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Topological minimal genus and L2–signatures

JAE CHOON CHA

We obtain new lower bounds for the minimal genus of a locally flat surface repre-
senting a 2–dimensional homology class in a topological 4–manifold with boundary,
using the von Neumann–Cheeger–Gromov �–invariant. As an application our results
are employed to investigate the slice genus of knots. We illustrate examples with
arbitrary slice genus for which our lower bound is optimal but all previously known
bounds vanish.

57N13, 57N35, 57R95, 57M25

1 Introduction and main results

This paper concerns the problem of the minimal genus of a locally flat embedded
surface representing a given 2–dimensional homology class in a topological 4–manifold.
Precisely, a locally flat closed surface † in a topological 4–manifold W is said to
represent � 2H2.W / if the fundamental class of † is sent to � under the map induced
by the inclusion. In this paper manifolds are always oriented and surfaces are assumed
to be connected.

For topological 4–manifolds that are closed (or with boundaries consisting of homology
spheres), there are remarkable known results which provide lower bounds for the
minimal genus, including Kervaire–Milnor [11], Hsiang–Szczarba [10], Rokhlin [31]
and Lee–Wilczyński [16; 17]. Basically these lower bounds are extracted by considering
Rokhlin’s theorem and the algebraic topology of finite cyclic branched coverings. Also,
interesting results on the smooth analogue of this problem have been obtained using
gauge theory for a certain class of smooth 4–manifolds. Related works include results
on the Thom conjecture and adjunction inequality due to Kronheimer–Mrowka [13; 15;
14], Morgan–Szabó–Taubes [24], Kronheimer [12] and Ozsváth–Szabó [26; 25]. One
may obtain a lower bound in a 4–manifold with boundary when it embeds into another
4–manifold for which the above lower bound results can be applied directly. For
example, the adjunction inequality is proved in Stein 4–manifolds via an embedding
theorem due to Lisca–Matić [19; 20] and Akbulut–Matveyev [1].

In this paper we focus on the minimal genus problem in a topological 4–manifold
that has boundary with nontrivial homology. Our results give new lower bounds

Published: 14 June 2008 DOI: 10.2140/agt.2008.8.885

http://www.ams.org/mathscinet/search/mscdoc.html?code=57N13, 57N35, 57R95, 57M25
http://dx.doi.org/10.2140/agt.2008.8.885


886 Jae Choon Cha

for the minimal genus for homology classes from the boundary, in terms of the von
Neumann–Cheeger–Gromov �–invariants of the boundary. As an application we give
lower bounds for the slice genus of a knot. We illustrate that for any given g the
�–invariants detect homology classes with topological and smooth minimal genus g

that all previously known results do not.

Minimal second Betti number of a 4–dimensional bordism

We obtain lower bounds for the minimal genus through the following problem on
4–dimensional bordisms: what is the minimal second Betti number of a topological
null-bordism of a given closed 3–manifold endowed with a group homomorphism
of the fundamental group? Our principal result on this is as follows. Let � be a
poly-torsion-free-abelian (PTFA) group, ie, � admits a finite length normal series fGig

with Gi=GiC1 torsion-free abelian. It is known that there is a (skew-)field K of right
quotients of Z� . Let R be a subring of K which is a PID containing Z� . Then �
acts on the abelian group K=R via right multiplication so that the semidirect product
.K=R/Ì� is defined. It is known that if M is a closed 3–manifold endowed with a
homomorphism �W �1.M /! � and H1.M IR/ is R–torsion, then a homomorphism
hW H1.M IR/ ! K=R naturally induces a lift  h;� W �1.M / ! .K=R/ Ì � of � ,
which is well-defined up to conjugation by elements in K=R [6]. (In fact, there is a
1–1 correspondence

Hom.H1.M IR/;K=R/�
flifts �1.M /! .K=R/Ì� of � g
conjugation by elements in K=R

induced by the well-known bijection between 1–cocycles and derivations and by the
standard universal property of a semidirect product; for more details, see Section 3.)

Theorem 1.1 Suppose M is a closed 3–manifold endowed with a homomorphism
�W �1.M /! � , and W is a topological 4–manifold with boundary M such that �
factors through �1.W /. Then the following holds:

(1) The second Betti number ˇ2.W / satisfies

j�.M; �/j � 2ˇ2.W /

where �.M; �/ 2R denotes the von Neumann–Cheeger–Gromov �–invariant
of M associated to � .

(2) In addition, if the twisted homology H1.M IR/ is R–torsion and not gener-
ated by any ˇ2.W / elements, then there is a nontrivial R–submodule P in
Hom.H1.M IR/;K=R/ such that for any homomorphism h in P the induced
lift  h;� W �1.M /! .K=R/Ì� factors through �1.W /.
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More detailed versions of Theorem 1.1 (1) and (2) are stated and proved in Section
2 and Section 3, respectively. To prove (1), we regard the �–invariant of M as an
L2 –signature defect of W and estimate the L2 –signature of W in terms of the L2

and ordinary Betti number. While (1) gives a lower bound for ˇ2.W / without using
(2), further information may be obtained when (2) is combined with (1); note that (2)
gives a sufficient condition which implies that a certain “bigger” coefficient system of
M , namely �1 , extends to W . In case that �1 extends, (1) can be applied again to �1

to obtain further lower bounds for ˇ2.W / (and possibly this process may be iterated).

This type of coefficient extension problem plays a crucial role in earlier landmark
works in knot theory, including Casson–Gordon [3; 2], Gilmer [9], and in particular
Cochran–Orr–Teichner [6; 7], from which Theorem 1.1 has been directly motivated. In
[6; 7] the extension problem is investigated when H1.@W IQ/ŠH1.W IQ/ŠQ, and
W satisfies some geometric condition related to the existence of a Whitney tower (such
W is called an .h/–solution in [6]). In order to deal with the extension problem without
assuming these conditions, as in Theorem 1.1 (2), we investigate the relationship of the
Blanchfield linking form of M and the intersection form of W over R–coefficients
and import ideas from Gilmer’s work [9] on Casson–Gordon invariants.

The following result relates the minimal second Betti number of bordisms with a partic-
ular type of the minimal genus problem in a 4–manifold with boundary. Suppose W is
a topological 4–manifold with boundary M , H1.W /D 0, and � is a 2–dimensional
homology class contained in the image of H2.M /!H2.W /. In Section 4 we will
describe a homomorphism �� W �1.M /! Z determined by � .

Proposition 1.2 If �� is nontrivial and there is a locally flat embedded surface of
genus g in W representing � , then there is a topological 4–manifold V bounded by
M such that �� W �1.M /!Z factors through �1.V / and ˇ2.V /D ˇ2.W /C 2g� 1.

Consequently, lower bounds for ˇ2.V / obtained by (possibly repeatedly) applying
Theorem 1.1 give rise to lower bounds for the genus g .

Slice genus of a knot

As an application, we employ our results on the minimal genus problem to investigate
the slice genus of a knot K in S3 . The topological slice genus gt

�.K/ of K is defined
to be the minimal genus of a locally flat surface F properly embedded in D4 in such
a way that @F D K , viewing S3 as the boundary of D4 . The smooth slice genus
gs
�.K/ is defined similarly, requiring F to be a smooth submanifold of D4 . Obviously

gt
�.K/� gs

�.K/.
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There are various known lower bounds for the slice genus. Clearly any obstruction to
being a slice knot can be viewed as a lower bound of the form (slice genus) � 1. It is
well known that some invariants derived from a Seifert matrix, including the signature
of a knot, can be used to detect higher topological slice genus. Gilmer showed that
Casson–Gordon invariants of a knot K give further lower bounds for gt

�.K/ [9]. For
the smooth slice genus, further results based on gauge theory are known. For a special
class of knots which includes the torus knots, an optimal lower bound is obtained as an
application of the Thom conjecture due to Kronheimer–Mrowka [13]. For an arbitrarily
given knot K , the Thurston–Bennequin invariant (together with the rotation invariant)
of a Legendrian representation of K is known to give a lower bound for gs

�.K/,
due to Rudolph [32; 33], Kronheimer–Mrowka, Akbulut–Matveyev [1] and Lisca–
Matić [19; 20]. More recently, Ozsváth–Szabó’s � –invariant [27] and Rasmussen’s
s–invariant [30] defined from knot homology theories of Ozsváth–Szabó and Khovanov
have been known to give new lower bounds for gs

�.K/.

It is well known that lower bounds for the slice genus can be obtained through minimal
genus problems in 4–manifolds with boundary; the slice genus of a knot K is bounded
from below by the minimal genus for a specific homology class in the 4–manifold
obtained by attaching a 2–handle to the 4–ball along K . It follows that Theorem 1.1
and Proposition 1.2 give lower bounds for the slice genus in terms of the �–invariants.
In fact, it turns out that this method gives us lower bounds for the genus of a locally
flat surface bounded by K in a homology 4–ball with boundary S3 . The following
theorem illustrates that our lower bounds from the �–invariants actually reveal new
information; one can detect arbitrarily large slice genus of knots that all the previously
known lower bounds fail to detect.

Theorem 1.3 For any positive integer g , there are infinitely many knots K with the
following properties:

(1) gt
�.K/D gs

�.K/D g .

(2) K has a Seifert matrix of a slice knot.

(3) K has vanishing Casson–Gordon invariants.

(4) K has vanishing Ozsváth–Szabó � –invariant and Rasmussen s–invariant.

We remark that in the proof of Theorem 1.3 (1), gt
�.K/ is detected by considering

a minimal genus problem in a 4–manifold for which the results in [10; 31; 16; 17]
give no interesting lower bound but the �–invariants give an optimal bound. Results of
Cochran–Orr–Teichner [6] can be used to reveal partial information that gt

�.K/ > 0,
ie, K is not topologically slice. (See Remark 5.6 and paragraphs following it.)
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As a consequence of Theorem 1.3 (4), it follows that the applications of the adjunction
inequality to the smooth slice genus as in [33; 19; 20; 1] give us no information on K ,
since � – and s–invariants are known to be sharper than the Thurston–Bennequin lower
bound, due to Plamenevskaya [28; 29] and Shumakovitch [34]. The author knows no
other method to apply gauge theory to estimate the slice genus of our K . Finally we
remark that in the proof of Theorem 1.3 (4), we show a little more generalized statement
(Lemma 5.4) that for any finite collection fˆ˛g of integer-valued homomorphisms
of the smooth knot concordance group that give lower bounds for gs

� , our K can be
chosen in such a way that ˆ˛.K/D 0 for each ˆ˛ , ie, no such homomorphism extracts
any information on the slice genus of K . For more detailed discussion on Theorem
1.3, see Section 5.

Acknowledgement This work was supported by the Korea Research Foundation
Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund)
(KRF–2006–312–C00469).

2 Betti numbers and L2–signatures

In this section we prove Theorem 1.1 (1). The essential part of the proof is to estimate
the L2 –Betti number of a 4–manifold in terms of the ordinary Betti number. From
this the desired relationship between the ordinary Betti number and the L2 –signature
follows, because L2 –dimension theory enables us to show that the L2 –signature is
bounded by the (middle dimensional) L2 –Betti number; this is an L2 –analogue of a
well-known fact that the ordinary signature is bounded by the Betti number. In this
section all manifolds are topological manifolds.

Upper bounds for L2–Betti numbers

We start by defining the algebraic L2 –Betti number. As a primary reference on the
L2 –theory we need, we refer to Lück’s book [22]. Let � be a discrete countable group.
While L2 –invariants are usually defined via the group von Neumann algebra N� , in
this paper we will mainly use the algebra U� of operators affiliated to N� , which is
more useful for our purpose. Both coefficients are known to give the same L2 –Betti
number and signature.

The L2 –dimension theory provides a dimension function

dim.2/
�
W ffinitely generated U� –modulesg �! Œ0;1/:
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For a finite CW-complex X endowed with �1.X /! � , the twisted homology module

Hi.X IU�/DHi.C�.X IZ�/˝Z� U�/

is defined by viewing U� as a Q� –module via the natural inclusions Q�!N�!
U� , and is known to be finitely generated. The L2 –Betti number ˇ.2/i .X / is defined
to be ˇ.2/i .X /D dim.2/

�
Hi.X IU�/. For a CW-pair .X;A/, ˇ.2/i .X;A/ is similarly

defined. (In this paper the choice of �1.X /! � will always be clearly understood
and so we do not include it in the notation.) It is known that the analytic and L2 –
homological definitions are equivalent to the algebraic definition described here [22,
Chapters 1, 6 and 8].

Following Cochran–Orr–Teichner [6], we will focus on the case of a poly-torsion-free-
abelian (PTFA) group, which is defined to be a group admitting a finite length normal
series fGig with torsion-free abelian quotients Gi=GiC1 . In this paper � is always
assumed to be PTFA. Also, we assume that �1.X /! � is nontrivial, since a trivial
homomorphism gives nothing beyond the (untwisted) rational coefficient.

Proposition 2.1 Suppose W is a connected compact 4–manifold (possibly with
nonempty boundary) endowed with a nontrivial homomorphism �1.W /! � . Then
we have the following:

(1) ˇ
.2/
1
.W /� ˇ1.W /� 1.

(2) ˇ
.2/
2
.W /� ˇ2.W /.

(3) ˇ
.2/
3
.W /�

(
ˇ3.W /� 1 if W is closed;

ˇ3.W / otherwise:

Remark 2.2 (1) When @W is nonempty, the proposition also gives an upper bound
for ˇ.2/i .W; @W / in terms of the ordinary Betti number, by duality.

(2) In the special case that H1.@W IQ/ Š H1.W IQ/ and @W is nonempty, a
similar result was proved (at least implicitly) in [6]. Our proof of Proposition
2.1 proceeds similarly to [6], but we need some technical modification to get rid
of the H1 –isomorphism condition.

Lemma 2.3 below provides facts on a PTFA group which are necessary to prove
Proposition 2.1. For a proof of Lemma 2.3, see Cochran–Orr–Teichner [6].

Lemma 2.3 (1) Q� is an Ore domain so that there is a (skew-)field K of right
quotients of Q� . Every K–module M is free and has a well-defined dimension
dimKM .
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(2) Suppose that C� is a finitely generated free chain complex over Q� . If
Hi.C�˝Q� Q/D 0 for i � n, then Hi.C�˝Q� K/D 0 for i � n.

In particular, the existence of the skew-field K of quotients enables us to understand
the L2 –dimension as the ordinary dimension over K , as follows: it is known that
if Q� is an Ore domain, then the natural map Q�! U� extends to an embedding
K! U� [22]. For a space X equipped with �1.X /! � , let denote the Betti number
with K–coefficients by ˇi.X IK/D dimKHi.X IK/. By definition, Hi.X IU�/ is the
homology of the cellular chain complex

C�.X IQ�/˝Q� U� D .C�.X IQ�/˝Q� K/˝K U�:

Since H�.X IK/DH�.C�.X IQ�/˝Q�K/, we have the universal coefficient spectral
sequence

E2
p;q D TorKp .Hq.X IK/;U�/)HpCq.X IU�/:

Since all higher Tor terms vanish over the K–coefficient, it follows that

Hi.X IU�/DHi.X IK/˝K U�:

Therefore Hi.X IU�/ is always a free U�–module whose U�–rank is equal to the
K–coefficient Betti number ˇi.X IK/. Since dim.2/

�
.U�/n D n (eg, see Lück [22]),

we obtain:

Lemma 2.4 ˇ
.2/
i .X /D ˇi.X IK/, and similarly for a pair .X;A/.

In order to prove Proposition 2.1, we first deal with the first Betti number.

Lemma 2.5 Suppose .X;A/ is a finite CW-pair with X connected, and �1.X /! �

is a homomorphism. Then the following holds:

(1) If A is nonempty, ˇ1.X;AIK/� ˇ1.X;A/.

(2) If A is empty, ˇ1.X IK/� ˇ1.X /� 1.

We remark that the absolute case (2) was shown in [6, Proposition 2.11].

Proof Suppose that A is nonempty. Denote ˇ D ˇ1.X;A/, and let .Y;B/ be the
disjoint union of ˇ copies of .I; @I/ where I D Œ0; 1�. Choose a map f W .Y;B/!
.X;A/ which induces an isomorphism H1.Y;BIQ/!H1.X;AIQ/.

By replacing X with the mapping cylinder Mf D .Y � I/[X=.y; 0/� f .x/ of f ,
and replacing A with .B � I/ [A � Mf , we may assume that f is an injection
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.Y;B/ � .X;A/ and Y \ A D B . From the homology long exact sequence with
Q–coefficients derived from

0 �! C�.Y;B/ �! C�.X;A/ �! C�.X;Y [A/ �! 0;

it follows that Hi.X;Y [AIQ/D0 for i �1. By Lemma 2.3 (2), Hi.X;Y [AIK/D0

for i � 1. Thus, from the long exact sequence with K–coefficients, it follows that f
induces a surjection H1.Y;BIK/! H1.X;AIK/. This shows that ˇ1.X;AIK/ �
ˇ1.Y;BIK/. On the other hand, since Ci.Y;BIK/D0 for all i but C1.Y;BIK/DKˇ ,
ˇ1.Y;BIK/D ˇ . This completes the proof of (1).

Suppose A is empty. To apply the previous case, we choose a point �2X and consider
the pair .X; f�g/. In the exact sequence

0 �!H1.X IK/ �!H1.X; f�gIK/ �!H0.f�gIK/ �!H1.X IK/;

H0.f�gIK/DK obviously and H0.X IK/DK=.�1.X /–action) is trivial since K is
a division ring and �1.X /! � is nontrivial. It follows that

ˇ1.X IK/C 1D ˇ1.X; f�gIK/� ˇ1.X; f�g/D ˇ1.X /:

Proof of Proposition 2.1 Suppose W is a compact connected 4–manifold equipped
with �1.W /! � . Since W has the homotopy type of a finite CW-complex with
cells of dimension � 4, we may assume that the chain complex C�.W I �/ is finitely
generated and has dimension � 4.

By Lemma 2.4, we can think of ˇi.W IK/ instead ˇ.2/i .W /. So (1) follows directly
from Lemma 2.5.

To prove (3), observe that the duality implies ˇ3.W IK/D ˇ1.W; @W IK/. If @W is
empty, ˇ1.W; @W IK/� ˇ1.W /�1D ˇ3.W /�1 by Lemma 2.5. If @W is nonempty,
ˇ1.W; @W IK/� ˇ1.W; @W /D ˇ3.W / again by Lemma 2.5.

To prove (2), we use the fact that the Euler characteristics for the Q– and K–coefficients
are the same, that is,

4X
iD0

.�1/iˇi.W IK/D
4X

iD0

.�1/iˇi.W /:

Since �1.W /! � is nontrivial, ˇ0.W IK/D 0. When W has nonempty boundary,
ˇ0.W; @W IK/ D 0 since ˇ0.W; @W IK/ � ˇ0.W IK/. From this it follows that
ˇ4.W IK/D 0. Plugging these values and the inequalities proved above into the Euler
characteristic identity, we obtain ˇ2.W IK/� ˇ2.W /.
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Upper bounds for L2–signatures

We define the von Neumann L2 –signature as follows: for a 4k –manifold W endowed
with �1.W /! � , the U� –coefficient intersection form

�W H2k.W IU�/�H2k.W IU�/ �! U�

is a hermitian form. In our case, H2k.W IU�/ is always a free U�–module since
� is assumed to be PTFA. By spectral theory, H2k.W IU�/ is decomposed as an
orthogonal sum of canonically defined subspaces HC , H� , and H0 such that � is
positive definite, negative definite, and trivial, on HC , H� , and H0 , respectively. The
L2 –signature of W is defined to be

sign.2/.W /D dim.2/
�
.HC/� dim.2/

�
.H�/ 2R:

For more details and the relationship with other ways to define the L2 –signature, refer
to Cochran–Orr–Teichner [6] and Lück–Schick [23].

Lemma 2.6 j sign.2/.W /j � ˇ
.2/

2k
.W /.

Proof Since HC;H� �H2k.W IU�/ and HC\H� D f0g, L2 –dimension theory
enables us to show

dim.2/
�
.HC/C dim.2/

�
.H�/� dim.2/

�
H2k.W IU�/

using an L2 –analogue of a standard argument of elementary linear algebra. (eg, refer
to Chapter 8 of [22], where it is shown that dim.2/

�
satisfies a set of axioms which

includes all the properties we need.) From this the conclusion follows.

Combining Lemma 2.6 with Proposition 2.1, we obtain:

Lemma 2.7 If W is a compact connected 4–manifold endowed with a nontrivial
homomorphism �1.W /! � , then

j sign.2/.W /j � ˇ2.W /:

Now we are ready to show the first part of Theorem 1.1 stated in the introduc-
tion. We adopt the following topological definition of the �–invariant, as in Chang–
Weinberger [4]. (See also Cochran–Orr–Teichner [6].) Let M be a 3–manifold
endowed with �1.M /! � . It is known that there is a bigger group G containing �
and a 4–manifold W such that @W consists of r components M1; : : : ;Mr (r > 0),
Mi ŠM , and �1.Mi/

�
!�!G factors through �1.W / for each i . (For a proof, see

the appendix of [4]; they consider the case that �1.M /D � but the same argument
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works in our case as well.) Then �.M; �/ is defined to be the following signature
defect:

�.M; �/D
1

r

�
sign.2/.W /� sign.W /

�
2R

where sign.2/.W / and sign.W / denote the L2 –signature associated to �1.W /!G

and the ordinary signature, respectively. The real number �.M; �/ is determined by
M and � , and independent of the choices we made. From the results in [23] it follows
that �.M; �/ defined above coincides with the �–invariant of Cheeger–Gromov [5].

Proof of Theorem 1.1 (1) Suppose W is a compact connected 4–manifold with
boundary M , and �1.W / ! � is given. Let denote the composition �1.M / !

�1.W /! � by � . Our goal is to show that j�.M; �/j � 2ˇ2.W /.

Since � factors through �1.W /, we can compute �.M; �/ using W ; by the definition
above,

�.M; �/D sign.2/.W /� sign.W /:

Obviously j sign.W /j � ˇ2.W /. By Lemma 2.7, j sign.2/.W /j � ˇ2.W /. From this
the desired conclusion follows.

3 Extending coefficient systems to bounding 4–manifolds

Suppose W is a topological 4–manifold with boundary M and �1.W /! � is given.
(M is endowed with the induced map �1.M /! � .) In this section we deal with
the problem of extending a bigger coefficient system on M to W to prove Theorem
1.1 (2). To state a more detailed form of Theorem 1.1 (2), we need the following facts
from [6]: suppose R is a (possibly noncommutative) subring of K which is a PID
containing Z� . In this section we assume that H1.M IR/ is R–torsion.

(1) Blanchfield form on H1.M IR/. The Bockstein map

BW H2.M IK=R/ �!H1.M IR/

and the Kronecker evaluation �W H 1.M IK=R/! Hom.H1.M IR/;K=R/ are iso-
morphisms. The Blanchfield form, which is defined to be the isomorphism

B`W H1.M IR/
B�1

���!H2.M IK=R/
duality
����!H 1.M IK=R/

�
��! Hom.H1.M IR/;K=R/;

is a symmetric linking form on H1.M IR/. (See [6, p 451].)
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(2) Coefficient systems induced by characters. A homomorphism hW H1.M IR/!
K=R naturally gives rise to a group homomorphism  W �1.M /! .K=R/Ì� which
is well-defined up to inner automorphisms given as conjugation by elements in K=R,
as described below. It is a well-known fact that cocycles in C 1.�1.M /IK=R/ are in
1–1 correspondence with derivations d W �1.M /!K=R. It induces a bijection

Hom.H1.M IR/;K=R/ŠH 1.M IK=R/Š
fderivations d W �1.M /!K=Rg

fprincipal derivationsg
:

By the universal property of the semidirect product, derivations d W �1.M /! K=R
are in 1–1 correspondence with lifts  W �1.M /! .K=R/Ì� of �1.M /! � . Here
 W �1.M /! .K=R/Ì� is said to be a lift if the composition of  with the projection
.K=R/Ì�! � is equal to the given �1.M /! � . It can be checked that a principal
derivation corresponds to an inner automorphism given as conjugation by an element
in K=R, so that a bijection

fderivations d W �1.M /!K=Rg
fprincipal derivationsg

Š
flifts �1.M /! .K=R/Ì� of � g
conjugation by elements in K=R

is induced. Combining these bijections, hW H1.M IR/!K=R induces  W �1.M /!

.K=R/Ì� as claimed. Later we will use the following observations: (i) the restriction
of  on N D Kerf�1.M /! �g agrees with

N �!N=ŒN;N ��H1.M IZ�/ �!H1.M IR/
h
��!K=R� .K=R/Ì�;

and (ii)  factors through �1.W / if h factors through H1.W IR/. (See [6, p 455–
457].)

Note that K=R is a torsion-free abelian group, and therefore .K=R/ Ì � is PTFA
when � is PTFA. We also recall that, as in case of a commutative PID, any finitely
generated R–module M is isomorphic to F ˚ tM where F is a free module of rank
dimK.M ˝RK/ and tM is the R–torsion submodule of M . (eg, refer to Cohn [8].)
tM is isomorphic to a direct sum of cyclic modules of nonzero order.

Now we can state the result we will prove in this section. Denote by @ the boundary
map H2.W;M IR/!H1.M IR/.

Theorem 3.1 Suppose that H2.W;M IR/ D F ˚ tH2.W;M IR/ and @.F / is a
proper submodule of H1.M IR/ for some free summand F . Then there is a nontrivial
submodule P in H1.M IR/ such that for any x 2 P , the homomorphism

B`.x/W H1.M IR/ �!K=R

factors through H1.W IR/.
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In particular, if H1.M IR/ is not generated by ˇ2.W / elements, then since

ˇ2.W;M IK/D ˇ2.W IK/D ˇ.2/2
.W /� ˇ2.W /

by duality and Proposition 2.1, the hypothesis of Theorem 3.1 is satisfied. If it is the
case, then for x 2P , B`.x/ gives rise to a homomorphism �1.M /!K=RÌ� which
factors through �1.W /. This proves Theorem 1.1 (2).

The remaining part of this section is devoted to the proof of Theorem 3.1. As the
first step, we will show that for the boundary of a relative 2–cycle of .W;M /, the
Blanchfield form of M can be computed via the intersection form of W . Indeed it is
a consequence of the following algebraic observation:

Lemma 3.2 Suppose R is a (possibly noncommutative) ring with (skew-)quotient
field K , and

0 �! C 0�
i
��! C�

p
��! C 00� �! 0

is an exact sequence of chain complexes over R such that Hn.C
0
� ˝ K/ D 0 D

Hn�1.C
0
�˝K/. Then

˛W Hn.C
00
� / �!Hn.C

00
� ˝K/

p�1
�
��!
Š

Hn.C�˝K/ �!Hn.C�˝K=R/

coincides with

ˇW Hn.C
00
� /

@
��!Hn�1.C

0
�/

B�1

���!
Š

Hn.C
0
�˝K=R/

i�
��!Hn.C�˝K=R/:

Proof First note that the Bockstein B and the induced map p� are isomorphisms
since Hn.C

0
�˝K/D 0DHn�1.C

0
�˝K/.

We will regard C 0� as a submodule of C� and denote the homology class of a cycle
x by Œx�. Suppose z is a cycle in C 00n , and x 2 Cn is a preimage of z , ie, p.x/D z .
Hj .C

0
�/˝KDHj .C

0
�˝K/D 0 for j D n, n� 1 since K is a flat R–module, and

therefore p induces an isomorphism Hn.C�/˝K Š Hn.C
00
� /˝K . It follows that

there is a cycle y in Cn such that p�Œy�D Œz� � r in Hn.C
00
� / for some nonzero r 2R,

that is, there is u 2 CnC1 such that @uD x � r � yCw where w 2 C 0n � Cn . Since
@y D 0, @w D @.�x/ � r . Therefore w˝ 1

r
is a cycle in C 0n˝K=R.

Since p�Œy ˝
1
r
� D Œz ˝ 1�, it can be seen that ˛Œz� D Œy ˝ 1

r
�. On the other hand,

by the definition of the Bockstein homomorphism, BŒw˝ 1
r
� D Œ@x�, and therefore,

ˇŒz�D Œw˝ 1
r
�.

In Cn˝K=R, we have

@
�
u˝

1

r

�
D x�y˝

1

r
Cw˝

1

r
D�y˝

1

r
Cw˝

1

r
:
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From this it follows that Œy˝ 1
r
�D Œw˝ 1

r
� in Hn.C�˝K=R/.

Recall that @ denotes the boundary map H2.W;M IR/!H1.M IR/.

Lemma 3.3 Let ˆ be the composition

ˆW H2.W;M IR/ �!H2.W;M IK/ŠH2.W IK/ �!H2.W IK=R/

ŠH 2.W;M IK=R/ �
��! Hom.H2.W;M IR/;K=R/;

where � is the Kronecker evaluation map. Then B`.@x/.@y/ D ˆ.x/.y/ for any
x;y 2H2.W;M IR/.

Proof From Lemma 3.2 and the naturality of duality and the Kronecker evaluation,
we obtain the following commutative diagram:

H2.W;M IR/ H1.M IR/

H2.W IK/ H2.W;M IK/

H2.W IK=R/ H2.M IK=R/

H 2.W;M IK=R/ H 1.M IK=R/

Hom.H2.W;M IR/;K=R/ Hom.H1.M IR/;K=R/

//@

��
OOOOOOOOOOOOOOO

//
Š

��

B`

��
duality Š

OO

Š B

oo

��
Š duality

��
�

oo

��
Š �

wwooooooooooooooo

oo @#

Here the map @# is given by @#. /.y/ D  .@y/ for  W H1.M IR/ ! K=R and
y 2H2.W;M IR/. From this the conclusion follows.

Proof of Theorem 3.1 For a submodule P in H1.M IR/, we denote

P? D fy 2H1.M IR/ j B`.x/.y/D 0 for all x 2 Pg:

Consider the exact sequence

� � � �!H2.W IR/ �!H2.W;M IR/ @
��!H1.M IR/ �!H1.W IR/ �! � � � :

We claim that there is a nontrivial submodule P in H1.M IR/ such that the image
@.H2.W;M IR// is contained in P? . Indeed from this claim it follows that, for any
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x 2 P , B`.x/W H1.M IR/!K=R gives rise to a homomorphism Coker @!K=R,
which automatically extends to H1.W IR/ since K=R is an injective R–module. This
completes the proof.

Recall that we wrote H2.W;M IR/ D F ˚ tH2.W;M IR/ where F is free and
tH2.W;M IR/ is the torsion submodule. To prove the claim, we consider the following
two cases:

Case 1 Suppose @.tH2.W;M IR// is nontrivial. Consider the composition ˆ de-
scribed in Lemma 3.3. For any x 2 tH2.W;M IR/ we have ˆ.x/D 0, since ˆ factors
through H2.W;M IK/ which is torsion free. Therefore B`.@x/.@y/Dˆ.x/.y/D 0

for any y 2 H2.W;M IR/. This shows that P D @.tH2.W;M IR// is a nontrivial
submodule satisfying the desired property.

Case 2 Suppose @.tH2.W;M IR// is trivial. Then the image of @ is equal to @.F /,
which is a proper submodule of H1.M IR/ by the hypothesis. Appealing to the lemma
below, which should be regarded as folklore, it follows that P D @.F /? is nontrivial.
Since P? D @.F /?? � @.F /D @.H2.W;M IR//, the claim follows.

Lemma 3.4 Suppose A is a finitely generated torsion R–module endowed with a
symmetric linking form given by an isomorphism ‰W A! Hom.A;K=R/. Then for
any proper submodule B in A, B? is nontrivial.

Proof From the exact sequence

0 �! Hom.A=B;K=R/
p#

��! Hom.A;K=R/ i#

��! Hom.B;K=R/

we have B? D‰�1.Ker i#/D‰�1.Im p#/. So it suffices to show Hom.A=B;K=R/
is nontrivial. Note that every cyclic module R=pR with p ¤ 0 is (isomorphic to) a
submodule of K=R . Since A=B is a nontrivial torsion module, it has a summand of
the form R=pR with p¤ 0, by the structure theorem of finitely generated R–modules.
It follows that Hom.A=B;K=R/ is nontrivial.

4 Construction of a bordism from a locally flat surface

In this section we will prove Proposition 1.2. Suppose W is a topological 4–manifold
with boundary M such that H1.W /D0, and � is a 2–dimensional homology class con-
tained in ImfH2.M /!H2.W /g. First we describe a homomorphism �� W �1.M /!Z
which is determined by � . Consider the exact sequence

H2.W / �!H2.W;M /
@
��!H1.M / �!H1.W /D 0:
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The intersection with � gives a homomorphism � �W H2.W;M /!Z, which induces a
homomorphism h� W H1.M /! Z since � � vanishes on the image of H2.W /. Define
�� to be the composition

�� W �1.M / �!H1.M /
h�
��! Z:

Recall that Proposition 1.2 claims that if there is a locally flat surface † of genus g in
W which represents the class � 2H2.W / and the map �� is nontrivial, then there is
a topological 4–manifold V bounded by M such that ˇ2.V /D ˇ2.W /C 2g� 1 and
�� factors through H1.V /. Roughly speaking, we will construct V by performing
“surgery along †” on W .

Proof of Proposition 1.2 By Alexander duality, H2.W;W �†/ can be identified
with H 2.†/D Z. From the exact sequence

H2.W /
� �
��!H2.W;W �†/ �!H1.W �†/ �!H1.W /D 0

it follows that H1.W �†/ŠH2.W;W �†/DZ since the leftmost map � � is given
by the intersection of a 2–cycle with � , which is always zero.

Note that † has trivial normal bundle in W since † is connected and the self-
intersection � � � vanishes. There is a bijection between the set of (fiber homotopy
classes of) framings on † and Œ†;S1�DH 1.†;Z/ which can be identified with Z2g

by choosing a basis fxig of H1.†/. Pushoff along a framing induces a homomorphism
H1.†/! H1.W �†/ in such a way that if the framing corresponding to 0 2 Z2g

induces hW H1.†/ ! H1.W �†/, then the framing corresponding to .ai/ 2 Z2g

gives rise to a homomorphism sending xi to h.xi/C ai Œ�� where � is a meridional
curve of †. Since H1.W �M / Š Z is generated by Œ��, it follows that there is
a framing inducing a trivial homomorphism H1.†/ ! H1.W � †/. We identify
a tubular neighborhood of † in W with † �D2 under this framing, and denote
N DW � int.†�D2/.

Choose a 3–manifold R with boundary † such that H1.†/!H1.R/ is surjective
(eg, a handlebody with the same genus as † may be used as R). Let

V D
�
N [ .R�S1/

�
=�

where †�S1 � @N and @R�S1 are identified. From the Mayer–Vietoris sequence

� � � �!H1.†�S1/ �!H1.N /˚H1.R�S1/ �!H1.V / �! 0

for V DN [ .R�S1/, it follows that H1.V /ŠH1.N /DZ since H1.†/!H1.R/

is surjective and i�W H1.†/!H1.N / is trivial by our choice of the framing on †.
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From the definition it is easily seen that h� is equal to the map H1.M /!H1.V /DZ
induced by the inclusion. Therefore �� factors through �1.V / as desired.

The Betti number assertion follows from a straightforward computation. For the
convenience of the reader, we give details below. From the above Mayer–Vietoris
sequence it follows that

�.†�S1/C�.V /D �.N /C�.R�S1/

where � denotes the Euler characteristic. �.N /C �.†/D �.W / by the long exact
sequence for the pair .W;N / and Alexander duality. Since �.X �S1/D 0 for any
X , it follows that

�.V /D �.W /��.†/D �.W /C 2g� 2:

From the hypothesis that H1.W / D 0, it follows that ˇ1.W / D 0 and ˇ3.W / D

ˇ1.W;M / D ˇ0.M /� 1. ˇ1.V / D 1 as shown above. Since �� is nontrivial, so
is H1.M /! H1.V / D Z and thus has torsion cokernel. It follows that ˇ3.V / D

ˇ1.V;M /D ˇ0.M /�1. Combining these observations on the Betti numbers with the
Euler characteristic identity, the desired equality follows.

5 Slice genus

In this section we apply the results proved in the previous sections to investigate the
slice genus of a knot K in S3 . Indeed our results give lower bounds for the genus of a
spanning surface in a homology 4–ball; for a knot K in a homology 3–sphere Y which
bounds some (topological) homology 4–ball, let gh

�.K/ be the minimal genus of a
locally flat surface F in a homology 4–ball X such that @.X;F /D .Y;K/. Obviously
gh
�.K/� gt

�.K/� gs
�.K/ for a knot K in S3 .

For .X;F / as above, consider the 4–manifold W obtained by attaching a 2–handle
to X along the preferred framing of K . The boundary of W is the result of surgery
on Y along the preferred framing of K , which we will call the zero-surgery manifold
of K and denote by MK . Note that H1.MK /D Z is generated by a meridian of K .
Let � be a generator of H2.W /DZ. It can be easily seen that the abelianization map
�W �1.MK /!H1.MK /D Z is exactly the homomorphism �� defined in Section 4.
Also, note that � is represented by a surface in MK , namely a capped-off Seifert
surface of K .

Attaching to F the core of the 2–handle of W , we obtain a surface † with the
same genus as F which represents the homology class � 2 H2.W /. Therefore, by
Proposition 1.2, one obtains a null-bordism of MK over Z with bounded ˇ2 ; we state
it as a proposition.
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Proposition 5.1 There is a topological 4–manifold V with boundary MK such that
�W �1.MK /!Z factors through �1.V / and ˇ2.V /D 2gh

�.K/. When K is a knot in
S3 , a similar conclusion holds for gt

�.K/.

This enables us to use Theorem 1.1, possibly repeatedly, to obtain lower bounds for
gh
�.K/ and gt

�.K/. We remark that while a lower bound is obtained from �.MK ; �/

by applying Theorem 1.1 (1) directly, it gives us no interesting result since it is known
that �.MK ; �/ is determined by the signature function of K [6]. However, it turns out
that the �–invariants associated to bigger coefficient systems obtained by Theorem
1.1 (2) actually reveal new information on the slice genus which cannot be obtained
via previously known invariants, as mentioned in Theorem 1.3. The remaining part of
this section is devoted to a construction of examples illustrating this.

Construction of examples

Our examples will be constructed using a well known method that produces a new knot
from a given knot by “tying” another knot along a circle in the complement. For a knot
J , we denote its exterior by EJ D S3� (open tubular neighborhood of J ). Suppose
K0 is a knot and � is a circle in S3�K0 which is unknotted in S3 . Choose a (closed)
tubular neighborhood U of � in S3�K0 . Removing the interior of U from S3�K0

and attaching the exterior EJ of a knot J along the boundary of U in such a way that
a meridional curve of � is identified with a curve null-homologous in EJ , one obtains
the complement of a new knot in S3 , which we will denote by K0.�;J /. In some
literature this construction is called the “satellite construction” or “genetic infection”.

We start by choosing a knot Ks in S3 whose Alexander polynomial �Ks
.t/ is a

cyclotomic polynomial ˆn.t/ with n divisible by at least three distinct primes. Indeed,
by a well-known characterization due to Levine, there is such a knot if and only if
ˆn.t

�1/D˙t sˆn.t/ for some s and ˆn.1/D˙1. Since the complex conjugate of
a root of unity is its reciprocal, ˆn.t/ satisfies the former condition. For the latter
condition, one may appeal to the following lemma:

Lemma 5.2 For n� 2, ˆn.1/D 1 if and only if n is not a prime power.

Proof If nD pa is a prime power, then it is easily seen that ˆn.t/ is given by

ˆn.t/D tpa�1.p�1/
C � � � tpa�1

C 1

and therefore ˆn.1/D p .
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Conversely, suppose nD p
a1

1
� � �p

ar
r with pi prime and r > 1. We recall that

tn
� 1D

Y
d jn

ˆd .t/:

By eliminating the factor of t � 1 and rearranging terms, we obtain

tn�1
C � � �C t C 1D

� rY
iD1

aiY
jD1

p̂
j

i

.t/

�
�ˆn.t/ � h.t/:

Plugging t D 1, it follows that ˆn.1/h.1/D 1 and so ˆn.1/D 1.

Denote the (rational) Alexander module H1.MJ IQŒt; t
�1�/ of a knot J by AJ , and

the mirror image of J by �J . (Here we adopt the standard convention of the orientation
of �J so that J#.�J / is always a ribbon knot.)

Returning to our construction, for an unknotted circle in � disjoint to Ks and two
knots J and J 0 which will be chosen later, consider the connected sum

K D
g

#
�
Ks.�;J /#� .Ks.�;J

0//
�

of g identical knots.

We choose � in such a way that the following properties are satisfied:

(P1) The linking number of � and Ks vanishes, so that � represents a homology
class Œ�� 2AKs

. Furthermore, Œ�� is a generator of AKs
.

(P2) For any J and J 0 , K satisfies gs
�.K/� g .

(P3) For any J and J 0 , K is algebraically slice, ie, K has a Seifert matrix of a slice
knot.

(P4) For any J and J 0 , K has vanishing Casson–Gordon invariants.

For this purpose, we first choose a Seifert surface F of Ks . F consists of one 0–handle
and 2r 1–handles, where r is the genus of F . Choose unknotted circles 
1; : : : ; 
2r

in S3�F which are Alexander dual to the 1–handles of F , as illustrated in Figure 1.

Since each 
i is disjoint to F , it represents a homology class Œ
i � 2AKs
. Also, it can

be seen that the Œ
i � generate AKs
, by a standard Mayer–Vietoris argument. Therefore

one of the Œ
i �, say Œ
1�, is nontrivial in AKs
. Let � be 
1 .

Lemma 5.3 � satisfies the properties (P1)–(P4) required above.
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1 
2 
g�1 
g

F Ks D @F

Figure 1

Proof Obviously � has linking number zero with K . Since �Ks
.t/ is irreducible,

AKs
D QŒt; t�1�=h�Ks

.t/i, and Œ�� ¤ 0 is automatically a generator of AKs
. This

shows (P1).

Let LDKs.�;J /#� .Ks.�;J
0//. We claim that gs

�.L/ � 1, from which (2) easily
follows. To prove the claim, observe that L is obtained from the ribbon knot Ks#.�Ks/,
by “tying” J and J 0 . Note that the boundary connected sum of F and �F is a Seifert
surface for Ks#.�Ks/. Tying J and J 0 , the Seifert surface of Ks#.�Ks/ becomes
a Seifert surface E of genus 2r for L. E consists of a single 0–handle and 4r

1–handles H1; : : : ;H4r , where Hi is the image of the H4r�iC1 under an obvious
reflection, for 2� i � 2r . Joining the endpoints of the core of Hi to their image under
the reflection using disjoint arcs on the 0–handle of E for 2 � i � 2r , we obtain
.2r � 1/ disjoint circles ˛2; : : : ; ˛2r on E . See Figure 2.

J1 J2

˛i�1 ˛i

Figure 2

The union of the ˛i is a smoothly slice link, being the connected sum of a link and its
mirror image. Thus there are disjoint 2–disks D1; : : : ;D2r�1 smoothly embedded in
D4 such that @Di D ˛i . Since the Seifert form defined on E vanishes at .˛i ; j̨ /, one
can do ambient surgery on E along the ˛i , using the disks Di in D4 , as in [18]. This
produces a genus one surface in D4 with boundary L. Therefore gs

�.L/ � 1. This
completes the proof of (P2).

Since L shares a Seifert matrix with Ks#.�Ks/ which is a ribbon knot, L is alge-
braically slice. From this (P3) follows.
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It is easily seen that �K .t/D ˆn.t/
2g . Since n has been chosen to be divisible by

three distinct primes, (P4) holds due to a result of Livingston [21].

Let C be the smooth knot concordance group.

Lemma 5.4 Suppose fˆ˛W C! Zg is a finite collection of group homomorphisms
satisfying jˆ˛.�/j � f˛.gs

�.�// for some real-valued function f˛ . Then, there are
knots J and J 0 such that our K satisfies the following:

(1) gh
�.K/D gt

�.K/D gs
�.K/D g .

(2) ˆ˛.K/D 0 for each ˆ˛ .

Note that the Ozsváth-Szabó � –invariant [27] and Rasmussen s–invariant [30] can be
viewed as homomorphisms of C giving lower bounds for gs

� . Therefore, from Lemma
5.4 (2), it follows that J and J 0 can be chosen in such a way that K has vanishing � –
and s–invariants.

Proof of Lemma 5.4 Let K0 be the connected sum of g copies of Ks#.�Ks/.
By Cheeger–Gromov [5], there is a universal bound C for the �–invariants of the
zero-surgery manifold MK 0 of K0 , ie, j�.MK 0 ; �

0/j � C for any homomorphism �0

of �1.MK 0/.

Following [7], for a knot J , let

�.J /D

Z
S1

�J .!/ d!

be the integral of the knot signature function

�J .!/D sign..1�!/S C .1� x!/ST /

over the unit circle S1 normalized to unit length, where S is a Seifert matrix of J .

We claim that there are two knots J and J 0 such that

(i) j�.J /j � C C 4g ,

(ii) j�.J 0/j � C C 4gCg � j�.J /j, and

(iii) ˆ˛.Ks.�;J //Dˆ˛.Ks.�;J
0// for each ˆ˛ .

To prove the claim, we consider a sequence fJig of knots constructed inductively as
follows. Let J0 be a knot with j�.J0/j � C C 4g . Assuming Ji has been chosen, let
JiC1 be a knot satisfying

j�.JiC1/j � C C 4gCg � j�.Ji/j:
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For example, one can choose as Ji the connected sum of sufficiently many copies of
any knot with nonvanishing � , eg, the trefoil knot, since � is additive under connected
sum.

Since gs
�.Ks.�;Ji//� g.Ks.�;Ji//� g.Ks/

where g.�/ denotes the 3–genus (Seifert genus), there is an upper bound, say M˛ ,
for f˛

�
gs
�.Ks.�;Ji//

�
, ie, f˛

�
gs
�.Ks.�;Ji//

�
�M˛ for any Ji . Since

jˆ˛.Ks.�;Ji//j � f˛
�
gs
�.Ks.�;Ji//

�
by our hypothesis, it follows that jˆ˛.Ks.�;Ji//j is bounded by M˛ . Therefore the
function Z! Zjfˆ˛gj given by

i �! .ˆ˛.Ks.�;Ji///˛

has finite image. It follows that for some i < j , ˆ˛.Ks.�;Ji//Dˆ˛.Ks.�;Jj // for
each ˆ˛ . Choosing J D Ji and J 0 D Jj , the claim follows. (Indeed our argument
shows that there are infinitely many pairs .J;J 0/ satisfying the desired properties.)

Recall that our K is given by

K D
g

#
�
Ks.�;J /#� .Ks.�;J

0//
�
:

By (iii) above, ˆ˛ vanishes at Ks.�;J /#� .Ks.�;J
0//. It follows that ˆ˛.K/D 0

for each ˆ˛ . This proves the second conclusion of the lemma.

To prove the first conclusion, it suffices to show that gh
�.K/� g by the property (P2)

above. Suppose gh
�.K/ < g . By Proposition 5.1, there is a 4–manifold V bounded by

MK such that ˇ2.V / < 2g and �W �1.MK /! Z factors through �1.V /.

Letting � D Z, R D QŒt; t�1�, and K D Q.t/, we will apply Theorem 1.1 (2) to
obtain a new coefficient system �1 which is a lift of � . The conditions required in
Theorem 1.1 (2) are verified as follows. It is well known that AK DH1.MK IR/ is
always R–torsion. We claim that AK is not generated by ˇ2.V / elements. Since
the Alexander module is additive under connected sum and the knots Ks.�;J / and
Ks.�;J

0/ share the Alexander module with Ks , we have AK D
L2g

AKs
. Since AKs

is nontrivial and ˇ2.V / < 2g , AK is never generated by ˇ2.V / elements as claimed,
by appealing to the structure theorem of finitely generated modules over QŒt; t�1�.

Therefore, by applying Theorem 1.1 (2) and then (1), it follows that there is a nontrivial
homomorphism hW AK !K=R that gives rise to a homomorphism

�1W �1.MK / �! .K=R/Ì�

Algebraic & Geometric Topology, Volume 8 (2008)



906 Jae Choon Cha

such that

(�) j�.MK ; �1/j � 2ˇ2.V / < 4g:

Note that K can be viewed as a knot obtained from K0 by tying J and �J 0 g times.
So, from [7, Proposition 3.2] it follows that for some �0W �1.MK 0/! .K=R/Ì� ,

�.MK ; �1/D �.MK 0 ; �
0/C

gX
iD1

ni�.J /�

gX
iD1

mi�.J
0/:

Here ni D 0 if the .2i � 1/–st factor of AK D
L2g

AKs
is contained in the kernel

of h, and ni D 1 otherwise. The mi are determined similarly by the behaviour of the
.2i/–th factor of AK .

Since h is a nontrivial homomorphism of AK , at least one ni or mi is nonzero. If
mi D 0 for all i , then since ni ¤ 0 for some i , we have

j�.MK ; �1/j � j�.J /j � j�.MK 0 ; �
0/j � .4gCC /�C D 4g

by (i) above. It contradicts (�). Therefore mi ¤ 0 for some i . In this case, by (ii)
above, we have

j�.MK ; �1/j � j�.J
0/j �g � j�.J /j � j�.MK 0 ; �

0/j � .4gCC /�C D 4g:

It again contradicts (�). This shows that gh
�.K/� g .

Remark 5.5 It can be easily seen that our construction produces infinitely many knot
types of K . In fact, one can use infinitely many knot types as our Ks , J , and J 0 .

Remark 5.6 Using results in [6], it can be shown that the nonvanishing of the
�–invariants we considered in the proof of Lemma 5.4 implies that our K is not
topologically slice. Our result generalizes this. In fact, our construction can be used
to construct K which is .1/–solvable but not .1:5/–solvable, in the sense of [6]. It
would be an interesting question whether there are .h/–solvable knots with topological
slice genus g for any h 2 1

2
Z and any g > 1.

We finish this section with an observation on the failure of some attempts to employ
previously known results to extract information on minimal genus problems related
to our examples. In Kervaire–Milnor [11], Hsiang–Szczarba [10], Rokhlin [31] and
Lee-Wilczyński [16; 17], lower bounds for the topological minimal genus are obtained
for a homology class � 2H2.X / in a topological 4–manifold X which is closed or has
boundary consisting of homology sphere components. When X is simply connected,
Kervaire–Milnor [11] provides an obstruction to being represented by a locally flat
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sphere, ie, minimal genus � 1, based on the Rokhlin theorem. When H1.X /D 0, the
papers [10; 31; 16; 17] provide higher lower bounds of the following form:

2 � .minimal genus/� �ˇ2.X /C max
0�j<d

ˇ̌̌̌
sign.X /�

2j .d � j /

d2
.� � �/

ˇ̌̌̌
where d is a positive integer such that � is contained in the subgroup d �H2.X /. (A
more refined result of Lee–Wilczyński [17, Theorem 2.1] may potentially give further
lower bounds, however, computation seems infeasible when H1.X /¤ 0.)

For the purpose of obtaining a lower bound for the slice genus of our knot K using
the above inequality, one could think of the 4–manifold X obtained by attaching a 2–
handle to the 4–ball along the .˙1/–framing of K , and a generator � of H2.X /ŠZ.
Note that @X is a homology sphere since the .˙1/–framing is used. So the above
inequality gives a lower bound for the minimal genus of � (which is a lower bound
of the slice genus of K ), however, in this case, the lower bound is not positive; for,
ˇ2.X / � j sign.X /j, and d D 1 so that j is always zero, since � is not divisible by
any integer > 1.

Recall that we have detected the slice genus of K by considering the manifold W

obtained by attaching a 2–handle to the 4–ball along the zero-framing of K and a
generator � 2H2.W /Š Z. For the minimal genus problem for � in W , the above
inequality cannot be employed directly, since @W is not a homology sphere. As an
attempt to investigate this minimal genus problem, one could try to find an embedding
of W into another 4–manifold X such that H1.X /D 0 and @X is empty or consists
of homology spheres, and then apply the above inequality in X ; however, this method
does not give any positive lower bound, since the self-intersection of � vanishes. Our
result gives an optimal lower bound for the minimal genus of � in W .
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[25] P Ozsváth, Z Szabó, Higher type adjunction inequalities in Seiberg–Witten theory, J.
Differential Geom. 55 (2000) 385–440 MR1863729
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