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Co-contractions of graphs and right-angled Artin groups

SANG-HYUN KIM

We define an operation on finite graphs, called co-contraction. Then we show that for
any co-contraction [ of a finite graph T, the right-angled Artin group on I' contains
a subgroup which is isomorphic to the right-angled Artin group on [.Asa corollary,
we exhibit a family of graphs, without any induced cycle of length at least 5, such
that the right-angled Artin groups on those graphs contain hyperbolic surface groups.
This gives the negative answer to a question raised by Gordon, Long and Reid.

20F65, 20F36; 05C25

1 Introduction

In this paper, by a graph we mean a finite graph without loops and without multi-
edges. A right-angled Artin group is a group defined by a presentation with a finite
generating set, where the relators are certain commutators between the generators. Such
a presentation naturally determines the underlying graph, where the vertices correspond
to the generators and the edges to the pairs of commuting generators. It is known that the
isomorphism type of a right-angled Artin group uniquely determines the isomorphism
type of the underlying graph by Droms [6] and Kim, Makar-Limanov, Neggers and
Roush [13]. Also, right-angled Artin groups possess various group theoretic properties.
To name a few, right-angled Artin groups are linear by Humphries [12], Hsu and
Wise [11] and Davis and Januszkiewicz [4], biorderable by Duchamp and Thibon [8],
biautomatic by Van Wyk [20] and moreover, admitting free and cocompact actions on
finite-dimensional CAT(0) cube complexes by Charney and Davis [1], Meier and Van
Wyk [15] and Niblo and Reeves [17].

On the other hand, it is interesting to ask what we can say about the isomorphism
type of the underlying graph, if a right-angled Artin group satisfies a given group
theoretic property. Let I' be a graph. We denote the vertex set and the edge set of I"
by V(I") and E(T), respectively. The complement graph of T is the graph T' defined
by V(I') = V(I') and E(T) = {{u,v}: {u,v} ¢ E(I')}. For a subset S of V(') the
induced subgraph on S, denoted by I'g, is defined to be the maximal subgraph of
I' with the vertex set S. This implies that V(I's) = S and E(I's) = {{u,v}:u,v e
S and {u,v} € E(I')}. If A is another graph, an induced A in T means an induced
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subgraph isomorphic to A in I'. We denote by C,, the cycle of length n. That is,
V(Cy) is a set of n vertices, say {vy,va,..., s}, and E(C,) consists of the edges
{vi,vj} where |i — j| =1 (mod n). Let A(I") be the right-angled Artin group with its
underlying graph I'. Then, the following are true.

e A(D) is coherent, if and only if I" is chordal, ie I does not contain an induced
C, for any n > 4; see Droms [5]. This happens if and only if [4(T"), A(T")] is
free; see H Servatius, Droms and B Servatius [19].

e A(T) is a virtually 3—manifold group, if and only if each connected component
of I' is a tree or a triangle; see Droms [5] and Gordon [9]

e A(T) is subgroup separable, if and only if no induced subgraph of I' is a square
or a path of length 3 by Metaftsis and Raptis [16]. This happens if and only if
every subgroup of A(I") is also a right-angled Artin group, again by Droms [7].

e A(T") contains a hyperbolic surface group, ie the fundamental group of a closed,
hyperbolic surface, if there exists an induced C, for some n > 5 in I'; see Crisp
and Wiest [3] and again Servatius, Droms and Servatius [19].

In [10], Gordon, Long and Reid proved that a word-hyperbolic (not necessarily right-
angled) Coxeter group either is virtually free or contains a hyperbolic surface group.
They also showed that certain (again, not necessarily right-angled) Artin groups do not
contain a hyperbolic surface group, raising the following question.

Question 1.1 Does A(I") contain a hyperbolic surface group if and only if T" contains
an induced C, for some n > 5?

In this paper, we give the negative answer to the above question. Let I" be a graph and
B be a set of vertices of I' such that I'g is connected. The contraction of T" relative to
B is the graph CO(T", B) obtained from I' by collapsing ' to a vertex, and deleting
loops or multi-edges. We define the co-contraction CO(T', B) of T relative B, such
that
CO(T', B) = CO(T, B).

Then we prove the following theorem, which will imply that 4(Cj,) contains A(Cs) =
A(Cs) and hence a hyperbolic surface subgroup, for n > 5 (see Figure 3). An easy
combinatorial argument shows that C, does not contain an induced cycle of length at
least 5, for n > 5.

Theorem Let I' be a graph and B be a set of vertices in T', such that Tg is connected.
Then A(T") contains a subgroup isomorphic to A(CO(T, B)).
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In this paper, the above theorem is proved in the following steps.

In Section 2, we recall basic facts on right-angled Artin groups and HNN extensions.
A dual van Kampen diagram is described. We owe the notation to Crisp and Wiest [3]
where a closely related concept, a dissection, was defined and used with great clarity.

In Section 3, we define co-contraction of a graph, and examine its properties.

In Section 4, we prove the theorem by exhibiting an embedding of A4(CO(T", B)) into
A(T"). The main tool for the proof is a dual van Kampen diagram.

In Section 5, we compute intersections of certain subgroups of right-angled Artin
groups. From this, we deduce a more detailed version of the theorem describing some
other choices of the embeddings.

Acknowledgements I am deeply grateful to my thesis advisor, Andrew Casson, for
his insights and guidance. I would like to also thank Daniel Spielman, for helpful
comments.

2 Preliminaries on right-angled Artin groups

Let I" be a graph. The right-angled Artin group on T" is the group presented as

AT)=(ve V(') |[a,b]=11if and only if {a,b} € E(I")).

Each element of A(I") can be expressed as w = ]_[ff:1 cf ", where ¢; € V(I') and

e; = *1. Such an expression is called a word (of length k) and each cl.ei is called

a letter of the word w. We say the word w is reduced, if the length is minimal

among the words representing the same element. For each ip = 1,2, ..., k, the word
e

_ k e; io—1 e - . . . _ k
wy = [z, ¢ - TLL, ¢ is called a icyclzc conjugation of w = [[;_;¢;". By a
1

subword of w, we mean a word w’ = Hizio cl.ei for some 1 <ig <i; <k. A letter or
a subword w’ of w is on the left of a letter or a subword w” of w, if w' =[]'L. ¢

. i=ig Ci
é; . .
and w” =[[/L. ¢ for some iy < jj.

I1=jo 1
The expression w; = w, shall mean that w; and w, are equal as words (letter by
letter). On the other hand, wy =4(r) w, means that the words w; and w; represent
the same element in A(I"). For an element g € A(I') and a word w, w = 4T) &
means that the word w is representing the group element g. 1 denotes both the trivial
element in A(T") and the empty word, depending on the context.

Let w be a word representing the trivial element in A(I"). A dual van Kampen diagram
A for w in A(T") is a pair (H, 1) satisfying the following (Figure 1 (c)):
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(i) H is a set of transversely oriented simple closed curves and transversely oriented
properly embedded arcs in general position, in an oriented disk D € R2.

(ii) A is a map from H to V(I") such that y and y’ in H are intersecting only if
A(y) and A(y’) are adjacent in T.

(iii) Enumerate the boundary points of the arcs in ‘H as vy, vy, ..., Uy so that v;
and v; are adjacent on dD if and only if |/ — j| =1 (mod n). For each i, let a;
be the label of the arc that intersects with v;. Put ¢; = 1 if, at v;, the orientation
of D coincides with the transverse orientation of the arc that v; is intersecting,

and e; = —1 otherwise. Then w is a cyclic conjugation of vfl vgz .

e
..vmm.

1

R R
w=c ‘aba"'b” ¢

(a) A (b) (A)* (©) (A)*\ B(veo)

Figure 1: Constructing a dual van Kampen diagram from a van Kampen
diagram, for w = ¢ 'aba™'b~" in (a,b,c |[a.b] = 1)

Note that simple closed curves in a dual van Kampen diagram can always be assumed
to be removed. Also, we may assume that two curves in A are minimally intersecting,
in the sense that there does not exist any bigon formed by arcs in H. See Crisp and
Wiest [3] for more details, as well as generalization of this definition to arbitrary
compact surfaces, rather than a disk.

Let AC S2bea (standard) van Kampen diagram for w, with respect to a standard
presentation A(I") = (V(T") | [, v] = 1 if and only if {u, v} € E(T")) (Figure 1). Con-
sider A*, the dual of A in S2, and name the vertex which is dual to the face S2 \ A
as VUoo. Then for a sufficiently small ball B(veo) around veo, A* \ B(vss) can be
considered as a dual van Kampen diagram with a suitable choice of the labeling map.
Therefore a dual van Kampen diagram exists for any word w representing the trivial
element in A(I"). Conversely, a van Kampen diagram A for a word can be obtained
from a dual van Kampen diagram A by considering the dual complex again. So, the
existence of a dual van Kampen diagram for a word w implies that w = 4 1.
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Given a dual van Kampen diagram A, divide dD into segments so that each segment
intersects with exactly one arc in H. Let the label and the orientation of each segment
be induced from those of the arc that intersects with the segment. The resulting labeled
and directed graph structure on dD is called the boundary of A and denoted by JA.

We call each arc in H labeled by ¢ € V(I') as a g—arc, and each segment in dA
labeled by g as a g—segment. Sometimes we identify the letter g*! of w with the
corresponding g-segment. A connected union of segments on dA is called an interval.
By convention, a subword w; of w shall also denote the corresponding interval (called
w1 —interval) on 0A.

Now let A = (H,A) be a dual van Kampen diagram on D € R2. Suppose y is a
properly embedded arc in D, which is either an element in H or in general position
with H. Then one can cut A along y in the following sense. First, cut D along y to
get two disks D’ and D”. Consider the intersections of the disks with the curves in H.
Then, let those curves in D’ and D” inherit the transverse orientations and the labeling
maps from A. We obtain two dual van Kampen diagrams, one for each of D’ and D" .
Conversely, we can glue two dual van Kampen diagrams along identical words. y is
called an innermost q—arc if the interior of D’ or D” does not intersect any g—arc.

Definition 2.1 Let I' be a graph. Let w be a word representing the trivial element in
A(T"), and A be a dual van Kampen diagram for w. Two segments on the boundary
of A are called a canceling q—pair if there exists a g—arc joining the segments. For
any word wy, two letters of w; are called a canceling q—pair if there exist another
word w} =4y w; and a dual van Kampen diagram A for w; w’l_l , such that the two
letters are a canceling g —pair with respect to A. A canceling g—pair is also called as a
q—pair for abbreviation. A canceling pair is a canceling g—pair for some g € V(I').

For a group G and its subset P, (P) denotes the subgroup generated by P. For a
subgroup H of A(T"), w € H shall mean that w represents an element in H .

Lemma 2.2 Let I' be a graph and g be a vertex of I'. If a word w in A(T") has
a q—pair, then w = wlqilw2q$1w3 for some subwords wi,w, and w3 such that
wy € (linkp(q)). In this case, w is not reduced.

Proof There exists a word w’ =4 w and a dual van Kampen diagram A for ww’ -1,
such that a g—arc joins two segments of w.

Write w = w;gt'w,gT ws, where the letters ¢g*! and ¢! (identified with the
corresponding segments on dA) are joined by a g—arc y as in Figure 2.
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Figure 2: Cutting A along y

Cut A along y, to get a dual van Kampen diagram A, which contains w, on its
boundary. Give A the orientation that coincides with the orientation of A on w,. Let
W, be the word, read off by following y in the orientation of Ag. w; € (linkr(g)),
for the arcs intersecting with y are labeld by vertices in linkp(g). Since Ay is a dual
van Kampen diagram for the word w, 0, , we have wy =4(r) 152_1 € (linkp(gq)). O

For S C V(I'),welet S ={¢7':qge S} and ST' =S US~!. The following
lemma is standard, and we briefly sketch the proof.

Lemma 2.3 Let " be a graph and S be a subset of V(I"). Then the following are
true.

(1) (S) isisomorphic to A(I's).
(2) Each letter of any reduced word in (S) isin S*!.

Proof (1) The inclusion V(I'g) € V(I') induces amap f: A(I's) - A(I"). Let w
be a word representing an element in ker /. Since w =4y 1, there exists a dual van
Kampen diagram A for the word w in 4(I"). Remove simple closed curves labeled
by V(I')\ V(I's), if there is any. Since the boundary of A is labeled by vertices in
V(S), A can be considered as a dual van Kampen diagram for the word w in A(T'yg).
So we get w =4y 1.

(2) w =4y w’ for some word w’ such that the letters of w’ are in S'. Let A be a
dual van Kampen diagram for ww’~!. If w contains a ¢—segment for some ¢ & S,
then a g—arc joins two segments in A, and these segments must be in w. This is
impossible by Lemma 2.2. |

From this point on, A(T"g) is considered as a subgroup of A(T"), for S € V(I"). Let
H be a group and ¢: C — D be an isomorphism between subgroups of H. Then
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we define Hx*y4 = (H, 1 | t~Yet = ¢(c), for ¢ € C), which is the HNN extension of
H with the amalgamating map ¢ and the stable letter . Sometimes, we explicitly
state what the stable letter is. If C = D and ¢ is the identity map, then we let
Hxc = (H,t|t et =t forceC).

For a vertex v of a graph I', the link of v is the set

linkp(v) = {u € V(I') : u is adjacent to v}.

Lemma 2.4 Let I' be a graph. Suppose I'’ is an induced subgraph of T such that
V(') = V(') \ {v} for some v € V(I'). Let C be the subgroup of A(T'’) gener-
ated by linky(v). Then the inclusion A(I'') < A(T") extends to the isomorphism
f: A(Tyxc — A(T) such that f(t) =v.

Proof Immediate from the definition of right-angled Artin groups. |
We first note the following general lemma.

Lemma 2.5 Let H be a group and ¢p: C — D be an isomorphism between subgroups
C and D. Let K be asubgroupof H and J =(K,t) < Hxy4. Welety: JNC —JND
be the restriction of ¢. Then the inclusion J N H < J extends to the isomorphism
S (J N H)xy — J such that f(f) =t, where f and t denote the stable letters of
(J N H)*y and Hxg, respectively.

Proof Note that G = Hx*4 acts on a tree T, with a vertex vy and an edge ¢g =
{vo,t.vg} satisfying Stab(vg) = H and Stab(eg) = C [18]. Let Ty be the induced
subgraphon {j.vg: j € J}. Foreach vertex j.vg of Ty, write j =k 11kt -+ kpytm,
where k; € K and €; = £1 for each i. Then the following sequence in V(7})

Vo =k1.v0,
kllel.vo =k1[61k2.1)0,
kltelkzl‘ez.vo = k1t€1k2t€2k3.v0,

k1t€1k2t52k3 . ~-t€’”.v0 = J.Vg

gives rise to a path in 7Ty from vy to j.vg. Hence T, is connected. Note that
Y: JNC =Staby(eg) — J N D = Staby(eq)”. Since J acts on a tree Ty, we have
an isomorphism J 2 Staby (vo)*y = (J N H)*y. |
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3 Co-contraction of graphs

Let I' be a graph and B € V(I'). We say B is connected, if I'g is connected. B is
anticonnected, if I'g is connected.
Definition 3.1 Let " be a graph and B € V().

(1) If B is connected, the contraction of T relative to B is the graph CO(I", B)
defined by:

V(CO(T. B)) = (V(I')\ B) U {vs}
E(CO(T. B)) = E(Ty(ry\p) Ut{vp. ¢} 1q € V(I)\ B and linkr (¢) N B # )}

(i) If B is anticonnected, the co-contraction of ' relative to B is the graph
CO(T, B) defined by:

V(CO(T, B)) = (V(I') \ B) U {vg}
E(CO(T, B)) = E(Tyry\B) Ui{vp.¢} :q € V(') \ B and linkr(¢) 2 B}

(iii) More generally, if By, B», ..., By, are disjoint connected subsets of V(I"), then
inductively define

CO(TI', (B, By, ..., By)) =CO(CO(T", (B, B3,...,By—1)), Bm)
and if By, B, ..., By, are disjoint anticonnected subsets, then similarly,

CO(T, (B;, B>, ..., Bn)) = CO(CO(T, (B, B, ..., Bpu_1)). Bm).

In a graph T, if B is connected, then CO(T', B) is obtained by (homotopically)
collapsing I'p onto one vertex and removing any loops or multi-edges. If B is
anticonnected, one has (see Figure 3)

CO(T, B) = CO(T, B).
If B C V(') and linkp(q) 2 B, then we say that g is a common neighbor of B.

The following lemma states that the co-contraction of a set of anticonnected vertices can
be obtained by considering a sequence of co-contractions of two nonadjacent vertices.
The proof is immediate by considering the complement graphs.

Lemma 3.2 Let I' be a graph and B C V(I") be anticonnected. Then there exists a
sequence of graphs
Io=I,I'1,I,...,I', =CO(I', B)

such that foreachi =0,1,..., p—1, I'j4; is a co-contraction of T'; relative to a pair
of nonadjacent vertices of T;. O
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¢ b . V{a,b}
T = d e co-contraction __ _
6= CO(Cs, {a,b}) = Cs = A
a / I
complement i complement
d b d Va,b}
contraction
Co=" ‘ CO(Cs. fa.b}) = Cs = ¢

¢ e f B

Figure 3: Note that {g: linkcfb(q_)gﬁz, b}}={c, f},ie ¢ and f are common
neighbors of {a, b}. Hence in CO(Cs, {a, b}), viq ) is adjacent to ¢ and f.
This can be also viewed by looking at the complement graph of Cg, namely
Cs, and collapsing the edge {a, b}.

Lemma 3.3 (i) If B isaconnected subset of p vertices of Cy, then CO(C,, B) =~
Co—p+1-

(i) If B is an anticonnected subset of p vertices of C,, then E(C_n, B)=Cy_py1-

Proof (1) is obvious. Considering the complement graphs, (2) follows from (1). O

4 Co-contraction of graphs and right-angled Artin groups

Let " be a graph and B be an anticonnected subset of V(I"). Fix a word w € {B) in
A(T). If a vertex x of CO(T", B) is adjacent to vg, then x is a common neighbor of B
in I', and so, [x, W] = 4(r) 1. This implies that there exists a map ¢: A(CO(T, B)) —
A(T) satisfying:

w ifx=vp

¢(x) = { x ifx € V(CO(T, B))\ {vg} = V(I')\ B

In this section, we show that this map ¢ is injective for a suitable choice of the word
. First, we prove the injectivity for the case when B = {a, b} and @& = b~ 'ab.
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Lemma 4.1 Let I' be a graph. Suppose a and b are nonadjacent vertices of I". Then
there exists an injective map ¢: A(CO(T, {a,b})) — A(T) satisfying:

b~ lab ifx = V{g,b}
P(x) = { ifx € V() \ {a, b}

Proof Let T =CO(T, {a,b}), b= Vig,py and A={q:q € V([')\{a,b}}. Forge A,
let ¢ denote the corresponding vertex in I', and A ={g:q € A}.

Define ¢: A(I') — A(T) by:

b~ lab ifx=0
¢(x)_{q ifx=ged
c v C b
4 ]f; ¢ 4 d e
d o a f
(A)=(c.d.e.[) = (4) = (c.d.e. f)

Figure 4:

Suppose ¢ is not aneCthe Choose a word w of the mlnlmal length in ker¢ \ {1}.
Write w = ]_[f‘_1 ¢l where ¢; € AU {0} and ¢; = +1. As FA is isomorphic to I'y4,

¢ maps (/f) isomorphically onto (A4) (Figure 4). So ¢; = v for some i.

Let w = ]_[f;l ¢(c;)¢ . Since w = 4(r) 1, there exists a dual van Kampen diagram

= (H,X) for w in A(T"). In A, choose an innermost a—arc «. By considering
a cychc conjugation of o if necessary, one may write & = 0+!-®; -9F! - W, and
w=>b"1at'h-w;-b"'aTh-w,, so that wy = (1), wy = ¢(,) and « joins the
leftmost ¢®! of w and the aT' between wy and w, (Figure 5). Then the interval
w1 does not contain any a—segment. Since each b—segment in w is adjacent to some
a-segment, one sees that there does not exist any b— —segment in wy, either. Hence,
wy € (A)=A(T4) and w; € (A ) A(FA) Note that ' =~ FA Since w; is reduced,
S0 is wy.
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Figure 5: A in the proof of Lemma 4.1

Let B be the h—arc that meets the letter b, following a®! on the left of w; in w. B
does not intersect «, for [a,b] # 1. Since w; does not contain any b—segment, 8
intersects with the letter »~! between w; and w,.

w1 does not contain any canceling pair, for w; is reduced. So each segment of w; is
joined to a segment in w, by an arc in . Such an arc must intersect both @ and f.
This implies that the segments in w; are labeled by vertices in linkp(a) N linkp (b) =
¢ (link (V). It follows that Wy € (links (0)), from the following diagram.

W € (A) (linkp (D)) (A)

R

w; € (linkp(a) Nlinkp (b))

A

A
=

But then, @ = 0F!'w,0F ', = AT W1 Wy, which contradicts to the minimality of the

length of w. O

Theorem 4.2 Let I be a graph and B be an anticonnected subset of V(I'). Then
A(T") contains a subgroup isomorphic to A(CO(T", B)).

Proof Proof is immediate from Lemma 3.2 and Lemma 4.1. O

Figure 4 and Lemma 4.1 show the existence of an isomorphism:
¢: A(Cs) — (b tab,c.d, e, f) < A(Cg)
More generally, we have the following corollary.

Corollary 4.3 (1) A(C,) contains a subgroup isomorphic to A(C,_ p-+1) for each
l<p=n.
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(2) If T" contains an induced C, or C, for some n > 5, then A(T") contains a
hyperbolic surface group.

Proof (1) Immediate from Lemma 3.3 and Theorem 4.2.

(2) A(Cy) contains a hyperbolic surface group for n > 5 [19]. One has an embedding
¢: A(Cs) = A(Cs) — A(Cp), for n > 5. |

A simple combinatorial argument shows that for # > 5, the induced subgraph of C,
on any five vertices contains a triangle. So C, does not contain an induced Cj, for any
m > 5. From the Corollary 4.3 (2), we deduce the negative answer to Question 1.1 as
follows.

Corollary 4.4 There exists an infinite family F of graphs satistying the following.

(i) Each element in F does not contain an induced C,, forn > 5.
(i) Each element in F is not an induced subgraph of another element in F .

(iii) Foreach I' € F, A(I') contains a hyperbolic surface group.

Proof Set F ={C,:n>5}. |

5 Contraction words

In Lemma 4.1, the word 5~ 'ab was used to construct an injective map from the group
A(CO(T,{a,b})) into A(T"). This can be generalized by considering a contraction
word, defined as follows.

Definition 5.1 (1) Let I'y be an anticonnected graph. A sequence by,bs, ..., by,
of vertices of I'y is a contraction sequence of Ty, if the following holds: for
any (b,b") € V(I'g) x V(I'g), there exists / > 1 and 1 <k <k, <---<k;<p
such that, by, bx,. ..., by, is a path from b to b’ in T.

(2) Let I" be a graph and B be an anticonnected set of vertices of I'. A reduced
word w = [[7_, by’ is called a contraction word of B if b; € B, ¢; = %1

for each i, and by, b,, ..., b, is a contraction sequence of I'g. An element of
A(T) is called a contraction element, if it can be represented by a contraction
word.

Remark 5.2 If ¢ and b are nonadjacent vertices in I", then any word in {a, b)\{a"b" :
m,n € Z}*! is a contraction word of {a, b}.
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We first note the following general lemma.

Lemma 5.3 Let I" be a graph and g € A(T"). Then g =4 () u~'vu for some words
u, v such that u='v™u is reduced for each m # 0.

Proof Choose words u, v such that #~'vu is a reduced word representing g and the
length of u is maximal. We will show that u~1vu is reduced for any m # 0.

Assume that 2~ !v™u is not reduced for some m # 0. We may assume that > 0. Let w
be a reduced word for ~1v™u. Draw a dual van Kampen diagram A for = v uw=!.
Let v; denote the v—interval on dA corresponding to the i —th occurrence of v from
the left in u~1v™u (Figure 6 (a)).

(a) (b) Case 1 (c) Case 2

Figure 6: Proof of Lemma 5.3

By Lemma 2.2, there exists a g—arc y joining two g—segments of u~!v™u for some
q € V(I'). Let wq denote the interval between those two ¢g—segments. We may choose
g and y so that the number of the segments in wg is minimal. Then any arc intersecting
with a segment in wy must intersect y . It follows that any letter in wo should commute
with g. Moreover, wgy does not contain any g—segment.

Case 1 The intervals u~! and u do not intersect with y .

Because wo does not contain any g—segment, y joins v; and v;4; for some i
(Figure 6 (b)). So one can write v = wlqjEl wogTws for some subwords wy, w,, w3
of v such that and wo = wawy. [w3,q] =4mq) 1 =4T) [W1.¢9]. So ulvu = A(T)

u T wiwywsg T u, which contradicts to the maximality of u.

Case 2 y intersects u- or u~ ! —interval.

1 1

Suppose u~ " intersects y. Since u~ v is reduced, y cannot intersect v{. So, wy
contains vq. Since wg does not contain any g—segment, v does not contain the letters
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g or ¢—! and so, y cannot intersect any v; for i = 1,...,m. y should intersect

with the u—interval of u~1v™u (Figure 6 (c)). This implies that y intersects with
the leftmost g—segment in the u—interval of u~'v™u. One can write u~'v™u =
uz_lqilul_lvmulqyuz such that any letter in wg = u;~"v™u; commutes with
q.ie [q,u1] =4a) 1 =) g, v]. But then u_lvuzA(p)uz_lul_lvuluz, which is

a contradiction to the assumption that ™~ vu is reduced. O

Lemma 5.4 (1) Any reduced word for a contraction element is a contraction word.

(2) Any nontrivial power of a contraction element is a contraction element.

Proof (1) Let w = ]_[f=1 bf,i be a contraction word of an anticonnected set B in
V(T'). Here, b; € B and ¢; = %1 for each i. Suppose w’ is a reduced word, such that
w’ =4 () w. There exists a dual van Kampen diagram A for ww’ ~1 . Note that any
properly embedded arc of A meets both of the intervals w and w’, since w and w’
are reduced (Lemma 2.2). Now let b, b’ € B. w is a contraction word, so one can find
I=1and I <k <kp <---<k; = p such that, b; and by, are nonadjacent for
eachi=1,...,/—1,and b = by,, b’ = by, . Let y; be the arc that intersects with the
segment by, of w. Since y1, y2, ...,y are all disjoint, the boundary points of those

arcs on w’ will yield the desired subsequence of the letters of w’.

(2) Let u~'vu be a reduced word for g as in Lemma 5.3. Note that a sequence,
containing a contraction sequence as a monotonic subsequence, is again a contraction
sequence. So the reduced word u~!v™u is a contraction word of B, foreach m #0. O

Definition 5.5 Let I" be a graph, and P and Q be disjoint subsets of V(I"). Suppose
Py is a set of words in (P) < A(T"). A canonical expression for g € (P, Q) with
respect to { Py, Q} is a word ]_[f;l cfi , where

(i) ccePLUQ
(i) eg=1or —1
k ;
(i) [Ti=; ¢ =am) g
such that k is minimal. k is called the length of the canonical expression.
Remark 5.6 In the above definition, a canonical expression exists for any element in
(P1, Q). In the case when P; € P, a word is a canonical expression with respect to

{P1, @}, if and only if it is reduced in A(T").

Now we compute intersections of certain subgroups of A(I").
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Lemma 5.7 Let I" be a graph, P, Q be disjoint subsets of V(I") and P; be a set of
words in (P) < A(I"). Let R be any subset of V(I").

(1) If w is a canonical expression with respect to { P1, Q}, then there does not exist
a g-pair of w forany g € Q.

2) (P, Q)N {R) S (P, QN R). Moreover, the equality holds if P € R.
(3) Let w be a contraction word of P, and Py = {w}. Assume P € R. Then
(P1, Q) N(R) =(0QNR).

Proof (1) Let w be a canonical expression, Suppose there exists a ¢g—pair of w for
some ¢ € Q. Then by Lemma 2.2, one can write w = w;g='w,¢T w3 for some
subwords wy, w, and w3 such that w, € (linkr(g)). It follows that w =4 w” =
wiw,owsz. Since PN Q = &, wy,w, and ws are also canonical expressions with
respect to { P1, Q}. This contradicts to the minimality of k.

(2) Let w be a canonical expression of an element in (P, Q) N(R), and w’' =4y w
be a reduced word. Consider a dual van Kampen diagram A for ww’~!.

Suppose that there exists a g—segment in w, for some ¢ € Q. Then by (1), the g—
segment should be joined, by a g—arc, to another g—segment of w’. Since w’ is a
reduced word representing an element in (R), each segment of w’ is labeled by R*!
(Lemma 2.3 (2)). Therefore, g € Q N R.

If P C R,then (P,ONR)C (P, Q)N (R) is obvious.
3) (QNR) < (P, Q)N (R) is obvious.

To prove the converse, suppose w € ({P1, Q) N {R))\ (@ N R). w is chosen so that
w is a canonical expression with respect to { Py, @}, and the length (as a canonical
expression) is minimal.

Let w= ]_[5;1 ¢i" (¢i €{Py, Q}, ei = £1), w’ be areduced word satisfying w’ =4
w, and A = (H, 1) be a dual van Kampen diagram for ww’~! (Figure 7). From the
proof of (2), ¢; € P U(Q N R) ={w} U (Q N R) for each i. Also, any shorter
canonical expression than w, for an element in (P;, @) N (R), isin (Q N R). This

implies that ¢; = @ = ¢, . Note that each segment of w’ is labeled by R*1.

Now suppose ¢; = w for some 7. Fix b € P\ R. Choose the h—arc f that intersects
with the leftmost h—segment in w on dA. Note that this h—segment is contained in
the leftmost w—interval in w.

Write w = w™wqw¢w, for some subwords wq, w, of w, m € Z\{0} and e € {1, —1}.
Here, w; and w, are chosen so that the letters of wy are in (QNR)*! and B intersects
with a segment in the interval w°w,. Without loss of generality, we may assume m > 0.
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. 8 AN
Bi
. p>
e : %
w b < IBI b T
A~ -
\\\\ w> _ - Wy //4
W ~~o_ w b b/ R
e . ~ e
~<_ W W, -
R > e W = 7 e

Figure 7: A in the proof of Lemma 5.7

Let b’ be any element in P. By Lemma 5.4, any reduced word for w™ is a contraction
word of P. So, one can find a sequence of arcs 1, 85, ..., B; € H such that

i) A(B1) =b, (B ="V,
(i) A(Bi) and A(B;+1) are nonadjacent in I', foreach i =1,2,...,/—1, and

(iii) each B; intersects with a segment in the interval wWéw,.

Note that (iii) comes from the assumptions that 8; does not join two segments from
@™ (by reducing @™ first), and that the letters of w; are in (Q N R)!, which is
disjoint from P.

As in the proof of (2), each segment of w is joined to a segment in w’. In particular,
[6', wi]=[A(B1), wi1] =4(r) |. Since this is true for any b’ € P, w = 4y w1 0" w;.
One has W™ ¢w, € ((P1, Q)N (R)\(QNR), for w & (QNR) and w; € (Q N R).
By the minimality of w, we have w; = 1. This argument continues, and finally one
can write w = @™ for some m’ # 0. In particular, any reduced word for w is a
contraction word of P (Lemma 5.4). This is impossible since w € (R) and P € R. O

Lemma 5.8 Let I' be a graph, B be an anticonnected set of vertices of I' and g be a
contraction element of B. Then there exists an injective map ¢: A(CO(T", B)) — A(T")

satisfying:
g ifx=vp
P(x) = {x ifxeV()\B

Proof As in the proof of Lemma 4.1, let [= CO(T,B),i=vgand A={q:qe€
V([')\ B}. For q € A, let ¢ denote the corresponding vertex in I', and A ={g:q € A}.
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There exists a map ¢: A(f‘) — A(T) satisfying:

_[gifx=v
()= {q ifx=ged
To prove that ¢ is injective, we use an induction on |A4].

If A =g, then V(I') = B and T is the graph with one vertex . So, ¢ maps
(v) = A(T') = Z isomorphically onto Z = (g) < A(T").

Assume the injectivity of ¢ for the case when |4| = k, and now let |A| =k + 1.

Choose any 1 € A. Let Ag = A\ {t} and Ay = {G:q € Ap}. Let T be the
1nduced subgraph on Ag U B in I', and Fo be the induced subgraph on Ao U {0} in
I'. We consider A(Tp) and A(Fo) as subgroups of A(T") and A(T) respectlvely,
so that A(I'g) = (Ao, B) and A(FO) (AO, V). Let K = (Ao, g) ¢(A(F0)) and
J={(A4,g)= (A(F)) By the inductive hypothesis, ¢ maps A(Fo) isomorphically
onto K (Figure 8).

A(T) = A(To)*c

AT = A(To)*p J=(4,g) A(To) = (Ao, B)
JU ¢l B /////;.

A(T) = (A, D) = K={40.9) C = (linkp (1))

D = (HK ()} e ] () C

Figure 8: Proof of Lemma 5.8. Note that V(I') = AU B = Ao U{t} UB
and V(I') = AU {0} = Ao U {f} U {D}.

From Lemma 2.4, we can identify A(I") = A(T'g)*¢, where C = (linkp(¢)) and 7 is
the stable letter. Since J = (A4g, g,¢) = (K, ), Lemma 2.5 implies that we can also
identify J = (J N A(I¢))* ync, where ¢ is the stable letter again. Also, we identify
A(T) = A(Tg)*p, where D = (linkg (7)) and 7 is the stable letter.

By Lemma 57@), JNATy) = (g, A)N{Ag,B)={g, AN(AgU B)) = (g, Ag) =
¢(A(To)).
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Applying Lemma 5.7 (2) and (3) for the case when R = linkr(¢), we have:

JNC = (g, A) N (linkr(?))
_ | (linkp(r)NA,g) if B Clinkp(?)
- { (linkp(¢) N A4) otherwise

From the definition of a co-contraction, we note that:

{G:q €linkp(t) N A} U{D} if B C linkp(?)

D= hnkf (2) = { (G : q € linkp (1) N A} otherwise

Hence, J N C = ¢(D). This implies that ¢: A(f‘) — J is an isomorphism, as follows.

D < A(To) < A(To)*p = A

= = %

JNnC K=JNATy) = (JNATo)*jnc =

IA

Now the following theorem is immediate by an induction on .

Theorem 5.9 Let I' be a graph and By, B;,..., By be disjoint subsets of V(I') such
that each B; is anticonnected. For each i, let vg,; denote the vertex corresponding to
B; in CO(T", (B;, B,.,...,Bp)), and g; be a contraction element of B;. Then there
exists an injective map ¢: A(CO(T', (B;, B, ..., Bnm))) — A(') satisfying:

| g ifx=vwvp,, forsomei
$00) = {x ifx e VIO\U, B;

We conclude this article by noting that there is another partial answer to the question
of which right-angled Artin groups contain hyperbolic surface groups. Namely, if '
does not contain an induced cycle of length > 5, and either I' does not contain an
induced Cy4 (hence chordal), or I" is triangle-free (hence bipartite), then A(I") does not
contain a hyperbolic surface group [14]. In [2], an independent study by Crisp, Sapir
and Sageev proves a similar result, as well as the complete classification of graphs
with up to eight vertices, on which the corresponding right-angled Artin groups contain
hyperbolic surface subgroups.
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