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A spectral sequence for Khovanov homology
with an application to .3; q/–torus links

PAUL TURNER

We extend the skein exact sequence of Khovanov homology to a spectral sequence
which converges to Khovanov homology. We apply this to calculate the rational
Khovanov homology of three-stranded torus links.

57M25; 57M27, 55T99

1 Introduction

When compared to the Jones polynomial, Khovanov’s homology for links shows
advantages similar to those enjoyed by ordinary homology (of spaces) over the Euler
characteristic: it is a stronger invariant, it is richer (eg the integral theory reveals
torsion) and perhaps most importantly it has nice functorial properties. Also, like
ordinary homology, calculations made directly from the definitions quickly become
unmanageable. That said, there are some ingenious algorithms and methods which now
allow computer calculations in good cases for diagrams with 60 or so crossings (see Bar-
Natan [3]). Unlike ordinary homology, there is a dearth of theoretical computational
tools for Khovanov homology. One would dearly love the battery of long exact
sequences and spectral sequences available to the algebraic topologist. Thus, currently
it is still rather difficult to compute Khovanov homology for any infinite class of links.

There is, none the less, one long exact sequence used in Khovanov homology, the skein
exact sequence, which is implicit in Khovanov [4] and explicit in Viro [9]. Recall that
a given crossing of a link diagram may be resolved in one of two possible ways: to the
0–smoothing or to the 1–smoothing as indicated below.

0–smoothing 1–smoothing

Considering all crossings of a diagram, the Khovanov complex is formed by applying a
certain 1+1–dimensional topological quantum field theory to the resulting 2n possible
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ways of smoothing the n crossings of the diagram. The Khovanov homology (a bigraded
module) is obtained as the homology of this complex. Choosing a particular crossing,
the underlying module of the Khovanov complex C.D/ can be decomposed as

C.D/Š C.D0/˚C.D00/

where D0 and D00 are the diagrams obtained from D by resolving the chosen crossing
into a 0– and 1–smoothing respectively. In fact more is true and there is a short exact
sequence of Khovanov complexes

0! C.D00/! C.D/! C.D0/! 0

which gives rise to a long exact sequence in homology (with suitable gradings).

There is also a useful spectral sequence which converges to Lee’s variant of Khovanov
homology and has rational Khovanov homology appearing at the E2 –page; see Lee [5]
and Rasmussen [6]. Since Lee’s homology is easy to compute [5] (depending only on
the linking matrix of the link) one can, by reverse engineering, obtain some information
about Khovanov homology itself. For example one can prove Bar-Natan’s conjecture
(about the form of rational Khovanov homology) for alternating links [5].

One can repeatedly apply the skein long exact sequence, but it requires careful book
keeping and considerable redundancy. The spectral sequence developed in this paper
streamlines the iterated application of this long exact sequence. We start with a
collection of m ordered crossings of an n–crossing diagram D . For 1� k �m let Dk

be the diagram obtained from D by resolving the crossings 1; : : : ; k to 1–smoothings
and let zDk be the diagram obtained from D by resolving the crossings 1; : : : ; k�1 to
1–smoothings and crossing k to a 0–smoothing. The idea, or hope, is that the diagrams
zDk and Dm might be simpler to handle than the diagram D and that we can compute
KH�;�.D/ in terms of the KH�;�. zDk/ and KH�;�.Dm/. This is achieved by the
spectral sequence of the title where there is one spectral sequence for each q–grading
of Khovanov homology. By defining appropriate constants ak ; bk ; zak ; zbk ;Ak ; and Bk

we arrive at the following result where j is fixed.

Proposition 2.2 There is a spectral sequence .E�;�r ; dr W E
s;t
r ! E

sCr;t�rC1
r / con-

verging to KH�;j .D/ with E1 –page given by

E
s;t
1
D

8̂<̂
:

KH sCtCAsCzasC1;jCBsC
zbsC1. zDsC1/ s D 0; : : : ;m� 1;

KH mCtCAm;jCBm.Dm/ s Dm;

0 s < 0 or s >m:

As a sample application of this spectral sequence we compute, in Theorem 3.1, the
rational Khovanov homology of .3; q/–torus links. It is easy to guess what the result is,
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based on available computer calculations, but by combining the new spectral sequence
with Lee’s spectral sequence we prove the result for all q .

2 The spectral sequence

Let R be a commutative ring with unit and let D be an oriented link diagram with
n crossings. As is now familiar one can construct the Khovanov complex by placing
the 2n smoothings of D on the vertices of the cube f0; 1gn . To each smoothing ˛ one
then assigns the R–module V˛ D V ˝k˛fr˛g where k˛ is the number of circles in the
smoothing, r˛ is the number of 1’s in ˛ and shifts are defined by .W flg/m DW m�l .
The module V is the graded, rank two, free R–module with generators 1 and x in
degree 1 and �1 respectively. The underlying module of the unnormalised Khovanov
complex xC �;�.D/ is defined by

xC i;�.D/D
M

˛2f0;1gn

r˛Di

V˛:

The construction of the differential is by now well known (see, for example, Kho-
vanov [4] or Bar-Natan [1]) and uses a Frobenius algebra structure on V .

Bigraded complexes may be shifted in each of the degrees and for a bigraded module
W �� we define

.W �;�Œl �fmg/i;j DW i�l;j�m:

Suppose D has nC positive crossings and n� negative crossings, then the normalised
Khovanov complex C �;�.D/ is defined by

C i;j .D/D . xC �;�.D/Œ�n��fnC� 2n�g/i;j

and the Khovanov homology of D is the homology of this complex.

Now let us consider a collection of m crossings of the diagram D and number these
1; : : : ;m. For k D 1; : : : ;m let Dk be the diagram obtained from D by resolving the
crossings 1; : : : ; k to 1–smoothings and let zDk be the diagram obtained from D by
resolving the crossings 1; : : : ; k�1 to 1–smoothings and crossing k to a 0–smoothing.
We also define D0 and zD0 to be the original diagram D .

There is a decomposition of modules

xC i;j .Dk�1/D xC
i;j . zDk/˚ xC

i�1;j�1.Dk/
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and in fact xC ��1;��1.Dk/ is a subcomplex of xC �;�.Dk�1/. Thus, there is a short
exact sequence

(1) 0 // xC �;�.Dk/Œ1�f1g
// xC �;�.Dk�1/

// xC �;�. zDk/
// 0:

This is just the usual short exact sequence giving the skein long exact sequence men-
tioned in the introduction applied to the diagram Dk by resolving the k –th crossing in
our set of m crossings.

We now discuss orientations for the diagrams Dk and zDk . Suppose that we already
have an orientation for Dk�1 . If the k –th crossing is positive then zDk inherits an
orientation because for positive crossings the 0–smoothing is the oriented resolution.
There is no orientation of Dk consistent with the orientation of Dk�1 so choose any
orientation for Dk . Similarly if the k –th crossing is negative then Dk inherits an
orientation and we choose any orientation for zDk . The diagram DDD0D

zD0 comes
with an orientation so the process above has somewhere to start.

Now for k D 0; : : : ;m define

nC
k
D number of positive crossings in Dk ;

n�k D number of negative crossings in Dk ;

znC
k
D number of positive crossings in zDk ;

zn�k D number of negative crossings in zDk :

We define additional constants associated to Dk and zDk as follows.

If the k –th crossing is positive (as a crossing in the oriented diagram Dk�1 ) then set

ak D n�k�1� n�k � 1 and zak D 0:

If the k –th crossing is negative then set

ak D 0 and zak D n�k�1� zn
�
k :

For convenience we also define (for positive and negative crossings)

bk D 3ak C 1 and zbk D 3zak � 1:

These constants help us to write down the short exact sequence (1) in terms of normalised
Khovanov homology.

Proposition 2.1 For each k D 1; : : : ;m there is a short exact sequence of complexes

0 �! C �;�.Dk/Œ�ak �f�bkg �! C �;�.Dk�1/ �! C �;�. zDk/Œ�zak �f�zbkg �! 0:
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Proof We shift the entire sequence (1) by Œ�n�
k�1

�fnC
k�1
� 2n�

k�1
g. One can then

readily verify (treating positive and negative crossings separately) that

�n�k�1C 1D�n�k � ak ;

�n�k�1 D�zn
�
k � zak ;

nC
k�1
� 2n�k�1C 1D nC

k
� 2n�k � bk ;

nC
k�1
� 2n�k�1 D zn

C

k
� 2zn�k �

zbk

from which the result easily follows.

We now define

Ak D

kX
iD1

ai and Bk D

kX
iD1

bi D 3Ak C k

and set A0 D B0 D 0.

From now on we fix j . We define a filtration on C �;j .D/ by

FkC �;j .D/D C �;j .Dk/Œ�Ak �f�Bkg k D 0; : : : ;m:

It follows immediately from Proposition 2.1 that FkC �;j .D/� Fk�1C �;j .D/ and
for k > m we set FkC �;j .D/ D 0. It is clear that the filtration is bounded and so
there is an associated spectral sequence.

Proposition 2.2 There is a spectral sequence .E�;�r ; dr W E
s;t
r ! E

sCr;t�rC1
r / con-

verging to KH�;j .DIR/ with E1 –page given by

E
s;t
1
D

8̂<̂
:

KH sCtCAsCzasC1;jCBsC
zbsC1. zDsC1IR/ s D 0; : : : ;m� 1;

KH mCtCAm;jCBm.DmIR/ s Dm;

0 s < 0 or s >m:

Proof Using the filtration above there is a spectral sequence with E0 –page given by

E
s;t
0
D

F sC sCt ;j .D/

F sC1C sCt ;j .D/
:

To understand this quotient we can apply Proposition 2.1 to see that there is a short
exact sequence for each s in the range 0� s <m given by

0 �! C sCtCAs ;jCBs .DsC1/Œ�asC1�f�bsC1g �! C sCtCAs ;jCBs .Ds/

�! C sCtCAs ;jCBs . zDsC1/Œ�zasC1�f�zbsC1g �! 0:
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Writing this in terms of the filtration groups we have

0 �! F sC1C sCt ;j .D/ �! F sC sCt ;j .D/

�! C sCtCAsCzasC1;jCBsC
zbsC1. zDsC1/ �! 0:

Since these give a short exact sequence of complexes the differential d0 , which is
induced by the differential on F sC �;j .D/, can be identified with the differential on
the right hand side, that is, in the complex C �;�. zDsC1/. In particular the homology
of E

�;�
0

is given by the homology (in suitable gradings) of C �;�. zDsC1/, namely the
Khovanov homology of zDsC1 .

When s Dm we have E
m;t
0
D FmC mCt ;j .D/D C mCtCAm;jCBm.Dm/ and so E1

is again as claimed.

The differential d1 on the E1 –page can be understood as follows. There is a decom-
position (of modules)

C �;�.Ds/D C �CzasC1;�CzbsC1. zDsC1/

˚C �CasC1CzasC2;�CbsC1C
zbsC2. zDsC2/

˚C �CasC1CasC2;�CbsC1CbsC2.DsC2/

and with respect to this the differential on C �;�.Ds/ can be written as a matrix0@zısC1 0 0

ı zısC2 0

ı0 ı00 ısC2

1A :
The differential on the E1 –page of the spectral sequence is the map

ıW C �CzasC1;�CzbsC1. zDsC1/! C �CasC1CzasC2;�CbsC1C
zbsC2. zDsC2/

in the above matrix.

Note that if mD 1 then the E1 –page is concentrated in columns s D 0 and s D 1 and
so collapses at the E2 –page for dimensional reasons. The differential on the E1 –page
is precisely the boundary map in the usual long exact sequence. Indeed one can always
assemble such a situation into a long exact sequence.

It is worth commenting that the essential ingredient for the construction of the spectral
sequence is the cube construction of link homology, not the particular variant of link
homology we choose to consider. Thus, for example, one may set up similar spectral
sequences for Khovanov–Rozansky homology.
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Computing the differentials in the above spectral sequence is tantamount to knowing
the whole Khovanov complex so it is desirable to have some other way of proceeding.
Working over Q there is a technique which appears to be remarkably successful which
involves Lee’s spectral sequence. Recall that Lee theory [5] is a variant of rational
Khovanov homology obtained from the same underlying vector spaces but using a
different differential (based on a different Frobenius algebra). Lee theory is a singly
graded (filtered) theory and we denote it by Lee�.L/. We summarise the results we
need about Lee theory in the following proposition.

Proposition 2.3 Let L be an oriented link with k components L1;L2; : : : ;Lk .

(1) The dimension of Lee�.L/ is 2k .

(2) For every orientation � of L there is a generator of homology in degree

2�
X

l2E;m2 xE

lk.Ll ;Lm/

where E � f1; 2; � � � ; kg indexes the set of components of L whose original ori-
entation needs to be reversed to get the orientation � and xEDf1; : : : ; kgnE . The
linking numbers lk.Ll ;Lm/ are the linking number (for the original orientation)
between component Ll and Lm .

(3) There is a spectral sequence .E�;�r ; dr W E
s;t
r ! E

sCr;t�rC1
r / converging to

Lee�.L/ with E2 –page given by the rational Khovanov homology of L.

The spectral sequence in (iii) has differential di D 0 for i odd. If we index the E2i –
page by the usual indexing of the Khovanov homology (rather than of the spectral
sequence) the differential d2i is of bidegree .1; 4i/.

To bypass computing the differentials in the spectral sequence of Proposition 2.2 we
can use the E1 –page for q–grading j to produce an approximation to KH�;j .D/

with some definite generators (those for which it is already clear from the E1 –page that
they survive to E1 ) and also some additional possible generators. It is not sure that
the possible generators are in fact generators because there may be higher differentials
in the spectral sequence killing them. We can then assemble these over j to form
our approximation to KH�;�.D/ and use Lee’s spectral sequence, in particular the
knowledge of the simple E1–page, to determine whether or not the possible generators
are killed or not. By playing off one spectral sequence against another in this way, we
do not actually have to explicitly compute any differentials in either spectral sequence.

Reduced Khovanov homology KH
�;�
r .�/ is also produced via a cube and so there is

a spectral sequence analogous to the above. Indeed all the indices and constants are
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identical to the above and so one can just rewrite Proposition 2.2 replacing KH�;�.�/

with KH
�;�
r .�/. Unfortunately there is no reduced Lee theory so the method above to

avoid explicit computation of differentials will fail. On the other hand there is another
deformation of Khovanov homology due to Bar-Natan [2] defined over Z, Q or any
Fp (p a prime) satisfying all the properties of Proposition 2.3. These theories do
have a reduced version and there is a spectral sequence whose E1 –page is given by
reduced Khovanov homology, converging to reduced Bar-Natan theory. By indexing
as for Khovanov homology the differential di on the Ei –page is of bidegree .1; 2/.
Moreover d1 can be understood explicitly as explained in [8]. Thus, we can again
attempt to bypass explicit computation of differentials in the (reduced version of the)
spectral sequence of Proposition 2.2 by the same method as above, but now using
reduced Bar-Natan theory. In practice this situation is considerably less restrictive than
using Lee theory, stemming from the differentials having bidegree .1; 2/ rather than
.1; 4/. However, it is worth noting, that in principle this does give a way of tackling
the reduced integral Khovanov homology.

3 The rational Khovanov homology of .3; q/–torus links

In this section we work over Q and write KH�;�.D/ for KH�;�.DIQ/. Our interest
is with the torus links T .3; q/ which we take to have negative crossings. We consider
the diagram for T .3; q/ obtained as the closure of a three stranded braid as shown in
Figure 2. When q is a multiple of 3 then T .3; q/ is a three component link, otherwise
T .3; q/ is a knot.

q

Figure 2: Diagram for torus link

We note that for a knot Lee theory has two generators in degree zero. For the .3; 3N /–
torus link Lee theory has two generators in degree zero and six generators in degree
�4N .

We now apply the spectral sequence constructed in the previous section to compute
KH�;�.T .3; q//. As is customary we present the result by way of a table where
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KH i;j .�/ occurs in the column labelled i and row labelled j . The rows in these
tables go up in steps of two. The vector space consisting of the direct sum of k copies
of Q is denoted in the table by k .

Theorem 3.1 Let N be an integer, N � 1.

(1) The rational Khovanov homology of the .3; 3N /–torus link is given by:

1 1

1

1

1

1

1 1

1

1

1

1

1 1

1

1

1

1

1 1

1

1

1

1

1

1

1

13

2

0-1-2

1

�4N

�6N C3

�12N C1

�12N �1

i

j
N�1 pieces

(2) The rational Khovanov homology of the .3; 3N C 1/–torus knot is given by:

1 1

1

1

1

1

1 1

1

1

1

1

1 1

1

1

1

1

1 1

1

1

1

1

1

1

0-1-2

1

11

1

1

1

�4N �1

�6N C1

�12N �5

i

j

N�1 pieces
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(3) The rational Khovanov homology of the .3; 3N � 1/–torus knot is given by:

1 1

1

1

1

1

1 1

1

1

1

1

1 1

1

1

1

1

1 1

1

1

1

1

1

1

1

0-1-2

1

�4N C1

�6N C5

�12N C3

i

j
N�1 pieces

Proof The proof is by induction and consists of three claims:

Claim 1 If the result is true for T .3; 3N � 1/ then the result is true for T .3; 3N /.

Claim 2 If the result is true for T .3; 3N / then the result is true for T .3; 3N C 1/.

Claim 3 If the result is true for T .3; 3N C 1/ then the result is true for T .3; 3.N C

1/� 1/.

Proof of Claim 1 We will calculate the Khovanov homology of the link T .3; 3N /

under the assumption that the Khovanov homology of T .3; 3N � 1/ is as given in
the statement of the theorem. Consider the set of crossings consisting of the two top
crossings in the braid diagram (so mD 2). We have diagrams as presented in Figure 6.

Note that D2 D T .3; 3N � 1/ and it is easy to see that zD1 � U tU and zD2 � U ,
where U is the unknot. Using the orientations shown in Figure 6 one computes

znC
1
D 4n� 1; zn�1 D 2N; za1 D 4N; zb1 D 12N � 1

znC
2
D 4n� 1; zn�2 D 2N � 1; za2 D 4N; zb2 D 12N � 1:and

From Proposition 2.2 we have for fixed j ,

E
0;t
1
DKH tC4N ;jC12N�1.U tU /;

E
1;t
1
DKH tC4NC1;jC12N .U /;

E
2;t
1
DKH tC2;jC2.T .3; 3N � 1//:

Algebraic & Geometric Topology, Volume 8 (2008)



A spectral sequence for Khovanov homology with an application to .3; q/–torus links 879

D.0/
zD.1/ D.1/

zD.2/ D.2/

Figure 6: Diagrams for Claim 1

When sD 0 we see that E
0;t
1
D 0 unless t D�4N and j D�12N �1, j D�12NC1

or j D�12N C 3. Similarly, E
1;t
1
D 0 unless t D�4N � 1 and j D�12N � 1 or

j D�12N C 1 and E
2;t
1

is zero unless �12N C 1� j � �6N C 3.

For j >�12N C3 the E1 –term of the spectral sequence is concentrated in the column
s D 2 and hence collapses for dimensional reasons. Thus,

KH i;j .T .3; 3N //ŠE
2;i�2
1

DKH i;jC2.T .3; 3N � 1//:

We need to consider the three cases j D�12N �1, j D�12NC1 and j D�12NC3.
The E1 pages are give in Figure 7.

0 21 0 21 0 21

1

1 1 1

1

1

2

t s

�4N C 1

�4N

�4N � 1

j D�12N � 1

�4N C 1

�4N

�4N � 1

j D�12N C 1

�4N C 1

�4N

�4N � 1

j D�12N C 3

Figure 7: E1 –pages for Claim 1

For j D �12N � 1 and j D �12N C 3 there are no differentials for dimensional
reasons thus the spectral sequence collapses at E1 . For j D �12N C 1 there is a
possible d1 and a possible d2 (but not both) as shown in Figure 7. Thus for T .3; 3N /

we have the situation presented in Figure 8, where possible generators are circled.

The three possible generators in bidegree .�4N;�12N C 1/ must all indeed be gener-
ators because we require at least six generators in homological degree �4N . This is
because Lee theory in this degree has six generators and due to Lee’s spectral sequence
these must show up in Khovanov homology.
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1 1

1

1

1

1

13

2

1

�4N

�12N C 1

�12N � 1

ij

Figure 8: Generators and possible generators in Khovanov homology for T .3; 3N /

The possible generator in bidegree .�4N C 1;�12N C 1/ is also a generator. If
we look at the E1 page for j D �12N C 1 then since the three generators on the
line sC t D�4N survive until E1 (as shown in the previous paragraph) then there
is nothing to kill the remaining generator. (Alternatively, the generator in bidegree
.�4N C2;�12N C5/ must be killed in Lee’s spectral sequence and the only possible
way this can happen is for the possible generator in bidegree .�4N C 1;�12N C 1/

to be present. To see this, recall that indexed this way the differential d2i in Lee’s
spectral sequence has bidegree .1; 4i/.)

Thus we end up computing KH�;�.T .3; 3N // as presented in the theorem.

Proof of Claim 2 Consider the link T .3; 3N C 1/ and as above take the set of
crossings to be the two top crossings in the braid diagram. We have diagrams as
presented in Figure 9.

D.0/
zD.1/ D.1/

zD.2/ D.2/

Figure 9: Diagrams for Claim 2
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Note that D2 D T .3; 3N / and it is easy to show zD1 � U and zD2 � U tU . Using
the orientations shown in Figure 9 one computes

znC
1
D 4N; zn�1 D 2N C 1; za1 D 4N C 1; zb1 D 12N C 2

znC
2
D 4N; zn�2 D 2N; za2 D 4N C 1; zb2 D 12N C 2:and

Thus we have

E
0;t
1
DKH tC4NC1;jC12NC2.U /;

E
1;t
1
DKH tC4NC2;jC12NC3.U tU /;

E
2;t
1
DKH tC2;jC2.T .3; 3N //:

For s D 0 we must have j in the range �12N � 3� j ��12N � 1, for s D 1 in the
range �12N �5� j ��12N �1 and for sD 2 in the range �12N �3� j ��6NC1.
For j >�12N �1, as in the previous case, we instantly see that the result is as claimed.
For the three remaining j –values we have E1 –pages as given in Figure 10.

1

1

0 21 0 21 0 21

1

12 2

1

3

t s

�4N � 1

�4N � 2

j D�12N � 5

�4N � 1

�4N � 2

j D�12N � 3

�4N � 1

�4N � 2

j D�12N � 1

Figure 10: E1 –pages for Claim 2

For j D �12N � 5 there are no differentials for dimensional reasons, but for j D

�12N �3 and j D�12N �1 there are possible differentials. The situation is presented
in Figure 11, where, as above, possible generators are circled.

Consider the two possible generators in bidegree .�4N;�12N � 3/. Generators in
this bidegree would appear in the E1–page of Lee’s spectral sequence. However,
T .3; 3N C 1/ is a knot so the E1–page has only two generators and these lie on the
line sC t D 0.

Now look at the E1 –page for j D �12N � 3. We have just argued that the two
generators on the line sC t D�4N must be killed. There are two possible ways this
might happen, but either way one is left with one generator on the line sC t D�4N �1

and this must survive to E1 .

A similar argument holds for the two possible generators in bidegree .�4N�1;

�12N � 1/ and one is left with one generator in bidegree .�4N;�12N � 1/.
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3 2

2 3

1

1

1 1

1

1

1

�4N � 1

�12N � 3

�12N � 5

ij

Figure 11: Generators and possible generators for T .3; 3N C 1/

Proof of Claim 3 This is very similar to the previous arguments so we present this
case only briefly. We follow the same orientation convention as above for the diagrams.
We have

E
0;t
1
DKH tC4NC3;jC12NC8.U /;

E
1;t
1
DKH tC4NC3;jC12NC6.U /;

E
2;t
1
DKH tC2;jC2.T .3; 3N C 1//:

For j >�12N �5 there is nothing to do and for the remaining j –values of interest we
have E1 –pages as given in Figure 12 leading to the generators and possible generators
presented in Figure 13.

0 21 0 21 0 21

11 1 1 1 1

t s

�4N � 2

�4N � 3

j D�12N � 9

�4N � 2

�4N � 3

j D�12N � 7

�4N � 2

�4N � 3

j D�12N � 5

Figure 12: E1 –pages for Claim 3

As above it is easy to see that the possible generator in bidegree .�4N �3;�12N �7/

cannot survive to E1 in Lee’s spectral sequence so must be killed. There is only one
possibility, leaving one generator in homological degree �4N�1. When j D�12N�5

the two generators both survive because they are needed in Lee’s spectral sequence to
kill the generators in bidegree .�4N � 3;�12N � 9/ and .�4N;�12N � 1/.
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1

1

1

1 1 1

11

1

�4N � 3

�12N � 7

�12N � 9

ij

Figure 13: Generators and possible generators for T .3; 3N C 2/

Finally we note that the inductive process of the above three claims has a beginning
because the Khovanov homology of T .3; 2/ is easily calculated (even by hand), and
T .3; 3/, T .3; 4/ and T .3; 5/ can also be computed (by computer or using the spectral
sequence – the computations are similar, though not identical, to those above). These
cases are seen to have the required form.

Corollary 3.2 The rational Khovanov homology of the torus links T .3; 3N /,
T .3; 3N C 1/ and T .3; 3N C 2/ occupy exactly N C 2 diagonals.

Since Lee theory over Fp for p ¤ 2 behaves identically to Lee theory over Q (in
particular Proposition 2.3 holds) the above theorem also calculates KH�;�.DIFp/.

Corollary 3.3 The integral Khovanov homology of T .3; q/ has no p–torsion for
p odd.

Proof Since dimKH i;j .T .3; q/IFp/ D dimKH i;j .T .3; q/IQ/ the result follows
immediately from the universal coefficient theorem.

The Khovanov homology of positive crossing .3; q/–torus links can be computed from
the above by recalling that the rational Khovanov homology of the mirror image L! of
a link L can be computed as KH i;j .L!/DKH�i;�j .L/.

Remark The result presented in Theorem 3.1 has been independently proven recently
by M Stošić in [7], by using the only the skein long exact sequence and a number of
intermediate diagrams and complexes.

Acknowledgements Thanks to M Mackaay and J Rasmussen for comments on an
early version.

Algebraic & Geometric Topology, Volume 8 (2008)



884 Paul Turner

References
[1] D Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom.

Topol. 2 (2002) 337–370 MR1917056

[2] D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9
(2005) 1443–1499 MR2174270

[3] D Bar-Natan, Fast Khovanov homology computations, J. Knot Theory Ramifications
16 (2007) 243–255 MR2320156

[4] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000)
359–426 MR1740682

[5] E S Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554–586
MR2173845

[6] J Rasmussen, Khovanov homology and the slice genus arXiv:math.GT/0402131
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