� 12; 30; 32; 50 .mod 60/.

(d) Suppose that H is a subgroup of a copy of O� in the case that O� is
maximal.
(i) If H is isomorphic to O� then it lies in G0 if n� 0 .mod 24/, in G2

if n� 2 .mod 24/, and lies in G0[G2 and meets both G0 and G2 if
n� 6; 8; 12; 14; 18; 20 .mod 24/.

(ii) If H is isomorphic to T� then it lies in G0 if n� 0 .mod 12/, in G2

if n� 2 .mod 12/, and lies in G0[G2 and meets both G0 and G2 if
n� 6; 8 .mod 12/.

(iii) If H is isomorphic to Q16 then it lies in G0 if n� 0; 8 .mod 24/, in
G2 if n� 2; 18 .mod 24/, and lies in G0[G2 and meets both G0 and
G2 if n� 6; 12; 14; 20 .mod 24/.

(iv) If H is isomorphic to Dic12 then it lies in G0 if n� 0; 6 .mod 24/, in
G2 if n� 2; 20 .mod 24/, and lies in G0[G2 and meets both G0 and
G2 if n� 8; 12; 14; 18 .mod 24/.

(v) If H is isomorphic to Z8 then it lies in G0 if n� 0; 8 .mod 12/, and
in G2 if n� 2; 6 .mod 12/.
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(vi) If H is isomorphic to Z4 then there exists another nonconjugate sub-
group H 0 of Bn.S2/ isomorphic to Z4 . One of H;H 0 is contained
in G0 if n � 0; 8 .mod 12/, and in G2 if n � 2; 6 .mod 12/, while
the other is contained in G0 if n� 0; 6; 8; 14 .mod 24/, and to G2 if
n� 2; 12; 18; 20 .mod 24/.

(vii) If H is isomorphic to Q8 then there exists another nonconjugate sub-
group H 0 of Bn.S2/ isomorphic to Q8 . One of H;H 0 is contained in
G0 if n � 0; 8 .mod 12/, and to G2 if n � 2; 6 .mod 12/, while the
other lies in G0 if n � 0; 8 .mod 24/, in G2 if n � 2; 18 .mod 24/,
and lies in G0 [G2 and meets both G0 and G2 if n � 6; 12; 14; 20

.mod 24/.
(viii) If H is isomorphic to Z3 or Z6 then it lies in G0 if n � 0 .mod 6/

and in G2 if n� 2 .mod 6/.

Proof Let H be a finite subgroup of Bn.S2/ of order at least three.

(1) Suppose first that H is cyclic. Since Gi \Gj D h�ni and jh˛iij D 2.n� i/, the
order of H is sufficient to decide where H lies, unless n is even and H is of order 4,
in which case there is another nonconjugate subgroup H 0 isomorphic to Z4 . One of
H;H 0 is conjugate to h˛n=2

0
i which is contained in G0 , while the other is conjugate to

h˛.n�2/=2
2

i which lies in G2 . These two cases may be distinguished easily by checking
the permutation of a generator of H;H 0 .

(2) Now suppose that H is a subgroup of a maximal noncyclic subgroup of Bn.S2/.
We consider the possible cases in turn.

(a) Firstly, let H be a subgroup of the dicyclic group Dic4n , which up to conjugation
may be assumed to be h˛0;TniD h˛0i

`
Tnh˛0i. We first suppose that n is odd. Then

h˛0i �G0 , and the coset Tnh˛0i consists of the elements of Dic4n of order 4, so lies
in G1 . The group Dic4n fits into the following short exact sequence:

1 �! Zn �! Dic4n

g
�! Z4 �! 1:

If g.H /D fx0g, then H < Zn , and H is cyclic, of order dividing n, so lies in G0 . If
g.H /D fx0; 2g, then H < Z2n , and again H is cyclic, of order dividing 2n, so lies in
G0 . Finally, if g.H /D Z4 then we have

1 �!H \Zn �!H
g
�! Z4 �! 1;

and H Š Zk Ì Z4 , where k divides n. If k D 1 then H Š Z4 . Since n is odd, H

must then lie in G1 . So suppose that k > 1. Then H D h˛
n=k
0

;Tni is dicyclic, and so
lies in G0[G1 .
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Now suppose that n is even. Then Dic4n fits into the following short exact sequence:

1 �! Z2n �! Dic4n

f
�! Z2 �! 1:

If f .H /D fx0g then H � Z2n and so lies in G0 . If f .H /D Z2 and H \Z2n were
of odd order, then H would be both dicyclic and of order twice an odd number, which
cannot occur. So suppose that f .H / D Z2 and H \Z2n is of even order, 2k , say,
where k j n. If k D 1 then H Š Z4 , and H may lie in G0 or G2 depending on the
permutation of its generators. So suppose that k � 2. Then H is dicyclic of order 4k .
Now

Dic4n D h˛0i„ƒ‚…
�G0

a
Tnh˛

2
0i„ ƒ‚ …

�G0

a
Tn˛0h˛

2
0i„ ƒ‚ …

�G2

:

The inclusions follow from the fact that the elements of Tnh˛
2
0
i (resp. Tn˛0h˛

2
0
i) are

conjugate (in Dic4n ), Tn 2G0 , and

�.Tn˛0/D .1; n/.2; n� 1/ � � �
�n

2
;
n

2
C 1

�
.1; n; : : : ; 2/

D .n/
�n

2

�
.1; n� 1/.2; n� 2/.3; n� 3/ � � �

�n

2
� 1;

n

2
C 1

�
;

where � W Bn.S2/ �! Sn denotes the homomorphism defined on the generators by
�.�i/D .i; i C 1/. Thus Tn˛0 2G2 .

If k − .n=2/ then by Proposition 1.5, there is just one conjugacy class of Dic4k of the
form h˛n=k

0
;Tni, and since n=k is odd, we have

Dic4k D h˛
n=k
0
i„ƒ‚…

�G0

a
Tnh˛

n=k
0
i„ ƒ‚ …

�G2

:

In particular, all of the elements of Dic4k of order 4 belong to G2 . Thus we have
Dic4k \.G0 nG2/¤¿ and Dic4k \.G2 nG0/¤¿.

If k j .n=2/, by Proposition 1.5, there are two nonconjugate copies of Dic4k given by

h˛
n=k
0

;Tni D h˛
n=k
0
i„ƒ‚…

�G0

a
Tnh˛

n=k
0
i„ ƒ‚ …

�G0

h˛
n=k
0

;Tn˛0i D h˛
n=k
0
i„ƒ‚…

�G0

a
Tn˛0h˛

n=k
0
i„ ƒ‚ …

�G2

:and

The first copy lies entirely within G0 , while the second lies in G0[G2 and meets both
G0 nG2 and G2 nG0 .
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A similar result holds for Dic4.n�2/ : its subgroups are either subgroups of Z2.n�2/ ,
so lie in G2 , or else are dicyclic, of the form Dic4k , where k j n�2. If k D 1 then the
subgroup in question is hTni which lies in G0 . If k > 1 then as above, we distinguish
two cases. If k − ..n�2/=2/ then there is just one copy of Dic4k which lies in G0[G2

and meets both G0 nG2 and G2 nG0 . If k j ..n� 2/=2/, then setting ˛0
2
D ˛0˛2˛

�1
0

,
there are two copies of Dic4k : the first, h.˛0

2
/n=ki;Tn lies in G0[G2 and meets both

G0 nG2 and G2 nG0 , and the second, h.˛0
2
/n=k ; ˛0

2
Tni, is contained in G2 .

(b) Suppose that H is a subgroup of a copy of T� when T� is maximal, so n� 4

.mod 6/. Assume first that H Š T� . Since H ŠQ8 Ì Z3 , all of its order 4 elements
are conjugate, and so all elements of Q8 must lie in the same Gi . Now Q8 D Dic8 ,
so from above, we must be in one of the cases 2 j .n=2/ or 2 j ..n� 2/=2/. Indeed
if n� 4 .mod 12/ then nD 4C 12l D 4.1C 3l/, l 2N , and so Q8 is contained in
G0 , while if n� 10 .mod 12/ then nD 10C 12l D 2.5C 6l/, l 2N , and so Q8 is
contained in G2 . The remaining elements of H are of order 3 or 6, and since n� 4

.mod 6/, lie in G1 . So if n� 4 .mod 12/ (resp. n� 10 .mod 12/) then H lies in
G0[G1 (resp. G2[G1 ) and meets both G0 (resp. G2 ) and G1 .

From this, we deduce immediately the following: if H is isomorphic to Z3 or Z6

then it is contained in G1 , and if it is isomorphic to Z4 or Q8 then it is contained in
G0 if n� 4 .mod 12/, and in G2 if n� 10 .mod 12/.

(c) Suppose that H is a subgroup of a copy of I� when I� is maximal, so n �

0; 2; 12; 20 .mod 30/. Assume first that H Š I� . So I� has a subgroup isomorphic
to T� , whose copy of Q8 lies entirely in G0 or G2 . The subgroups of order 8 of H

are its Sylow 2–subgroups, so are conjugate, and thus all lie either in G0 or in G2 .
Hence from the analysis of the dicyclic case, 2 divides n=2 or .n� 2/=2. Further,
all elements of H of order 4 are contained in one of its subgroups isomorphic to Q8

(because the order 2 elements of A5 are the product of two transpositions, and are
contained in a subgroup isomorphic to Z2˚Z2 , which lifts to Q8 in I� ). Hence all
order 4 elements of H lie either in G0 if 4 j n, or in G2 if 4 j n� 2. The remaining
elements of H are of order 3; 6; 5 and 10, and lie in either G0 or G2 depending on
the value of n modulo the order. Thus H lies entirely in G0 (resp. G2 ) if n � 0

.mod 60/ (resp. n� 2 .mod 60/), and lies in G0[G2 and meets both G0 and G2 if
n� 12; 20; 30; 32; 42; 50 .mod 60/.

We now consider the other possibilities for subgroups of I� : if H is isomorphic to
either Z3 or Z6 , it is contained in G0 if n� 0; 12 .mod 30/, and in G2 if n� 2; 20

.mod 30/; if H is isomorphic to either Z5 or Z10 , it is contained in G0 if n� 0; 20

.mod 30/, and in G2 if n� 2; 12 .mod 30/; and if H is isomorphic to either Z4 or
Q8 , it is contained in G0 if n� 0; 12; 20; 32 .mod 60/, and in G2 if n� 2; 30; 42; 50
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.mod 60/. Next, if H is isomorphic to T� , it consists of a copy of Q8 and elements
of order 3 and 6, so lies in G0 if n� 0; 12 .mod 60/, in G2 if n� 2; 50 .mod 60/,
and lies in G0[G2 and meets both G0 and G2 if n� 20; 30; 32; 42 .mod 60/. Now
suppose that H is isomorphic to Dic12 ŠZ3 Ì Z4 DZ6

`
TnZ6 . Since the elements

of TnZ6 are of order 4, it follows from the analysis of the cyclic subgroups that
H satisfies the same conditions as in the case of T� . Finally, if H is isomorphic
to Dic20 Š Z5 Ì Z4 D Z10

`
TnZ10 , since the elements of TnZ10 are of order 4,

it follows from the analysis of the cyclic subgroups that H lies in G0 if n � 0; 20

.mod 60/, in G2 if n� 2; 42 .mod 60/, and lies in G0[G2 and meets both G0 and
G2 if n� 12; 30; 32; 50 .mod 60/.

(d) Suppose that H is a subgroup of a copy of O� when O� is maximal, so n� 0; 2

.mod 6/. Assume first that H ŠO� . Then it has a subgroup isomorphic to T� (which
is unique since S4 has a unique subgroup abstractly isomorphic to A4 ), and the copy
of Q8 lying in T� lies entirely in G0 if n � 0; 8 .mod 12/, and in G2 if n � 2; 6

.mod 12/. The complement of this copy of Q8 in T� consists of elements of order
3 and 6, and so lie in G0 if n � 0 .mod 6/ and in G2 if n � 2 .mod 6/ (thus the
subgroups of O� isomorphic to Z3 and Z6 lie in G0 if n� 0 .mod 6/ and in G2 if
n� 2 .mod 6/). Thus T� lies in G0 if n� 0 .mod 12/, in G2 if n� 2 .mod 12/,
and lies in G0[G2 and meets both G0 and G2 if n� 6; 8 .mod 12/.

In order to analyse the remaining possible subgroups Q16 , Dic12 , Dic20 of O� , as
well as the other copy of Q8 lying in Q16 , we must study the elements of H n T� .
They project to elements of S4 nA4 , which are either 4–cycles, or transpositions. We
analyse the geometric formulation of O� described in Section 3 as being obtained from
the action of S4 on a cube, with the n strings attached appropriately. The 4–cycles
are realised by rotations by �=2 about an axis which passes through the centres of
two opposite faces. This gives rise to an element of G0 if the n marked points are
not these central points (ie if n� 0; 8 .mod 12/), and to elements of G2 if some of
the n marked points are central points of the faces (ie if n � 2; 6 .mod 12/). The
transpositions are realised by rotations by � about an axis which passes through the
centres of two diagonally opposite edges. This gives rise to an element of G0 if there
are an even number of marked points on each edge (ie if n� 0; 6; 8; 14 .mod 24/),
and to elements of G2 if there are an odd number of marked points on each edge (ie
if n � 2; 12; 18; 20 .mod 24/). Putting together these results with those for T� , if
H ŠO� , we conclude that it lies in G0 if n� 0 .mod 24/, in G2 if n� 2 .mod 24/,
and lies in G0[G2 and meets both G0 and G2 if n� 6; 8; 12; 14; 18; 20 .mod 24/.

Now suppose that H is a subgroup of a copy of O� isomorphic to Q16 . Such subgroups
are the Sylow 2–subgroups of O� , so are conjugate. If n� 0 .mod 24/ (resp. n� 2

.mod 24/) then O� lies in G0 (resp. G2 ), and hence so does Q16 . So suppose that
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n 6� 0; 2 .mod 24/. Any subgroup of O� isomorphic to Q16 contains elements of
order 8 which lie in O� nT� , and so are associated with the above 4–cycles. Further,
H projects to a subgroup of S4 isomorphic to D8 which is generated by a 4–cycle
and a transposition. Studying the associated rotations as above, if one has fixed points
and the other not then automatically H lies in G0[G2 and meets both G0 and G2 .
This occurs when n� 6; 12; 14; 20 .mod 24/. So suppose that n� 8; 18 .mod 24/.

If n� 8 .mod 24/ (resp. n� 18 .mod 24/) then the elements of H corresponding
to the 4–cycles and the transpositions of D8 belong to G0 (resp. G2 ). Further, the
remaining elements of D8 are products of such elements, and so the corresponding
elements in H are also elements of T�ŠQ8 ÌZ3 of order 4. But such elements lie in
the Q8 –factor. Since n� 8 .mod 12/ (resp. n� 6 .mod 12/), this copy of Q8 lies
in G0 (resp. G2 ), and hence so does the given subgroup Q16 . Summing up, H lies
in G0 if n� 0; 8 .mod 24/, in G2 if n� 2; 18 .mod 24/, and lies in G0 [G2 and
meets both G0 and G2 if n� 6; 12; 14; 20 .mod 24/.

Now suppose that H is a subgroup of a copy of O� isomorphic to Dic12 . If n� 0

.mod 24/ (resp. n� 2 .mod 24/) then O� lies in G0 (resp. G2 ), and hence so does
H . So suppose that n 6� 0; 2 .mod 24/. Any subgroup of O� isomorphic to H

projects onto a subgroup of S4 isomorphic to S3 which consists of 3–cycles and
transpositions. Hence H is generated by an element of order 4 lying in O� nT� , and
an element of order 6, which lies in T� . The first element belongs to G0 if n� 6; 8; 14

.mod 24/ and to G2 if n� 12; 18; 20 .mod 24/, while the second element belongs
to G0 if n � 6; 12; 18 .mod 24/ and to G2 if n � 8; 14; 20 .mod 24/. Hence if
n � 8; 12; 14; 18 � 24 then H lies in G0 [G2 and meets both G0 and G2 . The
product of the two given generators is also of order 4 and so lies in G0 if n � 6

.mod 24/, and in G2 if n� 20 .mod 24/. Thus H lies in G0 if n� 0; 6 .mod 24/,
in G2 if n � 2; 20 .mod 24/, and lies in G0 [ G2 and meets both G0 and G2 if
n� 8; 12; 14; 18 .mod 24/.

Now suppose that H is a subgroup of a copy of O� isomorphic to Z4 . There are
two possibilities. If it is contained in the copy of Q8 lying in the subgroup T� , from
the results for Q8 , we see that H lies in G0 if n � 0; 8 .mod 12/, and in G2 if
n� 2; 6 .mod 12/. The second possibility is that H possesses elements in O� nT� ,
and emanates from the rotation of order 2 whose permutation is a transposition. Thus
it is contained in G0 if n � 0; 6; 8; 14 .mod 24/, and to G2 if n � 2; 12; 18; 20

.mod 24/.

Finally, suppose that H is a subgroup of a copy of O� isomorphic to Q8 . Again there
are two possibilities. If H lies in the subgroup T� , it is contained in G0 if n� 0; 8

.mod 12/, and to G2 if n� 2; 6 .mod 12/. The second possibility is that it projects
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to a subgroup of S4 generated by two transpositions having disjoint support. Such
a subgroup thus has four elements of order 4 in O� nT� and two in T� . From the
results obtained in the case of Z4 , we see that H lies in G0 if n � 0; 8 .mod 24/,
in G2 if n � 2; 18 .mod 24/, and lies in G0 [ G2 and meets both G0 and G2 if
n� 6; 12; 14; 20 .mod 24/.

5 Realisation of finite groups as subgroups of the lower cen-
tral and derived series of Bn.S2/

In this section, we consider the realisation of the finite subgroups of Theorem 1.3
as subgroups of elements of the lower central series f�i.Bn.S2//gn2N and of the
derived series f.Bn.S2//.i/gi�0 of Bn.S2/. By [26], we already know that if 4 j n

then �2.Bn.S2// has a subgroup isomorphic to Q8 . If n� 4 is even but not divisible
by 4, we may ask if the same result is true if 4 − n. We start by proving Theorem 1.6,
which is the case of the dicyclic groups. We then complete the analysis of the other
finite subgroups in Proposition 5.1.

Proof of Theorem 1.6 Suppose that n is even. Let N 2 fn� 2; ng, set N D 2lk

where l 2 N and k is odd, and let x D ˛0 (resp. x D ˛0˛2˛
�1
0

) if N D n (resp.
N D n� 2).

(1) Since Bn.S2/ has a subgroup hx;Tni isomorphic to Dic4N D Dic2lC2k , the
statement is true for j D 0. So suppose the result holds for some j 2 f0; 1; : : : ; l � 1g.
Then Bn.S2/ contains 2j copies of Dic2lC2�j k of the form hx2j

;xiTni, for i D

0; 1; : : : ; 2j � 1. Hence hx2jC1

;xiTni is a subgroup of hx2j

;xiTni isomorphic to
Dic2lC1�j k . But since

.x.2jCi/Tn/
2
D x.2jCi/Tnx.2jCi/T �1

n T 2
n D�n;

x.2jCi/Tn �x
2jC1

.x.2jCi/Tn/
�1
D x�2jC1

;and

it follows that hx2jC1

;x.2jCi/Tni is also a subgroup of hx2j

;xiTni isomorphic to
Dic2lC1�j k .

If q is any divisor of k , then replacing x by xq yields also 2j copies hx2j q;xiqTni,
i D 0; 1; : : : ; 2j � 1, of Dic2lC2�j k=q for j 2 f0; 1; : : : ; lg.

(2) If j D 0, then the statement holds trivially. So suppose that j � 1. From
part (1), hx2j q;xiqTni and hx2j q;xi0qTni are subgroups of Bn.S2/ isomorphic
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to Dic2lC2�j k=q . Under the abelianisation homomorphism �W Bn.S2/ �! Z2.n�1/ ,
�.x/D n� 1, and

�.Tn/D �
�
.�1 � � � �n�1/ � � � .�1�2/�1

�
D n.n� 1/=2D

(
x0 if n=2 is even

n� 1 if n=2 is odd.

Since j � 1, �.x2j q/D x0. Furthermore,

�.xiqTn/D

(
x0 if n=2C i is even

n� 1 if n=2C i is odd.

So hx2j q;xiqTni � �2.Bn.S2// if and only if n=2C i is even. Thus if i � i 0 is
odd, the subgroups hx2j q;xiqTni and hx2j q;xi0qTni cannot be conjugate. But by
Proposition 1.5(2), these are precisely the conjugacy classes of subgroups isomorphic
to Dic2lC2�j k=q . The result follows.

From this, we may deduce Proposition 1.7.

Proof of Proposition 1.7 We use the notation of the proof of Theorem 1.6. If j D 0

and q is an odd divisor of n then there is just one conjugacy class of the abstract
group Dic4n=q , which is realised as hxq;Tni. Now xq … �2.Bn.S2//, so Dic4n=q š

�2.Bn.S2//.

If j � 1 then as we saw in the proof of Theorem 1.6, hx2j q;xiqTni � �2.Bn.S2// if
and only if n=2C i is even. So with i D 0; 1, one of hx2j q;Tni and hx2j q;xqTni is
contained in �2.Bn.S2//, while the other is not.

Finally, let N be the element of fn; n�2g divisible by 4. Then l � 2, and taking qD k

and j D l�1, from the previous paragraph, one of hxN=2;Tni and hxN=2;xkTni (the
two nonconjugate copies of Q8 ) belongs to �2.Bn.S2//, the other not.

We now give the analogous result for the cyclic and binary polyhedral subgroups of
Bn.S2/.

Proposition 5.1 Let G be a finite subgroup of Bn.S2/.

(1) Suppose that G is cyclic.
(a) If G is of order 2, then G � �2.Bn.S2// if and only if n is even.
(b) Suppose that G is of order greater than or equal to 3. Then either:

(i) jGj divides 2.n� 1/ in which case G š �2.Bn.S2//, or
(ii) jGj divides 2.n� i/, where i 2 f0; 2g. In this case, G � �2.Bn.S2//

if and only if jGj divides n� i .
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(2) Suppose that G is a subgroup of order at least 3 of some binary polyhedral
subgroup H of Bn.S2/.
(a) Suppose that H ŠT� in the case that T� is maximal. Then G��2.Bn.S2//

if G Š Z4;Q8 , and G š �2.Bn.S2// if G Š Z3;Z6;T� .
(b) Suppose that H Š I� in the case that I� is maximal. Then G ��2.Bn.S2//.
(c) Suppose that H Š O� in the case that O� is maximal. If G is contained in

the subgroup K of H isomorphic to T� then G � �2.Bn.S2//. If G šK

then G � �2.Bn.S2// if n � 0; 2; 8; 18 .mod 24/, and G š �2.Bn.S2//

if n� 6; 12; 14; 20 .mod 24/.

Proof We set �2D �2.Bn.S2//. If G is of order 2, then G D h�ni and as �.�n/D

n.n� 1/, it follows easily that G � �2 if and only if n is even. We assume from now
on that jGj � 3. Since �2 is normal in Bn.S2/, we may work up to conjugation.

First suppose that G is cyclic. Then by Theorem 1.1, it is conjugate to a subgroup of
h˛ii for some i 2 f0; 1; 2g. If i D 1 then �.˛j

1
/D j n for all j 2 Z. If ˛j

1
2 �2 then

there exists k 2 Z such that j n D 2k.n� 1/, thus .n� 1/ j j , and so j D l.n� 1/

for some l 2 Z. But then ˛j
1
D ˛

l.n�1/
1

2 h�ni. We conclude that h˛1i \�2 � h�ni.
Hence G š �2 .

Suppose then that G is conjugate to a subgroup of h˛ii, where i D 0; 2. Set k D jGj.
Then �.˛i/D n� 1, k j 2.n� i/, and up to conjugacy, GDh˛

2.n�i/=k
i i. So G ��2 if

and only if 2.n� i/=k is even, which is equivalent to k j n� i . Thus if G is conjugate
to a subgroup of h˛ii, where i D 0; 2, we have:

(5–1) G � �2”jGj j .n� i/:

Now suppose that H is isomorphic to T� in the case that T� is maximal, so that
n � 4 .mod 6/. If G is isomorphic to T�;Z6 or Z3 then the order 3 elements lie
in G1 n h�ni, and from the cyclic case, it follows that G š �2 . So assume that G

is isomorphic to either Z4 or Q8 . Since Q8 is generated by elements of order 4, it
suffices to analyse the case Z4 . By Proposition 4.1, G lies in G0 if n� 4 .mod 12/,
and in G2 if n� 10 .mod 12/. In both cases, G � �2 by Equation (5–1).

Now suppose that H is isomorphic to I� in the case that I� is maximal, so that
n � 0; 2; 12; 20 .mod 30/. We claim that G � �2 whatever the value of n. To see
this, it suffices to check that all of the maximal cyclic subgroups Z4 , Z6 , Z10 of I�

are contained in �2 . This follows easily from Proposition 4.1 and Equation (5–1).

Now suppose that H is isomorphic to O� in the case that O� is maximal, so n� 0; 2

.mod 6/. Again it suffices to consider the maximal cyclic subgroups Z4 , Z6 and Z8

of O� . Applying Proposition 4.1 and Equation (5–1), we obtain the following results:
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(1) If G is isomorphic to Z8 , it projects to a subgroup of S4 generated by a 4–cycle.
Then G �G0 if n� 0; 8 .mod 12/, and G �G2 if n� 2; 6 .mod 12/, and so
G��2 if n� 0; 2; 8; 18 .mod 24/, and Gš�2 if n� 6; 12; 14; 20 .mod 24/.

(2) If G is isomorphic to Z6 then G � �2 .

(3) If G is isomorphic to Z4 , there are two possibilities. If G lies in the subgroup
K of O� isomorphic to T� then G � �2 . Otherwise G is generated by an
element of order 4 not belonging to K , in which case we obtain the same answer
as for Z8 .

Since every cyclic subgroup of order 3 of O� is contained in one of order 6, this gives
the results if G is cyclic. Suppose now that G D K . Then G is generated by the
elements of order 6 and the elements of order 4 belonging to K , so G � �2 .

If G is abstractly isomorphic to Q16 then it is generated by elements of order 8,
elements of order 4 lying in K , and elements of order 4 not lying in K . From above,
we have that G � �2 if n � 0; 2; 8; 18 .mod 24/, and G š �2 if n � 6; 12; 14; 20

.mod 24/.

If G is abstractly isomorphic to Q8 then there are two possibilities: either G lies in
K , so is contained in �2 , or else it is generated by elements of order 4 not belonging
to K . In this case, from above, G � �2 if n� 0; 2; 8; 18 .mod 24/, and G š �2 if
n� 6; 12; 14; 20 .mod 24/.

Finally, suppose that G is abstractly isomorphic to Dic12 . Then it projects to a copy
of S3 in S4 . From above, it follows that G � �2 if n � 0; 2; 8; 18 .mod 24/, and
G š �2 if n� 6; 12; 14; 20 .mod 24/.

Remark 5.2 Having dealt with the behaviour of the finite subgroups relative to the
commutator subgroup of Bn.S2/, one might ask what happens for the higher elements
of the lower central series f�i.Bn.S2//gn2N and of the derived series f.Bn.S2//.i/gi�0

of Bn.S2/. But if n¤ 2 (resp. n� 5), the lower central series (resp. derived series)
of Bn.S2/ is stationary from the commutator subgroup onwards [23]. It just remains
to look at the derived series of B4.S

2/. Recall from that paper that .B4.S
2//.1/ is

a semi-direct product of Q8 by a free group F2 of rank two, that .B4.S
2//.2/ is a

semi-direct product of Q8 by the derived subgroup .F2/
.1/ of F2 , that .B4.S

2//.3/ is
the direct product of h�4i by .F2/

.2/ , and that .B4.S
2//.iC1/ Š .F2/

.i/ for all i � 3.
Thus there is a copy of Q8 which lies in .B4.S

2//.2/ but not in .B4.S
2//.3/ . The full

twist remains until .B4.S
2//.3/ , and then .B4.S

2//.4/ is torsion free.
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6 A proof of Murasugi’s theorem

Let H1;H2 be isomorphic finite cyclic subgroups of M0;n . From Theorem 2.2, if n

is odd, or if n is even and jH1j D jH2j ¤ 2 then H1 and H2 are conjugate. If n is
even, there are exactly two conjugacy classes of subgroups of M0;n of order 2, and
thus there are exactly two conjugacy classes of subgroups of Bn.S2/ of order 4.

The next proposition follows from Section 2.

Proposition 6.1 Let G1;G2 be isomorphic finite cyclic subgroups of order m of
Bn.S2/. If n is odd, or if n is even and m¤ 4 then G1 and G2 are conjugate. If n is
even, there are exactly two conjugacy classes of subgroups of Bn.S2/ of order 4.

If n is even then ˛n=2
0

and ˛.n�2/=2
2

are of order 4, and they generate nonconjugate
subgroups since their images in Sn are not conjugate, which yields the two conjugacy
classes of Z4 of Proposition 6.1. From this, we may deduce Theorem 1.1.

Proof of Theorem 1.1 Let x 2 Bn.S2/ be a torsion element. Then hxi is contained
in a maximal cyclic subgroup C of one of the maximal finite subgroups G of Bn.S2/

given by Theorem 1.3.

First suppose that n is odd. Then G is one of Z2.n�1/ , Dic4n and Dic4.n�2/ , and so
C must be one of Z2.n�1/ , Z2n , Z2.n�2/ and Z4 . Hence C is isomorphic to h˛1i,
h˛0i, h˛2i and h˛.n�1/=2

1
i respectively. So by Proposition 6.1, x is conjugate to a

power of one of ˛0 , ˛1 and ˛2 which proves the theorem in this case.

Now suppose that n is even. If C Š Z4 then C is conjugate to one of h˛n=2
0
i or

h˛.n�2/=2
2

i, and the result holds. So suppose that C © Z4 . If G is one of Z2.n�1/ ,
Dic4n and Dic4.n�2/ , then C is one of Z2.n�1/ , Z2n , Z2.n�2/ , and so is isomorphic
to h˛1i, h˛0i, and h˛2i respectively. If G D T� (so n� 4 .mod 6/) then C Š Z6 ,
and so is conjugate to h˛.n�1/=3

1
i. If G D O� (so n � 0; 2 .mod 6/) then C Š Z6

or C Š Z8 , and so is conjugate to h˛n=3
0
i or h˛.n�2/=3

2
i. Finally, if G D I� (so

n � 0; 2; 12; 20 .mod 30/) then C is isomorphic to one of Z6 or Z10 . If C Š Z6

then C is conjugate to h˛n=3
0
i if n � 0; 12 .mod 30/ or to h˛.n�2/=3

2
i if n � 2; 20

.mod 30/. If C Š Z10 then C is conjugate to h˛n=5
0
i if n � 0; 20 .mod 30/ or to

h˛.n�2/=5
2

i if n� 2; 12 .mod 30/. In all cases, x is conjugate to a power of one of
˛0 , ˛1 and ˛2 , which completes the proof of the theorem.
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[2] E Artin, Theorie der Zöpfe, Abhandlungen Hamburg 4 (1925) 47–72

[3] E Artin, Theory of braids, Ann. of Math. .2/ 48 (1947) 101–126 MR0019087

[4] D J Benson, F R Cohen, Mapping class groups of low genus and their cohomology,
Mem. Amer. Math. Soc. 90 (1991) iv+104 MR1052554

[5] J S Birman, Braids, links, and mapping class groups, Annals of Math. Studies 82,
Princeton University Press (1974) MR0375281

[6] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer, New
York (1982) MR672956

[7] R Brown, Algebraic topology discussion list (2004) Online at
http://www.lehigh.edu/~dmd1/pz119.txt

[8] F R Cohen, On the mapping class groups for punctured spheres, the hyperelliptic
mapping class groups, SO.3/ , and Spinc.3/ , Amer. J. Math. 115 (1993) 389–434
MR1216436

[9] F R Cohen, S Gitler, On loop spaces of configuration spaces, Trans. Amer. Math. Soc.
354 (2002) 1705–1748 MR1881013

[10] H S M Coxeter, Regular complex polytopes, second edition, Cambridge University
Press, Cambridge (1991) MR1119304

[11] H S M Coxeter, W O J Moser, Generators and relations for discrete groups, fourth
edition, Ergebnisse series 14, Springer, Berlin (1980) MR562913

[12] C J Earle, J Eells, The diffeomorphism group of a compact Riemann surface, Bull.
Amer. Math. Soc. 73 (1967) 557–559 MR0212840

[13] E Fadell, Homotopy groups of configuration spaces and the string problem of Dirac,
Duke Math. J. 29 (1962) 231–242 MR0141127

[14] E R Fadell, S Y Husseini, Geometry and topology of configuration spaces, Springer
Monographs in Math., Springer, Berlin (2001) MR1802644

[15] E Fadell, J Van Buskirk, The braid groups of E2 and S2 , Duke Math. J. 29 (1962)
243–257 MR0141128

[16] R Fox, L Neuwirth, The braid groups, Math. Scand. 10 (1962) 119–126 MR0150755

[17] R Gillette, J Van Buskirk, The word problem and consequences for the braid groups
and mapping class groups of the 2-sphere, Trans. Amer. Math. Soc. 131 (1968) 277–296
MR0231894
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[22] M Golasiński, D L Gonçalves, Spherical space forms – homotopy types and self-
equivalences for the group .Z=a Ì Z=b/�TL2.Fp/ , preprint (2007)
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