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Commensurability classes of 2–bridge knot complements

ALAN W REID

GENEVIEVE S WALSH

We show that a hyperbolic 2–bridge knot complement is the unique knot complement
in its commensurability class. We also discuss constructions of commensurable
hyperbolic knot complements and put forth a conjecture on the number of hyperbolic
knot complements in a commensurability class.

57M25, 57M10; 57M27

1 Introduction

Recall that two hyperbolic 3–manifolds M1 D H3=�1 and M2 D H3=�2 are com-
mensurable if they have homeomorphic finite sheeted covering spaces. In terms of
the groups, this is equivalent to �1 and some conjugate of �2 in Isom.H3/ having
a common finite index subgroup. Proving that two hyperbolic 3–manifolds are com-
mensurable (or not commensurable) is in general a difficult problem. The most useful
techniques at present are algebraic, for example, the invariant trace-field (see Maclach-
lan and Reid [13, Chapter 3]). An algorithm to determine when two nonarithmetic
cusped hyperbolic 3–manifolds are commensurable is given by Goodman, Heard and
Hodgson [8].

In this paper we investigate commensurability of hyperbolic knot complements in S3 .
Our main result is:

Theorem 1.1 Let K be a hyperbolic 2–bridge knot. Then S3 nK is not commensu-
rable with the complement of any other knot in S3 .

Previous work in this direction was done by the first author in [20], where it is shown
that the figure-eight knot is the only knot in S3 whose complement is arithmetic. In
addition, it is known that no two hyperbolic twist knot complements are commensurable
by Hoste and Shanahan [10]. On the other hand, there are hyperbolic knot complements
in S3 with more than one knot complement in the commensurability class. A detailed
discussion of this is given in Section 5.

A corollary of our main theorem is the following result which is a direct consequence
of Corollary 1.4 of Schwartz [25].
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1032 Alan W Reid and Genevieve S Walsh

Corollary 1.2 Let K be a hyperbolic 2–bridge knot in S3 and K0 any knot in S3 . If
�1.S

3 nK/ and �1.S
3 nK0/ are quasi-isometric, then K and K0 are equivalent.
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2 Preliminaries

We begin by recalling some terminology and results that will be needed. Henceforth,
unless otherwise stated knot complement will always refer to a knot complement in S3.

2.1 Hidden symmetries

Let � be a Kleinian group of finite co-volume. The commensurator of � is the group

C.�/D fg 2 Isom.H3/ W Œ� W � \g�1�g� <1g:

We denote by CC.�/ the subgroup of C.�/ of index at most 2 that consists of
orientation-preserving isometries. It is a fundamental result of Margulis [14] that
CC.�/ is a Kleinian group if and only if � is nonarithmetic, and moreover, in this
case, CC.�/ is the unique maximal element in the PSL.2;C/ commensurability class
of � .

Note that the normalizer of � in PSL.2;C/, which we shall denote by NC.�/,
is a subgroup of CC.�/. In the case when � corresponds to the faithful discrete
representation of �1.S

3 nK/ it is often the case that NC.�/D CC.�/. Before we
give a more precise discussion of this, we recall some of Neumann and Reid [17].
Henceforth, any knot will be assumed hyperbolic and distinct from the figure-eight
knot.

Assume that S3 nK D H3=�K . K is said to have hidden symmetries if CC.�K /

properly contains N.K/DNC.�K /. We will make use of the following result from
[17], which requires one more piece of terminology.

Let S2.2; 4; 4/, S2.2; 3; 6/ and S2.3; 3; 3/ denote the 2–dimensional orbifolds which
are 2–spheres with 3 cone points and cone angles .�; �=2; �=2/, .�; 2�=3; �=3/ and
.2�=3; 2�=3; 2�=3/ respectively. These are called Euclidean turnovers. In addition,

Algebraic & Geometric Topology, Volume 8 (2008)



Commensurability classes of 2–bridge knot complements 1033

we let S2.2; 2; 2; 2/ denote the 2–dimensional orbifold which is a 2–sphere with 4
cone points all of cone angle � .

If X is an orientable, noncompact finite volume hyperbolic 3–orbifold, then a cusp of
X has the form Q� Œ0;1/, where Q is a Euclidean orbifold. The cusp is said to be
rigid if Q is a Euclidean turnover.

Proposition 2.1 [17, Proposition 9.1] The following are equivalent for a hyperbolic
knot K other than the figure eight knot complement:

(i) K has hidden symmetries.

(ii) The orientable commensurator quotient H3=CC.�K / has a rigid cusp.

(iii) S3 nK non-normally covers some orbifold.

Notation In what follows, we shall let QK DH3=CC.�K /.

2.2 Cusp fields and trace fields

Recall that if � is a Kleinian group of finite co-volume, the trace field is a finite
extension of Q. Furthermore, the invariant trace-field of � , k� DQ.tr. 2/ W  2 �/,
is a subfield of the trace-field that is an invariant of the commensurability class [13,
Chapter 3]. When �K is the faithful discrete representation of �1.S

3 nK/, it is shown
in [19] that the invariant trace-field coincides with the trace-field. This also holds when
the Kleinian group is generated by parabolic elements [20, Lemma 1].

For convenience we will often abuse the distinction between PSL and SL and simply
work with matrices. If H3=� is a 1–cusped hyperbolic 3–manifold, we can conjugate
the peripheral subgroup to be D �

1 1

0 1

�
;

�
1 g

0 1

� E
:

It is easily shown that g 2 k� (see for example [17, Proposition 2.7]) and g is referred
to as the cusp parameter of � . In the natural identification of the Teichmüller space
of the torus with the upper half-plane, g is the shape of the torus. The field Q.g/ is
called the cusp field, which is a subfield of k� .

Of relevance to us is that there are constraints on cusp parameters of tori that cover
turnovers. The rigid orbifolds S2.2; 4; 4/;S2.2; 3; 6/ and S2.3; 3; 3/ have orbifold
groups that are extensions of Z˚Z by elements of orders 4, 6 and 3 respectively.
The maximal Z˚Z subgroup in these cases can be conjugated to be:D �

1 1

0 1

�
;

�
1 �

0 1

� E
;
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where �D i in the case of S2.2; 4; 4/ and �D .�1C
p
�3/=2 (which we shall denote

by ! in what follows) otherwise. This discussion together with Proposition 2.1, yields
the following corollary.

Corollary 2.2 Let K be a hyperbolic knot which has hidden symmetries. Then the
cusp parameter of S3nK lies in Q.i/ (when the turnover is S2.2; 4; 4/) or in Q.

p
�3/

(when the turnover is S2.2; 3; 6/ or S2.3; 3; 3/).

2.3 2–Bridge knots

It will be convenient to recall some facts about 2–bridge knots that we shall make
use of. In particular the work of Riley [21; 22] is heavily used. Thus throughout this
section let K be a hyperbolic 2–bridge knot.

A 2–bridge knot K has a normal form .p; q/ where p and q are odd integers and are
determined by the lens space L.p; q/ that is the double cover of S3 branched over K .
The fundamental group of a 2–bridge knot complement has a presentation of the form
�1.S

3 nK/D hx1;x2 W ri where x1 and x2 are meridians and the relation r has the
form wx1w

�1 D x2 for some word w in x1 and x2 . The exponents of the xi in the
word w are all ˙1, and are determined by the 2–bridge normal form of K .

Let F be a field and fix an algebraic closure xF. A homomorphism �W �1.S
3 nK/!

PSL.2;F/ is called a parabolic representation (or simply p-rep for short) if �.x1/ (and
hence �.x2/) is a parabolic element; ie conjugate in PSL.2; xF/ to the element�

1 1

0 1

�
:

If we conjugate so as to consider a p-rep normalized so that

�.x1/D

�
1 1

0 1

�
and �.x2/D

�
1 0

y 1

�
;

then Riley shows that y satisfies a certain polynomial ƒK .y/ with leading coefficient
and constant term equal to 1 [21, Theorem 2] . We shall say that the above p-rep is in
standard form.

In the case that FDC , ƒK is a polynomial with integral coefficients and some root of
the p-rep polynomial corresponds to the faithful discrete representation of �1.S

3 nK/

into PSL.2;C/. In this case, ƒK .y/ is called the p-rep polynomial of K .

In [21], Riley also describes the image of a longitude ` for x1 for a p-rep in standard
form; namely a matrix �

1 g

0 1

�
;
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where g D 2g0 and g0 is an algebraic integer in the field Q.y/.

Also important in what follows is Riley’s work on p-reps when F has characteristic 2.
Here the images of the meridians are elements of order 2, and thus the image of a
p-rep is a dihedral group. This dihedral group is necessarily finite since a knot group
cannot surject onto the infinite dihedral group. In addition, since the image groups are
noncyclic, the dihedral groups considered are never of order 2. Hence we exclude this
case from further comment. Riley proves the following result which will be useful for
us [21, Theorem 3].

Theorem 2.3 The p-rep polynomial ƒK .y/ has no repeated factors modulo 2, and so
no repeated factors in ZŒy�.

This result allows us to prove Proposition 2.5 below (which Riley noticed in [22]).
For completeness we give a proof. We first record the following standard facts about
polynomials reduced modulo primes (for example see Koch [11, Proposition 3.8.1 and
Theorem 3.8.2]).

Theorem 2.4 Let f .x/ 2 ZŒx� be an irreducible monic polynomial, ˛ a root and
k DQ.˛/ with ring of integers Rk . Let dk denote the discriminant of k , and �.˛/
the discriminant of f . Let p be a rational prime and xf the reduction of f modulo p .
Then the following holds:

(i) xf decomposes into distinct irreducible factors if and only if p does not divide
�.˛/.

(ii) Suppose that p does not divide �.˛/d�1
k

and xf D xf e1

1
: : : xf

eg

g : Then pRk D

Pe1

1
: : :Peg

g is the factorization into prime powers.

Proposition 2.5 Let K be a hyperbolic 2–bridge knot with trace-field k . Then Q.i/
is not a subfield of k .

Proof We shall show that 2 does not divide the discriminant of k . Since the discrimi-
nant of Q.i/ is �4, standard facts about the behavior of the discriminant in extensions
of number fields precludes Q.i/ from being a subfield of k (see [11] for example).

Let � denote the p-rep corresponding to the faithful discrete representation conjugated
to be in standard form, and ƒ0.y/ be the irreducible factor of ƒK .y/ which gives the
representation corresponding to the complete structure. We denote the image group
by �K . Therefore k D k�K D Q.y/ for some root y of ƒ0.y/. By Theorem 2.3
ƒK .y/ has distinct factors modulo 2, and so ƒ0.y/ has distinct factors modulo 2.
Thus, Theorem 2.4(i) shows that 2 does not divide the discriminant �.y/ of ƒ0.y/.
Since the discriminant of Q.y/ divides �.y/ (see [11, Chapter 3]) it follows that 2
does not divide the discriminant of Q.y/.
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Proposition 2.5 shows that the cusp field of a hyperbolic 2–bridge knot is not Q.i/.
Hence if K has hidden symmetries, Corollary 2.2 shows that the cusp of the orbifold
QK is either S2.3; 3; 3/ or S2.2; 3; 6/. In addition, notice that the element

�D

�
i 0

0 �i

�
normalizes the p-rep � in standard form. Hence �2N.K/<CC.�K /, and we deduce:

Corollary 2.6 If K is a hyperbolic 2–bridge knot with hidden symmetries the cusp
of the orbifold QK is S2.2; 3; 6/ and the cusp field is Q.

p
�3/.

2.4 Symmetry groups of 2–bridge knots

The following discussion is well-known, but will be convenient for us to include.

We first state a result (originally due to Conway) about the symmetry groups of 2–bridge
knot complements (a proof can be found in Sakuma [24] for example).

Notation Throughout the paper, we let V denote the group Z=2Z˚Z=2Z and Dn

the dihedral group with 2n elements.

Theorem 2.7 Let K be a hyperbolic 2–bridge knot. Then IsomC.S3 n K/ D

N.K/=�K is either V or D4 . In both cases every nontrivial cyclic subgroup acts
nonfreely (ie with nonempty fixed point set).

We need some additional information about the quotient orbifold H3=N.K/ when K

is 2–bridge.

Lemma 2.8 Let K be a hyperbolic 2–bridge knot and QK DH3=N.K/. Then:

(i) N.K/ is generated by elements of order 2.

(ii) There is a unique 2–fold cover Q0 DH3=� of QK with a torus cusp. Further-
more, all torsion elements of �ab D �=Œ�; ��DH1.Q

0;Z/ have order 2.

Proof We begin with a discussion of a particular subgroup (isomorphic to V) of the
symmetry group of any hyperbolic 2–bridge knot complement. It is well-known that
.S3 nK/=V is an orbifold whose orbifold group is generated by involutions. However,
it will be convenient for what follows to recall a geometric description of this.

The complement of a 2–bridge knot in S3 is the union of two three-balls B1 and B2

with two unknotted arcs deleted; see Figure 1. We take the two order two symmetries
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g2

g1g2

g1

Figure 1: The action of V on a 2–bridge knot complement

g1 and g2 which pointwise fix the centers of the arcs in B1 and B2 respectively to
be the generators of V . Their composition is an order two isometry that fixes a circle
which does not intersect the knot. Figure 1 below shows the axes of the symmetries g1

and g2 . The axis of the order two symmetry g1g2 is perpendicular to the page.

By the solution to the Smith conjecture, the fixed point set of g1g2 in S3 is an
unknotted circle which does not intersect the knot. The quotient of S3 by g1g2 is
again S3 , and the image of the 2–bridge knot is another knot in S3 . We claim this
knot is the unknot. Indeed, g1g2 is a symmetry whose fixed point set is disjoint from
the knot and which takes one bridge to the other bridge. The fundamental group of
the 2–bridge knot complement is generated by two elements x1 and x2 . Fix a base
point b on the fixed point set of g1g2 in B1 . Then x1 and x2 can be represented by
two curves which start at b and encircle one of the two bridges in B1 . Now g1g2 acts
on �1.S

3 nK/ by setting x1 D x2 . Consider the orbifold fundamental group �orb
1
.P /

where P is S3 nK modulo the action of g1g2 . �orb
1
.P / is obtained by adjoining

an element ˇ to �1.S
3 nK/ and adding the relations ˇ2 D 1 and ˇx1ˇ D x2 . The

fundamental group of the underlying space of P is the quotient of �orb
1
.P / by the

normal closure of ˇ . Thus the fundamental group of the underlying space of P is
generated by one element. As above, this is the complement of a knot in S3 . Hence
the knot is the unknot and the underlying space of P is a solid torus. This proves the
claim. The image of the singular set is also an unknot, and it wraps around the image
of the knot.

Algebraic & Geometric Topology, Volume 8 (2008)



1038 Alan W Reid and Genevieve S Walsh

The fixed point sets of g1 , g2 and g1g2 intersect in one point in each of the Bi . The
orbifold O D .S3nK/=V has the interior of a ball as its underlying space, and its cusp
is a copy of S2.2; 2; 2; 2/ (Figure 2 is a schematic picture). The interior singular set of
O is a graph with two valence three vertices where all arcs have order two singularities.
In Figure 2, the images of the fixed point sets of g1 , g2 and g1g2 in O are labeled
by their respective group elements. We will refer to the image in O of the fixed point
set of g1g2 by ag1g2

. Note that ag1g2
will in general wind around the arcs which

meet the boundary. However, the arcs which meet the boundary are unknotted since
unbranching along these arcs yields P , the quotient of the 2–bridge knot complement
by g1g2 , which has underlying space a solid torus.

Proof of (i) In the case that IsomC.S3 nK/D V , O DQK . A presentation of the
orbifold fundamental group N.K/ of QK can be obtained by removing the singular
set, taking a Wirtinger presentation of the complement, and then setting  2 D 1 for
each generator. In this case, N.K/ is clearly generated by elements of order 2.

g1 g1

g2
g2

g1g2

Figure 2: O , the 2–bridge knot complement modulo the action of V . The
arcs of the singular set are order 2.

In the case when IsomC.S3 nK/ D D4 , QK D H3=N.K/ is an orbifold which is
double covered by O . Call the generator of the covering group � . Since the underlying
space of O is a ball, � has fixed points acting on O . Denote the fixed point set of
� in O by b� . As O is topologically a ball, b� is a properly embedded arc. This is
unknotted by the solution to the Smith Conjecture.

The arc b� meets the cusp of O in two points. Suppose one or both of these points
coincide with the singular set of the cusp. Then there is an element of order 4 in N.K/
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that fixes a point on the cusp. However, any isometry of a knot complement takes a
longitude to a longitude. Hence if an isometry fixes a point on the cusp it can have
order at most 2. Thus the fixed point set of b� is disjoint from the singular set of O on
the cusp at infinity.

Since � takes the singular set of O , a finite tree, to itself, there is at least one fixed
point in the interior of the singular set of O . We claim that there is exactly one, in the
middle of ag1g2

. Since � takes the singular set to itself, and b� does not intersect the
singular set in the cusp, the only possible arc of intersection is ag1g2

. In this case b�
is an arc from the cusp to the cusp which strictly contains ag1g2

. The preimage of b�
in S3 nK is the fixed point set of some isometry z� of S3 nK . This is either a circle
or two arcs meeting the cusp. However, the preimage of ag1g2

in S3 nK is a circle,
and a circle or two arcs cannot properly contain a circle. Therefore b� , the fixed point
set of � , intersects the interior of the singular set of O in points. Since � takes the
singular set to itself, any such point must be in the center of the arc ag1g2

, and there
can only be one. This proves the claim. It follows that QK DO=h�i DH3=N.K/ is
an orbifold with a S2.2; 2; 2; 2/ cusp, and singular set consisting of a graph with order
2 arcs. Combinatorially, the graph of the singular set of QK is a H , as is the graph
of the singular set of O in Figure 2. Again, the two arcs of the singular set which
meet the boundary are unknotted. One of the arcs is the image of b� in QK which is
unknotted. The other arc is one unknotted arc of the singular set of O identified to
another. As before, using the Wirtinger presentation of the ball with the singular set
removed, we see that N.K/D �orb

1
.QK / can be generated by elements with order 2.

This proves (i).

Proof of (ii) As proved above, the cusp of QK is a copy of S2.2; 2; 2; 2/. The only
2–fold orbifold cover of this cusp which is a torus is obtained by unbranching along
the four cone points. This is the kernel of a homomorphism �W �orb

1
.S2.2; 2; 2; 2//!

Z=2ZD f˙1g which sends each element of order two to -1. To extend this cover to
QK , we must unbranch along the curves of the singular set that meet the boundary.
The singular set is combinatorially an H, and the underlying space is topologically a
ball. By using a Wirtinger presentation for the orbifold group, it follows easily that
there can be no other unbranching. Therefore there is a unique 2–fold cover of QK

with a torus cusp. We denote this orbifold by Q0 . Since it was shown in the proof
of (i) that the unbranching arcs are unknotted in QK , it follows that Q0 has underlying
space a solid torus. The singular set of the cover is the preimage of part of the singular
set of QK , and so is of order 2. Let �orb

1
.Q0/ denote the orbifold fundamental group

of Q0 , and let  W �orb
1
.Q0/! Z be the homomorphism to the fundamental group of

the underlying space of Q0 .
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If ˛ is in the kernel of  , then ˛ bounds an immersed disk in X.Q0/, the underlying
space of Q0 . Furthermore, this disc restricts to an immersed punctured sphere in
Q0 nN.†.Q0//, where N.†.Q0// is a neighborhood of the ramification locus of Q0 .
Therefore ˛ D

P
ai in H1.Q

0�N.†.Q0//;Z/ and each ai is a meridian, ie, bounds
a disk in X.Q0/. Since Q0 is obtained from Q0 �N.†.Q0// by performing .2; 0/
Dehn filling on the boundary components corresponding to †.Q0/, 2˛ D

P
2ai is

trivial in H1.Q
0;Z/D �ab . Thus Œ˛� 2H1.Q

0;Z/ has order 2 when ˛ is in the kernel
of  . The map  W �orb

1
.Q0/! Z factors through the abelianization H1.Q

0;Z/! Z,
so if ˛ is not in the kernel of  , Œ˛� has infinite order.

3 Proof of Theorem 1.1

The proof of Theorem 1.1 will follow immediately from the following two results.

Theorem 3.1 Let K be a hyperbolic nonarithmetic 2–bridge knot. Then K has no
hidden symmetries.

Theorem 3.1 together with Proposition 2.1 shows that the minimal element in the
orientable commensurability class of �K is the group N.K/ D NC.�K /. Hence
QK DH3=N.K/ and the proof of Theorem 1.1 is completed by:

Theorem 3.2 Let QK be as above. Then QK is covered by exactly one knot comple-
ment in S3 .

We defer the proof of Theorem 3.1 and the remainder of this section will be spent
proving Theorem 3.2. For convenience we record the following result that will be
used subsequently in several places. The nontrivial implication is Theorem 3.4 (1) in
Gonzáles-Acuña and Whitten [7].

Theorem 3.3 Let † be a homotopy 3–sphere and K � † a nontrivial knot. Then
† nK is nontrivially covered by the complement of a knot in a homotopy 3–sphere if
and only if † nK admits a nontrivial cyclic surgery.

Of particular relevance to us is that in Takahashi [27] it is shown that a hyperbolic
2–bridge knot complement does not admit a nontrivial surgery with cyclic fundamental
group. Therefore, we have:

Corollary 3.4 If S3 nK is a hyperbolic 2–bridge knot complement, it is not covered
by the complement of any other knot in a homotopy 3–sphere.
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Proof of Theorem 3.2 Throughout the proof of Theorem 3.2, �K will denote a
faithful discrete p-rep in standard form. Thus, the meridians x1 and x2 have images�

1 1

0 1

�
and

�
1 0

y 1

�
respectively.

Assume K0 is a knot in S3 such that S3 nK0 is commensurable with S3 nK , and let
S3 nK0 DH3=�K 0 . We can assume that �K 0 has been conjugated to be a subgroup
of N.K/. Let � D h�K ; �K 0i be the subgroup of N.K/ that is generated by �K and
�K 0 , and let �D �K \�K 0 . We have the following lattice of subgroups of � . Note
that Theorem 3.1 and Proposition 2.1 show that all the inclusions shown are of normal
subgroups.

�

�K

=={{{{
�K 0

bbDDDD

�

aaCCCC
<<zzzz

Now �K 0=� Š �=�K , which by Theorem 2.7, is a subgroup of V or D4 . Since
�K 0 is a knot group, the quotient group �K 0=� cannot be V or D4 (since both have
noncyclic abelianization). Hence, the only possibilities for �K 0=�Š �=�K are cyclic
of order 1, 2 or 4. Thus, since H3=� is a cyclic cover of S3 nK0 , we deduce that
H3=� has 1 torus cusp.

We claim that �K=� is also cyclic. To see this, we have that H3=�! S3 nK is a
regular cover by a 1–cusped manifold. Hence the peripheral subgroup of �K surjects
onto the covering group. Therefore, the covering group is abelian, and hence cyclic
since K is a knot. Hence all of the inclusions indicated in the above diagram have
cyclic quotients.

Note first that if �=�K is the trivial group then �K 0 is a subgroup of �K which
contradicts Corollary 3.4. Thus we assume henceforth that � ¤ �K .

Lemma 3.5 H3=� is not a manifold but has a torus cusp.

Proof Since � ¤ �K , the last sentence in the statement of Theorem 2.7 immediately
implies that H3=� is an orbifold. Now suppose that H3=� does not have a torus cusp.
Since the cusp is the quotient of a torus, and not rigid (by Theorem 3.1 and Proposition
2.1), the cusp must be S2.2; 2; 2; 2/. This implies that the peripheral subgroup of �
fixing 1 is D �

1 1

0 1

�
;

�
1 r

0 1

�
;

�
i a

0 �i

� E
;
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for some numbers r and a, and where the third generator is the hyperelliptic involution
of the torus that takes a peripheral element to its inverse.

As remarked in Section 2.2, since � is generated by parabolic elements, we have that
Q.tr�/D k� DQ.y/. We claim that this is a contradiction.

To that end, consider the following products of elements in � ;�
i a

0 �i

��
1 0

y 1

�
and

�
i a

0 �i

��
1 0

y 1

��
1 1

0 1

�
:

The trace of the first product shows that a 2Q.y/. The trace of the second product
then shows that i 2Q.y/, in contradiction to Proposition 2.5. This completes the proof
of the lemma.

Lemma 3.6 �=�K Š �=�K 0 .

Proof The coverings p1W S
3nKDH3=�K!H3=� and p2W S

3nK0DH3=�K 0!

H3=� are cyclic coverings of an orbifold with a torus cusp by a knot complement. Let
�1 and �2 be the generators of the cyclic groups of covering transformations of the
covers p1 and p2 respectively. The lemma will follow on establishing that each of p1

and p2 restricted to the cusp tori TK and TK 0 of S3 nK and S3 nK0 respectively
have the same degree. To that end, first observe that the preferred longitude

`D

�
1 2g0

0 1

�
of S3 nK is also a longitude for S3 nK0 . To see this, we have already noted that both
of these knot complements are cyclically covered by the 1–cusped manifold H3=�.
Since they are knot complements, their longitudes, and the nonseparating surfaces that
these longitudes bound, both lift to this cyclic cover. Since there is only one homology
class in the cusp of H3=� which bounds a nonseparating surface, it follows that ` is
also a longitude of S3 nK0 . By Lemma 3.5 the orbifold H3=� has one torus cusp
which we denote by T� . Standard arguments in the orbifold setting (see the proof of
Theorem 11 of Dunbar [6] for example) provide a nonseparating 2–orbifold in H3=�

which is bounded by a simple closed curve in T� . We denote this class (which is
unique) by `0 . The preimage of Œ`0� 2 H1.T� IZ/ must be Œ`� 2 H1.Ti IZ/ in both
coverings. We deduce from these remarks that the covering degrees of p1 and p2

restricted to `0 are the same.

The proof will be completed by establishing that x1 and x0
1

, the meridians of �K and
� 0

K
, respectively, are primitive elements of � . Then the covering degree will be the

degree restricted to `0 . To prove primitivity we argue as follows. Note that �K has
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algebraic integer entries. We first claim that � , and hence �K 0 , also has algebraic
integer entries. Since � has one torus cusp we can choose left coset representatives of
�K in � that are parabolic of the form�

1 a

0 1

�
:

Since the property of having algebraic integer traces is a commensurability invariant,

tr
�

1 0

y 1

��
1 a

0 1

�
D 2C ay

is also an algebraic integer. Since y is a unit (ƒK .y/ is monic with constant term 1)
a is also an algebraic integer. Since this holds for any left coset representative, this
proves the claim.

x1 D

�
1 1

0 1

�
;Now

x01 D

�
1 r

0 1

�
:and we shall assume that

Note that r must be a unit, for if not, since we have shown all entries of �K 0 are
integral, we can find a prime ideal P dividing hri, and reducing the entries modulo P
sends all of �K 0 to the identity (since it is normally generated by x0

1
). However, this

is impossible since there is an element in �K 0 conjugating x0
1

to a meridian x0
2

fixing
0. Such a conjugating matrix has zero as the .1; 1/ entry.

If x0
1

is not primitive, there is an element�
1 t

0 1

�
2 ��

1 t

0 1

�n

D

�
1 r

0 1

�
;such that

for some integer n. We claim n D 1. To see this, note that the elements of � have
algebraic integer entries by the argument above. Therefore t D r=n is an algebraic
integer. Since r is a unit, t D˙r , and x0

1
is not a proper power of any element in � . It

is clear that the same argument holds for x1 . Therefore, both x1 and x0
1

are primitive
in � as required.

From the previous discussion, we are assuming that �=�K D �=�K 0 is a cyclic group
of order 2 or 4.
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In the case when �=�K D �=�K 0 D Z=4Z the theorem follows easily from Lemma
2.8. For then since H3=� has a torus cusp, H3=� is the unique 2–fold cover Q0

of H3=N.K/ with a torus cusp, and Lemma 2.8 shows that H3=� has exactly one
4–fold cyclic cover. Therefore �K D �K 0 .

We now assume that �=�K D �=�K 0 D Z=2Z. In this case all the cyclic quotients
arising from the lattice of subgroups at the beginning of the proof of Theorem 3.2 are
order 2. In particular, since K is 2–bridge, H3=� is the complement of a knot in a
lens space.

Recall the proof of Lemma 3.6 shows that x1 and x0
1

are primitive elements in � .
Furthermore, x1 … �

0
K

and x0
1
… �K . For if so, then x1 2 �K \ �K 0 D � which is

false. If x0
1
2 �K then x0

1
2� and normality implies that �D �K 0 which is false as

Œ�K 0 W��D 2. Consider the normal closure of x2
1

in � . We denote this by hx2
1
i� . We

claim that hx2
1
i� D hx

2
1
i�K

. The inclusion hx2
1
i�K
� hx2

1
i� is clear. For the reverse

inclusion, we can choose x0
1

to be a left coset representative for �K in � and it follows
that � D h�K ;x

0
1
i. Since x0

1
commutes with x2

1
, we deduce that hx2

1
i� � hx

2
1
i�K

.

The exact same argument with �K and x0
1

replaced by � 0
K

and x1 shows that hx2
1
i� D

hx2
1
i� 0

K
. Similarly, we can take x1 to be a left coset representative of � in �K , which

also shows that hx2
1
i� D hx

2
1
i�K

. Thus we conclude that hx2
1
i�K
D hx2

1
i� 0

K
D hx2

1
i� .

For convenience we denote hx2
1
i� by N .

Now the group �K=N is the orbifold fundamental group of the orbifold obtained by
the .2; 0/ Dehn filling on the 2–bridge knot K . Now the double branched cover of K

is a lens space L.p=q/ whose fundamental group is the cyclic group of (odd) order p .
Since this double cover is obtained by first performing .2; 0/ orbifold Dehn surgery on
K , and then passing to the index 2 cover which is a manifold, we deduce that �K=N
is a dihedral group of order 2p for some odd integer p .

Note that x2
1

is a primitive element of �K 0 . For if not, then x12�K 0 , but as noted above
x1 …�. Therefore, � 0

K
=N and �=N are the fundamental groups of the manifolds

obtained by Dehn filling the primitive curve x2
1

in S3 nK0 and H3=� respectively. In
particular, this latter group is a cyclic group of order p (denoted Cp ). We denote the
former group by G0 . Hence we have the following diagram of groups:

G D �=N

Dp

88qqqqq
G0

eeLLLLLL

Cp

ffMMMMMMM

99rrrrrrr
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The group G is a 2–fold extension of Dp , and so has order 4p . The group G0 is
a finite group of order 2p arising as the fundamental group of a closed orientable
3–manifold. We claim that the finite group G0 is cyclic.

This will complete the proof of Theorem 3.2. For if G0 is cyclic, then S3 nK0 has
a 2p–fold cyclic cover † nK00 , where † is a homotopy 3–sphere. Note that since
† nK00 is the 2p–fold cyclic cover of S3 nK0 , it must cover the 2–fold cover of
S3nK0 , namely H3=� . Hence †nK00 covers S3nK which contradicts Corollary 3.4.

To establish that G0 is cyclic, by Milnor [15] there are a limited number of types
of noncyclic finite groups that can be the fundamental group of a closed orientable
3–manifold. We list these below using the notation of Boyer and Zhang [4]:

� Even D–type: fx;y W x2 D .xy/2 D yng �Z=j Z, with j � 1; n � 2 with n

even. The abelianization is Z=2Z˚Z=2j Z.

� Odd D–type: fx;y W x2k

D 1;y2lC1D 1;xyx�1D y�1g�Z=j Z, with j � 1,
.2.2l C 1/; j /D 1 k � 2. The abelianization is Z=2kj Z.

� T –type: fx;y; z W x2 D .xy/2 D y2; z3k

D 1; zxz�1 D y; zyz�1 D xyg �

Z=j Z; .6; j /D 1. The abelianization is Z=3kj Z.

� O –type: fx;y W x2 D .xy/3 D y4;x4 D 1g �Z=j Z; .6; j /D 1. The abelian-
ization is Z=2j Z.

� I –type: fx;y W x2 D .xy/4 D y5;x4 D 1g �Z=j Z; .30; j /D 1. The abelian-
ization is Z=j Z.

� Q–type: fx;y; z W x2 D .xy/2 D y2n; zkl D 1;xzx�1 D zr ;yzy�1 D z�1g �

Z=j Z, n; k; l; j relatively prime odd positive integers, r ��1 mod k; r � 1

mod l . The abelianization is Z=2Z˚Z=2j Z.

Now jG0j D 2p where p is odd. This allows us to immediately rule out both D–types,
O –type, I –type and Q–type, since either the fundamental group or its abelianization is
clearly divisible by 4. Since G0 has order 2p and contains a cyclic subgroup of order p ,
G0 surjects onto Z=2Z. This precludes G0 being of T –type, since the abelianization
of a group of T –type is odd. This proves that G0 is a cyclic group as claimed.

4 2–Bridge knots and hidden symmetries

In this section we prove Theorem 3.1. This will be done in Section 4.1 and Section 4.2.
We begin with some preliminary discussion.
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4.1 Preliminaries to prove Theorem 3.1

K is a hyperbolic 2–bridge knot different from the figure-eight knot, and as above,
�K the faithful discrete p-rep of �1.S

3 nK/ in standard form; ie given by

�.x1/D

�
1 1

0 1

�
and �.x2/D

�
1 0

y 1

�
:

As above the invariant trace-field is Q.y/, and we let the ring of integers of Q.y/
be denoted by Ry . Assuming that K has hidden symmetries, Corollary 2.6 shows
that the orientable commensurator orbifold QK has a S2.2; 3; 6/ rigid cusp. Hence
ZŒ!��Ry .

Let } � Ry be a prime ideal that divides the principal ideal 2Ry � Ry , and let
F D Ry=} . This is a finite field of order 2s for some integer s � 1. In fact, since
ZŒ!��Ry and 2 is inert in ZŒ!�, it follows that jFj D 4s for some integer s � 1. Let
�W PSL.2;Ry/! PSL.2;F/ be the reduction homomorphism. The key result that is
needed to prove Theorem 3.1 is the following.

Theorem 4.1 The image of �K under � is a dihedral group of order 6 or 10.

Deferring the proof of Theorem 4.1 until Section 4.2, we complete the proof of Theorem
3.1.

As in Section 2.3 we let ƒ0.y/ denote the factor of the p-rep polynomial ƒK .y/

that corresponds to the complete hyperbolic structure. Let xƒ0.y/ be the reduction of
ƒ0.y/ modulo 2. By Theorem 2.3, xƒ0.y/ has no repeated factors, and each factor
corresponds to a dihedral representation of �K . By Theorem 4.1 the image of these
representations are dihedral of order 6 or 10. Now from [21, Proposition 4], we deduce
that the corresponding factors of xƒ0.y/ have degrees 1 and 2 respectively. Since we
are working modulo 2, the only possible irreducible polynomials are x in the case of
D3 and x2CxC 1 in the case of D5 .

By Theorem 2.3 and Theorem 2.4(i) 2 does not divide the discriminant �.y/ of ƒ0.y/.
Hence 2 does not divide �.y/d�1

k
, where dk is the discriminant of Q.y/. Therefore

Theorem 2.4(ii) shows that the above factors determine the decomposition of the
principal ideal 2Ry into prime (ideal) power factors. Any such } as above is one of
these factors. Since there are no repeated factors, we deduce that the decomposition
of 2Ry is into at most the product of two prime ideals of Ry . Therefore, xƒ0.y/

has degree at most 3. Hence ƒ0.y/ has degree at most 3 (recall ƒ0.y/ is a monic
polynomial so the leading coefficient is never zero modulo 2).
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The degree cannot be 1, since y is a nonreal root of the p-rep polynomial. If the degree
is 2, then since Q.y/ contains Q.

p
�3/ we have that Q.y/DQ.

p
�3/ and so �K

has traces in ZŒ!�. It follows that �K is arithmetic (cf [20]) which is false. Finally,
the degree cannot be 3, because Q.

p
�3/�Q.y/. This contradiction completes the

proof.

4.2 Proof of Theorem 4.1

Throughout this subsection we let C.K/D CC.�K / which is assumed to contain �K .
Since �K contains a peripheral subgroup fixing 1, C.K/ has a peripheral subgroup
fixing 1 and we denote this by B (so B is isomorphic to the orbifold group of
S2.2; 3; 6/). We begin with some preliminary lemmas.

Lemma 4.2 The orbifold group B < C.K/ has the formD �
1 1

0 1

�
;

�
1 !

0 1

�
;

�
i! 0

0 �i x!

� E
:

Proof B fixes infinity and so an element of order 6 in B has the form

e D

�
i! t

0 �i x!

�
for some number t . We claim that we can arrange that t can be taken to be 0.

To see this we argue as follows. By [17, Theorem 2.2], there is a normal subgroup L

of C.K/ (with quotient .Z=2Z/˛ ) such that all elements of C.K/ whose trace lies in
Q.y/ n f0g are elements of L. Recall from the proof of Proposition 2.5 the element
� 2N.K/ < C.K/. Hence the element

ı D e�D

�
�! �t i

0 �x!

�
is an element of order 3 which lies in L. Now L also contains �K and so,

tr.�.x2/ı/D�! � x! �yti 2Q.y/:

Furthermore, since traces of elements in �K are algebraic integers, all traces of elements
in C.K/ are algebraic integers by commensurability. Letting Ry denote the ring of
integers in Q.y/ we deduce that yti 2Ry . Since y is a unit we deduce that t i 2Ry .

Now e3
D

�
�i 2t

0 i

�
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is an element of order 2 in B , and the product

�e3
D

�
1 2ti

0 1

�
is a parabolic element in B . Since the cusp field is Q.

p
�3/ it follows that t i 2

Q.
p
�3/. Furthermore from above t i is an algebraic integer, and so t i 2ZŒ!�. Hence

the element ı above has coefficients in ZŒ!�. Let x D�t i x! 2 ZŒ!�, and consider the
product

ı

�
1 x

0 1

�
:�

! 0

0 x!

�
:This gives the element

Taking the product with � gives the desired element of order 6.

Lemma 4.3 C.K/ contains a subgroup C0.K/ of index 2 such that �K is a subgroup
of C0.K/ and H3=C0.K/ has a S2.3; 3; 3/ cusp. Furthermore, C0.K/ < PSL.2;Ry/.

Proof As mentioned in the proof of Lemma 4.2, Theorem 2.2 of [17] provides a
normal subgroup L of C.K/ with quotient .Z=2Z/˛ such that all elements of C.K/

whose trace lies in Q.y/ n f0g are elements of L. As noted, L contains �K , and so
H3=L has one cusp. Since H3=L has one cusp, B must surject onto the covering
group .Z=2Z/˛ . We claim that this forces ˛ D 1.

To see this, note that the abelianization of the group B is Z=6Z. Hence, the image
of B under the homomorphism C.K/! C.K/=L is cyclic, and so ˛ � 1. However,
˛ ¤ 0 since an element of order 6 in B cannot lie in L. For if so, then

p
3 2Q.y/.

Since Q.
p
�3/ � Q.y/ (by Corollary 2.6), it follows that

p
3
p
�3 D 3i 2 Q.y/

which contradicts Proposition 2.5. Given that the element�
! 0

0 x!

�
constructed in the proof of Lemma 4.2 is an element of L, this argument also shows
that the cusp of H3=L is S2.3; 3; 3/.

Note that L< PSL.2;Ry/. For since H3=L has one cusp, a system of coset represen-
tatives of �K in L can be taken from the cusp subgroup E of L. By definition of B ,
the subgroup E is: � �

1 1

0 1

�
;

�
1 !

0 1

�
;

�
! 0

0 x!

� �
:
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Thus all the coefficients lie in ZŒ!�. Now Corollary 2.6 implies that ZŒ!��Ry . Hence
all the coefficients of L are elements of Ry . We now take C0.K/DL.

Consider the reduction homomorphism � restricted to the group C0.K/ (which is a
subgroup of PSL.2;Ry/ by Lemma 4.3). We continue to denote this by � and let
�D ker� . As in the proof of Lemma 4.3,

E D
D �

1 1

0 1

�
;

�
1 !

0 1

�
;

�
! 0

0 x!

� E
denotes the cusp subgroup of the C0.K/. Note that E \� is torsion free, since the
element �

! 0

0 x!

�
of order 3 injects under � .

We claim that �.E/ has order 12. Indeed, since E < PSL.2;ZŒ!�/ < PSL.2;Ry/ it
suffices to consider the image of E under the reduction homomorphism restricted to
PSL.2;ZŒ!�/. By the definition of E and � it is easily seen that �.E/ is an extension
of V by Z=3Z. This defines a subgroup of order 12, which proves the claim.

Now �K \� is the kernel of � restricted to �K . As discussed in Section 2.3 this is
a dihedral representation. We need to show that �K=�K \� is a dihedral group of
order 6 or 10.

Lemma 4.4 �K=�K \� is a dihedral group of order 2m and m is odd.

Proof That �K \� is dihedral follows from the sentence before the lemma. Since
K is a 2–bridge knot it has a 2–bridge normal form as discussed in Section 2.3, and
hence the double branched cover of K is a lens space L.p=q/ whose fundamental
group is the cyclic group of odd order p .

The double cover of a manifold branched over a knot K can be obtained by first
performing .2; 0/ orbifold Dehn surgery on K , and then passing to the index 2 cover
which is a manifold. In particular meridians of K are mapped to elements of order 2,
and furthermore any quotient of �1.S

3 nK/ in which the meridians are mapped to
elements of order 2 is a quotient of the orbifold group obtained above.

Hence, in the case at hand, the orbifold group is a dihedral group of order 2p where
p> 1 is odd. The lemma now follows from the discussion in the previous paragraph.
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We now complete the proof of Theorem 4.1. As before, if ` denotes the longitude for
x1 described in Section 2.3, then

�.`/D

�
1 g

0 1

�
;

where g D 2g0 and g0 2Ry . Hence �.�.`//D 1, and so the image of the peripheral
subgroup h�.x1/; �.`/i under � is cyclic of order 2. Hence the cover of S3 nK

determined by �K \� has m cusps (and m is odd by Lemma 4.4).

We now count the cusps of H3=.�K \�/ in a different way. Consider the following
diagram of subgroups of C0.K/:

C0.K/

�K�

OO

�K

;;xxxxx
�

bbDDDDDD

�K \�

ccFFFFF

<<zzzzzz

Since �K� contains �K and is contained in C0.K/, it has one cusp which is either a
torus or S2.3; 3; 3/. Furthermore, �K�=�Š �K=.�K \�/DDm . We claim that
the cusp of H3=�K� is a torus. To see this we argue as follows. Assume that the cusp
is S2.3; 3; 3/. Denote the cusp subgroup of �K� fixing 1 by E0 . Arguing as above
for �.E/ shows that �.E0/ has order 12. Since �.�K�/DDm , 12 must divide 2m.
However, this contradicts Lemma 4.4 which shows m is odd.

Therefore the cusp of �K� is a torus, and we have a covering space S3 nK !

H3=�K�. By [20, Lemma 4], this is a regular abelian cover. By Theorem 2.7 it
follows that the covering group is cyclic of order 1,2 or 4 or it is the group V .

The image of C0.K/ under � is a subgroup of PSL.2;F/, where as discussed in
Section 4.1, jFj D 4s D q . By [26, Theorem 6.25], subgroups of PSL.2;F/ are as
follows:

(1) PSL.2;F0/ where F0 is a subfield of F of order 2k . Note that since the charac-
teristic is 2, PGL.2;F0/D PSL.2;F0/ which excludes one of the possibilities
of [26, Theorem 6.25].

(2) A4 or A5 . Note that S4 is ruled out by [26, Theorem 6.26(C)].

(3) A subgroup H of order q.q � 1/ and its subgroups. A Sylow 2–subgroup
Q<H is elementary abelian and H=Q is cyclic of order q� 1.
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(4) A dihedral group of order 2.q˙ 1/ or one of its subgroups.

We handle each possibility in turn.

Case 1 Assume that C0.K/ maps onto PSL.2;F0/. From above we know that Œ�K� W

�K � D 1; 2; 4. If Œ�K� W �K � D 1 then � D �K \�. Now the number of cusps of
H3=� is given by jPSL.2;F0/j=j�.E/j, which is 2k.22k�1/=12 (by our computation
of j�.E/j given above ). From above, the number of cusps is the odd integer m. Thus
k D 2, from which it follows that mD 5, thus yielding the dihedral group D5 .

In the case that �K�=�K is cyclic of order 2 or 4 or V , we have �=.�K \�/ is
cyclic of order 2 or 4 or V . Thus we count that H3=� can have m, m=2, or m=4

cusps. Since m is odd, � has m cusps. We now argue as above, and we deduce that
k D 2 and mD 5 yielding the dihedral group D5 again.

Case 2 Assume that C0.K/ maps onto A4 or A5 . The only noncyclic dihedral
subgroup of A4 is V and �K cannot map onto this since it is a knot group. The only
noncyclic dihedral subgroups of A5 are D5 and D3 . Hence we are done in this case.

Case 3 Suppose that the image of C0.K/ is a subgroup of H as given above. H

contains the image of �K . This is a dihedral subgroup Dm of order 2m, where m

is odd. Since Q is normal in H , Q\Dm is normal in Dm , and the only normal
subgroup of Dm is the cyclic subgroup of order m. Since Q is a 2–group, 2 must
divide m, but m is odd.

Case 4 Suppose that the image of C0.K/ is a subgroup of a dihedral group of order
2.q˙ 1/. The order of the image of E is 12. Hence 12 divides 2.4s ˙ 1/, which is
absurd. This completes the proof.

5 Commensurable knot complements

5.1 Commensurability classes containing more than one knot complement

In the nonhyperbolic case, infinitely many knot complements can easily occur in one
commensurability class. For example, torus knots, in particular nonhyperbolic 2–bridge
knots, all have commensurable complements (see Neumann [16]).

As mentioned in Section 1, there are examples of hyperbolic knots K for which the
commensurability class of S3 nK contains more than one knot complement. We now
describe the constructions that are known to us.
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Lens space surgeries The main source of examples occurs when K admits a lens
space surgery. In this case S3 nK has a cyclic cover that is a knot complement by
Theorem 3.3. By [5], there can be at most two nontrivial cyclic surgeries. Hence if a
hyperbolic knot K admits a lens space surgery there can be up to 3 knot complements
in the commensurability class that arise from this construction. This holds for the
.�2; 3; 7/–pretzel knot complement (see Berge [2]).

Hidden symmetries A pair of commensurable knot complements that do not arise as
above are the two dodecahedral knot complements of Aitchison and Rubinstein [1].
These are commensurable of the same volume, and have hidden symmetries (see
Neumann and Reid [17]).

If a hyperbolic knot K has no hidden symmetries then there are only finitely many
knot complements in the commensurability class of S3 nK (see [20, Theorem 5]).
However, in the presence of hidden symmetries, it is unknown to the authors whether
there are finitely many knot complements in a commensurability class (even for the
dodecahedral knots).

Symmetries The final construction we are aware of was described to us by W Neumann
(personal communication). He has constructed an infinite family of pairs of knots
fKi ;K

0
ig which have the following property. The complements S3 nKi and S3 nK0i

have different volumes, and are both regular covers of a common (genuine) orbifold.

The simplest pair of examples are the knots 948 and 12n642, where the volume ratio is
4 W 3. See Goodman, Heard and Hodgson [8] for a description of the common orbifold
that they cover. These examples do not arise in connection with lens space surgeries
on a knot. Indeed, neither of these knots admits a lens space surgery by Wang and
Zhou [29].

Since the trace-field of the knot complements associated to the knots 948 and 12n642

is cubic, there are no hidden symmetries (recall Section 2.2), and so the remarks above
show that there are finitely many knot complements in this commensurability class
(presumably 2).

5.2 Commensurability classes containing only one knot complement

A “generic hyperbolic knot” will provide the unique knot complement in its commen-
surability class. More precisely:

Proposition 5.1 Let K be a hyperbolic knot. If K admits no symmetries, no hidden
symmetries, and no lens space surgeries, then S3 nK is the only knot complement in
its commensurability class.
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Proof Since K admits no symmetries and no hidden symmetries, S3 nK is nonarith-
metic and will be the minimal element in its commensurability class. Hence any other
knot complement commensurable with S3 nK covers S3 nK . This covering is cyclic
by [7], and Theorem 3.3 provides a lens space surgery which is a contradiction.

It is conjectured (see Gordon [9]) that if a knot K admits a lens space surgery then K is
tunnel number one, so in particular it will admit an order 2 symmetry which is a strong
involution. Thus conjecturally any knot without symmetries or hidden symmetries is
the only knot complement in its commensurability class.

Example The knot 932 provides an example of a hyperbolic knot with no symmetries,
no hidden symmetries and no lens space surgeries. Indeed, Riley [23] shows that this
knot complement has no symmetries and that its trace field has degree 29. Hence
there are no hidden symmetries (see Section 2.2). The computation of the Alexander
polynomial shows there are no lens space surgeries by [18].

5.3 The number of knot complements in a commensurability class

Based on the above discussion, we have the following conjecture.

Conjecture 5.2 Let K be a hyperbolic knot.

(i) There are at most three knot complements in the commensurability class of
S3 nK .

(ii) If K does not admit symmetries or hidden symmetries then there is only one
knot complement in the commensurability class of S3 nK .

We summarize what is known to us.

Theorem 5.3 Let K be a hyperbolic knot in S3 . Then Conjecture 5.2 holds for K if
one of the following holds:

(i) K is 2–bridge.

(ii) K admits no symmetries, no hidden symmetries and has no lens space surgery.

(iii) K admits a free symmetry but no other symmetries and no hidden symmetries.

(iv) K admits a strong involution but no other symmetries and no hidden symmetries.
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Proof By Theorem 1.1 and Proposition 5.1, it remains to prove (iii) and (iv). For (iii),
since the action is free, and there are no hidden symmetries, the minimal orbifold in the
commensurability class of S3 nK is a manifold, and so this case is handled directly
by [20, Theorem 4] and [5].

For case (iv), since K has no hidden symmetries the minimal orbifold QK (in the
previous notation) is H3=N.K/. By assumption, ŒN.K/ W �K � D 2. Suppose that
S3 nK0 D H3=�K 0 is commensurable with S3 nK , where �K 0 < N.K/. We can
assume that S3nK0 does not cover S3nK . For if so, by [28] S3nK0 cannot cover any
other knot complement, and the result follows from [5]. Since the only symmetry of K

is a strong involution (which we shall denote by � ), N.K/ is generated by elements
of order 2. Hence the abelianization of N.K/ is generated by elements of order 2,
and it is easy to see that all elements in the abelianization have order 2. In particular
any nontrivial cyclic quotient of N.K/ has order 2.

Since QK does not have a rigid cusp, Proposition 2.1 shows that S3 nK0 is also a
regular cover of QK . Let G be the covering group of S3 nK0!QK . We claim that
G is cyclic. Consider the cover M of S3nK and S3nK0 corresponding to �K \�K 0 .
Since �K 0 is assumed not to be a subgroup of �K , it follows that M ! S3 nK0 is a
2–fold cover. Hence, M has one cusp. Now M ! S3 nK is also a regular cover, and
the covering group is necessarily G (by index). The covering group is abelian since
it is determined by the action on the cusp, and hence cyclic since it is the quotient of
a knot group. As remarked above, any cyclic quotient of N.K/ has order 2. Since
H3=N.K/ has underlying space a ball and ramification locus two arcs labelled 2, there
is one 2–fold cover of H3=N.K/ with a torus cusp (as in the proof of Lemma 2.8 (ii)).
Hence K DK0 in this case.

We have the following corollary of Theorem 5.3(iii).

Corollary 5.4 If K admits no hidden symmetries and has a lens space surgery, then
Conjecture 5.2 holds for K .

Proof Since K admits a lens space surgery, [29] shows that the only possibility for
a nontrivial symmetry of K is a strong involution. Thus either we can apply (iv) of
Theorem 5.3, or S3 nK is the minimal element in the commensurability class. In
which case, any knot complement in the commensurability class covers S3 nK , and
we are done by [7], Theorem 3.3 and [5].

The trace field of the knot complement of the .�2; 3; 7/–pretzel knot has degree 3.
Therefore by Proposition 2.1 it admits no hidden symmetries and there are exactly 3
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knot complements in this commensurability class. It seems likely that there are no
examples of knots that have hidden symmetries and admit a lens space surgery.

Since this paper was written, there has been some progress on Conjecture 5.2. In [12],
Macasieb and Mattman show that the .�2; 3; n/ pretzel knots satisfy Conjecture 5.2(i).
In [3], Boileau, Boyer and the second author show that Conjecture 5.2(i) is true in the
case when K does not admit hidden symmetries.
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Études Sci. Publ. Math. 82 (1995) 133–168 MR1383215

[26] M Suzuki, Group theory. I, Grundlehren series 247, Springer, Berlin (1982)
MR648772 Translated from the Japanese by the author

[27] M-o Takahashi, Two-bridge knots have property P, Mem. Amer. Math. Soc. 29 (1981)
iii+104 MR597092

[28] S C Wang, Y Q Wu, Any knot complement covers at most one knot complement, Pacific
J. Math. 158 (1993) 387–395 MR1206445

[29] S C Wang, Q Zhou, Symmetry of knots and cyclic surgery, Trans. Amer. Math. Soc.
330 (1992) 665–676 MR1031244

Algebraic & Geometric Topology, Volume 8 (2008)

http://www.ams.org/mathscinet-getitem?mr=993328
http://dx.doi.org/10.2307/2372566
http://www.ams.org/mathscinet-getitem?mr=0090056
http://dx.doi.org/10.1016/0040-9383(96)00014-6
http://www.ams.org/mathscinet-getitem?mr=1415593
http://www.ams.org/mathscinet-getitem?mr=1184416
http://dx.doi.org/10.1016/j.top.2005.05.001
http://www.ams.org/mathscinet-getitem?mr=2168576
http://dx.doi.org/10.1112/blms/22.4.349
http://www.ams.org/mathscinet-getitem?mr=1058310
http://dx.doi.org/10.1112/jlms/s2-43.1.171
http://www.ams.org/mathscinet-getitem?mr=1099096
http://dx.doi.org/10.1112/plms/s3-24.2.217
http://www.ams.org/mathscinet-getitem?mr=0300267
http://www.ams.org/mathscinet-getitem?mr=662430
http://www.ams.org/mathscinet-getitem?mr=988702
http://www.ams.org/mathscinet-getitem?mr=1096689
http://www.numdam.org/item?id=PMIHES_1995__82__133_0
http://www.ams.org/mathscinet-getitem?mr=1383215
http://www.ams.org/mathscinet-getitem?mr=648772
http://www.ams.org/mathscinet-getitem?mr=597092
http://projecteuclid.org/getRecord?id=euclid.pjm/1102634509
http://www.ams.org/mathscinet-getitem?mr=1206445
http://dx.doi.org/10.2307/2153928
http://www.ams.org/mathscinet-getitem?mr=1031244


Commensurability classes of 2–bridge knot complements 1057

Department of Mathematics, University of Texas
Austin, TX 78712, USA

Department of Mathematics, Tufts University
Medford, MA 02155, USA

areid@math.utexas.edu, genevieve.walsh@tufts.edu

http://www.ma.utexas.edu/users/areid/, http://www.tufts.edu/~gwalsh01/

Received: 8 January 2008 Revised: 22 May 2008

Algebraic & Geometric Topology, Volume 8 (2008)

mailto:areid@math.utexas.edu
mailto:genevieve.walsh@tufts.edu
http://www.ma.utexas.edu/users/areid/
http://www.tufts.edu/~gwalsh01/

	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.1
	4. 2-Bridge knots and hidden symmetries
	5. Commensurable knot complements
	References

