Knot exteriors with additive Heegaard genus and Morimoto's Conjecture

TSUYOSHI KOBAYASHI YO'AV RIECK

Given integers $g \ge 2$, $n \ge 1$ we prove that there exist a collection of knots, denoted by $\mathcal{K}_{g,n}$, fulfilling the following two conditions:

- (1) For any integer $2 \le h \le g$, there exist infinitely many knots $K \in \mathcal{K}_{g,n}$ with g(E(K)) = h.
- (2) For any $m \le n$, and for any collection of knots $K_1, \ldots, K_m \in \mathcal{K}_{g,n}$, the Heegaard genus is additive:

$$g(E(\#_{i=1}^{m}K_{i})) = \sum_{i=1}^{m} g(E(K_{i})).$$

This implies the existence of counterexamples to Morimoto's Conjecture [17].

57M25; 57M27

1 Introduction and statements of results

Let K_i (i = 1, 2) be knots in the 3-sphere S^3 , and let $K_1 # K_2$ be their connected sum. We use the notation $t(\cdot)$, $E(\cdot)$, and $g(\cdot)$ to denote tunnel number, exterior, and Heegaard genus respectively. It is well known that the union of a tunnel system for K_1 , a tunnel system for K_2 and a tunnel on a decomposing annulus for $K_1 # K_2$ forms a tunnel system for $K_1 # K_2$. Therefore:

$$t(K_1 \# K_2) \le t(K_1) + t(K_2) + 1.$$

Since t(K) = g(E(K)) - 1, this gives:

(1)
$$g(E(K_1 \# K_2)) \le g(E(K_1)) + g(E(K_2)).$$

Given integers $g \ge 0$ and $n \ge 1$, we say that a knot K in a closed orientable manifold M admits a (g, n) position if there exists a genus g Heegaard surface Σ for M, separating M into the handlebodies H_1 and H_2 , so that $H_i \cap K$ (i = 1, 2) consists of n arcs that are simultaneously parallel into ∂H_i . We say that K admits a (g, 0) position if $g(E(K)) \le g$. Note that if K admits a (g, n) position, then K admits both a (g, n + 1) position and a (g + 1, n) position.

Published: 5 July 2008

DOI: 10.2140/agt.2008.8.953

From Morimoto [17, Proposition 1.3], it is known that if K_i (i = 1 or 2) admits a ($t(K_i)$, 1) position, then Inequality (1) is strict:

(2)
$$g(E(K_1 \# K_2)) < g(E(K_1)) + g(E(K_2)).$$

Morimoto proved that if K_1 and K_2 are m-small knots¹ in S^3 , then the converse holds [17, Theorem 1.6]. This result was generalized to arbitrarily many m-small knots in general manifolds by the authors [9]. Morimoto conjectured that the converse holds in general [17, Conjecture 1.5]:

Morimoto's Conjecture Given knots K_1 , $K_2 \subset S^3$,

 $g(E(K_1 \# K_2)) < g(E(K_1)) + g(E(K_2))$

if and only if K_i admits a $(t(K_i), 1)$ position (for i = 1 or i = 2).

Remark 1.1 Morimoto stated the above conjecture in terms of 1-bridge genus $g_1(K)$. It is easy to see that Conjecture 1.5 of [17] is equivalent to the statement above.

In [10] the authors showed that the existence of a knot K satisfying the two conditions below implies the existence of counterexamples to Morimoto's Conjecture:

- K does not admit a (t(K), 2) position.
- K is m-small.

We asked [10, Question 1.9] if there exists a knot K with g(E(K)) = 2 that does not admit a (1, 2) position; this question was answered affirmatively by Johnson and Thompson. In fact, in [5, Lemma 4] Johnson showed the existence of knots K with g(E(K)) = 2 admitting Heegaard splittings with arbitrarily high distance (see Definition 2.4), and in [6, Corollary 2] Johnson and Thompson showed that (for any n) infinitely many of these knots do not admit a (1, n) position. At about the same time Minsky, Moriah and Schleimer [11, Theorem 3.1] proved a more general result, showing that for any integer $g \ge 2$, there exist infinitely many knots K with g(E(K)) = g admitting a minimal genus Heegaard splitting with arbitrarily high distance. By Proposition 2.6 (for any n) infinitely many of these knots do not admit a (t(K), n) position. However, at the time of writing, the existence of an m-small knot K not admitting a (t(K), 2) position is not known.

¹A knot K is called *m*-small if its exterior does not admit an essential surface whose boundary consists of a nonempty collection of meridians of K.

Given $n \ge 1$, consider the following conditions:

- (1) K does not admit a (t(K), n) position.
- (2) E(K) does not admit an essential surface S with $\chi(S) \ge 4 2ng(E(K))$.

Our main result is Theorem 1.2 below, which implies the existence of knots fulfilling Conditions (1) and (2) for each $n \ge 1$; specifically, in the proof of Theorem 1.2 we show that some of the knots whose existence was proved in [5] and [11] fulfill these conditions. In Corollary 1.5, we show that this implies the existence of counterexamples to Morimoto's Conjecture.

Theorem 1.2 Given integers $g \ge 2$ and $n \ge 1$, let $\mathcal{K}_{g,n}$ be the set of all knots $K \subset S^3$ with the following three properties:

- (a) $g(E(K)) \leq g$.
- (b) *K* does not admit a (t(K), n) position.
- (c) E(K) does not admits an essential surface S with $\chi(S) \ge 4 2gn$.

Then $\mathcal{K}_{g,n}$ has the following properties:

- (1) For each h, $2 \le h \le g$, there exists infinitely many knots $K \in \mathcal{K}_{g,n}$ with g(E(K)) = h.
- (2) For each $m \le n$ and for any collection of knots $K_1, \ldots, K_m \in \mathcal{K}_{g,n}$ (possibly, $K_i = K_j$ for $i \ne j$) we have:

$$g(E(\#_{i=1}^{m}K_{i})) = \sum_{i=1}^{m} g(E(K_{i})).$$

Moreover, for each *g*, we have:

$$\bigcap_{n=1}^{\infty} \mathcal{K}_{g,n} = \emptyset$$

Remark 1.3 The existence of knots K_1 , K_2 with $g(E(K_1 \# K_2)) = g(E(K_1)) + g(E(K_2))$ is known from Moriah and Rubinstein [15] and Morimoto, Sakuma and Yokota [18]. Theorem 1.2 is new in the following ways:

- (1) It is the first time that the connected sum of more than two knots is shown to have additive Heegaard genus.
- (2) The proof in [15] uses minimal surfaces in hyperbolic manifolds and in [18] quantum invariants. Our proof is purely topological.

A knot $K \subset M$ is called *admissible* if g(E(K)) > g(M). Thus any knot $K \subset S^3$ is admissible. We denote the connected sum of *m* copies of *K* by *mK*. By [10, Theorem 1.2] for any admissible knot *K*, there exists *N* so that if m > N then g(E(mK)) < mg(E(K)). In contrast to this, as an obvious consequence of Theorem 1.2 we have:

Corollary 1.4 Given integers $g \ge 2$ and $n \ge 1$, there exist infinitely many knots $K \subset S^3$ so that g(E(K)) = g and for any $m \le n$, g(E(mK)) = mg.

A consequence of Corollary 1.4 is:

Corollary 1.5 There exists a counterexample to Morimoto's Conjecture. Specifically, there exist knots K_1 , $K_2 \subset S^3$ such that the following two conditions hold:

- (1) K_i does not admit a $(t(K_i), 1)$ position (i = 1, 2).
- (2) There exists an integer $m_0 \ge 4$ such that:
 - (a) $g(E(K_1)) = 4$.
 - (b) $g(E(K_2)) = 2(m_0 2)$.
 - (c) $g(E(K_1 \# K_2)) < 2m_0$.

The argument of the proof of Corollary 1.5 was originally given in [10, Theorem 1.4]. We outline it here for completeness.

Proof of Corollary 1.5 Let *K* be a knot as in Corollary 1.4, for g = 2 and n = 3. By [10, Theorem 1.2], for some m > 1, g(E(mK)) < mg(E(K)) = 2m. Let m_0 be the minimal number with that property. Since we chose *K* for n = 3, $m_0 \ge 4$. Hence g(E(2K)) = 2g(E(K)) = 4. By the minimality of m_0 , $g(E((m_0 - 2)K)) = (m_0 - 2)g(E(K)) = 2(m_0 - 2)$. Let $K_1 = 2K$ and $K_2 = (m_0 - 2)K$. Note that $K_1 \# K_2 = m_0 K$. Thus:

- (a) $g(E(K_1)) = 4$.
- (b) $g(E(K_2)) = 2(m_0 2)$.
- (c) $g(E(K_1 \# K_2)) < 2m_0$.

We claim that K_1 does not admit a $(t(K_1), 1)$ position. Assume for a contradiction it does. By Inequality (2) and the above (a), $g(E(3K)) = g(E(K_1 \# K)) < g(E(K_1)) +$ g(E(K)) = 6. Since $m_0 \ge 4$, g(E(3K)) = 3g(E(K)) = 6, which is a contradiction. We claim that K_2 does not admit a $(t(K_2), 1)$ position. Assume for a contradiction it does. By Inequality (2) and the above (b), $g(E((m_0 - 1)K)) < g(E((m_0 - 2)K)) +$ $g(E(K)) = (m_0 - 1)g(E(K))$. By the minimality of m_0 , $g(E((m_0 - 1)K)) =$ $(m_0 - 1)g(E(K))$, which is a contradiction.

Algebraic & Geometric Topology, Volume 8 (2008)

956

We note that K_1 and K_2 are composite knots. This led Moriah to conjecture [13, Conjecture 7.14] that if K_1 and K_2 are prime then Morimoto's Conjecture holds.

Outline Section 2 is devoted to three propositions necessary for the proof of Theorem 1.2: Proposition 2.2 relates strongly irreducible Heegaard splittings and bridge position, Proposition 2.5 relates essential surfaces and the distance of Heegaard splitting (Proposition 2.5 is exactly Theorem 3.1 of Scharlemann [22]), and Proposition 2.6 relates bridge position and distance of Heegaard splittings (Proposition 2.6 is exactly Theorem 1 of Johnson and Thompson [6] except for knots $K \subset M$ that admit a (t(K), 1) position and are isotopic onto a Heegaard surface for M of genus t(K)). In Section 3 we calculate the genera of certain manifolds that we denote by $X^{(c)}$ (see Notation 2.1). In Section 4 we prove Theorem 1.2.

- **Remarks 1.6** (1) Tomova, independently and using different techniques, obtained a stronger result than Proposition 2.6 [28, Theorem 1.3].
 - (2) We refer the reader to our paper [7], that can be used as an introduction to the ideas in the current paper. In [7] an easy argument is given for a special case of Corollary 1.4, namely, g = 2 and n = 3. Note that this special case is sufficient for Corollary 1.5.

2 Decomposing $X^{(c)}$

In this and the following sections, we adopt the following notation.

Notation 2.1 Let K be a knot in a closed orientable connected manifold M and X its exterior. For an integer $c \ge 0$ we denote by $X^{(c)}$ the manifold obtained by drilling c curves out of X that are simultaneously parallel to meridians of K. Note that $X^{(0)} = X$.

Proposition 2.2 Let X, $X^{(c)}$ be as above and $g \ge 0$ an integer. Suppose that for some integer c > 0, $X^{(c)}$ admits a strongly irreducible Heegaard surface of genus g. Then one of the following holds:

- (1) X admits an essential surface S with $\chi(S) \ge 4 2g$.
- (2) (a) c ≤ g, and
 (b) for some b, c ≤ b ≤ g, K admits a (g − b, b) position.

Proof of Proposition 2.2 Assume Conclusion (1) does not hold.

Let $C_1 \cup_{\Sigma} C_2$ be a genus g strongly irreducible Heegaard splitting of $X^{(c)}$. Since c > 0, $X^{(c)}$ admits an essential torus T that gives the decomposition $X^{(c)} = X' \cup_T Q^{(c)}$, where $X' \cong X$ and $Q^{(c)}$ is a c-times punctured annulus cross S^1 . Since T is incompressible and Σ is strongly irreducible, we may isotope Σ so that every component of $\Sigma \cap T$ is essential in both surfaces (see, for example, Schultens [26, Lemma 6]). Isotope Σ to minimize $|\Sigma \cap T|$ subject to this constraint. Denote $\Sigma \cap X'$ by Σ_X , and $\Sigma \cap Q^{(c)}$ by Σ_Q . Note that, since T is essential, $\Sigma \cap T \neq \emptyset$. By the minimality of $|\Sigma \cap T|$ no component of Σ_X (resp. Σ_Q) is boundary parallel in X' (resp. $Q^{(c)}$).

We claim that Σ_X is connected and compresses into both sides in X', and that Σ_Q is incompressible in $Q^{(c)}$. We sketch this argument here (see [9, Claim 4.5]). By the minimality of $|\Sigma \cap T|$, for i = 1, 2, the components of $T \cap C_i$ are incompressible, non-boundary parallel annuli in C_i . It follows that there is a meridian disk $D_i \subset C_i$ which is disjoint from T. Hence there is some component of Σ cut open along T that compresses into C_1 and some component that compresses into C_2 . By strong irreducibility of Σ , the same component compresses into both sides; moreover, all other components are incompressible. As remarked above no component of Σ cut open along T is boundary parallel; hence any incompressible component is essential. If some such component is in X' then Conclusion (1) holds, contradicting our assumption. Hence Σ_X is connected and compresses into both sides, and every component of Σ_Q is essential. This completes the proof of the claim.

Since $Q^{(c)}$ is a punctured annulus cross S^1 and Σ_Q is incompressible and has no boundary parallel or closed component, every component of Σ_Q is a vertical annulus (see, for example, Jaco [4, VI.34]). Hence $\partial \Sigma_X$ consists of meridians of K. For i = 1, 2, let Σ_i be the surface obtained by simultaneously compressing Σ_X maximally into $C_i \cap X'$. (By *simultaneous compression*, we mean compressing Σ_X once along a collection of mutually disjoint disks, without iterations.) Then the argument of Claim 6 of [8, page 248] shows that every component of Σ_i is incompressible. Hence, every component of Σ_i is a boundary parallel annulus in X' or a 2-sphere, for otherwise Conclusion (1) holds, contradicting our assumption. Denote the number of boundary parallel annuli by b (note that $b = \frac{1}{2} |\partial \Sigma_X|$ and is the same for Σ_1 and Σ_2). Denote the solid tori that define the boundary parallelism of the annular components of Σ_i by $N_{i,1}, \ldots, N_{i,b}$ (i = 1, 2).

Claim 1 For each i (i = 1, 2), $N_{i,1}, \ldots, N_{i,b}$ are mutually disjoint.

Proof of Claim 1 Assume, for a contradiction, that two components (say $N_{i,1}$ and $N_{i,2}$) intersect, say $N_{i,2} \subset N_{i,1}$. Note that Σ_X is retrieved from Σ_i by tubing. Since

 Σ_i is obtained from Σ_X by simultaneously compressing into the C_i side only and Σ_X is connected, all the tubes are contained in $N_{i,1}$. This implies that $N_{i,j} \subset N_{i,1}$ for all j. This shows that Σ is isotopic into $Q^{(c)}$, hence T is isotopic into C_1 or C_2 . Since T is essential, this is impossible. This proves Claim 1.

Remark 2.3 As a part of the proof of Proposition 2.2, we analyze the intersection of Σ with $Q^{(c)}$. When K is a hyperbolic knot, $Q^{(c)}$ is a component of the characteristic subvariety. We point the reader to [23, Theorem 3.8], where Scharlemann and Schultens treat the intersection of a strongly irreducible Heegaard surface with the characteristic subvariety in general. Our setting is more limited, and this allows us to obtain more detailed information, eg Claim 2 below.

Claim 2 *K* admits a (g - b, b) position.

Proof of Claim 2 For each i (i = 1, 2), let $A_{i,j}$ be the annulus $N_{i,j} \cap T$ (j = 1, ..., b). Note that $A_{i,j}$ is a longitudinal annulus in $N_{i,j}$. By Claim 1, $C_i \cap X'$ is obtained from $N_{i,1}, ..., N_{i,b}$ and a (possibly empty) collection of 3-balls by attaching 1-bandles. Hence $C_i \cap X'$ is a bandlebody and $\{A_{i,j}\}_{j=1}^{b}$ is a primitive system of annuli in $\partial(C_i \cap X')$, ie there exists a system of properly embedded disjoint disks $\{\Delta_{i,j}\}_{j=1}^{b}$ such that $\Delta_{i,j} \cap A_{i,k} = \emptyset$ for $j \neq k$, and $\Delta_{i,j} \cap A_{i,j}$ is a spanning arc for $A_{i,j}$.

Since X' is homeomorphic to X, we may perform the trivial Dehn filling on X' to obtain M. In M we cap Σ_X off by attaching 2b disks to obtain a genus g-b closed surface, say S. Then S separates M into two parts, denoted H_1 and H_2 , so that H_i is obtained from $C_i \cap X'$ by attaching b 2-handles along $A_{i,1}, \ldots, A_{i,b}$. Since the system $\{A_{i,j}\}_{j=1}^{b}$ is primitive, H_i is a handlebody. Hence $H_1 \cup_S H_2$ is a Heegaard splitting of M.

Up to isotopy, the knot K is the core of the attached solid torus. Thus $K \cap H_i$ (i = 1, 2) is the union of the co-cores of the 2-handles, and each co-core is isotopic into ∂H_i via one of the disks $\Delta_{i,j}$. Since the disks $\Delta_{i,j}$ are disjoint, we see that $K \cap H_i$ consists of b simultaneously boundary parallel arcs. Hence $H_1 \cup H_2$ induces a (g-b,b) position of K. This proves Claim 2.

To complete the proof we need to show that $c \le b \le g$. Since $g - b \ge 0$, it is obvious that $b \le g$ holds. Suppose, for a contradiction, that b < c. Note that Σ_Q consists of bvertical annuli that separate $Q^{(c)}$ into b + 1 components. Note that $\partial X^{(c)}$ consists of c + 1 tori; thus if b < c then two components of $\partial Q^{(c)}$ are in the same component of $Q^{(c)}$ cut open along Σ_Q . It is easy to see that there is a vertical annulus connecting

these tori, which is disjoint from Σ . Hence this annulus is contained in a compression body C_i and connects components of $\partial C_i \setminus \Sigma$. This contradiction completes the proof of Proposition 2.2.

Definition 2.4 (Hempel [3]) Let $H_1 \cup_{\Sigma} H_2$ be a Heegaard splitting. The *distance* of Σ , denoted $d(\Sigma)$, is the least integer d so that there exist meridian disks $D_i \subset H_i$ (i = 1, 2) and essential curves $\gamma_0, \ldots, \gamma_d \subset \Sigma$ so that $\gamma_0 = \partial D_1$, $\gamma_d = \partial D_2$, and $\gamma_{i-1} \cap \gamma_i = \emptyset$ $(i = 1, \ldots, d)$. There are three cases where this definition does not apply: $M \cong S^3$ and $g(\Sigma) = 0$, M is a genus g handlebody and $g(\Sigma) = g$, and M is a lens space and $g(\Sigma) = 1$. In the first two cases on at least one side there are no meridian disks, and in the last case there is no sequence of curves on Σ as required in the definition. In all three cases, we define $d(\Sigma)$ to be zero.

We need two properties of knots whose exteriors admit a Heegaard splittings of high distance. The first is Theorem 3.1 of [22] (for closed surfaces this was shown by Hartshorn [2]):

Proposition 2.5 [22] Let *K* be a knot and $d \ge 0$ an integer. Suppose *X* admits a Heegaard splitting with distance greater than *d*. Then *X* does not admit a connected essential surface *S* with $\chi(S) \ge 2 - d$.

Proposition 2.6 below was first stated as Theorem 4.1 of [11]. Our proof is a combination of Theorem 1 of [6] and Corollary 4.7 of [24]. The statements of Theorem 1 of [6] and of Proposition 2.6 are very similar; however, the definitions of (p, 0) position used in [6] and here are distinct. In [6] K is said to admit a (p, 0) position² if and only if K is isotopic into a genus p Heegaard splitting. Recall that by our definition, K admits a (p, 0) position if and only if $g(X) \le p$. Thus, if p < g(X) and K is isotopic into a genus p Heegaard surface, then K admits a (p, 0) in the sense of [6], and does not admit a (p, 0) position in our sense; note that in that case K admits a (p, 1) position in our sense. In all other cases, K admits a (p, q) position in the sense of [6] if and only if it admits a (p, q) position in our sense.

Shortly after our paper was posted, Tomova proved a stronger version of Proposition 2.6 using different techniques [28, Theorem 1.3].

Proposition 2.6 Let $K \subset S^3$ be a knot and p, q integers so that K admits a (p,q) position.

If p < g(X) then any Heegaard splitting for X has distance at most 2(p+q).

²The term used in [6] is "*K* is (p, 0)", rather than "*K* admits a (p, 0) position".

Proof Suppose K admits a (p,q) position with p < g(X). By tubing the surface that gives the bridge position r times $(0 \le r \le q)$ we obtain a (p+r,q-r) position. We take r = g(X) - p - 1; thus p + r = g(X) - 1 = t(K). Let n be the minimal number so that K admits a (t(K), n) position in our sense. We see that $n \le q - r$. Since t(K) = p + r, this implies that $t(K) + n \le p + q$. Hence, for the proof of Proposition 2.6, it suffices to show that any Heegaard splitting of X has distance at most 2(t(K) + n).

Claim 1 The knot exterior X admits a minimal genus Heegaard surface with distance at most 2(t(K) + n).

Proof of Claim 1 Let n' be the minimal integer so that K admits a (t(K), n') position according to the definition given in [6]. Assume first that K is not isotopic onto any genus t(K) Heegaard surface of S^3 . Then n = n', and the claim then follows directly from [6, Theorem 1].

Thus we may assume that S^3 admits a genus t(K) Heegaard splitting, say $H_1 \cup_{\Sigma} H_2$, so that $K \subset \Sigma$, ie, n' = 0. On the other hand, as explained above n = 1. We base our analysis on [19; 20; 21]. We perform a tiny isotopy of K in H_2 , pushing it off Σ . Denote the knot obtained by $\tilde{K} \subset H_2$. The image of the isotopy is an annulus (say A) embedded in H_2 so that one boundary component of A is \tilde{K} and the other is $K \subset \Sigma$. Let α be a spanning arc for A. Let $\tilde{H}_1 = H_1 \cup N_{H_2}(\alpha \cup \tilde{K})$ and let $\tilde{H}_2 = \operatorname{cl}(M \setminus \tilde{H}_1)$. It is easy to see that \tilde{H}_1 and \tilde{H}_2 are handlebodies (with $\tilde{K} \subset \tilde{H}_1$) and therefore $\partial \tilde{H}_1 = \partial \tilde{H}_2$ is a Heegaard surface for S^3 , denoted $S_{\tilde{K}}(\Sigma)$.³ Denote the exterior of \tilde{K} by \tilde{X} . Note that $\tilde{X} \cong X$. In [19] it was shown that $S_{\tilde{K}}(\Sigma)$ is a Heegaard surface for \tilde{X} . Since $g(S_{\tilde{K}}(\Sigma)) = g(\Sigma) + 1 = t(K) + 1 = g(\tilde{X})$, we have that $S_{\tilde{K}}(\Sigma)$ is a minimal genus Heegaard surface for \tilde{X} .

We claim $d(S_{\widetilde{K}}(\Sigma)) \leq 2$. Let $\widetilde{D}_1 \subset \widetilde{H}_1$ be the disk $cl(\Sigma \setminus S_{\widetilde{K}}(\Sigma))$ and let $\gamma_0 = \partial \widetilde{D}_1$. Since t(K) > 0, γ_0 is essential in $S_{\widetilde{K}}(\Sigma)$. Let $\widetilde{D}_2 \subset \widetilde{H}_2$ be the disk $A \cap \widetilde{H}_2$ and let γ_2 be $\partial \widetilde{D}_2$. Since γ_2 is nonseparating it is essential in $S_{\widetilde{K}}(\Sigma)$. Let γ_1 be a longitude of $\partial N_{H_2}(\alpha \cup \widetilde{K})$ chosen so that $\gamma_0 \cap \gamma_1 = \emptyset$ and $\gamma_1 \cap \gamma_2 = \emptyset$. Then γ_1 is essential in $S_{\widetilde{K}}(\Sigma)$. Hence by Definition 2.4, $d(S_{\widetilde{K}}(\Sigma)) \leq 2 < 2(t(K) + n)$.⁴

This proves Claim 1.

Claim 2 Any Heegaard surface for X has distance at most 2(t(K) + n).

 ${}^{3}S_{\tilde{K}}(\Sigma)$ is called *stabilization of* Σ *along* \tilde{K} [19, Definition 2.1]. For a detailed description see also Subsection 4.2 of [16].

⁴The referee interprets the proof above as follows: first, we show that $S_{\tilde{K}}(\Sigma)$ is so-called μ -primitive, and then we show that all μ -primitive Heegaard surfaces have distance at most 2.

Proof of Claim 2 Let Σ be a Heegaard surface as in Claim 1, ie, Σ is minimal genus and $d(\Sigma) \leq 2(t(K)+n)$. Let $\tilde{\Sigma}$ be any Heegaard surface for X. By [24, Corollary 4.7] (with Σ corresponding to Q and $\tilde{\Sigma}$ to P) one of the following holds:

- (1) Either Σ is isotopic $\tilde{\Sigma}$, or Σ is obtained from $\tilde{\Sigma}$ by stabilizations or boundary stabilizations.
- (2) $d(\tilde{\Sigma}) \leq 2g(\Sigma)$.

We treat the cases in order:

- (1) Since Σ is a minimal genus Heegaard splitting, Σ is isotopic to $\tilde{\Sigma}$. Therefore $d(\tilde{\Sigma}) = d(\Sigma) \le 2(t(K) + n)$.
- (2) In this case, $d(\tilde{\Sigma}) \leq 2g(\Sigma) = 2(t(K) + 1) \leq 2(t(K) + n)$.

This proves Claim 2.

Claim 2 establishes Proposition 2.6.

3 Calculating $g(X^{(c)})$

For $X^{(c)}$, recall Notation 2.1. The following lemma is an easy application of the concept of stabilizing along a knot [19, Definition 2.1] that is described in the proof of Proposition 2.6.

Lemma 3.1 Let $K \subset M$ be a knot, X the exterior of K, and $c \ge 0$ an integer. Denote the genus of X by g. Then

$$g(X^{(c)}) \le g + c.$$

Proof The proof is an induction on c. For c = 0 there is nothing to prove.

Fix c > 0. We obtain $X^{(c-1)}$ by Dehn filling a component of $\partial X^{(c)}$ and the core of the attached solid torus (say γ) is isotopic into ∂X . Any Heegaard surface for $X^{(c-1)}$ is obtained from a torus parallel to ∂X and a (possibly empty) collection of tori parallel to other components of $\partial X^{(c-1)}$ by tubing. Hence γ is isotopic onto any Heegaard surface for $X^{(c-1)}$. By stabilizing a minimal genus Heegaard surface for $X^{(c-1)}$ along γ we obtain a Heegaard surface for $X^{(c)}$ of genus $g(X^{(c-1)}) + 1$. Hence $g(X^{(c)}) \leq g(X^{(c-1)}) + 1$.

By the induction hypothesis, $g(X^{(c-1)}) \le g + (c-1)$; hence we get: $g(X^{(c)}) \le g(X^{(c-1)}) + 1 \le g + (c-1) + 1 = g + c$.

Algebraic & Geometric Topology, Volume 8 (2008)

Proposition 3.2 Let *M* be a compact orientable manifold that does not admit a nonseparating surface. Let $K \subset M$ be a knot, and *X* its exterior. Let $c \ge 0$ be an integer. Denote the genus of *X* by *g*. Suppose that *X* does not admit an essential surface *S* with $\chi(S) \ge 4 - 2(g + c)$, and that *K* does not admit a (g - 1, c) position. Then

$$g(X^{(c)}) = g + c.$$

Proof The proof is an induction on c. For c = 0 there is nothing to prove.

Fix c > 0 and let $\Sigma \subset X^{(c)}$ be a minimal genus Heegaard surface. It follows from the assumptions that X does not admit an essential surface S with $\chi(S) \ge 4-2(g+(c-1))$, and that K does not admit a (g-1, c-1) position; hence the induction hypothesis applies to $X^{(c-1)}$, giving that $g(X^{(c-1)}) = g + c - 1$.

The proof is divided into the following two cases:

Case 1 Σ is strongly irreducible.

By Proposition 2.2 one of the following holds:

- (1) X admits an essential surface S with $\chi(S) \ge 4 2g(X^{(c)})$.
- (2) $c \le g(X^{(c)})$, and for some $b \ (c \le b \le g(X^{(c)}))$, K admits a $(g(X^{(c)}) b, b)$ position.

By Lemma 3.1, we have $4 - 2g(X^{(c)}) \ge 4 - 2(g + c)$. By assumption X does not admit an essential surface S with $\chi(S) \ge 4 - 2(g + c)$, so Case 1 above cannot happen and we may assume that we are in Case 2. Since $b - c \ge 0$, we can tube the Heegaard surface giving the $(g(X^{(c)}) - b, b)$ position b - c times to obtain a $(g(X^{(c)}) - b + (b - c), b - (b - c)) = (g(X^{(c)}) - c, c)$ position.

By assumption K does not admit a (g-1, c) position; this implies that if K admits a (p, c) position for some p, then p > g-1. Thus $g(X^{(c)}) - c > g-1$. Together with Lemma 3.1, this implies that $g(X^{(c)}) = g + c$.

Case 2 Σ is weakly reducible.

In [27] Sedgwick proved a relative version of Casson and Gordon's seminal theorem [1], proving that an appropriately chosen weak reduction of a minimal genus Heegaard surface yields an essential surface (see the statement and the proof of Theorem 1.1 of [27], cf [14, Theorem 3.1]). Denote by \hat{F} the essential surface obtained by weakly

reducing Σ . Let *F* be a connected component of \widehat{F} . Since $F \subset X^{(c)} \subset M$, it separates. Hence by [9, Proposition 2.13], Σ weakly reduces to *F*. Note that $\chi(F) \ge \chi(\Sigma) + 4$.

Claim F can be isotoped into $Q^{(c)}$.

Proof of Claim Recall the definitions of T, X' and $Q^{(c)}$ from the proof of Proposition 2.2. Assume, for a contradiction, that F cannot be isotoped into $Q^{(c)}$. Since X does not admit an essential surface S with $\chi(S) \ge 4 - 2(g + c)$, X is irreducible. Minimize $|F \cap T|$. Since F and T are essential and X and $Q^{(c)}$ are irreducible, $F \cap T$ consists of a (possibly empty) collection of curves that are essential in both surfaces. If $F \cap X'$ compresses, then, since the curves of $F \cap T$ are essential in F, so does F, contradiction. Since T is a torus, boundary compression of $F \cap X'$ implies a compression (see, for example, [8, Lemma 2.7]). Finally, minimality of $|F \cap T|$ implies that no component of $F \cap X'$ is boundary parallel. Thus, every component of $F \cap X'$ is essential (including the case $F \subset X'$). Since no component of $F \cap Q^{(c)}$ is a disk or a sphere, $\chi(F \cap X') \ge \chi(F) \ge \chi(\Sigma) + 4$. By Lemma 3.1, $\chi(\Sigma) \ge 2-2(g+c)$, thus $\chi(\Sigma) + 4 \ge 6-2(g+c)$. Hence $\chi(F \cap X') \ge 6-2(g+c)$. Since $X' \cong X$, this contradicts the assumption of Proposition 3.2. This proves the claim.

Since F is a closed incompressible surface in $Q^{(c)}$, and $Q^{(c)}$ is a punctured annulus cross S^1 , F is a vertical torus (see, for example, [4, VI.34]).

First, suppose that *F* is not boundary parallel in $Q^{(c)}$. Then *F* decomposes $X^{(c)}$ as $X^{(p+1)} \cup_F D(c-p)$, where $0 \le p \le c$ is an integer and D(c-p) is a disk with c-p holes cross S^1 . Note that since *F* is not parallel to a component of $\partial Q^{(c)}$, $c-p \ge 2$. Therefore p+1 < c. This, together with the assumption of the proposition, implies that *X* does not admit an essential surface *S* with $\chi(S) \ge 4-2(g+(p+1))$, and that *K* does not admit a (g-1, p) position; hence the induction hypothesis applies to $X^{(p+1)}$, giving that $g(X^{(p+1)}) = g+p+1$. By Schultens [25], g(D(c-p)) = c-p. Since *F* was obtained by weakly reducing a minimal genus Heegaard surface [9, Proposition 2.9] (see also [25, Remark 2.7]) gives:

$$g(X^{(c)}) = g(X^{(p+1)}) + g(D(c-p)) - g(F)$$

= (g + p + 1) + (c - p) - 1
= g + c.

Next, suppose that *F* is boundary parallel in $Q^{(c)}$. Since *F* is essential in $X^{(c)}$, it cannot be isotopic to a component of $\partial X^{(c)}$ and must therefore be isotopic to $\partial Q^{(c)} \setminus \partial X^{(c)} = T$. This gives the decomposition $X^{(c)} = X' \cup_F Q^{(c)}$. Since $X' \cong X$,

g(X') = g. By [25] $g(Q^{(c)}) = c + 1$. We get, as above:

$$g(X^{(c)}) = g(X') + g(Q^{(c)}) - g(F)$$

= g + (c + 1) - 1
= g + c.

This completes the proof of Proposition 3.2.

Proposition 3.3 Let $m \ge 1$ and $c \ge 0$ be integers, and let $\{K_i \subset M_i\}_{i=1}^m$ be knots in closed orientable manifolds. Suppose that M_i does not admit a nonseparating surface $(1 \le i \le m)$. Denote the exterior of K_i by X_i , and the exterior of $\#_{i=1}^m K_i$ by X. Let g be an integer so that $g(X_i) \le g$ $(1 \le i \le m)$.

Suppose that no X_i admits an essential surface S with $\chi(S) \ge 4 - 2g(m + c)$, and that no K_i admit a $(g(X_i) - 1, m + c - 1)$ position. Then we have:

$$g(X^{(c)}) = \sum_{i=1}^{m} g(X_i) + c.$$

Proof Suppose first that m = 1. Note that $4 - 2g(1 + c) \le 4 - 2(c + g)$; therefore Proposition 3.3 follows from Proposition 3.2 in this case. Assume from now on $m \ge 2$.

We induct on (m, c) ordered lexicographically, where *m* is the number of summands and *c* is the number of curves drilled. Note that by Miyazaki [12], *m* is well defined (see [9, Claim 1]).

By Lemma 3.1, Inequality (1) in Section 1, and the assumption that $g(X_i) \leq g$ for all i, we get: $g(X^{(c)}) \leq g(X) + c \leq \sum_{i=1}^{m} g(X_i) + c \leq mg + c$. Since $g \geq 2$, we have that $g(X^{(c)}) \leq g(m+c)$.

By assumption, for all *i*, X_i does not admit an essential surface *S* with $\chi(S) \ge 4 - 2g(m + c)$. Hence by the Swallow Follow Torus Theorem [9, Theorem 4.1], any minimal genus Heegaard surface for $X^{(c)}$ weakly reduces to a swallow follow torus *F* giving the decomposition $X^{(c)} = X_I^{(c_1)} \cup_F X_J^{(c_2)}$, where $I \subset \{1, \ldots, m\}$, $K_I = \#_{i \in I} K_i$, $K_J = \#_{i \notin I} K_i$, $X_I = E(K_I)$, $X_J = E(K_J)$, and $c_1 + c_2 = c + 1$ (for details see the first paragraph of Section 4 of [9]). Denote the number of factors of K_I , |I|, by m_1 , and the number of factors of K_J , m - |I|, by m_2 . Note that $m_1 = 0$ or $m_2 = 0$ are possible. However, at least one of m_1 or m_2 is not zero so by symmetry we may assume $m_1 \neq 0$.

First assume that $m_1 = m$. Then $m_2 = 0$ and $X_J^{(c_2)}$ is a disk with c_2 holes cross S^1 . Since F is essential [27, Theorem 1.1], $c_2 \ge 2$. Then $c_1 = c - c_2 + 1 \le c - 1$. Since $m_1 = m$, we see that $m_1 + c_1 \le c + m - 1$. By assumption, no X_i $(1 \le i \le m)$ admits

Algebraic & Geometric Topology, Volume 8 (2008)

an essential surface S with $\chi(S) \ge 4 - 2g(m_1 + c_1) > 4 - 2g(m + c)$. Hence, the induction hypotheses applies to $X_I^{(c_1)} \cong X^{(c_1)}$, showing that

$$g(X_I^{(c_1)}) = \sum_{i=1}^m g(X_i) + c_1$$

Since $X_{f}^{(c_2)}$ is homeomorphic to a disk with c_2 holes cross S^1 , $g(X_{f}^{(c_2)}) = c_2$ by [25]. Since *F* was obtained by weakly reducing a minimal genus Heegaard surface, Proposition 2.9 of [9] and the fact that $c_1 + c_2 = c + 1$, we get:

$$g(X^{(c)}) = g(X_I^{(c_1)}) + g(X_J^{(c_2)}) - g(F)$$

= $\left(\sum_{i=1}^m g(X_i) + c_1\right) + c_2 - 1$
= $\sum_{i=1}^m g(X_i) + c.$

This proves Proposition 3.3 when $m_1 = m$.

Next assume that $m_1 < m$. By assumption $m_1 > 0$, hence $m_2 < m$. By construction $c_1 \le c+1$, and $c_2 \le c+1$. Hence $m_1+c_1 \le m+c$, and $m_2+c_2 \le m+c$. By assumption, no X_i $(1 \le i \le m)$ admits an essential surface S with $\chi(S) \ge 4-2(m_j+c_j)g \ge 4-2(m+c)g$ (j = 1, 2). Hence the induction hypothesis applies to $X_I^{(c_1)}$ and $X_J^{(c_2)}$, giving $g(X_I^{(c_1)}) = \sum_{i \in I} g(X_i) + c_1$, and $g(X_J^{(c_2)}) = \sum_{i \notin I} g(X_i) + c_2$. We get, as above:

$$g(X^{(c)}) = g(X_I^{(c_1)}) + g(X_J^{(c_2)}) - g(F)$$

= $\left(\sum_{i \in I} g(X_i) + c_1\right) + \left(\sum_{i \notin I} g(X_i) + c_2\right) - 1$
= $\sum_{i=1}^m g(X_i) + c_1 + c_2 - 1$
= $\sum_{i=1}^m g(X_i) + c.$

This completes the proof of Proposition 3.3.

Remark 3.4 For $m \ge 2$, the proof is an application of the Swallow Follow Torus Theorem [9, Theorem 4.1]. In [9, Remark 4.2] it was shown by means of a counterexample that the Swallow Follow Torus Theorem does not apply to $X^{(c)}$ when m = 1. Hence the argument of the proof of Proposition 3.3 cannot be used to simplify the proof of Proposition 3.2.

4 **Proof of Theorem 1.2**

Fix $g \ge 2$ and $n \ge 1$. Let $\mathcal{K}_{g,n}$ be the set of all knots $K \subset S^3$ with the following three properties:

(a) $g(E(K)) \leq g$.

- (b) K does not admit a (t(K), n) position.
- (c) E(K) does not admits an essential surface S with $\chi(S) \ge 4 2gn$.

Fix *h* satisfying $2 \le h \le g$. There exist infinitely many knots in S^3 , each admitting a genus *h* Heegaard splitting of distance greater than max $\{2gn - 2, 2(h + n - 1)\}$, by [11, Theorem 3.1]. Let K_h be such a knot, and X_h its exterior.

Since X_h admits a genus h Heegaard splitting with distance greater than $2(h+n-1) \ge 2h$ (as $n \ge 1$), by [24, Corollary 4.7] this splitting must be minimal genus; in particular, $g(E(K_h)) = h$. Since X_h admits a Heegaard splitting with distance greater than 2(h+n-1), by Proposition 2.6, K_h does not admit a (h-1, n) = (t(K), n) position. Since X_h admits a Heegaard splitting with distance greater than 2gn-2, by Proposition 2.5, X_h does not admits an essential surface S with $\chi(S) \ge 4-2gn$. We see that $K_h \in \mathcal{K}_{g,n}$ and hence $\mathcal{K}_{g,n}$ contains infinitely many knots K with g(X) = h. This proves that $\mathcal{K}_{g,n}$ fulfills Conclusion (1) of Theorem 1.2.

Since (for any $K \in \mathcal{K}_{g,n}$) X does not admit an essential surface S with $\chi(S) \ge 4-2gn$, and K does not admit a (t(K), n) position, applying Proposition 3.3 with $m \le n$ and c = 0, we see that the knots in $\mathcal{K}_{g,n}$ fulfill Conclusion (2) of Theorem 1.2.

By [10, Theorem 1.2] for any knot $K' \subset S^3$, there exists N so that if n > N, then g(E(nK')) < ng(E(K')). This shows that $K' \notin \mathcal{K}_{g,n}$ for n > N. Hence $K' \notin \bigcap_{n=1}^{\infty} \mathcal{K}_{g,n}$. As K' was arbitrary, $\bigcap_{n=1}^{\infty} \mathcal{K}_{g,n} = \emptyset$.

This completes the proof of Theorem 1.2.

References

- A J Casson, C M Gordon, *Reducing Heegaard splittings*, Topology Appl. 27 (1987) 275–283 MR918537
- [2] K Hartshorn, Heegaard splittings of Haken manifolds have bounded distance, Pacific J. Math. 204 (2002) 61–75 MR1905192
- J Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001) 631– 657 MR1838999
- [4] W Jaco, *Lectures on three-manifold topology*, CBMS Regional Conference Series in Math. 43, Amer. Math. Soc. (1980) MR565450
- [5] J Johnson, Bridge number and the curve complex arXiv:math.GT/0603102
- [6] J Johnson, A Thompson, On tunnel number one knots which are not (1, n) arXiv: math.GT/0606226v3

- [7] **T Kobayashi, Y Rieck**, *Knots with* g(E(K)) = 2 and g(E(3K)) = 6 and Morimoto's Conjecture, to appear in Topology Appl. (special volume dedicated to Yves Mathieu and Michel Domergue) arXiv:math.GT/0701766
- [8] T Kobayashi, Y Rieck, Local detection of strongly irreducible Heegaard splittings via knot exteriors, Topology Appl. 138 (2004) 239–251 MR2035483
- [9] **T Kobayashi**, **Y Rieck**, *Heegaard genus of the connected sum of m–small knots*, Comm. Anal. Geom. 14 (2006) 1037–1077 MR2287154
- [10] T Kobayashi, Y Rieck, On the growth rate of the tunnel number of knots, J. Reine Angew. Math. 592 (2006) 63–78 MR2222730
- [11] Y N Minsky, Y Moriah, S Schleimer, High distance knots, Algebr. Geom. Topol. 7 (2007) 1471–1483 MR2366166
- [12] **K Miyazaki**, *Conjugation and the prime decomposition of knots in closed, oriented* 3-manifolds, Trans. Amer. Math. Soc. 313 (1989) 785–804 MR997679
- [13] Y Moriah, Heegaard splittings of knot exteriors arXiv:math.GT/0608137
- [14] Y Moriah, On boundary primitive manifolds and a theorem of Casson–Gordon, Topology Appl. 125 (2002) 571–579 MR1935173
- [15] Y Moriah, H Rubinstein, Heegaard structures of negatively curved 3-manifolds, Comm. Anal. Geom. 5 (1997) 375–412 MR1487722
- [16] Y Moriah, E Sedgwick, The Heegaard structure of Dehn filled manifolds arXiv: math.GT/07061927v1
- [17] K Morimoto, On the super additivity of tunnel number of knots, Math. Ann. 317 (2000) 489–508 MR1776114
- [18] K Morimoto, M Sakuma, Y Yokota, Examples of tunnel number one knots which have the property "1+1=3", Math. Proc. Cambridge Philos. Soc. 119 (1996) 113–118 MR1356163
- [19] Y Rieck, Heegaard structures of manifolds in the Dehn filling space, Topology 39 (2000) 619–641 MR1746912
- [20] Y Rieck, E Sedgwick, Finiteness results for Heegaard surfaces in surgered manifolds, Comm. Anal. Geom. 9 (2001) 351–367 MR1846207
- [21] Y Rieck, E Sedgwick, Persistence of Heegaard structures under Dehn filling, Topology Appl. 109 (2001) 41–53 MR1804562
- [22] M Scharlemann, Proximity in the curve complex: boundary reduction and bicompressible surfaces, Pacific J. Math. 228 (2006) 325–348 MR2274524
- [23] M Scharlemann, J Schultens, Comparing Heegaard and JSJ structures of orientable 3-manifolds, Trans. Amer. Math. Soc. 353 (2001) 557–584 MR1804508
- [24] M Scharlemann, M Tomova, Alternate Heegaard genus bounds distance, Geom. Topol. 10 (2006) 593–617 MR2224466

968

- [25] J Schultens, The classification of Heegaard splittings for (compact orientable surface) $\times S^1$, Proc. London Math. Soc. (3) 67 (1993) 425–448 MR1226608
- [26] J Schultens, Additivity of tunnel number for small knots, Comment. Math. Helv. 75 (2000) 353–367 MR1793793
- [27] E Sedgwick, Genus two 3-manifolds are built from handle number one pieces, Algebr. Geom. Topol. 1 (2001) 763–790 MR1875617
- [28] M Tomova, Distance of Heegaard splittings of knot complements arXiv: math.GT/0703474v2

Department of Mathematics, Nara Women's University Kitauoya-Nishimachi, Nara, 630-8506, Japan

Department of Mathematical Sciences, University of Arkansas Fayetteville, AR 72701

tsuyoshi@cc.nara-wu.ac.jp, yoav@uark.edu

Received: 1 May 2007 Revised: 24 April 2008