
Algebraic & Geometric Topology 8 (2008) 911–934 911

An algorithm to determine the Heegaard genus
of simple 3–manifolds with nonempty boundary

MARC LACKENBY

We provide an algorithm to determine the Heegaard genus of simple 3–manifolds
with nonempty boundary. More generally, we supply an algorithm to determine (up to
ambient isotopy) all the Heegaard splittings of any given genus for the manifold. As
a consequence, the tunnel number of a hyperbolic link is algorithmically computable.
Our techniques rely on Rubinstein’s work on almost normal surfaces, and also on a
new structure called a partially flat angled ideal triangulation.

57N10; 57M25

1 Introduction

The Heegaard genus of a compact orientable 3–manifold is an important invariant.
The aim of this paper is to demonstrate that it is algorithmically computable, at least
when the 3–manifold is simple and has nonempty boundary. Recall that a compact
orientable 3–manifold is simple if it is irreducible and any properly embedded disc,
incompressible annulus or incompressible torus is boundary parallel.

Theorem 1.1 Let M be a compact connected orientable simple 3–manifold with
nonempty boundary. Then there is an algorithm to determine the Heegaard genus of M .
Moreover, for any given positive integer n, there is an algorithm to find all Heegaard
surfaces for M with genus at most n (up to ambient isotopy).

This theorem can be applied to determine the tunnel number of hyperbolic links. Recall
that a tunnel system for a link L in S3 is a collection of disjoint embedded arcs t with
t \L D @t , such that the exterior of L[ t is a handlebody. The tunnel number of
L is the minimal number of arcs in a tunnel system. Two tunnel systems t1 and t2
for L are slide-equivalent if there is an isotopy of S3 keeping L fixed throughout,
taking N.L[ t1/ to N.L[ t2/. The following corollary to Theorem 1.1 is proved in
Section 5.
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Corollary 1.2 Let L be a hyperbolic link in the 3–sphere. Then there is an algorithm
to determine the tunnel number of L. Moreover, for any given positive integer n,
there is an algorithm to find all tunnel systems for L with at most n arcs (up to
slide-equivalence).

The input to the algorithms in Theorem 1.1 is a triangulation of M . In Corollary
1.2, one may supply a diagram of the link or a triangulation of its exterior. Thus,
the hyperbolic structure does not need to be given in advance. The second algorithm
provided by Theorem 1.1 creates a finite list of Heegaard surfaces for M . More
specifically, it provides an explicit subdivision of the triangulation of M and explicit
subcomplexes which are the required Heegaard surfaces. Note, however, there is no
guarantee that the surfaces in this list are pairwise nonisotopic. This is because there is
currently no known algorithm for determining whether two Heegaard surfaces for a
3–manifold are ambient isotopic.

Most of the key ideas behind this paper are due to Rubinstein. He proved that, given any
triangulation of a compact orientable 3–manifold, any strongly irreducible Heegaard
surface may be ambient isotoped into almost normal form [12]. Using the computable
nature of normal surface theory, he explained how one might use this to compute
the Heegaard genus of the manifold. However, the possible presence of normal tori
creates formidable technical obstacles to this approach. Jaco and Rubinstein [3] have
developed a theory of “1–efficient” and “layered” triangulations to try to overcome these
difficulties, but this appears to be highly technical, and the results are not fully published.
An alternative approach to Heegaard surfaces has been developed by Li [8; 7], starting
with almost normal surfaces, but then using branched surfaces. Using this theory, he
has solved some important longstanding problems. One of his theorems is as follows.

Theorem 1.3 [8] Any closed orientable irreducible atoroidal 3–manifold has only
finitely many Heegaard splittings of a given genus, up to ambient isotopy.

However, his proof is nonconstructive, and so there appears to be no immediate way of
finding all these Heegaard surfaces using his techniques. Our methods provide a proof
of this result, but where the 3–manifold is compact, connected, orientable and simple
and has nonempty boundary.

The algorithms given in this paper follow Rubinstein’s original outline in many respects.
Like Jaco and Rubinstein’s approach, the key is to use triangulations with very restricted
normal tori. But unlike their theory of 1–efficiency, the technique here is to use angle
structures. We introduce “partially flat angled ideal triangulations”, which have the key
property that they contain no normal tori other than those that are normally parallel to
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a boundary component. We will show that any compact connected orientable simple
3–manifold with nonempty boundary (other than a 3–ball) has one of these ideal
triangulations and that there is an algorithm to construct it.

In a paper such as this, it is particularly important to be clear about which parts are
new and which are due to other mathematicians. The material in Section 2, where
partially flat angled ideal triangulations are introduced, is new. However, similar
notions have been used by other authors for other purposes (see for example Petronio
and Weeks [11]). Theorem 2.2, which asserts that any compact connected orientable
simple 3–manifold with nonempty boundary (other than a 3–ball) has a partially flat
angled ideal triangulation and that this may be algorithmically constructed, is new.
Section 3 contains mostly expository material relating to generalised Heegaard splittings.
However, there are a number of important facts in this section which appear in print for
the first time. These include Proposition 3.1, which states that, when one amalgamates
a generalised Heegaard splitting, the resulting Heegaard splitting is independent of the
choices that have been made. Additionally, we show that if the generalised Heegaard
splitting is given, say, as a subcomplex of a triangulation of the 3–manifold, then the
resulting Heegaard splitting is algorithmically constructible. In Section 4, we state
that a generalised Heegaard splitting can be placed in normal and almost normal form,
provided its even surfaces are incompressible and have no 2–sphere components and
its odd surfaces are strongly irreducible. This is a mild generalisation of a well-known
result of Rubinstein [12] and Stocking [16], and has essentially the same proof. We then
describe the computational aspects of normal and almost normal surfaces in partially flat
angled ideal triangulations. This is largely routine. In the final section, we draw these
many threads together and describe the algorithms of Theorem 1.1 and Corollary 1.2.

Acknowledgements The author would like to thank the referee for some helpful
suggestions which improved this paper. The author was supported by an EPSRC
Advanced Research Fellowship.

2 Partially flat angled ideal triangulations

Angled ideal triangulations were first studied by Casson (unpublished), and then
developed by the author in [6]. They are just an ideal triangulation, with an assignment
of a real number to each edge of each ideal tetrahedron, satisfying some simple
conditions. A mild generalisation of this concept, which we call a partially flat angled
ideal triangulation, is a key ingredient of this paper.

An ideal tetrahedron is a tetrahedron with its vertices removed. An ideal triangulation
of a 3–manifold M is an expression of the interior of M as a union of ideal tetrahedra
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with their faces glued homeomorphically in pairs. An angled ideal triangulation is an
ideal triangulation, with a real number in the range .0; �/ assigned to each edge of
each ideal tetrahedron, known as the interior angle of the edge, satisfying the following
conditions:

(i) the angles at each ideal vertex of each ideal tetrahedron sum to � ;

(ii) the angles around each edge sum to 2� .

In partially flat angled ideal triangulations, we allow some ideal tetrahedra to be flat.
This means that the ideal tetrahedron is as shown in Figure 1. More specifically, two
nonadjacent edges have interior angle � , and the remainder have interior angle zero. If
two faces of a flat ideal tetrahedron share an edge with interior angle � , we term them
coherent. Thus, the four faces are partitioned into two coherent pairs.

The full definition of a partially flat angled ideal triangulation is given below.

0

0

0

0
�

�

coherent

coherent

Figure 1: A flat ideal tetrahedron

A layered polygon is a collection of flat ideal tetrahedra glued together in a certain way
to form a 3–manifold. It is determined by the following data: an ideal polygon with an
initial ideal triangulation, together with a finite sequence of elementary moves applied
to this triangulation, subject to the condition that every edge of the initial triangulation
that is not in the boundary of the ideal polygon has a move performed upon it at some
stage. Recall that an elementary move on an ideal triangulation of a surface removes an
edge adjacent to two distinct ideal triangles, forming an ideal square, and then inserts
the other diagonal of this square as a new edge. (See Figure 2.)

Starting with this data, we build the layered polygon. We start with the initial ideal
triangulation of the ideal polygon, which will be the base of the layered polygon. The
first move acts upon a pair of adjacent faces. Attach onto them a flat ideal tetrahedron
along a coherent pair of faces. The “top” of the resulting object inherits the second
ideal triangulation of the ideal polygon. Repeat this for each move of the sequence.
The resulting 3–manifold is the layered polygon. (See Figure 3.) It is a 3–ball with a
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Figure 2: An elementary move

finite collection of points in its boundary removed. Its boundary is the union of two
ideal polygons, which are the initial and terminal ideal polygons in the sequence of
elementary moves. The intersection of these is a collection of edges, which we term its
vertical boundary.

Elementary moves

The resulting layered polygon

D vertical boundary

D

Figure 3: Construction of a layered polygon
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A partially flat angled ideal triangulation of a 3–manifold is an ideal triangulation,
with a real number in the range Œ0; �� assigned to each edge of each ideal tetrahedron,
known as the interior angle of the edge, satisfying the following conditions:

(i) the angles at each ideal vertex of each ideal tetrahedron sum to at most � ;

(ii) the angles around each edge sum to 2� ;

(iii) if the angles of an ideal tetrahedron are not all strictly positive, then the ideal
tetrahedron is flat;

(iv) the union of the flat ideal tetrahedra is a collection of layered polygons, possibly
with some edges in their vertical boundary identified.

Note that, in (i), the angles at each ideal vertex are not required to sum to precisely
� , unlike the case of an angled ideal triangulation. This is so that we can deal with
3–manifolds having some boundary components with negative Euler characteristic.

Note also that we do not allow layered polygons to intersect each other or themselves
along anything other than vertical boundary edges. They are not allow to touch at any
point in the interior of the “top” or “base” of a layered polygon. (See Figure 4.)

0 0

0
0

0

0

0

0

�
�

�

�

Figure 4: A forbidden arrangement

The usefulness of partially flat angled ideal triangulations is that the normal and
almost normal surfaces with nonnegative Euler characteristic that they contain are very
constrained. We briefly recall the relevant terminology.

A normal disc in a tetrahedron or ideal tetrahedron is a properly embedded disc that
misses the vertices, that hits each edge transversely in at most one point and that is not
disjoint from the edges. There are two types of normal discs, triangles and squares,
which are shown in Figure 5. A closed surface properly embedded in M is normal if
it intersects each ideal tetrahedron in a collection of disjoint normal discs.

Algebraic & Geometric Topology, Volume 8 (2008)



An algorithm to determine the Heegaard genus of simple 3–manifolds 917

Triangle Square

Figure 5: Normal discs

An almost normal piece in a tetrahedron or ideal tetrahedron is one of two types: either
an octagon, as shown in Figure 6, or a tubed piece, which is two disjoint normal discs
tubed together via a tube that runs parallel to an edge. A closed surface properly
embedded in M is almost normal if it intersects each ideal tetrahedron in a collection
of normal discs, except in precisely one ideal tetrahedron, where it is a collection of
normal discs and exactly one almost normal piece.

Octagon Tubed piece

Figure 6: Almost normal pieces

It is a theorem of Rubinstein [12] and Stocking [16] that any strongly irreducible
Heegaard surface in a compact orientable 3–manifold may be ambient isotoped into
almost normal form with respect to any given triangulation or ideal triangulation. A
variant of this result (Theorem 4.2) will be vital in this paper.

We now examine how normal and almost normal surfaces interact with a partially flat
angle structure. We follow Matveev (see Section 5.2 in Matveev [9]) and term a surface
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2–normal if it is closed and embedded and it intersects each ideal tetrahedron in a
collection of normal discs and octagons. It will be useful to consider 2–normal surfaces
with nonnegative Euler characteristic. Here, we have the following result.

Theorem 2.1 Let T be a partially flat angled ideal triangulation of a compact ori-
entable 3–manifold M . Then any connected closed 2–normal surface in T with
nonnegative Euler characteristic is normally parallel to a toral boundary component
of M .

The key tool in the proof of this is a quantity known as combinatorial area, which
is assigned to any 2–normal (or more general) surface in M . The partially flat
angle structure assigns an interior angle in the range Œ0; �� to each edge of each ideal
tetrahedron. The corresponding exterior angle is defined to be � minus the interior
angle. The combinatorial area of any normal or almost normal piece is defined to
be the sum of the exterior angles of the edges it runs over (counted with multiplicity)
minus 2� times its Euler characteristic. It is easy to verify that this is always at least
zero. Any triangle running over edges with interior angles that sum to � has zero area.
The only other normal or almost normal piece with zero area is a so-called vertical
square in a flat ideal tetrahedron. This is a square that intersects the edges with angle � .
(See Figure 7.)

0 0

0 0

0 0

0 0�
�

�
�

Figure 7: Vertical squares

The combinatorial area of a 2–normal surface F is the sum of the combinatorial areas
of its normal and almost normal discs. It is proved in Proposition 4.3 of [6] that this is
equal to �2��.F /. Thus, �.F / is always nonpositive. Suppose, as in the hypothesis
of Theorem 2.1, that �.F / is also nonnegative. Then, F must be composed entirely
of triangles and vertical squares. We claim that in fact F consists only of triangles.
Hence, if F is connected, it is normally parallel to a toral boundary component of M ,
as required.

Vertical squares lie inside flat ideal tetrahedra, each of which lies in some layered
polygon P . Focus on the top ideal tetrahedron of this layered polygon. Its intersection
with the top ideal polygon of P is a square S . One of the diagonals of this square is an
edge in the top ideal polygon. Since no other layered polygons are attached to this edge,

Algebraic & Geometric Topology, Volume 8 (2008)



An algorithm to determine the Heegaard genus of simple 3–manifolds 919

the normal discs of F �P adjacent to it are all triangles. Hence, every arc of S \F

separates off a single vertex of S . Thus, in the intersection of the top ideal tetrahedron
with F , there are no vertical squares, only triangles. Repeating this argument for each
of the ideal tetrahedra of P , we deduce that F \P is only triangles, as required.

It is not known whether every finite-volume hyperbolic 3–manifold admits an angled
ideal triangulation. But, according to the following existence theorem, it does always
have a partially flat angled ideal triangulation.

Theorem 2.2 Let M be a compact connected orientable 3–manifold with nonempty
boundary. Let T be its toral boundary components. Then the following are equivalent:

(1) M is simple and not a 3–ball;

(2) M �T admits a finite-volume hyperbolic structure with totally geodesic bound-
ary;

(3) M admits a partially flat angled ideal triangulation.

Moreover, if these conditions are satisfied, there is an algorithm that constructs a
partially flat angled ideal triangulation, starting with any triangulation of M .

Proof (1)) (2) This is a well known result of Thurston. The proof goes as follows.
Let DM be the result of doubling M along @M �T , and let DT be the two copies of
T in DM . Then DM is a compact orientable simple Haken 3–manifold with (possibly
empty) toral boundary. So, by Thurston’s geometrisation theorem [10], DM �DT

admits a complete finite-volume hyperbolic structure. There is an involution of DM

that interchanges its two halves. By Mostow’s rigidity theorem, this is homotopic to an
isometry. By a result of Tollefson [17], the involution and the isometry are equivariantly
isotopic. The fixed-point set of this isometry is therefore a totally geodesic copy of
@M �T in DM . This divides DM �DT into two copies of M �T , each of which
inherits a finite-volume hyperbolic structure with totally geodesic boundary, as required.

(2) ) (3) It is a theorem of Epstein and Penner [2] that, when @M D T , the
interior of M is obtained from a finite collection of hyperbolic ideal polyhedra, by
gluing their faces isometrically in pairs. When @M strictly contains T , there is a
version of this theorem, due to Kojima [5]. Instead of hyperbolic ideal polyhedra,
one uses truncated hyperbolic hyperideal polyhedra. Recall that these are defined as
follows. Use the projective model for hyperbolic space H3 , which is the open ball in
projective 3–space. A hyperideal polyhedron is the intersection of this open ball with
a polyhedron P , such that every vertex of P lies outside of H3 , but where no edge
of P lies completely outside of H3 . Thus, some vertices of P lie on the sphere at
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infinity of H3 (these are the ideal vertices), and some lie outside the sphere at infinity
(these are the hyperideal vertices). Each hyperideal vertex of P is at the apex of a cone
tangent to the sphere at infinity of H3 . The intersection of this cone with the sphere
at infinity is a circle, which bounds a totally geodesic plane in H3 . If one truncates
the polyhedron along each of these planes and removes any vertices on the sphere at
infinity, the result is a truncated hyperbolic hyperideal polyhedron. The faces of a
truncated hyperbolic hyperideal polyhedron are totally geodesic and come in two types:
interior faces, which are subsets of faces of the original polyhedron P , and exterior
faces, which are subsets of the truncating hyperplanes. We permit all the vertices of P

to lie on the sphere at infinity, and so a hyperbolic ideal polyhedron is a special case
of a hyperbolic hyperideal polyhedron and a special case of a truncated hyperbolic
hyperideal polyhedron. Kojima’s theorem states that M �T can be obtained from a
finite collection of truncated hyperbolic hyperideal polyhedra by gluing their interior
faces isometrically in pairs. The exterior faces patch together to form @M �T .

Pick a vertex of each polyhedron P as above, that arises in the decomposition of M�T

into truncated hyperbolic hyperideal polyhedra. We call this the coning vertex of P .
The polyhedron P is therefore a cone on this vertex, the base of the cone being those
faces that do not contain the vertex. If we subdivide each of these faces into triangles,
then coning these off at the coning vertex induces a decomposition of the hyperideal
polyhedron into hyperideal tetrahedra. (See Figure 8.) Each hyperideal tetrahedron
inherits a set of nonzero interior angles, satisfying condition (i) in the definition of a
partially flat angled ideal triangulation.

hyperideal
vertex

coning
vertex

hyperideal
vertex

H3

D edges of initial hyperideal polyhedron
D new edges

Figure 8
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This decomposition of the hyperideal polyhedron yields a decomposition of each its
faces into topological ideal triangles. These topological ideal triangles may not be
hyperbolic ideal triangles because some of their vertices may lie outside the sphere at
infinity. When two faces of the decomposition are glued isometrically, their topological
ideal triangulations may not agree. However, these two ideal triangulations differ by
a finite sequence of elementary moves, which we may assume leaves no edge in the
interior of the faces untouched. Insert the corresponding layered polygon between the
two faces, interpolating between their ideal triangulations. (See Figure 9.) Thus, we
obtain an ideal triangulation of the 3–manifold with an angle assignment to each edge
of each ideal tetrahedron. It is clear that the conditions (i), (ii), (iii) and (iv) in the
definition of a partially flat angled ideal triangulation are satisfied.

coning
vertex

coning
vertex

insert layered
polygon here

edges inserted
arbitrarily

edges inserted
due to coning

Figure 9

(3)) (1) This is essentially contained in Corollary 4.6 in [6]. We sketch the proof
now. Suppose that M admits a partially flat angled ideal triangulation. If M is
reducible, then it contains a normal 2–sphere, contrary to Theorem 2.1. If M contains
a properly embedded incompressible torus, then this can be ambient isotoped into
normal form, and hence is boundary parallel by Theorem 2.1. In order to deal with
properly embedded discs and incompressible annuli in M , we need to introduce a
definition of normal surfaces that intersect @M and to prove a version of Theorem
2.1 for these. We will not give the full details here, but refer the reader instead to
Proposition 4.5 in [6]. Thus, M is simple. Also, M cannot be a 3–ball, for one could
then find a normal 2–sphere parallel to @M , contradicting Theorem 2.1.
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Let us now suppose that M has a partially flat angled ideal triangulation. We need
to give an algorithm to find one. Starting with a triangulation of the manifold, there
is a simple algorithm that constructs an ideal triangulation (see Theorem 1.1.13 of
Matveev [9]). Given any ideal triangulation, there is an algorithm that determines
whether it admits a partially flat angle structure, since this is just a linear programming
problem. Any two ideal triangulations of a compact orientable 3–manifold differ by a
sequence of 2-3 and 3-2 moves (see Figure 10), by a result of Matveev (Theorem 1.2.5
of [9]).

2-3

3-2

Figure 10: 2-3 and 3-2 moves

Thus, the algorithm to construct the partially flat angled ideal triangulation proceeds as
follows. One checks whether the initial ideal triangulation admits a partially flat angle
structure. If it does, we are done and we stop. If not, then one applies all possible 2-3
and 3-2 moves to the ideal triangulation, giving a new collection of ideal triangulations.
One checks each of these for partially flat angle structures. Continuing in this fashion,
a partially flat angled ideal triangulation is eventually constructed.

3 Generalised Heegaard splittings

It is technically convenient, when dealing with Heegaard surfaces, to focus on those
that are strongly irreducible. The piece of machinery that allows one to make this
reduction is known as untelescoping, which yields a generalised Heegaard splitting for
the manifold. We now briefly describe these concepts.

Recall that a compression body C is a connected orientable 3–manifold that either is a
handlebody or is obtained from S � Œ0; 1� by attaching 1–handles to S �f1g, where S
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is a closed orientable, possibly disconnected, surface. The copy of S � f0g in C is
termed the negative boundary and is denoted @�C . The negative boundary is defined
to be empty when C is a handlebody. The remainder of @C is the positive boundary
and is denoted @CC . A handle structure on C is an expression of C as either @�C �I

with 1–handles attached, or as a 3–ball with 1–handles attached. Note that, in general,
a compression body has many different handle structures.

A generalised Heegaard splitting of a compact orientable 3–manifold M is a decom-
position of the manifold along closed orientable disjoint properly embedded separating
surfaces into manifolds C1; : : : ;Cm , each of which is a disjoint union of compression
bodies, such that @�C2i \ int.M /D @�C2iC1 \ int.M / and @CC2i D @CC2i�1 for
each relevant integer i . Let Fi be the surface Ci \CiC1 . This is known as an even or
odd surface depending on the parity of i . We view the even surfaces as dividing M

into a collection of 3–manifolds, and the odd surfaces as forming Heegaard splittings
for these manifolds. (See Figure 11.)

F5

F4

F3

F2

F1

C6

C5

C4

C3

C2

C1

Figure 11: A generalised Heegaard splitting

There is a method for constructing a Heegaard splitting for a 3–manifold, starting
with a generalised Heegaard splitting fC1; : : : ;Cmg, known as amalgamation (see
Schultens [15]). This procedure is a sequence of modifications, each of which we
term a partial amalgamation. Each partial amalgamation is based around one of the
even surfaces, F2 , say. Either side of this even surface, there are two collections of
compression bodies C2 and C3 . Pick a handle structure on each of these compression
bodies that is not a handlebody. Thus, we view each such compression body as obtained
from F 0

2
�I , where F 0

2
�f0g is the relevant components of F2 , by attaching a collection

of 1–handles to F 0
2
�f1g. We extend each of these 1–handles vertically through F 0

2
�I ,

so that they are attached to F2 . We may ensure that the attaching discs of these 1–
handles are all disjoint. Let F 0

1
be the surface obtained from F2 by attaching these
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tubes. It separates C1 [ C2 [ C3 [ C4 into two collections of compression bodies
C 0

1
and C 0

2
, where C 0

1
is a copy of C1 with 1–handles attached, and C 0

2
is a copy

of C4 with 1–handles attached. We therefore end with a new generalised Heegaard
splitting fC 0

1
;C 0

2
;C5; : : : ;Cmg for M , which is obtained from the previous one by

partial amalgamation. (See Figure 12.) When this procedure is performed as many
times as possible, the result is a Heegaard splitting, which is an amalgamation of the
original generalised Heegaard splitting.

F3

F2

F1

C4

C3

C2

C1

Partial
amalgamation

C 0
2

C 0
1

Figure 12

Choices were made when forming the Heegaard splitting for M : we picked handle
structures on C2 and C3 , and we picked an order on the even surfaces in which to
perform the partial amalgamations. It is in fact the case that the resulting Heegaard
splitting of M is independent of these choices. This important result does not appear
to be present in the literature, and so we provide a proof.

Proposition 3.1 If one amalgamates a generalised Heegaard splitting, the resulting
Heegaard splitting is well-defined up to ambient isotopy. In particular, it is indepen-
dent of the order of partial amalgamations and the choice of handle structures on the
compression bodies.

Let us first examine what happens when we change the order of the partial amalgama-
tions. Each partial amalgamation is based around an even surface. So, consider two
such even surfaces, and the associated partial amalgamations. We must show that if
one swaps the order of these partial amalgamations, the resulting generalised Heegaard
splitting is unchanged up to ambient isotopy. This is clear if the indexing integers of
the even surfaces differ by more than 2, because in this case none of the compression
bodies involved in the different partial amalgamations intersect. Thus, we focus on
the case where the indexing integers of the even surfaces differ by 2: say that they
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are F2 and F4 . Now, we may view the former partial amalgamation procedure as the
removal of F1 and F2 , and the addition of handles onto F3 . Similarly, the latter partial
amalgamation can be viewed as the removal of F4 and F5 , together with addition of
handles onto F3 . So, whatever the order of the two partial amalgamations, the resulting
odd surface is the same: it is F3 with handles attached to both sides.

Let us now consider what happens when we vary the handle structure on one of the
compression bodies C that is not a handlebody. This handle structure is determined by
the co-cores of the 1–handles, which form a collection D of disjoint compression discs
for @CC . This collection is complete, in the sense that the result of compressing @CC

along D is a copy of @�C . There is clearly a one-one correspondence between handle
structures on C (up to ambient isotopy) and complete collections of compression discs
for @CC (up to ambient isotopy). Thus, we are led to the question of how two different
complete collections of compression discs are related. The following answer is well
known (see Proposition B.1 of Bonahon [1] for example).

Lemma 3.2 Any two complete collections of compression discs for a compression
body differ by a finite sequence of band moves.

The definition of a band move is as follows. Let D1 and D2 be distinct discs in a
complete collection D . Let ˛ be an arc in @CC with interior disjoint from D and with
one endpoint in D1 and the other endpoint in D2 . Let N be a regular neighbourhood
of D1[˛[D2 . Then, cl.@N � @CC / consists of three compression discs for @CC ,
one parallel to D1 , one parallel to D2 , and a third which we denote by D0

1
. Then,

D[D0
1
�D1 is a new complete collection of compression discs, obtained from D by

a band move.

When the compression body C is embedded within a 3–manifold M , as in the current
situation, we can realise these band moves by handle slides as follows. We view C

as @�C � Œ0; 1�, with 1–handles attached to @�C � f1g. Let D D fD1;D2; : : : ;Dng

be the co-cores of the 1–handles, and let D0 D fD0
1
;D2; : : : ;Dng be obtained from

D by a band move along ˛ , as above. Now isotope the 1–handle corresponding to
D2 , by sliding its attaching disc incident to ˛ along ˛ , and then over D1 . The new
compression body C 0 is clearly ambient isotopic to C , but now D0 is ambient isotopic
in C 0 to the cocores of its 1–handles. See Figure 13.

Let us now consider two different ways of performing a partial amalgamation upon a
generalised Heegaard splitting fC1; : : : ;Cmg. Let us suppose, for the sake of being
definite, that these partial amalgamations are centred on the surface @�C2 D @�C3 .
Let us also suppose that these two partial amalgamations are specified by the same
handle structures on C2 , but where the handle structures on C3 differ by a handle
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Figure 13

slide. We view C3 as @�C3 � Œ0; 1�, with 1–handles attached in two different ways.
The second set of handles is obtained from the first set, by sliding one of the attaching
discs of one of the handles along an arc ˛0 in @�C3 � f1g up to another handle and
over that handle. When we perform the first partial amalgamation, the new odd surface
F 0

1
is obtained from @�C3 by attaching handles onto both sides. By using the product

structure on @�C3 � Œ0; 1�, we may project the arc ˛0 to an arc in @�C3 . By slightly
isotoping this arc if necessary, we may assume that its interior avoids the attaching
discs of all the handles. This arc joins two handles of F 0

1
. We may therefore slide one

of these handles along this arc, and over the other handle. The resulting surface F 00
1

is exactly that obtained by the second partial amalgamation. Thus, F 0
1

and F 00
1

are
related by a handle slide and are therefore ambient isotopic. (See Figure 14.)

We have therefore shown that the choices made in creating the amalgamated Heegaard
surface do not affect its ambient isotopy class. This proves Proposition 3.1.

We will be constructing the Heegaard splittings required by Theorem 1.1 by first
constructing generalised Heegaard splittings. Thus, we need to know that the process
of amalgamation can be achieved algorithmically.
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Proposition 3.3 Let F be a Heegaard surface for M that is obtained from a gener-
alised Heegaard splitting fC1; : : : ;Cmg by amalgamation. Suppose that fC1; : : : ;Cmg

is given as a subcomplex of a triangulation of M . Then, there is an algorithm that
constructs F in M .

Proof Let fC 0
1
;C 0

2
;C5; : : : ;Cmg be obtained from fC1; : : : ;Cmg by a partial amal-

gamation. It clearly suffices to construct C 0
1

and C 0
2

from C1 , C2 , C3 and C4 . Let
us focus on a component of C3 , say, that is not a handlebody. A complete set of
compression discs for this compression body is constructible (see Theorem 4.1.14 of
Matveev [9] or Algorithm 9.3 of Jaco and Tollefson [4]). Cutting along this collection,
we obtain a copy of F 0

2
� Œ0; 1�, where F 0

2
is the relevant components of @�C3 . In

F 0
2
� f1g, we have two copies of each compression disc, giving a collection D0 of

disjoint discs. We may construct D0 � Œ0; 1� in F 0
2
� Œ0; 1� as follows. In F 0

2
� Œ0; 1�,

we may construct a vertical annulus A, using Theorem 6.4.10 of [9] or Algorithm 9.7
of [4]. By performing an ambient isotopy on A supported in a small neighbourhood
of F 0

2
� f1g, we may ensure that A intersects each component of D0 in a nonempty

collection of arcs. For each disc D00 in D0 , we may construct a properly embedded
arc in A running from a component of D00 \A to F 0

2
� f0g. We may arrange that

these arcs are pairwise disjoint. Let R be their union. Then, a regular neighbourhood
of R[D0 in F 0

2
� Œ0; 1� is the required copy of D0 � Œ0; 1�. If we now reverse the

cutting procedure which gave F 0
2
� Œ0; 1� from the component of C3 , the components
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of D0 � Œ0; 1� glue up in pairs to form a collection of 1–handles attached to @�C3 .
Perform this procedure for each compression body component of C2 and C3 , and then
isotope if necessary, so that the attaching discs of the 1–handles in @�C2 D @�C3 are
disjoint. The new surface @�C 0

1
D @�C 0

2
is obtained from @�C2 by attaching these

tubes.

The following result was proved by Scharlemann and Thompson [14]. It describes a
process known as untelescoping.

Theorem 3.4 Let M be a compact orientable 3–manifold, and let F be an irreducible
Heegaard surface. Then there is a generalised Heegaard splitting fC1; : : : ;Cmg for M ,
such that

(i) the even surfaces are incompressible and have no 2–sphere components;

(ii) the odd surfaces are strongly irreducible;

(iii) no Ci is homeomorphic to @�Ci � I (although some components of Ci may be
products);

(iv) F is obtained from this generalised Heegaard splitting by amalgamation.

Suppose, in addition, that the Heegaard genus of M is more than 1. Then, we may also
arrange that no odd surface is composed entirely of tori.

We now wish to estimate the genus of the odd and even surfaces in this generalised
Heegaard splitting. Let us suppose that the Heegaard genus of M is more than 1. Now,
it is trivial to check that the quantity

mX
iD1

�.@�Ci/��.@CCi/

2

is unchanged under partial amalgamation (see Lemma 2 in Scharlemann and Schul-
tens [13]). Hence, it equals ��.F /C .�.@M /=2/. Each term in the sum is a positive
integer, by (iii) and the fact that no Ci is a collection of solid tori, and no component of
any Ci is a 3–ball. Thus, we obtain the inequalities m���.F /C.�.@M /=2/���.F /.
Since F is obtained from the splitting by amalgamation, it can be viewed as obtained
from any given even or odd surface by adding tubes. Thus, the genus of each even or
odd surface is at most g.F /, the genus of F . The number of even and odd surfaces
is m� 1 � 2g.F /� 3. So, the genus of the union of the odd and even surfaces is at
most g.F /.2g.F /� 3/. (It is possible to improve this estimate slightly, but all that is
needed here is a computable upper bound on the genus of the union of the odd and
even surfaces in terms of g.F /.)
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4 Almost normal surfaces

This paper relies heavily on the following important theorem of Rubinstein [12] and
Stocking [16].

Theorem 4.1 Let M be a compact orientable irreducible 3–manifold, with a given
triangulation. Let F be a strongly irreducible Heegaard surface for M . Then there is
an ambient isotopy taking F into almost normal form.

In this paper, we need the following slight extension of this result, which deals also
with ideal triangulations and with generalised Heegaard splittings.

Theorem 4.2 Let M be a compact orientable irreducible 3–manifold, with a given
triangulation or ideal triangulation. Let fC1; : : : ;Cmg be a generalised Heegaard
splitting for M . Suppose that the even surfaces are incompressible and have no 2–
sphere components and the odd surfaces are strongly irreducible. Then there is an
ambient isotopy that makes each even surface normal and each component of the odd
surfaces almost normal.

The proof follows the argument of Stocking in [16] almost word-for-word. We refer
the reader to [16] for more details.

For our purposes here, the main usefulness of normal and almost normal surfaces is
that they are constructible.

Theorem 4.3 Let T be a partially flat angled ideal triangulation of a compact ori-
entable 3–manifold M . Then, for any integer n, T contains only finitely many
closed orientable properly embedded surfaces F with genus.F /� n, and where each
component of F is either normal or almost normal. Moreover, there is an algorithm to
construct each of these surfaces.

The remainder of this section is devoted to proving this result.

Let F be a closed orientable properly embedded surface, each component of which is
normal or almost normal. Let xF be obtained from F by compressing any tubed pieces.
Thus, xF is 2–normal, and genus. xF /�genus.F /�n. So, it clearly suffices to construct
a finite list of possibilities for xF . For we may then reconstruct F by reattaching tubes
running parallel to the edges of T . Note that, according to Theorem 2.1, T contains
no 2–normal 2–spheres. Hence, each of the compressions we performed on F was
essential.
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Now, xF may be specified by a vector, each coordinate of which is a nonnegative
integer, as follows. One associates with each ideal tetrahedron 10 coordinates. Each
coordinate corresponds to a type of normal or almost normal disc in that tetrahedron:
4 triangle types, 3 square types and 3 octagon types. The vector corresponding to xF
simply counts the number of copies in xF of each normal and almost normal disc in
each ideal tetrahedron. The fact that these discs patch together to form a closed surface
forces this vector to satisfy certain linear equations. There are three equations for each
face of the ideal triangulation, corresponding to the three types of properly embedded
arc in that face. These are known as the matching equations. An embedded surface
cannot contain different square or octagon types in any given ideal tetrahedron. This
again forces constraints on the vector of xF . For normal surfaces, these are known as
the quadrilateral conditions. In our situation, we will term them the square/octagon
conditions. There is a one-one correspondence between closed properly embedded
2–normal surfaces and nonnegative integer solutions to the matching equations that
satisfy the square/octagon conditions. (See Remark 1 on p 204 in [9]).

Crucial is the concept of normal sum. Suppose that the vector corresponding to xF can
be written as a sum of vectors, each of which has nonnegative integer coordinates and
satisfies the matching equations. Then these vectors also satisfy the square/octagon
conditions and so correspond to 2–normal surfaces F1 and F2 . We write xF DF1CF2 .
It is easy to check that �. xF /D�.F1/C�.F2/. When xF cannot be written as a sum of
nonempty 2–normal surfaces, xF is said to be fundamental. Crucial to our algorithms
is the following fact (see Theorem 3.2.8 of [9]).

Lemma 4.4 There is a finite computable list of fundamental surfaces, such that any
2–normal surface may be written as a sum of these fundamental surfaces.

Denote these fundamental surfaces by F1; : : : ;Fm . Suppose that F1; : : : ;Fr are
normally parallel to toral boundary components of M and that the rest are not. Thus,
Lemma 4.4 states that any 2–normal surface xF can be written as

Pm
iD1 niFi , for

nonnegative integers ni . Consider
Pm

iDrC1 niFi , which is a solution to the matching
equations satisfying the square/octagon conditions. It therefore corresponds to a 2–
normal surface F 0 . According to Theorem 2.1, �.Fi/ is strictly negative for each
i > r . Hence, it is at most �1, and we obtain the inequalities

mX
iDrC1

ni��

mX
iDrC1

ni�.Fi/D�

mX
iD1

ni�.Fi/D��. xF /D2g. xF /�2j xF j<2g. xF /�2n:

Thus, there is a finite list of possibilities for F 0 and they are all constructible.
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The surface
Pr

iD1 niFi is a collection of copies of the toral boundary components,
which we may realise as disjoint from F 0 . Thus, the union of these surfaces and F 0 is
a solution to the matching equations with the same vector as xF . They are therefore
ambient isotopic. In other words,

xF D F 0[

rG
iD1

niFi :

g. xF /D g.F 0/C

rX
iD1

ni :Hence

Since we are assuming that the genus of xF is at most n, this provides an upper bound onPr
iD1 ni . Thus there is a finite list of possibilities for xF and they are all constructible.

The same is then true for F . This completes the proof of Theorem 4.3.

5 The algorithms

We now have all the ingredients to describe the algorithms in Theorem 1.1 and to prove
that they work. Note that the first algorithm, which computes the Heegaard genus
of M , can be constructed from the second algorithm, which finds all Heegaard surfaces
with genus at most a given integer n. This is done as follows. One first sets n to be 2

(the smallest possible Heegaard genus for M ) and one searches for Heegaard surfaces
with genus at most n. If there is one, the Heegaard genus is 2. If there is not, set n to
be 3, and repeat. The first time the algorithm finds a Heegaard surface, it necessarily
has minimal genus, and the algorithm stops.

Therefore, let us fix a nonnegative integer n. We will describe the algorithm to find all
Heegaard surfaces in M with genus at most n.

We may restrict attention to irreducible Heegaard surfaces. For if a Heegaard surface in
M is reducible, it is stabilised, and is therefore obtained from an irreducible Heegaard
surface of smaller genus by stabilising a number of times.

Step 1 Find a partially flat angled ideal triangulation for M .

The algorithm to achieve this is described in the proof of Theorem 2.2. The algorithm
finds not just the required ideal triangulation with an explicit partially flat angle structure,
but also provides a method of constructing it from the initial given triangulation.
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Step 2 Find candidates for generalised Heegaard splittings.

According to Theorem 3.4, given any irreducible Heegaard surface F for M , there is
a generalised Heegaard splitting, from which F is obtained by amalgamation, and in
which each even surface is incompressible and has no 2–sphere components, and each
odd surface is strongly irreducible. Let F 0 be the union of the even and odd surfaces.
As observed at the end of Section 3, the conclusions of Theorem 3.4 imply that the
genus of F 0 is at most g.F /.2g.F /� 3/. By Theorem 4.2, we may make each even
surface normal and each component of the odd surfaces almost normal. According to
Theorem 4.3, there is an algorithm that constructs a finite list of surfaces in M , one of
which is F 0 . Step 2 in the algorithm is to construct this list of surfaces.

Step 3 Determine which are generalised Heegaard splittings.

There is an algorithm to determine whether a properly embedded closed, possibly
disconnected, surface F 0 forms a generalised Heegaard splitting. It proceeds as follows.
Cut M along F 0 . There is an algorithm that determines whether each component of
the complement is a compression body (see Theorem 4.1.14 of [9] or Algorithm 9.3
of [4]). If this holds, the algorithm then checks all possible ways of grouping these
compression bodies into an ordered collection fC1; : : : ;Cmg (where each Ci may be
disconnected) such that @�C2i\ int.M /D @�C2iC1\ int.M / and @CC2i D @CC2i�1

for each relevant integer i . We apply this algorithm to each surface provided by Step 2,
and thereby create a list of generalised Heegaard splittings.

Step 4 Amalgamation.

Consider one of the generalised Heegaard splittings fC1; : : : ;Cmg in our list, and
suppose that F is the Heegaard surface obtained from this by amalgamation. According
to Proposition 3.1, this surface F depends only on the generalised Heegaard splitting,
and not on any choices made during the amalgamation procedure. If one is interested
only in the genus of F , then this can be calculated from the surfaces in the generalised
Heegaard splitting via the formula

��.F /C
�.@M /

2
D

mX
iD1

�.@�Ci/��.@CCi/

2
:

Thus, if one is interested only in the existence of a Heegaard surface with genus at
most n, then this can be determined by applying this formula to each generalised
Heegaard splitting in the list. The algorithm discards all those Heegaard surfaces with
genus more than n. However, if one actually wants to construct all such Heegaard
surfaces, then one must perform each amalgamation algorithmically, using Proposition
3.3. The result is a finite list of Heegaard surfaces for M with genus at most n.
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We close this paper with a proof of Corollary 1.2. Let L be a hyperbolic link in
the 3–sphere. We now describe an algorithm that supplies, for any given positive
integer n, all tunnel systems for L with at most n arcs, up to slide-equivalence. Let
M be the exterior of L, which satisfies the hypotheses of Theorem 1.1. There is a
one-one correspondence between tunnel systems for L (up to slide-equivalence) and
Heegaard surfaces for M (up to ambient isotopy) that bound a handlebody on one
side. If the tunnel system has n arcs, the Heegaard surface has genus nC 1. The
algorithm of Theorem 1.1 constructs all Heegaard surfaces for M with genus at most
nC 1, up to ambient isotopy. It is straightforward to discard those that do not bound a
handlebody on one side. However, to complete the proof of Corollary 1.2, we must give
a method of constructing a tunnel system from a Heegaard surface F that bounds a
handlebody on one side. On the other side of F is a compression body C . A complete
set of compression discs for @CC in C is constructible (see Theorem 4.1.14 of [9] or
Algorithm 9.3 of [4]). Cutting C along this collection gives a copy of @�C � Œ0; 1�,
where @�C � f0g D @�C . In @�C � f1g, we have two copies of each compression
disc. Let D0 be the union of these discs. As in the proof of Proposition 3.3, we may
construct a collection of properly embedded vertical arcs R in @�C � Œ0; 1� such that
their intersection with @�C � f1g lies in D0 and intersects each component of D0 in a
single point. By performing an ambient isotopy supported in a small neighbourhood of
@�C � f1g, we may arrange that these arcs glue up in pairs when the discs of D0 are
re-identified. Thus, they form a tunnel system for L.
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