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Immersions of RP 2e�1

DONALD M DAVIS

GIORA DULA

JESÚS GONZÁLEZ

MARK MAHOWALD

We prove that RP 2e�1 can be immersed in R2eC1�e�7 provided e � 7 . If e � 14 ,
this is 1 better than previously known immersions. Our method is primarily an
induction on geometric dimension, with compatibility of liftings being a central issue.

57N35; 55S40

1 Statement of result and background

Our main result is the following immersion theorem for real projective spaces.

Theorem 1.1 If e � 7, then RP2e�1 can be immersed in R2eC1�e�7 .

This improves, in these cases, by 1 dimension upon the result of Milgram [8], who
proved, by constructing bilinear maps, that if n� 7 mod 8, then RPn can be immersed
in R2n�˛.n/�4 , where ˛.n/ denotes the number of 1s in the binary expansion of n.
In [3, Theorem 1.2], the first and fourth authors used obstruction theory to prove that
if n� 7 mod 8, then RPn can be immersed in R2n�D , where D D 14; 16; 17; 18 if
˛.n/ D 7; 8; 9;� 10. That result, with n D 2e � 1, is stronger than ours for e � 12.
If e � 13, then our result improves on the result of [3] by e � 13 dimensions. Thus
Theorem 1.1 improves on all known results by 1 dimension if e � 14.

In [6], James proved that RP2e�1 cannot be immersed in R2eC1�2e�ı where ı D
3; 2; 2; 4 for e�0; 1; 2; 3 mod 4. In [5], Gitler and Mahowald announced an immersion
result for RP2e�1 in dimension 1 greater than that of James’ nonimmersion, which
would have been optimal. However, a mistake in the argument of [5] was pointed out
by Crabb and Steer. The approach of our paper was initiated by Mahowald around
1970 in an unpublished attempt to prove an optimal immersion of RP2e�1 . In order to
improve our result to this extent, we would need to show compatibility of our liftings
with liftings given by the Radon–Hurwitz theorem (Eckmann [4]).
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Dedication This paper is dedicated to Michael Barratt on the occasion of his 81st
birthday.

2 Outline of proof

In this section we outline the proof of Theorem 1.1. In subsequent sections, we will fill
in details.

If � is a vector bundle over a compact connected space X , we define the geometric
dimension of � , denoted gd.�/, to be the fiber dimension of � minus the maximum
number of linearly independent sections of � . Equivalently, if dim.�/ D n, then
gd.�/ equals the smallest integer k such that the map X �

�! BO.n/ which classifies
� factors through BO.k/. The following lemma is standard (see eg Sanderson [9,
Theorem 4.2]). Here and throughout, �n denotes the Hopf line bundle over RPn . We
will often write Pn instead of RPn , and will denote the stunted space Pn=Pk�1 as
Pn

k
.

Lemma 2.1 Let �.n/ denote the number of positive integers i satisfying i � n and
i � 0; 1; 2; 4 mod 8. Suppose n > 8. Then RPn can be immersed in RnCk if and
only if gd..2�.n/� n� 1/�n/� k .

Thus Theorem 1.1 will follow from the following result, to the proof of which the
remainder of this paper will be devoted.

Theorem 2.2 If e � 7, then gd..22e�1�1� 2e/�2e�1/� 2e � e� 6.

The bulk of the work toward proving Theorem 2.2 will be a determination of upper
bounds for gd.2e�n/ for all n� 7 mod 8 by induction on e , starting with e D 7. A
similar method could be employed for all n, but we restrict to n� 7 mod 8 to simplify
the already formidable arithmetic. We let Ak DRP8kC7 , and denote gd.m�8kC7/ by
gd.m; k/.

The classifying map for 2e�8kC7 will be viewed as the following composite.

(2.3) Ak

d
�! .Ak �Ak/

.8kC7/ ,!
[
j

Aj �Ak�j

f�f
�! BO2e�1 �BO2e�1!BO2e :

Here d is a cellular map homotopic to the diagonal map, X .n/ denotes the n–skeleton
of X , and f classifies 2e�1� . We write BOm for BO.m/ for later notational conve-
nience.
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As a first step, we would like to use (2.3) to deduce that

gd.2e; k/�maxfgd.2e�1; j /C gd.2e�1; k � j / W 0� j � kg:

In order to make this deduction, we need to know that the liftings of the various
2e�1�8jC7 to various BOm have been made compatibly.

Definition 2.4 If � is a vector bundle over a filtered space X0 � � � � � Xk , we say
that

gd.� jXi/� di compatibly for i � k

if there is a commutative diagram

X0 ����! X1 ����! � � � ����! Xk??y ??y ??y
BOd0

����! BOd1
����! � � � ����! BOdk

����! BOdim.�/

where the map Xk ! BOdim.�/ classifies � , and the horizontal maps are the usual
inclusions.

Remark 2.5 In our filtered spaces, we always assume that the inclusions are cofibra-
tions.

Remark 2.6 Isomorphism classes of n–dimensional vector bundles over X corre-
spond to homotopy classes of maps of X into BOn . Thus one would initially say that
the diagram in Definition 2.4 commutes up to homotopy. However, by Lemma 2.7, we
may interpret this diagram, and other homotopy commutative diagrams that occur later,
as being strictly commutative. To apply the lemma, we will often, at the outset, replace
maps BOn! BOnCk by homotopy equivalent fibrations.

Lemma 2.7 If
A

f
����! E

i

??y ??yp

X ����!
g

B

commutes up to homotopy and p is a fibration, then f is homotopic to a map f 0 such
that p ıf 0 D g ı i .

Proof Let H W A� I ! B be a homotopy from p ıf to g ı i . By the definition of
fibration, there exists eH W A� I !E such that p ı eH DH and eH jA�0D f . TheneH jA� 1 is our desired f 0 .
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If X0 � � � � �Xk and Y0 � � � � � Yk are filtered spaces, we define, for 0� i � k ,

.X �Y /i WD

i[
jD0

Xj �Yi�j :

Then .X �Y /0� � � �� .X �Y /k is clearly a filtered space. We will prove the following
general result in Section 3.

Proposition 2.8 Suppose gd.� jXi/ � di compatibly for i � k and gd.�jYi/ � d 0i
compatibly for i � k . For 0 � j � k , let ej D max.di C d 0j�i W 0 � i � j /. Then
gd.� � �j.X � Y /j / � ej compatibly for j � k . Moreover, if X D Y and � D �,
then the maps .X � X /j

f
�! BOej

can be chosen to satisfy f ı T D f , where
T W X �X !X �X interchanges factors.

We will begin an induction by deriving in Theorem 4.1 some compatible bounds for
gd.128; i/. Proposition 2.8 will, after restriction under the diagonal map, allow us to
prove gd..

P
2ei /�n/ � maxf

P
gd.2ei �mi

/ W
P

mi D ng. These bounds are not yet
strong enough to yield new immersion results. We must improve the bounds by taking
advantage of paired obstructions. The following result will be proved in Section 3.
Note that if n< � , then the space BOnŒ�� defined below is not .�� 1/–connected.

Proposition 2.9 Let BOnŒ�� denote the pullback of BOn and the .�� 1/–connected
cover BO Œ�� over BO , and let s Dmin.�C 2m� 1; 4m� 1/.

(1) There are equivalences c0
1

and c0
2

such that the following diagram commutes.

BO2mŒ��
.s/

q1
����! .BO2mŒ��=BO2m�1Œ��/

.s/
c0

1
����! S2m

p2

??y p0
2

??y i

??y
BO2mC1Œ��

.s/
q2
����! .BO2mC1Œ��=BO2m�1Œ��/

.s/
c0

2
����! †P2m

2m�1
:

Preparatory to the next two parts, we expand this diagram as follows, with
ci D c0i ı qi and .X;A/ a finite CW pair.

A
f1
����! BO2m�1Œ��

.s/

j

??y p1

??y
X BO2mŒ��

.s/ c1
����! S2m

p2

??y i

??y
BO2mC1Œ��

.s/ c2
����! †P2m

2m�1
:
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(2) Suppose dim.X / < s , and we are given X
f
�! BO2mŒ��

.s/ such that f ı j D

p1 ı f1 and c1 ı f factors as X ! X=A
g
�! S2m with Œg� divisible by 2

in ŒX=A;S2m�.1 Then p2 ı f lifts to a map X
`
�! BO2m�1Œ��

.s/ whose
restriction to A equals f1 .

(3) Suppose, on the other hand, dim.X /� s , and we are given X
f 0

�!BO2mC1Œ��
.s/

such that f 0 ı j D p2 ıp1 ıf1 and c2 ıf
0 factors as X !X=A

g0

�! †P2m
2m�1

with Œ†g0� divisible by 2 in the stable group Œ†X=A; †2P2m
2m�1

�. Then f 0 is
homotopic rel A to a map which lifts to BO2mŒ��

.s/ .

In Section 4, we will implement Proposition 2.8 and Proposition 2.9 to prove that the
last part of the following important result follows by induction on e from the first five
parts and its validity when e D 7, while in Section 5, we will establish the first five
parts.

Theorem 2.10 There is a function g.e; k/ defined for e � 7 and k � 0 satisfying the
following.

(1) If k � 2e�3 , then g.e; k/D 2e .

(2) For all e , g.e; 0/D g.e; 1/D 0, and, if 2� k � 2e , then g.e; k/� 4kC 4.

(3) If 0� `� k=2, then g.eC 1; k/� g.e; `/Cg.e; k � `/� 1.

(4) If, for some ` with 0� `� k=2, we have g.eC1; k/Dg.e; `/Cg.e; k�`/�1,
then, for all ` with 0 � ` � .k � 1/=2, we have g.e; `/C g.e; k � 1� `/ <

g.eC 1; k/ and, if also k is even, then g.eC 1; k/� 2g.e; k=2/C 1.

(5) For all e and k , g.e; k/� g.e; k � 1/.

(6) gd.2e; k/� g.e; k/ compatibly for all k .

The function g will be defined in (5.1) and Definition 5.5. In Table 1, we list its values
for small values of the parameters. We prefer not to tabulate the values g.e; k/D 2e

when k > 2e�3 .

In Section 6, we apply the basic induction argument, Proposition 2.8, and the results
for gd.2e�/ in Theorem 2.10 to prove the following result by induction on t . This
clearly implies Theorem 2.2 and hence Theorem 1.1.

Proposition 2.11 For e � 7 and t � 0, gd..2e C 2eC1 C � � � C 2eCt�1/�2e�1/ �

2e � e� 6.

1Note that ŒX=A;S2m� is in the stable range, from which it gets its group structure.
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k

1 2 3 4 5 6 7 8 9 10 11

7 0 16 19 32 35 48 51 64 67 80 83

8 0 15 18 32 34 47 50 64 66 79 82

e 9 0 14 17 31 33 46 49 64 66 78 81

10 0 13 16 30 32 45 48 63 65 77 80

11 0 12 16 29 31 44 47 62 64 76 79

12 0 12 16 28 30 43 46 61 63 75 78

13 0 12 16 27 29 42 45 60 62 74 77

14 0 12 16 26 28 41 44 59 61 73 76

k

12 13 14 15 16 17 18 19 20 21 22

7 96 99 112 115 128

8 96 98 111 114 128 130 143 146 160 162 175

e 9 95 97 110 113 128 130 142 145 159 161 174

10 94 96 109 112 128 130 141 144 158 160 173

11 93 95 108 111 127 129 140 143 157 159 172

12 92 94 107 110 126 128 139 142 156 158 171

13 91 93 106 109 125 127 138 141 155 157 170

14 90 92 105 108 124 126 137 140 154 156 169

k

23 24 25 26 27 28 29 30 31 32

8 178 192 194 207 210 224 226 239 242 256

9 177 192 194 206 209 223 225 238 241 256

e 10 176 191 193 205 208 222 224 237 240 256

11 175 190 192 204 207 221 223 236 239 256

12 174 189 191 203 206 220 222 235 238 255

13 173 188 190 202 205 219 221 234 237 254

14 172 187 189 201 204 218 220 233 236 253
Table 1: Values of g.e; k/ when e � 14 and k � 32 .

3 Proof of general lifting results

In this section, we prove Proposition 2.8 and Proposition 2.9. For the first one, we find
it more convenient to work with sections rather than geometric dimension.
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Theorem 3.1 Let X0� � � � �Xk and Y0� � � � � Yk be filtered spaces, and let � (resp.
�) be a vector bundle over Xk (resp. Yk ). Suppose given m0 (resp. n0 ) sections of �
on Xk (resp. � on Yk ), of which the first mi (resp. ni ) are linearly independent (l.i.)
on Xi (resp. Yi ) for 0� i � k . Let

pj Dmin.mi C nj�i W 0� i � j /:

Let

Wj D

j[
iD0

Xi �Yj�i :

Then there are p0 sections of ��� on Wk of which the first pj are linearly independent
on Wj for 0 � j � k . Moreover, if `C i � j and m` C ni � pj , then the first pj

sections are l.i. on X` �Yi .

Note that we have m0 � � � � �mk , n0 � � � � � nk , and p0 � � � � � pk .

The following result will be used in the final step of the proof of Theorem 3.1.

Lemma 3.2 Suppose � is an n–dimensional trivial vector bundle over a space X

with l.i. sections t1; : : : ; tn . Suppose s1; : : : ; sr are l.i. sections of � , each of which
is a linear combination with constant coefficients of the ti . Then there is a set
s1; : : : ; sr ; s

0
rC1

; : : : ; s0n of linearly independent sections of � , with all these sections
being linear combinations with constant coefficients of the ti .

Proof Because of the constant-coefficient assumption, this is just a consequence of
the result for vector spaces, that a basis for a subspace can be extended to a basis for
the whole space.

Note that the assumption about constant coefficients was required. For example, the
section s.x/D .x;x/ of S2 �R3 cannot be extended to a set of three l.i. sections.

Proof of Theorem 3.1 Let r1; : : : ; rm0
be the given sections of � on Xk , and

s1; : : : ; sn0
the given sections of � on Yk . These are considered as sections of � � �

by using 0 on the other component. Clearly fr1; : : : ; rm0
; s1; : : : ; sn0

g is a set of p0

sections on Wk which is linearly independent on W0 . The proof will proceed by
finding p1 linear combinations, always with constant coefficients, of these sections
which are l.i. on W1 , then p2 linear combinations of these new sections which are
l.i. on W2 , etc, until going into the last stage we have pk�1 sections which are l.i. on
Wk�1 , and we find pk linear combinations of them which are l.i. on Wk . Now we
apply the lemma repeatedly, starting with the last pk sections. At the first step, we
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extend this set to a set of pk�1 sections l.i. on Wk�1 , and continue until going into
the last stage, where we have p1 sections which are combinations of the original p0

sections and satisfy the conclusion of the theorem for 1� i � k . We apply the lemma
one last time to extend the set of p1 sections to the desired set of p0 sections.

Here is an explicit algorithm for the sections described in the first half of the preceding
paragraph. We may assume without loss of generality that m0 � n0 .

For j from 0 to k then the following hold.

� For i from 1 to pj � n0 (resp. pj �m0 ), let r
.j/
i D ri (resp. s

.j/
i D si ). (Note

that if n0 � pj , then nothing happens at this step.)

� For i from max.1;pj � n0 C 1/ to min.m0;pj /, let both r
.j/
i and s

.j/
pjC1�i

equal r
.j�1/
i C s

.j�1/
pjC1�i

.

� Then the sections r
.j/
i and s

.j/
i constructed in the two previous steps give the

sections which are l.i. on Wj . (Each section constructed in the second step can
be counted as an r or an s , but is only counted once.)

We must show that these have the required linear independence. Before doing so,
we illustrate with an example, computed by Maple. Let k D 4, Œm0; : : : ;m4� D

Œ11; 6; 4; 1; 0� and Œn0; : : : ; n4�D Œ10; 8; 3; 2; 0�. Then Œp0; : : : ;p4�D Œ21; 16; 14; 9; 7�.
The 16 sections l.i. on W1 are

r1; : : : ; r6; r7C s10; r8C s9; r9C s8; r10C s7; r11C s6; s5; : : : ; s1:

The 14 sections l.i. on W2 are

r1; r2; r3; r4; r5C r7C s10; r6C r8C s9; r7C r9C s10C s8; r8C r10C s9C s7;

r9C r11C s8C s6; r10C s7C s5; r11C s6C s4; s3; s2; s1:

The 9 sections l.i. on W3 are

r1C r6C r8C s9; r2C r7C r9C s10C s8; r3C r8C r10C s9C s7;

r4C r9C r11C s8C s6; r5C r7C r10C s10C s7C s5;

r6C r8C r11C s9C s6C s4; r7C r9C s10C s8C s3; r8C r10C s9C s7C s2;

r9C r11C s8C s6C s1:
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The 7 sections l.i. on W4 are

r1C r3C r6C 2r8C r10C 2s9C s7;

r2C r4C r7C 2r9C r11C s10C 2s8C s6;

r3C r5C r7C r8C 2r10C s10C s9C 2s7C s5;

r4C r6C r8C r9C 2r11C s9C s8C 2s6C s4;

r5C 2r7C r9C r10C 2s10C s8C s7C s5C s3;

r6C 2r8C r10C r11C 2s9C s7C s6C s4C s2;

r7C 2r9C r11C s10C 2s8C s6C s3C s1:

Now we continue with the proof. The property described in the first paragraph of the
proof, that the sections claimed to be l.i. on Wj are linear combinations with constant
coefficients of those on Wj�1 , is clear from their inductive definition.

Next we easily show that if i > pj � n0 , then

r
.j/
i D s

.j/
pjC1�i

D ri C

X
`>i

c`r`C spjC1�i C

X
`>pjC1�i

d`s`

with c` and d` integers. The point here is that the additional terms have subscript
greater than i or pj C 1� i . The proof is immediate from the inductive formula

r
.j/
i D r

.j�1/
i C s

.j�1/
pjC1�i

and the fact that pj �pj�1 . Indeed, from r
.j�1/
i we obtain terms r�i and s�pj�1C1�i ,

and from s
.j�1/
pjC1�i

we obtain terms s�pjC1�i and r�pj�1�pjCi .

Finally we show that the asserted sections are l.i. on Wj . Let x 2 X` � Yj�` . Note
that fr1.x/; : : : ; rm`

.x/g is l.i., as is fs1.x/; : : : ; snj�`
.x/g, and that pj �m`C nj�` .

If we form a matrix with columns labeled

r1; : : : ; rm0
; sn0

; : : : ; s1;

and rows which express the sections, ordered as

(3.3) r
.j/
1
; : : : ; r

.j/

min.m0;pj /
; s.j/pj�m0

; : : : ; s
.j/
1
;

in terms of the column labels, then, by the previous paragraph, the number of columns
is � (usually strictly greater than) the number of rows, the entry in position .i; i/ is 1
for i �min.m0;pj /, and all entries to the left of these 1s are zero. If i >min.m0;pj /,
then all entries in the r -portion of row i are zero. Moreover an analogous statement
is true if the order of the rows and of the columns are both reversed. Thus there are
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1s on the diagonal running up from the lower right corner of the original matrix (for
min.n0;pj / positions) and zeros to their right.

If a linear combination of our sections applied to x is 0, then the triangular form
of the matrix implies that the first m` coefficients are 0, while the triangular form
looking up from the lower right corner implies that the last nj�` coefficients are
0. Since pj � m` C nj�` , this implies that all coefficients are 0, hence the desired
independence.

The same argument works for the last statement of the proposition. For k satisfying
j � k � `C i , replace Wk by Wk [ .X` � Yi/. Then everything goes through as
above.

Proof of Proposition 2.8 Let D D dim.�/ and D0 D dim.�/. Then di , d 0i , ei , and
.X �Y /i of Proposition 2.8 correspond to D �mi , D0 � ni , DCD0 �pi , and Wi

of Theorem 3.1, respectively. The compatible gd bounds may be interpreted as vector
bundles �i over Xi of dimension di and isomorphisms � jXi � �i ˚ .D � di/ and
�i jXi�1 � �i�1 ˚ .di � di�1/. The trivial subbundles yield, for all i , D � di l.i.
sections of � on Xi such that the restrictions of the sections on Xi to Xi�1 are a
subset of the sections on Xi�1 . Each of the sections on X0 has a largest Xi for which
it is one of the given l.i. sections. By Atiyah [1, Section 1.4.1], this section on Xi

can be extended over Xk (although probably not as part of a linearly independent set).
Analogous statements are true for sections of �jYi .

By Theorem 3.1, there are D CD0 � e0 l.i. sections of � � � on W0 of which the
first DCD0� ei are l.i. on Wi . Taking orthogonal complements of the spans of the
sections yields the desired compatible bundles on Wi of dimension ei , yielding the
first part of Proposition 2.8.

For the second part, first note that in the algorithm in the proof of Theorem 3.1, if the
r ’s and s ’s are equal, then the set of sections constructed on each Wi is invariant under
the interchange map T . Thus the same will be true of the orthogonal complement of
their span.

Proof of Proposition 2.9

(1) Let F1DS2m�1 denote the fiber of BO2m�1Œ��!BO2mŒ��. There is a relative
Serre spectral sequence for

(3.4) .CF1;F1/! .BO2mŒ��;BO2m�1Œ��/! BO2mŒ��:

The fibration V2m!BO2mŒ��!BO Œ�� shows that the bottom class of BO2mŒ��

is in dimension � min.�; 2m/. The spectral sequence of (3.4) shows that
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H�.S
2m/!H�.BO2mŒ��=BO2m�1Œ��/ has cokernel beginning in dimension

� sC1, and so the map is an s–equivalence. Thus the inclusion of the s–skeleton
of BO2mŒ��=BO2m�1Œ�� factors through S2m to yield the map c0

1
, which is an

equivalence.
The second map is obtained similarly. A map

†P2m
2m�1

`
�! BO2mC1Œ��=BO2m�1Œ��

is obtained as the inclusion of a skeleton of CF2=F2 , where F2 D V2mC1;2 is
the fiber of BO2m�1Œ��!BO2mC1Œ��. The relative Serre spectral sequence of

(3.5) .CF2;F2/! .BO2mC1Œ��;BO2m�1Œ��/! BO2mC1Œ��

implies that coker.`�/ begins in dimension � sC 1, determined by

H2m.CF2;F2/˝Hmin.�;2mC1/.BO2mC1Œ��/

and the first “product” class in H4m.†V2mC1;2/. The obtaining of c0
2

now
follows exactly as for c0

1
.

(2) Let Q WD BO2mC1Œ��=BO2m�1Œ�� and E WD fiber.BO2mC1Œ�� ! Q/. The
commutative diagram of fibrations

V2mC1;2 ����! BO2m�1Œ�� ����! BO2mC1Œ��??y ??y ??y
�Q ����! E ����! BO2mC1Œ��

implies the quotient E=BO2m�1Œ�� has the same connectivity as �Q=V2mC1;2 ,
which is 1 less than that determined from (3.5); that is, E=BO2m�1Œ�� is .s�1/–
connected. Thus, since dim.X / < s , the vertical maps in

BO2m�1Œ��
.s/ ����! BO2mC1Œ��

.s/ ����! †P2m
2m�1??y ??y ??y

E ����! BO2mC1Œ�� ����! Q

are equivalences in the range relevant for maps from X , A, and X=A. Since
the bottom row is a fibration, we may consider the top row to be one, too, as far
as X is concerned.
Since g is divisible by 2, and 2�2m.†P2m

2m�1
/D0, we deduce that the composite

X=A
g
�! S2m i

�! †P2m
2m�1

represents the 0 element of ŒX=A; †P2m
2m�1

�; ie the map is null-homotopic rel �.
There is a commutative diagram as in (3.6) with the left sequence a cofiber
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sequence and the right sequence a fiber sequence in the range of dim.X /.

(3.6)

A
f1
����! BO2m�1Œ��

.s/

j1

??y j2

??y
X

p2ıf
����! BO2mC1Œ��

.s/

q

??y ??y
X=A

iıg
����! †P2m

2m�1

We have just seen that there is a basepoint-preserving homotopy

H W X=A� I !†P2m
2m�1

from i ıg to a constant map. There is a commutative diagram

X � 0[A� I �! BO2mC1Œ��??y ??y
X � I

q�I
����! X=A� I

H
����! †P2m

2m�1

where the top map is p2 ı f on X � 0 and j2 ı f1 on each A� ftg. By the
Relative Homotopy Lifting Property of a fibration, there exists a map eH W X �
I ! BO2mC1Œ�� making both triangles commute. When t D 1, it maps into
BO2m�1Œ��, since it projects to the constant map at the basepoint of †P2m

2m�1
.

(3) We use the fact that 2 � 1†P2m
2m�1

factors as

†P2m
2m�1

col
�! S2mC1 �

�! S2m ,!†P2m
2m�1

to deduce that the composite

†X=A
†g0

�! †2P2m
2m�1

col
�! S2mC2

is null-homotopic since Œ†g0� is divisible by 2. Note that we needed to suspend
once since if dim.X /D 4m� 1, then ŒX=A; †P2m

2m�1
� might not have a group

structure. Since

ŒX=A;S2mC1�
†
�! Œ†.X=A/;S2mC2�

is bijective, we deduce that X=A
colıg0
�! S2mC1 is null-homotopic.

An argument similar to the one in the beginning of the proof of (2) shows that
BO2mŒ��!BO2mC1Œ��! S2mC1 is a fibration through dimension min.�C
2m�1; 4m/� s . Since dim.X /� s , the lifting follows as in the proof of (2).
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4 Inductive determination of a bound for gd.2e; k/

In this section, we prove that part (6) of Theorem 2.10 follows from its first five
parts, together with its validity for e D 7. We begin by proving the validity when
eD 7. The following result is stronger than the required liftings for eD 7; ie, we have
m.k/� g.7; k/ and the inequality is strict if k is even with 4� k � 14. The reason
for beginning our induction with liftings weaker than the best results that we are able
to prove is to fit them into a simple formula that works for all values of e . Here and
throughout we use the standard notation that �.�/ denotes the exponent of 2 in an
integer.

Theorem 4.1 Let

m.k/D

8̂̂̂̂
<̂
ˆ̂̂:

0 k D 0; 1

16 k D 2

8k � 5 k odd, 3� k � 15

8kC �.k/� 4 k even, 4� k � 16:

There are compatible liftings of 128�8kC7 to BOm.k/ for k � 0.

Proof Let Hk denote the Hopf bundle over quaternionic projective space HPk . Let
m0.k/D 13 if k D 2, and otherwise m0.k/Dm.k/. We will use the work of the first
and fourth authors [2, Theorem 1.1b] to prove

(4.2) there are compatible liftings of 32H2kC1 to BOm0.k/ for 2� k � 16.

Three things are required to prove this. First we need that, for k � 15 and all i � 2kC1

satisfying also 4i � 1�m0.k/,

�
�
32
i

�
� �.j�4i�1.Pm0.k/ ^ bo/j/:

This is easily verified using �
�
32
i

�
D 5� �.i/ and, for 1� � � 3,

(4.3) �.j�4i�1.P4aC� ^ bo/j/D

8̂<̂
:

4� � i D aC 1

4 i D aC 2

8� � i D aC 3:

For example, if k is odd, we have m0.k/D 8k�5. Then aD 2k�2 and �D 3 in (4.3),
and for i D h2k � 1; 2k; 2k C 1i, we have �

�
32
i

�
D h5; 4; 5i and �.j�4i�1.P8k�5 ^

bo/j/D h1; 4; 5i.
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Secondly, we need that �4i�1.Pm0.k// ! �4i�1.Pm0.k/ ^ bo/ is injective for i �

2k C 1. This is obtained from Tables 8.4, 8.8, 8.14, 8.15, and 8.16 of the fourth
author’s paper[7]. These show that for m0.k/� h3; 7; 13; 14; 15i mod 16 and 4i �1�

m0.k/Ch8; 4; 6; 5; 4i, the asserted injectivity is true. Now the liftings follow from [2,
Theorem 1.1b]. If k D 16, the lifting follows for dimensional reasons.

The third thing we need is compatibility. We must show that

HP2k�1 ����! BOm0.k�1/??y ??y
HP2kC1 ����! BOm0.k/

commutes for k � 3. The two composites agree when followed into BO , and so
their obstructions to being homotopic lie in H�.HP2k�1I��.Vm0.k///. If k is even,
then 8k � 4 < m0.k/ so the groups are 0. If k is odd, the result follows since
�8k�4.V8k�5/D 0.

We precede the compatible liftings of (4.2) by the canonical maps RP8kC7!HP2kC1 ,
obtaining compatible liftings of 128�8kC7 to BOm.k/ for k � 2. The bundle 128�15

is trivial. To insure compatibility of the liftings on RP15 and RP23 , we note that
the obstructions to compatibility lie in H�.RP15I��.V16//D 0. This is why we use
m.k/D 16, rather than 13.

Now we prove the induction step. Let

�.4aC b/D 8aC 2b if 0� b � 3:

It satisfies that 2k�n is nontrivial if and only if n� �.k/. Let �D �.e� 1/. Assume
that we have obtained compatible liftings of 2e�1�8kC7 to BOg.e�1;k/Œ�� for all k .
For 0� k � 2e�3 , define

g1.e; k/ WDmaxfg.e� 1; i/Cg.e� 1; k � i/ Wmax.0; k � 2e�4/� i � Œk=2�g:

Note that by Theorem 2.10.(3),

(4.4) g.e; k/� g1.e; k/� 1:

Recall Ak D P8kC7 , and let

.A�A/k D

k[
iD0

Ai �Ak�i :
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Then by Proposition 2.8 there are compatible symmetric liftings `k of 2e�1� � 2e�1�

on .A�A/k to BOg1.e;k/Œ�� for all k . We precede by compatible maps dk WAk! .A�

A/k , cellular maps homotopic to the diagonal. The composites Ak

`kıdk
�! BOg1.e;k/Œ��

are compatible liftings of 2e�8kC7 for all k .

By decreasing induction on k starting with k D 2e�3 , we will construct compatible
factorizations through BOg.e;k/Œ�� of the maps `k ıdk . Assume inductively that, for all
j >k , compatible factorizations, up to homotopy rel Ak , of j̀ıdj through BOg.e;j/Œ��

have been attained. If g.e; k/� g1.e; k/, then no factorization of `k ı dk is required,
and so our induction on k is extended. So we may assume g.e; k/D g1.e; k/� 1.

Let hD Œk=2�. By Theorem 2.10.(4),

(4.5) g1.e; k � 1/� g.e; k/� 1:

By (4.5), Theorem 2.10.(4) and the last part of Theorem 3.1 (which is required for
compatibility of the lifts of .A�A/k�1 and Ah �Ah to BOg.e;k/�1 ), we have the
commutative diagram below, similar to (3.6).

Ak�1

d 0

����! .A�A/k�1[Ah �Ah ����! BOg.e;k/�1Œ��
.8kC7/??y ??y ??y

Ak .A�A/k BOg.e;k/Œ��
.8kC7/


 


 ??y

Ak

dk
����! .A�A/k

`k
����! BOg.e;k/C1Œ��

.8kC7/??y ??y c

??y
Ak=Ak�1

d
����! .A�A/k=..A�A/k�1[Ah �Ah/

`
����! C;

where C D Sg.e;k/C1 if g.e; k/ is odd, and C D†P
g.e;k/

g.e;k/�1
if g.e; k/ is even. The

maps labeled d are cellular maps homotopic to the diagonal. The map c is obtained
similarly to the first paragraph of the proof of Proposition 2.9. Since dim.Ak/D 8kC7,
the application of Proposition 2.9 requires that

8kC 7�min.�Cg.e; k/� 1; 2g.e; k/� 1/:

The second follows from Theorem 2.10.(2), while the first follows from � � 2e� 2

and g.e; k/� 8k � eC 2 since e � 8.

The quotient .A�A/k=.Ah�Ah/ equals B_T .B/, where T reverses the order of the
factors, and B is the union of all cells ei � ej with i < j . By the symmetry property
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of `k , `jT .B/D .`jB/ ıT . Since T ı d ' d , we conclude that ` ı d is divisible by
2. Indeed, with rB denoting the retraction onto B ,

Œ` ı d �D Œ.`jB/ ı rB ı d �C Œ.`jT .B// ı rT .B/ ı d �

and we have

Œ.`jT .B// ı rT .B/ ı d �D Œ.`jT .B// ıT ı rB ı d �D Œ.`jB/ ı rB ı d �:

Thus, by Proposition 2.9, `k ı dk is homotopic rel Ak�1 to a map which lifts to
BOg.e;k/Œ��. Note that the lifting of .A�A/k�1[Ah �Ah into BOg.e;k/�1Œ�� was
not needed if g.e; k/ is odd. We have extended our inductive lifting hypothesis, and
so have proved that there are compatible liftings of Ak to BOg.e;k/Œ�� for all k . This
extends the induction on e and proves Theorem 2.10.(6), assuming the first five parts
of Theorem 2.10.

5 The function g.e; k/

In this section, we define the function g.e; k/ which has been used in the previous
sections, and prove the first five parts of Theorem 2.10, its numerical properties which
were already used to prove Theorem 2.10.(6), its important geometrical property.

We find it convenient to deal with the complementary function G defined by

(5.1) G.e; k/D 8k �g.e; k/:

It has relatively small values, in which patterns are more readily apparent. This function
G will be defined using several auxiliary functions.

We first define a function S for k � 2 by
(5.2)

S.k/D 8k�13ŒkC1
2
�C2˛.k/C2 min.3; �.k�1//C

8̂<̂
:
�1 k � 0 .2/

2 k � 1 .8/ and ˛.k/¤ 2

4 otherwise.

Then S.k/D8k�s.k/, where s.k/ is the stable value of g.e; k/ when e is sufficiently
large. The first values of S are as follows.

k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
S.k/ 4 8 7 13 12 16 13 21 18 22 21 27 26 30 25 33 30 34
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It will occasionally be useful to set S.0/D 0 and S.1/D 8 , consistent with g.e; 0/D 0 and
g.e; 1/D 0 .

Values of k � 1 mod 8 receive special treatment. They are excluded in the domain of some of
our functions. For example, for k 6� 1 mod 8 with k � 2 , we define V .k/ by

V .k/D ˛.k/�

(
2 k � 3 .4/

1 k 6� 3 .4/:

The reasons for defining some of these functions will be presented shortly.

We also define functions �0 and R as follows.

�0.k/D

(
�.k/ k even

�4 k odd,

and, for k 6� 1 mod 8,

(5.3) R.k/D S.k/C �0.k/�V .k/:

The first few values of R are given as follows.

k 2 3 4 5 6 7 8 10 11 12 13 14 15 16 18 19
R.k/ 5 4 9 8 12 11 16 18 17 22 21 25 24 29 30 29

It will also be useful to introduce the notation hni D max.0; n/ . We will frequently use the
simple fact that for any number X ,

(5.4) X Ch�X i � 0:

Now we can define our function G . An integer k is decomposable if it can be written as
k D k0 C � � � C kr with r � 1 and �.ki/ > R.ki�1/ for 1 � i � r . Because each ki

must be preceded in the binary expansion of k by a long string of 0’s, it is clear that a
decomposable integer has a unique maximal decomposition. The smallest values of k admitting
a decomposition are 35, 66, and 67, with k0D 3 , 2, 3, respectively. A simple decomposition is a
maximal decomposition with rD1 . The smallest value of k admitting a multiple decomposition
is 255C 35 with k0 D 3 and k1 D 32 .

Definition 5.5 If 2� k � 2e�3 and .e; k/¤ .7; 9/ , we define

G.e; k/D

(
min.S.k/;G0.e; k// k 6� 1 .8/

min.S.k/; 6CG0.e; k � 1// k � 1 .8/;

where, for k 6� 1 mod 8,

(5.6) G0.e; k/D he� 6� �0.k/i �
X
ki

hmin.�.ki/; e� 6/�R.ki�1/i:
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The sum here is taken over all ki , i � 1 , in a maximal decomposition of k . The exceptional
value is G.7; 9/D 5 , not 6 as the formula would give.

The terms in the sum in (5.6) will sometimes be called deviations. We do not define G.e; 0/ ,
G.e; 1/ , or G.e; k/ for k > 2e�3 ; instead we just define the complementary function g by
g.e; 0/D g.e; 1/D 0 and g.e; k/D 2e�3 for k > 2e�3 , and observe that the crucial properties
(3) and (4) in Theorem 2.10 are easily seen to be satisfied whenever these extreme values are
involved.

In the next two pages, we provide some general discussion of what led to the rather complicated
formula for g.e; k/ . First we describe what led to the basic formula g.e; k/� 8k �he� 6�

�0.k/i , modified when k � 1 mod 8. We began with the initial values m.k/ of Theorem 4.1 for
g.7; k/ and used a computer program implementing properties (3) and (4) of Theorem 2.10 to
obtain bounds for g.e; k/ for larger e . Except perhaps for the first few entries in a k–column,
the values 8k � .e � 6� �0.k// when k 6� 1 mod 8, and g.e; 8`C 1/ D g.e; 8`/C 2 , were
apparent until issues of stabilization, which we will discuss shortly, became involved. However,
there was no apparent regular pattern for the first few entries in each k–column. The formula
8k �he� 6� �0.k/i was achieved after additional computer experimentation as the simplest
general formula satisfying g.7; k/�m.k/ and consistency with Theorem 2.10.

Next we explain where S.k/ came from. It is related to the condition g.e; k/� 4kC 4 , which
says that our lifting methods only work in the stable range. In an earlier version of this paper,
we used the triviality of 2�.n/�n to give 0 as the value of g.e; k/ when e > 4kC3 , but we were
unable to prove that this could be done compatibly with our other liftings; ie that the liftings
which we obtain inductively can be done so that their restrictions to appropriate skeleta are
trivial. By forcing g.7; 2/ D 16 , we could, as noted in the proof of Theorem 4.1, guarantee
that our liftings restrict to a trivial bundle on P 15 , the case k D 1 . For reasons of stability,
we forced g.e; 2/ � 12 and g.e; 3/ � 16 . Forcing g.e; 4/ � 20 is not strong enough, since,
with g.15; 2/D 12 and g.15; 4/D 25 , we could not obtain g.16; 4/D 24 consistently with
property (4) of Theorem 2.10. Thus g.e; 4/D 25 for e � 15; ie s.4/D 25 . This translates to
our value S.4/D 8 � 4� s.4/D 7 .

To be consistent with Theorem 2.10, our function S must satisfy the inequalities of the following
proposition, the proof of which is straightforward, although somewhat tedious, and is omitted.

Proposition 5.7 The function S defined in (5.2) satisfies

S.i C j /� S.i/CS.j /C 1

and
S.2i/� 2S.i/� 1;

with equality in the first if i D 2t and 2� j � 2t � 1 or j D 2t C 1 , and equality holds in the
second if i D 2t . Thus S may be defined by S.2/D 4 , S.3/D 8 , and

S.k/Dmin.S.i/CS.k � i/C 1; 2� i < k=2; 2S.k=2/� 1/:
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To be consistent with property (3) of Theorem 2.10, our function G must satisfy the property
stated in the next theorem, the proof of which will occupy much of this section.

Theorem 5.8 If e � 8 , and 2� i; j � 2e�4 , then

(5.9) G.e� 1; i/CG.e� 1; j /C 1�G.e; i C j /� 0:

The stabilization given by S.k/ and the requirement (5.9) are what lead to the complicated
sum in (5.6). The first example of this is for G.11; 3/CG.11; 32/C 1�G.12; 35/ . Since
G0.11; 3/ D 9 > S.3/ D 8 , we have G.11; 3/ D 8 . Also G.11; 32/ D 11� 6� 5 D 0 , and
h12� 6� �0.35/i D 10 . Thus we must subtract 1 from h12� 6� �0.35/i in G.12; 35/ in order
that (5.9) will hold. This is accounted for by the decomposition of 35 with k1 D 3 . The value
R.3/D 4 is the amount that �.k � 3/ must exceed in order that the decomposition affects the
value of G.e; k/ .

Note that 11 is the smallest value of e for which G.e; 3/¤ he� 6� �0.3/i . This is obtained by
solving

e� 6� �0.3/D S.3/C 1;

obtaining e D 11 . We want R.3/ to be 1 less than the value of t which satisfies

G.11; 3/CG.11; 2t /C 1� h12� 6� �0.2t
C 3/i D �1:

Here G.11; 3/ � h12 � 6 � �0.2t C 3/i necessarily equals �2: 1 from 12 � 11 , and 1 from
G.11; 3/DG0.11; 3/� 1 . Thus we need t to satisfy 0DG.11; 2t /D 11� 6� t , and so

R.3/D t � 1D .S.3/C �0.3/C 6/� 6D S.3/C �0.3/;

consistent with (5.3), since V .3/D 0 .

The way V arises can be seen by comparing the requirements, for t � 5 ,

G.e; 2t
C 5/�G.e� 1; 2/CG.e� 1; 2t

C 3/C 1

and
G.e; 2t

C 5/�G.e� 1; 5/CG.e� 1; 2t /C 1:

The first reduces to, for e moderately large,

G.e; 2t
C 5/� S.2/C e� 6� t CS.3/D eC 6� t;

while the second becomes

G.e; 2t
C 5/� S.5/C e� 6� t D eC 7� t:

We must use the first condition because S.2/CS.3/ < S.5/ . The value V .5/D 1 measures
this. Our V .k/ satisfies that it is the largest r such that k D i0C � � �C ir with

S.i0C � � �C it /D S.i0C � � �C it�1/CS.it /C 1

for 1� t � r .
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This concludes our discussion of the rationale behind the definition of G . The following
proposition will be needed shortly (see (5.3)).

Proposition 5.10 Let S 0.k/D S.k/�V .k/DR.k/� �0.k/ . If i; j ; i C j 6� 1 mod 8 , then

S 0.i/CS 0.j /� S 0.i C j /:

Moreover, if i < 2�.j/ , then equality is obtained.

Proof One easily verifies that

S 0.k/D 8k � 13ŒkC1
2
�C˛.k/C

8̂̂<̂
:̂

0 k � 0 .2/

8 k � 3 .4/

9 k � 5 .8/:

For 1�m� 4 , let �m denote the mth part of the above formula for S 0.k/ , and let  m.i; j /D

�m.i/C�m.j /��m.i C j / . Then

 m.i; j /D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

0 mD 1

0 mD 2; ij even

�13 mD 2; ij odd

�
�

iCj
i

�
mD 3

� 16 mD 4; ij odd

�1 mD 4; i C j � 5 .8/ and i or j � 3 .4/

� 0 mD 4; otherwise.

Since
�

iCj
i

�
is even if i C j � 5 .8/ and i � 3 .4/ , the inequality follows.

For the second part, one easily sees that, if i < 2�.j/ , then  m.i; j /D 0 for 1�m� 4 . When
mD 4 , it is true because i � i C j mod 8 (or �.j /D 2 and i D 2 or 3).

We now begin the lengthy proof of Theorem 5.8. In order to keep the number of cases and
subcases within reason, we split the theorem into two parts. Most of the work will go into
proving the following result.

Theorem 5.11 If e � 8 , 2� i; j � 2e�4 , and i; j ; i C j 6� 1 mod 8, then (5.9) holds.

Proof We divide into cases depending upon whether S.i/ and/or decompositions are involved.

Case 1 Neither i nor j decomposes, G.e � 1; i/¤ S.i/ , and G.e � 1; j /¤ S.j / . In this
case, the LHS of (5.9) becomes

(5.12) � he� 7� �0.i/iC he� 7� �0.j /iC 1� he� 6� �0.i C j /i:
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By considering separately the four subcases (a) i and j odd, (b) i odd, j even, (c) �.j / >
�.i/ > 0 , and (d) �.i/D �.j / > 0 , one easily shows that (5.12) is � 0 in each subcase. Note
that if iCj decomposes, then the LHS of (5.9) is greater than (5.12), and so we need not worry
about this possibility here.

Case 2 G.e� 1; i/D S.i/ and i does not decompose.

Subcase 2a Also, G.e�1; j /DS.j / . Then the LHS of (5.9) is �S.i/CS.j /C1�S.iCj /�

0 , by Proposition 5.7. The remaining subcases of Case 2 now assume that G.e� 1; j / < S.j / .

Subcase 2b j does not decompose, and �.j / � �.i/ . Then �0.i C j / � �0.j / , and so the
LHS of (5.9) is

� S.i/Che� 7� �0.j /iC 1� he� 6� �0.i C j /i � S.i/ > 0:

Subcase 2c j does not decompose, and �.j / > �.i/ . We allow for the possibility that
i might serve as the bottom part of a decomposition of i C j . This will be true if �.j / is
sufficiently large. Because of our h�i–notation, our analysis is valid regardless. This time
�0.i/D �0.i C j / , and so the LHS of (5.9) is

� S.i/Che� 7� �.j /iC 1� he� 6� �0.i/iC hmin.�.j /; e� 6/�S.i/� �0.i/CV .i/i:

If �.j /� e� 7 , this is � V .i/� 0 . If �.j /� e� 6 , it simplifies to

(5.13) � V .i/C 1C e� 6� �0.i/� he� 6� �0.i/i:

Since j � 2e�4 and �.i/ < �.j / , we have �0.i/� e� 5 , and so (5.13) is � V .i/� 0 .

Subcase 2d j admits a decomposition. We consider a 2–stage decomposition j D j0C j1C

2t A with A odd and �.j1/ >R.j0/ . It will be clear that the argument here can be adapted to a
longer decomposition. Letting D � 0 denote any amount added for a decomposition of i C j ,
the LHS of (5.9) becomes, using Proposition 5.10,

S.i/C .e� 7� �0.j //� .�.j1/�R.j0//

�.min.t; e� 7/�R.j1//C 1� he� 6� �0.i C j /iCD(5.14)

D S 0.i/CV .i/CS 0.j0/CS 0.j1/C �
0.i C j /�min.t; e� 7/CD

� V .i/CS 0.i C j0C j1/C �
0.i C j /�min.t; e� 7/CD

D V .i/CR.i C j0C j1/� �
0.i C j0C j1/C �

0.i C j /�min.t; e� 7/CD:(5.15)

We will discuss later the removal of the h�i at the first step.

We will show below that

(5.16) V .i/� �0.i C j0C j1/C �
0.i C j / > 0:

Assuming this, the only way that (5.15) could be negative is if min.t; e� 7/ >R.i C j0C j1/ .
But if this is the case, then .i C j0C j1/C 2t A is a decomposition of i C j , which makes
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D �min.t; e�6/�R.iC j0C j1/ . If iC j0C j1 decomposes further, that only adds more to
D . Thus, assuming (5.16), we obtain that (5.15) is � 0 .

We now prove (5.16). The only way it could possibly be negative is if i D 2t B � j0� j1 with
B even. Then the LHS of (5.16) becomes

� ˛.2t B � j0� j1/� 2� .t C �.B//C t

D ˛.B � 1/C t �˛.j0C j1� 1/� 2� �.B/

> 0

since ˛.B � 1/� �.B/ and t �R.j0C j1/ >> ˛.j0C j1� 1/ .

Regarding the removal of h�i above: if �0.i C j / > e� 6 , then (5.14) becomes

� S.i/C e� 7� �0.j /� �.j1/CR.j0/�min.t; e� 7/CR.j1/C 1

D S.i/C .e� 7�min.t; e� 7//C .R.j1/� �.j1//C .R.j0/� �
0.j0//C 1

> 0

because each of its terms is nonnegative.

Case 3 G.e � 1; i/ D S.i/ and i decomposes. Although the decomposition of i does not
affect the value of S.i/ , it could affect the value of G.e; i C j / by affecting the decomposition
of i C j . In the analogues of Subcases 2a and 2b, the decomposition of i C j was not needed,
and so a decomposition of i cannot affect the validity.

Subcase 3a j does not decompose and �.j / > �.i/ .

Subsubcase 3ai i admits a simple decomposition. Let iD i0C2t˛ with ˛ odd and t >R.i0/ .
If �.j /� t , then, considering i0C .2

t˛/Cj as a possible decomposition of iCj , the LHS of
(5.9) becomes

� S.i/Che� 7� �.j /iC 1� he� 6� �0.i/i

Chmin.t; e� 6/�R.i0/iC hmin.�.j /; e� 6/�R.2t˛/i:

This exceeds the amount analyzed in Subcase 2c by

(5.17) t �R.i0/�R.2t˛/CR.i0C 2t˛/:

Since, in the notation of Proposition 5.10, S 0 DR� �0 , and �0.i0/D �0.i0C 2t˛/ , then (5.17)
equals S 0.i0C 2t˛/�S 0.i0/�S 0.2t˛/D 0 by Proposition 5.10.

If, on the other hand, �.j / < t , then we don’t need i C j to be decomposable, since the LHS
of (5.9)

� S.i/Che� 7� �.j /iC 1� he� 6� �0.i/i D S.i/C �0.i/� �.j / > 0;

since S.i/ > tC4>�.j /C4 . (The C4 is included because of the possibility that �0.i/D�4 .)
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Subsubcase 3aii i admits a multiple decomposition. If �.j /� S.i/C �0.i/ , then, as in the
preceding paragraph, we do not need a decomposition of i C j in order to satisfy (5.9). If, on
the other hand, �.j / > S.i/C �0.i/ , then the result follows as in the first paragraph of Subcase
3ai, using additivity of S 0 on disjoint decompositions.

Subcase 3b i and j both decompose exactly once. Let i D i0 C 2mˇ with ˇ odd and
m>R.i0/ , and j D j0C 2t˛ with ˛ odd and t >R.j0/ .

If m> t , then we can consider iCj as .i0Cj0/C2t˛C2mˇ . It is possible that hm�R.2t˛/i

might contribute to G.e; iCj / , but even if it does, we do not need it. The situation is similar to
Subcase 2d. Using the ht �R.j0/i and ht �R.i0C j0/i parts of G.e� 1; j / and G.e; i C j / ,
respectively, the LHS of (5.9) simplifies to

� S.i/� �0.j0/C �
0.i0C j0/CR.j0/�R.i0C j0/;

which is very positive. (It would be � V .i0/ by Proposition 5.10 if S.i/ were replaced by the
much smaller number S.i0/ .) Keeping in mind that 2e�3 � i C j , we will usually omit, from
now on, explicit consideration of the possibility that e� 6< �.ki�1/ in (5.6). In Subcase 4d,
there is a detailed discussion of a delicate case in which we consider carefully what happens
when e� 6 is larger than the relevant 2–exponent.

If m D t , then a very similar argument works. Because the decomposition of i C j now is
.i0C j0/C 2p
 with p > t , and this exponent appears with a C sign in �G.e; i C j / , the
LHS of (5.9) is even larger than it was when m> t .

Now suppose m< t . We use .i0C j0C 2mˇ/C 2t˛ as our trial decomposition of i C j . If it
is not a true decomposition, then the h�i will take care of it.

The LHS of (5.9) becomes

� S.i/C .e� 7� �0.j0//� .t �R.j0//C 1

�.e� 6� �0.i0C j0//Cht �R.i0C j0C 2mˇ/i

� S.i/� �0.j0/CR.j0/C �
0.i0C j0/�R.i C j0/

D V .i/CS 0.i/CS 0.j0/�S 0.i C j0/

� V .i/:

Subcase 3c At least one of i and j decomposes more than once. The argument is very similar
to that of Subcase 3b. The only reason for separating them is to use 3b as a warmup for 3c. Let
i D i0C � � �C ir and j D j0C � � �C js be maximal decompositions.
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If �.js/� �.ir / , then the LHS of (5.9) is, without using any decomposition of i C j ,

� S.i/� �0.j /�

sX
kD1

.�.jk/�R.jk�1//C �
0.i C j /

� S.i/C

s�1X
kD0

.R.jk/� �
0.jk//� �.js/

� S.i/� �.ir /

>> 0:

If �.ir / < �.js/ , first suppose the only decomposition of i C j is the simple decomposition
KC js with K D i C j0C � � �C js�1 . Then the LHS of (5.9) is

� S.i/� �0.j /�

sX
kD1

.�.jk/�R.jk�1//C �
0.i C j /C �.js/�R.K/

DR.i/CV .i/� �0.i/C

s�1X
kD0

.R.jk/� �
0.jk//C �

0.K/�R.K/

� V .i/

by Proposition 5.10.

If i C j decomposes more finely, say as ACBC js , then �R.K/ is replaced by �R.B/C

�.B/�R.A/ . But these are equal by the second part of Proposition 5.10, noting that �0.AC
B/D �0.A/ .

Case 4 S.�/ not involved, i decomposes, j doesn’t. Recall i; j � 2e�4 . We assume that
i admits a decomposition as i0 C i1 C i2 . The nature of our argument will show that the
conclusion will also be true for longer decompositions. The LHS of (5.9) becomes

(5.18) e� 6� �0.i0/� �.i1/CR.i0/� �.i2/CR.i1/Che� 7� �0.j /iCY;

where Y D�G.e; i C j / . We use (5.4) often in what follows.

Subcase 4a �.j / < �.i/ . Then, using a decomposition i C j D .i0 C j C i1/C .i2/ , we
obtain

(5.19) Y � �.e� 6� �0.j //Ch�.i2/�R.i0C j C i1/i:

If there is an additional decomposition of iCj as .i0Cj /C.i1/C.i2/ , then by the second part
of Proposition 5.10, R.i0C j C i1/DR.i0C j /CR.i1/� �.i1/ , and so the same expression
is obtained. Then (5.18) is

(5.20) � .e� 7�R.i0C j C i1//C .R.i0/� �
0.i0//C .R.i1/� �.i1// > 0;

since if the h�i in (5.19) is > 0 , then

e� 7� �.i2/� 2�R.i0C j C i1/� 2;
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but the .R� �/–expressions are > 2 . If the h�i in (5.19) is 0, then the first part of (5.20) is
replaced by .e� 7� �.i2//� �2 .

Subcase 4b �.i/� �.j / <R.i0/ . In this case, which is very similar to 4a,

Y � �.e� 6� �0.i//Ch�.i2/�R.i0C j C i1/i;

because if there is an additional decomposition of i C j as .i0 C j / C .i1/ C .i2/ , then
R.i0C j C i1/DR.i0C j /CR.i1/� �.i1/ , and so the expression for Y is unchanged. Then
(5.18) is

� .S 0.i0/CS 0.i1/CS 0.j /�S 0.i0C i1C j //C .e� 7�R.j // > 0:

In the remaining subcases, we deal with a maximum possible decomposition of iCj , realizing,
as in 4a and 4b, that if the decomposition must be amalgamated, the expression is not changed.

Subcase 4c R.i0/� �.j / < �.i1/ . Then

Y � �.e� 6� �0.i//Ch�.j /�R.i0/iC h�.i1/�R.j /iC h�.i2/�R.i1/i;

and so (5.18) is
� .e� 7� �.i1//Ch�.i1/�R.j /i> 0:

Subcase 4d �.i1/� �.j / < �.i2/ . Then

Y � �.e� 6� �0.i//Ch�.i1/�R.i0/iC h�.j /�R.i1/iC h�.i2/�R.j /i;

and so (5.18) is

(5.21) � .e� 7� �.i2//Ch�.i2/�R.j /i> 0:

As noted in Subcase 3b, we are usually not paying explicit attention to the possibility that
e�6� �.i2/ (in the situation in this subcase, 4d). Here it does warrant our attention. We might
have i2 D 2e�5 , 2e�6 , or 3 � 2e�6 , and then it would seem that (5.21) might not be valid.

If i2 D 2e�5 , then h�.i2/�R.i1/i in the above analysis is replaced by he� 7�R.i1/i . This
decrease of 2 compensates for the fact that e�7��.i2/D�2 in (5.21). Similarly, if �.i2/De�6 ,
then h�.i2/�R.i1/i is replaced by he� 7�R.i1/i , compensating for e� 7� �.i2/D�1 .

Subcase 4e �.i2/ < �.j / . Then

Y � �.e� 6� �0.i//Ch�.i1/�R.i0/iC h�.i2/�R.i1/iC h�.j /�R.i2/i;

and so (5.18) is
� he� 7� �.j /iC h�.j /�R.i2/i> 0:

Case 5 S.�/ not involved, both i and j decompose. We consider here a typical example in
which both i and j decompose twice. It should be clear that the general case will work out in
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the same way. We assume that i D i0C i1C i2 and j D j0Cj1Cj2 are decompositions. Then

G.e� 1; i/CG.e� 1; j /C 1D e� 6� �0.i0/� �.i1/CR.i0/� �.i2/CR.i1/

Ce� 7� �0.j0/� �.j1/CR.j0/� �.j2/CR.j1/:

We assume without much loss of generality that �.j2/ > �.i2/ and �.i0/ < �.j0/ .

Subcase 5a �.j2/ < R.i0 C i1 C i2 C j0 C j1/ . We use no decomposition of i C j . We
obtain that

G.e� 1; i/CG.e� 1; j /C 1�G.e; i C j /

� R.i0/CS 0.i1/� �.i2/C e� 7CS 0.j0/CS 0.j1/� �.j2/

D S 0.i0/CS 0.i1/CS 0.i2/CS 0.j0/CS 0.j1/C �
0.i0/�R.i2/C e� 7� �.j2/

� R.i0C i1C i2C j0C j1/�R.i2/C e� 7� �.j2/

>> 0;

since e� 7� �.j2/� �2 while R.i0C i1C i2C j0C j1/�R.i2/ >> 0 .

Subcase 5b �.j2/ > R.i0 C i1 C i2 C j0 C j1/ . We use a decomposition of i C j as
.i0 C i1 C i2 C j0 C j1/C .j2/ . We discuss afterward the usual argument regarding what
happens if it decomposes more finely. Similarly to Subcase 5a, we obtain

G.e� 1; i/CG.e� 1; j /C 1�G.e; i C j /

� S 0.i0/CS 0.i1/CS 0.i2/CS 0.j0/CS 0.j1/�S 0.i0C i1C i2C j0C j1/C e� 7�R.i2/

� 0

using Proposition 5.10 and

e� 7� �.j2/� 2�R.i0C i1C i2C j0C j1/� 2>>R.i2/:

Further decomposition of i0C i1C i2C j0C j1 into 2–adically disjoint parts does not change
the expression, using the second part of Proposition 5.10, similarly to the argument in Subcases
4a and 4b.

The following result will be useful in some subsequent proofs. In particular, Theorem 2.10.(5)
is an immediate consequence.

Proposition 5.22 For e � 7 and 2� k < 2e�3 ,

G.e; kC 1/�G.e; k/

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

D 8 k � 0 .8/; ˛.k/D 1; e � S.k/C �.k/C 8

D 7 k � 0 .8/; ˛.k/D 1; e D S.k/C �.k/C 7

D 6 k � 0 .8/; otherwise

� �1 k � 1 .8/

� 6 otherwise.
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Proof We begin by noting that the result is true for the limiting values, S.k/ , since they are
easily shown to satisfy

(5.23) S.kC 1/�S.k/

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

D 8 k D 2e; e � 3

D 6 k � 0 .8/; ˛.k/ > 1

D 6 k � 4 .8/

D 4 k � 2 .4/

� �1 k � 1 .8/

D�1 k � 3; 5 .8/

� �3 k � 7 .8/:

The case k � 0 mod 8 of the proposition follows easily from (5.23) and the definitions.

We next handle the case k D 8`C 1 . If �.`/ � 3 , then 8`C 2 admits a decomposition with
k0 D 2 . Any additional portions of a decomposition of 8`C 2 will occur identically in 8` .
Thus, in this case, with � D �.8`/� 6 ,

G.e; 8`C 2/�G.e; 8`C 1/D e� 7� hmin.�; e� 6/� 5i � .6Che� 6� �i/:

This is � �2 , regardless of the sign of e� 6� � .

Now assume �.`/ < 3 . If 8` admits a decomposition as k0 C 2t˛ with ˛ odd, then we
consider .k0C 2/C 2t˛ as a possible decomposition of 8`C 2 . Any additional portions of a
decomposition of 8`C 2 occur identically in 8` . For v D �.`/D 0 , 1, or 2, we obtain

(5.24) G.e; 8`C 2/�G.e; 8`C 1/D e� 13� he� 9� vi � hD� 2C viC hDi;

where D D min.t; e � 6/�R.k0/ . Here we have used the easily-verified fact that if k0 � 0

mod 8, then R.k0C 2/�R.k0/D 5� �.k0/ . One easily checks that (5.24) is � �2 for any e

and D , since 0� v � 2 .

For � D Œ2; 3; 4; 5; 6; 7� and k D 8`C � , we have, for e > 7 ,

he� 6� �0.kC 1/i � he� 6� �0.k/i D Œ5;�6; 6;�5; 5;� �5�;

and, if k admits a simple decomposition k0C 2t˛ with ˛ odd,

hm�R.k0/i � hm�R.k0C 1/i � Œ0; 5; 0; 4; 0; 5�:

Here m D min.e � 6; t/ . As before, higher deviations will cancel in the difference. Thus
G.e; k C 1/ � G.e; k/ , which is the sum of the two displays of this paragraph, is � 6 , as
claimed.

Now we can complete the proof of Theorem 5.8 by proving the following theorem.

Theorem 5.25 Theorem 5.8 is true when i or j or i C j is � 1 mod 8 .
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Proof Again we divide into cases.

Case 1 Only i � 1 mod 8. We have

G.e� 1; i/CG.e� 1; j /C 1�G.e; i C j /

D
�
G.e� 1; i/�G.e� 1; i � 1/

�
�
�
G.e; i C j /�G.e; i � 1C j /

�
C
�
G.e� 1; i � 1/CG.e� 1; j /C 1�G.e; i � 1C j /

�
(5.26)

� 0;

since the first .�/ in (5.26) is � 6 by Proposition 5.22, the second is � 6 by Proposition 5.22,
and the third is � 0 by Theorem 5.11.

Case 2 Both i and j � 1 mod 8. This follows by an argument similar to that of Case 1.

Case 3 i and iCj � 1 mod 8. This follows from the validity for .i �1; j / similarly to Case
1. Usually G.e� 1; i/�G.e� 1; i � 1/D 6 and G.e; i C j /�G.e; i � 1C j /D 6 , and so the
inequality follows as in (5.26). If G.e; i C j /�G.e; i � 1C j / > 6 , then G.e� 1; i/D S.i/

and G.e� 1; j /D S.j / , and so

G.e� 1; i/CG.e� 1; j /C 1�G.e; i C j /� S.i/CS.j /C 1�S.i C j /� 0

by Proposition 5.7.

Case 4 i C j � 1 mod 8, while i; j 6� 1 mod 8. If G.e; i C j /�G.e; i C j � 1/ > 6 , then
G.e�1; i/D S.i/ , G.e�1; j /D S.j / , and G.e; iCj /� S.iCj / , and so the result follows
from Proposition 5.7. So we may now assume G.e; i C j /�G.e; i C j � 1/D 6 . Without loss
of generality, assume i is odd and j is even.

First, we assume i � 3 mod 4. By the proof of Proposition 5.22, G.e; i/�G.e; i �1/D 4 or 5,
and if i is indecomposable, then G.e; i/�G.e; i �1/D 4 if and only if G.e; i �1/D S.i �1/ .
Thus the result will follow as in (5.26) once we show that if i; j � 2 mod 4 and iC j � 0 mod
8, then (5.9) is satisfied with 1 to spare, and with 2 to spare if G.e; i/�G.e; i � 1/D 4 .

The basic value of the LHS of (5.9) in this case is

(5.27) he� 8iC he� 8iC 1� he� vi

with v D 6C �.i C j / � 9 . This equals 1 if e D 7 or 8, while for e � 9 , it is � e � 6 . The
smallest e for which the LHS of (5.9) does not equal (5.27) is e D 12 , when i D 2 .

Neglecting temporarily the effect of deviations, the desired conclusion is obtained since it is
true at the onset of S.i/ and will continue to be true as e increases, since now G.e� 1; j / and
G.e; i C j / will both increase by 1 each time. When G.e � 1; j / achieves a value of S.j / ,
then the LHS of (5.9) is

� S.i/CS.j /C 1�S.i C j / > 2

for the congruences being considered here.
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When deviations are taken into account, the fact that makes it work is the easily-verified fact
that

(5.28) R.8`C 2/CR.8`0C 6/�R.8`C 8`0C 8/D 1C �
��
`C`0

`

��
:

Suppose, for example, that i D i0C 2t˛ and j D j0C 2uˇ are decompositions with ˛ and ˇ
odd, and t < u� e� 7 . The LHS of (5.9) becomes

� e� 8C e� 7� .t �R.i0//� .u�R.j0//� .e� v/Cht �R.i0C j0/iC hu�R.2t˛/i

with v � 9 . Using (5.28), this is

� eC v� 14CR.i0C j0/� t Cht �R.i0C j0/i �u

� v� 7

� 2;

since e� 7� u and using (5.4). Other situations involving decompositions work out similarly.

The case i � 5 is handled similarly.

Next we verify the first part of Theorem 2.10.(4). In fact the conclusion of that theorem is true
without regard for the hypothesis.

Theorem 5.29 If i; j � 2e�3 and i C j C 1� 2e�2 , then

g.e; i/Cg.e; j / < g.eC 1; i C j C 1/:

Proof We prove the equivalent statement, with i , j , and e as in the hypothesis,

(5.30) G.e; i/CG.e; j /C 8>G.eC 1; i C j C 1/:

By Theorem 5.8 and Proposition 5.22, we have

G.e; i/CG.e; j /C 8�G.eC 1; i C j /C 7>G.eC 1; i C j C 1/

unless i C j C 1D 2t C 1 with t � 3 and G.eC 2; i C j C 1/D S.i C j C 1/ . In this case, it
will also be true that G.e; i/D S.i/ and G.e; j /D S.j / . Thus it suffices to show

S.i/CS.2t
� i/C 8> S.2t

C 1/:

This follows readily from the definition of S . The smallest value of S.i/CS.2t � i/ occurs
when i D 2t�1 and is 3 � 2t�1C 2 , while S.2t C 1/D 3 � 2t�1C 9 .

The second part of Theorem 2.10.(4) follows from the next result.
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Theorem 5.31 For k � 2e�3 , G.eC 1; 2k/ � 2G.e; k/ with equality if and only if G.eC

1; 2k/DG.e; k/D 0 , which occurs if and only if

k 2 f2e�3; 2e�4; 2e�5; 3 � 2e�5; 2e�6˛g with ˛ 2 f1; 3; 5; 7g:

If equality occurs, then

G.eC 1; 2k/ <G.e; `/CG.e; 2k � `/C 1

for all ` .

Proof The second sentence follows immediately from the first, since

0<G.e; `/CG.e; 2k � `/C 1:

For basic values, we have

2G.e; k/�G.eC 1; 2k/D

(
2.e� 2/� .e� 6/ k odd

he� 6� �.k/i k even.

This is clearly � 0 , and D 0 in exactly the cases claimed.

If G.e; k/D S.k/ , then

2G.e; k/�G.eC1; 2k/� 2S.k/�S.2k/D

8̂̂̂̂
<̂
ˆ̂̂:

2˛.k/� 1 k even

12 k D 2t C 1; t � 3

2˛.k/C 4 k � 1 .8/; ˛.k/¤ 2

4�.k � 1/C 2˛.k/� 4 k � 3; 5; 7 .8/:

This is > 0 .

Suppose k D k0C2t˛ is a simple decomposition, with ˛ odd and e�6� t . If k is even, then
2R.k/DR.2k/C˛.k � 1/ , and so

2G.e; k/�G.eC 1; 2k/

D e� 6� �.k/� 2.t �R.k0//Cht C 1�R.2k0/i

D e� 5� t C˛.k0/� 1CR.2k0/� t � 1Cht C 1�R.2k0/i

� 1;

using (5.4). If k � 3; 5; 7 mod 8, then

2R.k/DR.2k/C 4�.k � 1/C˛.k/�

(
10 k � 3 .4/

12 k � 1 .4/:
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Then

2G.e; k/�G.eC 1; 2k/

D eC 2� 2.t �R.k0//Cht C 1�R.2k0/i

� eC 3� t CR.2k0/� t � 1Cht C 1�R.2k0/iC 4�.k0� 1/C˛.k0/� 12

> 0:

The situation when t > e� 6 and the case of higher deviations are handled similarly.

Finally, we have

2G.e; 8`C 1/�G.eC 1; 16`C 2/

�2.G.e; 8`/C 6/�G.eC 1; 16`/� .G.eC 1; 16`C 1/�G.eC 1; 16`//

� .G.eC 1; 16`C 2/�G.eC 1; 16`C 1//

�12C 0� 8� .�1/

>0:

Finally, we verify part (2) of Theorem 2.10. We have

g.e; k/D 8k �G.e; k/� 8k �S.k/� 13ŒkC1
2
�� 2˛.k/� 10:

This is � 4kC 4 for k � 7 , while for k < 7 we verify directly that 8k �S.k/� 4kC 4 .

6 A bound for geometric dimension of normal bundle

In this section, we prove the following key result, a main ingredient in the proof of our geometric
dimension result, Proposition 2.11, which has already been seen to imply our immersion
theorem.

Theorem 6.1 If e � 7 and t � 1 and k0C � � �C kt�1 D 2e�3� 1 , then

(6.2)
t�1X
iD0

G.eC i; ki/� e� 2:

Remark 6.3 The integers ki in this theorem are nonnegative, but possibly zero. Some
examples in which equality is obtained are

� G.e; 2e�3� 1/;

� G.e; 2e�4� 1/CG.eC 1; 2e�4/;

� G.e; 2e�5� 1/CG.eC 1; 3 � 2e�5/;

� G.e; 3 � 2e�5� 1/CG.eC 1; 2e�5/;
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� G.e; 2e�5� 1/CG.eC 1; 2e�5/CG.eC 2; 2e�4/;

� G.e; 2e�4� 1/CG.eC 1; 0/CG.eC 2; 2e�4/ .

Before proving the theorem, we provide the easy deduction of Proposition 2.11.

Proof of Proposition 2.11 From Theorem 6.1 and (5.1), we obtain

(6.4)
t�1X
iD0

g.eC i; ki/� .2
e
� 8/� .e� 2/D 2e

� e� 6:

Let e be fixed, and for t � 1 and 0� `� 2e�3� 1 , let

M.t; `/Dmax
� t�1X

iD0

g.eC i; ki/ W k0C � � �C kt�1 D `

�
:

Then M.t; `/ D max.M.t � 1; i/C g.eC t � 1; `� i/ W 0 � i � `/ . Using Proposition 2.8,
induction on t , and Theorem 2.10.(6), we obtain that for all t and `� 2e�3� 1

gd..2e
C � � �C 2eCt�1/; `/�M.t; `/

compatibly for all ` . By (6.4), M.t; 2e�3�1/� 2e � e�6 . Since gd.n; k/D gd.n�8kC7/ , we
obtain the conclusion of Proposition 2.11.

The proof of Theorem 6.1 is expedited by the following lemma.

Lemma 6.5 Let d > 0 . If G.e; i/ < S.i/ and G.eC d; j / < S.j / , then

G.e; i/CG.eC d; j /�G.e; i C j /:

Proof This follows exactly as in the proofs of Cases 1, 4, and 5 of Theorem 5.11 and the proof
of Theorem 5.25. In those results, there was an extra 1 on the LHS, but the larger e–components
here more than compensate for that.

Remark 6.6 Lemma 6.5 is not always true when S.�/ is involved. For example, if e � 15 ,
then G.e; 2/CG.eC 1; 3/D 12< 13DG.e; 5/ .

Proof of Theorem 6.1 Let S denote the set of those ki for which G.eC i; ki/D S.ki/ . This
includes cases in which ki D 0 or ki D 1 . If S is empty, then the result follows by induction
from Lemma 6.5, since G.e; 2e�3� 1/D e� 2 . Let K D

P
ki2S ki . We split the LHS of (6.2)

as

(6.7)
X
ki2S

G.eC i; ki/C
X
ki 62S

G.eC i; ki/:
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Since, as is easily proved, S.k/� 3
2
k , the first half of (6.7) is � 3

2
K , while Lemma 6.5 implies

that the second half of (6.7) is

�G.e; 2e�3
� 1�K/� e� 6� �0.KC 1/�D.e; 2e�3

� 1�K/;

where D.�;�/ denotes the deviation, ie, the sum in (5.6). Now the desired inequality reduces
to

(6.8) 3
2
K � �0.KC 1/C 4CD.e; 2e�3� 1�K/:

If K ¤ 1; 3 , this inequality is true, usually with much to spare. Indeed, K � �0.KC 1/C 4 if
K ¤ 1; 3 , and

(6.9) 1
2
K �D.e; 2e�3� 1�K/:

To see (6.9), note that for D.e; k/ to be positive due to a single deviation, then k D 2t˛C k0

with t >R.k0/ > k0 , ˛ odd, and D.e; k/D t �R.k0/ . For such k , if k D 2e�3�1�K , then
K � 2t � 1� k0 , and so the difference in (6.9) is

�
1
2
.2t � 1� k0/� .t �R.k0//D .

1
2
.2t � 1/� t/C .R.k0/�

1
2
k0/ > 0;

and a similar analysis applies when multiple deviations are involved. When K D 1; 3 , (6.8) is
true if the LHS is replaced by S.K/D 8 .
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