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Stable and unstable operations in mod p cohomology
theories

ANDREW STACEY

SARAH WHITEHOUSE

We consider operations between two multiplicative, complex orientable cohomology
theories. Under suitable hypotheses, we construct a map from unstable to stable
operations, left-inverse to the usual map from stable to unstable operations. In the
main example, where the target theory is one of the Morava K–theories, this provides
a simple and explicit description of a splitting arising from the Bousfield–Kuhn
functor.

55S25; 55P47

1 Introduction

Given two graded cohomology theories, E�.�/ and F�.�/, we can consider various
types of operations from one to the other. There are two main types: stable and unstable;
and within the unstable operations are the additive operations.

These are simplest to describe in categorical language. A cohomology theory is a
functor satisfying certain properties. At various levels of forgetfulness we have the
following functors:

(1) A functor E�.�/ from the (homotopy) category of based topological spaces
to the category of graded abelian groups which intertwines the two suspension
functors.

(2) A sequence of functors .Ek.�//k2Z from the (homotopy) category of based
topological spaces to the category of abelian groups.

(3) A sequence of functors .Ek
U
.�//k2Z from the (homotopy) category of based

topological spaces to the category of sets.

The three types of operation from F�.�/, the source theory, to E�.�/, the target
theory, are:

(1) Stable operations: for l 2 Z, Sl.F;E/ is the set of natural transformations
r W F�.�/!E�.�/ of degree l .
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(2) Additive operations: for k; l 2 Z, AkCl
k

.F;E/ is the set of natural transforma-
tions rk W F

k.�/!EkCl.�/.

(3) Unstable operations: for k; l 2 Z, UkCl
k

.F;E/ is the set of natural transforma-
tions rk W F

k
U
.�/!EkCl

U
.�/.

There is an obvious restriction map Sl.F;E/! UkCl
k

.F;E/ for each k; l 2 Z. In
brief, our main theorem shows this map has a left-inverse under certain conditions on
E�.�/ and F�.�/. The full statement of the theorem is as follows.

Theorem A Let E�.�/ and F�.�/ be two multiplicative graded cohomology theories
which are commutative and complex orientable. Let E� WDE�.pt/ be the coefficient
ring of E�.�/. We assume that the following conditions hold.

(1) E� has characteristic p .

(2) The formal group law of E�.�/ has finite height, say n.

(3) The coefficient of the first term in the p–series for E�.�/ is invertible.

(4) The various E�–modules of operations from F�.�/ to E�.�/ are the duals
over E� to the corresponding E�–modules of co-operations.

Under these conditions, for each k; l 2 Z there is a map

�1W UkCl
k

.F;E/! Sl.F;E/

which is left-inverse to the restriction map.

We postpone to Section 2 an explanation of what all the conditions mean. The map
�1 has several pleasant properties; to describe most of these we need to know more
about the structure of the spaces of the various types of operation, knowledge that we
also postpone for Section 2.

The map itself has a very simple description. To give this in its most topological form
we recall that operations between cohomology theories are closely related to homotopy
classes of maps between certain spaces and between certain spectra associated to the
cohomology theories. In this language, the restriction map from stable operations to
unstable operations is nothing more than the infinite loop space functor, �1 . Thus we
obtain the following corollary of Theorem A.

Corollary B Let E�.�/ and F�.�/ be cohomology theories as in Theorem A. Let
E and F be representing spectra. Let �1 denote the infinite loop space functor from
spectra to topological spaces. Then there is a map:

�1W Œ�1F; �1E�C! fF;Eg
0
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left-inverse to the map induced by the �1–functor.

The subscript adorning ŒX;Y �C is to denote homotopy classes of maps which preserve
the basepoint.

Composing �1 with the map coming from the �1–functor we produce a projection
on Œ�1F; �1E�C with the property that a homotopy class lies in the image of this
projection if and only if it is an infinite loop map and, moreover, the delooping of this
map is unique.

This projection is easy to describe. There are certain maps:

vE
n W �

1E!�2.pn�1/�1E

gF
pn�1W �

1F !�2.pn�1/�1F

which come from the p–series of the formal group law associated to each cohomology
theory. The conditions on E�.�/ guarantee that vE

n is invertible. The projection is:

� 7! .vE
n /
�m.�2m.pn�1/�/.gF

pn�1/
m

for some natural number m� pn depending on E�.�/ and F�.�/. Technically, one
needs to choose explicit complex orientations to define the maps vE

n and gF
pn�1

but
the resulting projection is independent of this choice.

The conditions in the theorem are really all about the target theory, E�.�/, even the last
one. The main examples to which we wish to apply this theorem are where E�.�/ is one
of the Morava K–theories, K.n/�.�/, at a prime p . We discard the case nD 0 as that
is just rational cohomology and we take an odd prime to ensure that the multiplication
is commutative. With this choice for the target theory there is no restriction on choosing
F�.�/ as the four conditions in Theorem A are automatically satisfied. In this case,
Corollary B is an elaboration of an application of the Bousfield–Kuhn functor.

This functor, written ˆn , goes from the homotopy category of based spaces to the
homotopy category of K.n/–local spectra (the original definition of ˆn had source the
homotopy category of p–local based spaces; the assumption of p–locality can easily
be seen to be unnecessary). Its key property is that if G is a spectrum then ˆn�

1.G/

is LK.n/G , the K.n/–localisation of G . In particular, if G is already K.n/–local
then ˆn�

1.G/'G . This is the case for K.n/ itself. Thus the functorial properties
of ˆn yield a map:

Œ�1G; �1K.n/�C! fLK.n/G;K.n/g
0:
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One of the defining properties of the K.n/–localisation is that there is a natural
isomorphism fLK.n/G;K.n/g Š fG;K.n/g. Therefore we have a map:

‚nW Œ�
1G; �1K.n/�C! fG;K.n/g

0:

This map ‚n can be compared to the map �1 of Corollary B.

Theorem C Let the source theory be a complex orientable, graded, commutative
multiplicative cohomology theory. Then, with target theory K.n/�.�/, �1 D‚n .

This paper is structured as follows. In Section 2 we describe the features of cohomology
theories that we need. In Section 3 we look at the p–series coming from the complex
orientation and use this to define certain key co-operations. These are the essential
ingredients of the proof of Theorem A. In Section 4 we prove our main technical result,
Proposition 4.7, which involves the relationships between the spaces of co-operations.
It is then a short step to our main result, Theorem 5.1 in Section 5, which is a more
detailed version of Theorem A and of Corollary B. We conclude by proving Theorem C
in Section 6.

There is considerable detail in the papers by Boardman [2] and by Boardman, Johnson
and Wilson [3] about operations in cohomology theories. Most of the background that
we need can be found in those papers. The papers by Ravenel and Wilson [10] and by
Wilson [12] are the original sources for some of the structure that we use.

As stated above, the technical details of our result rely on calculations in Hopf rings.
Similar calculations are extensive in the literature. The closest to our work are probably
those of Kashiwabara, Strickland and Turner [6] and of Bendersky [1]. Indeed, there
is some overlap in our main theorem with the work of Kashiwabara, Strickland and
Turner [6]. The first splitting of K�.BP / in that paper is dual to our splitting. We do
not go on to consider further splittings, as is done in [6], because the first splitting has
a good topological description which is missing in the higher ones. The proof of our
theorem and that of [6] run along similar lines.

Related work using the Bousfield–Kuhn functor has appeared in Bousfield [5], Kuhn [8]
and Resk [11].

Finally, we note some conventions that we shall use throughout this paper. Firstly, we
work throughout in the homotopy categories of spaces and spectra and shall use the
short-hand “map” for a morphism in the appropriate category. Thus what we mean
when we say “map” is really a homotopy class of maps in the conventional sense. We
trust that this will not be overly confusing.
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Secondly, following Boardman [2] and Boardman, Johnson and Wilson [3] we grade
homology negatively. In order to get the pairing between homology and cohomology
correct one theory has to be graded negatively. As in [2] and [3], for us the cohomology
theory is the object of study whereas the homology theory is a tool we shall use in the
analysis.

Thirdly, and unlike [2] and [3], we shall always be careful to distinguish between spaces
and spectra. The convention of [2] and [3] is to use the same notation for a space and
its suspension spectrum. This is a convenient shorthand but as our paper is all about the
passage from spaces to spectra it is a shorthand we feel morally obliged to do without.

Fourthly, we shall need to work with both based and unbased spaces. We shall distin-
guish between morphisms in the two categories with the notation ŒX;Y � for homotopy
classes of all maps and ŒX;Y �C for homotopy classes of based maps. We recall that
when the target, Y , is an H –space and the source, X , is a based space then there is a
natural projection ŒX;Y �! ŒX;Y �C .

Acknowledgements The authors gratefully acknowledge the support of the EPSRC,
grant no. GR/S76823/01. The authors would also like to thank the anonymous referee
for his or her helpful comments.

2 Ingredients

In this section we shall describe the various ingredients needed for our work. This is
not intended to be a detailed reference on cohomology theories, rather our aim is to
establish our notation whilst giving just enough information to allow the casual reader
to follow our argument without constantly referring to other works. The bulk of this
can be found in the expository parts of Boardman [2] and Boardman, Johnson and
Wilson [3] and we largely follow their conventions. The reader familiar with [2] and
[3] may wish to skip to the next section.

2.1 Generalised cohomology theories

Let E�.�/ be a multiplicative graded generalised cohomology theory that is commuta-
tive and complex orientable. Much of what we are about to say applies to more general
theories but as we shall only use such theories we specialise at the outset.

As this is a multiplicative theory, the cohomology of a point is a graded ring called the
coefficient ring. We write this as E� .
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Representing spaces and spectrum Brown’s representability theorem, and its con-
sequences, provide us with a sequence of H –spaces, .Ek/k2Z , which represent this
cohomology theory. That is, we have universal elements �k 2Ek.Ek/ such that for
any space X the map ˛ 7! ˛��k is an isomorphism of abelian groups:

ŒX;Ek �!Ek.X /:

The abelian group structure on the left-hand side comes from the H –space structure of
Ek . The universal class �k actually lies in the subgroup zEk.Ek/ and so for any based
space X the above isomorphism identifies ŒX;Ek �C with zEk.X /.

These spaces are unique up to equivalence. It can be shown that the suspension
isomorphism of reduced cohomology, zEk.X /Š zEkC1.†X /, defines an equivalence
Ek ! �EkC1 . These equivalences allow us to construct an �–spectrum E from
the Ek . Using this spectrum we can extend the cohomology theory to spectra by
defining zEk.F / WD fF;Egk and define the associated homology theory for both based
spaces and spectra as zEk.X / WD fS;E ^X g�k . This extends to unbased spaces by
the usual method of adding a disjoint basepoint: Ek.X / WD zEk.XC/. Note that we
are following the convention of Boardman [2] in (redundantly) writing the homology
and cohomology of spectra as reduced.

In light of the fact that zEk.F / and fF;Egk are one and the same for spectra, we make
the same identification for spaces. That is, we consider the isomorphism ŒX;Ek �Š

Ek.X / to be so natural as to be worth writing as an equality. We shall still employ the
language of both sides and talk of maps or classes as best fits, but shall regard the two
dialects as synonymous.

Structure maps All of the structure of the cohomology theory E�.�/ is reflected
in the spectrum E and the spaces Ek . Essentially, any natural transformation of
cohomology theories is represented by maps between the associated spaces or spectra.
The existence of the map can usually be deduced by applying the natural transformation
to the appropriate universal class.

As an example, we have the already-mentioned equivalence Ek ' �EkC1 coming
from the natural isomorphism zEk.X /Š zEkC1.†X /. To define the associated map
we apply the suspension isomorphism to the space Ek :

zEk.Ek/Š zE
kC1.†Ek/:

By the representability theorem, the image of the universal class �k is represented
by a (based) map #k W †Ek !EkC1 . The naturality of the suspension isomorphism
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implies that for a general space it is the composition:

zEk.X /D ŒX;Ek �C
†
�! Œ†X; †Ek �C

#k�
��! Œ†X;EkC1�C D zE

kC1.†X /:

In this fashion we deduce the existence of several maps which we now list.

� Suspension: There is a map #k W †Ek ! EkC1 representing the suspension
isomorphism zEk.X /Š zEkC1.†X /.

� Stabilisation: There is a map of spectra �k W †
1Ek!E of degree k represent-

ing the isomorphism zEk.X /Š zEk.†1X /.

� Multiplication: There is a map of spectra, �W E ^E ! E , of degree 0 and
maps of spaces �k;l W Ek ^El !EkCl representing the multiplication in the
cohomology rings.

� Unit: There is a map of spectra, �W S ! E , of degree 0 and maps of spaces
�k W S

k !Ek representing the unit in the cohomology rings.

These maps satisfy various compatibility relations. In particular, the stable and unstable
realms correspond under the stabilisation maps. We record one particular relation that
will be of use later:

(2–1) #k D �1;k.�1 ^ 1/:

Using the multiplication we can define the augmentation maps. The stable augmentation
map is:

�S W
zEk.E/D fS;E ^Eg�k ��

�! fS;Eg�k
DE�k :

The unstable augmentations are:

�U;k W El.Ek/! zEl.Ek/Š zEl.†
1Ek/

�k�
��! zEl�k.E/

�S
�!Ek�l :

(The unstable augmentation, �U;k , should not be confused with the counit of the
coalgebra E�.Ek/, which will not be used in this paper.)

Duality The augmentations define a pairing between cohomology and homology. An
element ˛ 2Ek.X / defines a pushforward in homology for X a space or spectrum;
respectively:

˛�W El.X /!El.Ek/;

˛�W El.X /!El�k.E/

which we compose with the appropriate augmentation to end up in Ek�l .
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Under favourable circumstances the induced map E�.X /!DE�.X / (the E�–dual
of E�.X /) is an isomorphism. To truly understand this statement would require a
lengthy and, for our purposes, unnecessary discussion of the topologies involved. The
precise circumstances are recorded in Boardman [2, theorem 4.14]: if E�.X / is free
as an E�–module then E�.X / is the E�–dual of E�.X /. When this occurs we shall
say that X has strong E–duality. If this holds for all spaces and spectra then we shall
say that E�.�/ has strong duality.

As alluded to above, for an E�–module M� we shall write DM� for its E�–dual.
This is again an E�–module and so a graded abelian group; we shall write DlM� for
its l –th component. This is the set of degree l E�–linear maps M�!E� .

2.2 Operations and co-operations

Another piece of the baggage that comes with a generalised cohomology theory is the
family of operations. As with all the other parts of the structure of the cohomology
theory, these are reflected in maps between the representing spaces. Also we can
consider operations from one cohomology theory to another. Thus let F�.�/ be
another generalised cohomology theory (also multiplicative, commutative and complex
orientable). We shall consider the operations from F�.�/ to E�.�/.

Stable and unstable operations As mentioned in the introduction, operations are
simplest to describe in the language of category theory. In this setting, a cohomology
theory is a functor on the homotopy category of topological spaces and an operation is
simply a natural transformation between functors. With a graded cohomology theory
one has two types of operation depending on whether one considers the cohomology
theory as a whole, leading to stable operations, or one takes a single component of it,
leading to unstable operations. We allow degree shifts in both cases.

In the stable case this description needs a little elaboration. Considered as a whole, a
cohomology theory is a functor between two categories each of which has a suspension
functor and the cohomology theory intertwines these functors. To qualify as a stable
operation, a natural transformation has also to respect the suspension functors. Oth-
erwise, using the restrictions mentioned below, a stable operation would be simply a
sequence of unstable operations with no relations between the components. Respecting
the suspension functors imposes some relations between successive components, as we
will see in a moment.

We label the set of stable operations of degree l from F�.�/ to E�.�/ by Sl.F;E/

and the set of unstable operations from Fk.�/ to El.�/ by U l
k
.F;E/. At the most

basic level these are abelian groups since operations take values in abelian groups.
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There is an obvious way to define an unstable operation by restricting a stable operation
to a single component. In this way, a stable operation defines a sequence of unstable
operations. This suggests the question as to whether a sequence of unstable operations
patches together to give a stable operation. This will happen if the unstable operations
commute with the suspension isomorphisms, modulo a sign. That is, suppose that for
each k 2 Z we have an unstable operation rk W F

k.�/! EkCl.�/ then there is a
stable operation r W F�.�/!E�Cl.�/ restricting to rk (modulo the sign issue) if and
only if each rk maps reduced cohomology to reduced cohomology and the following
diagram commutes for each space X up to the indicated sign:

zFk.X /
Š //

rk

��
.�1/k

zFkC1.†X /

rkC1

��
zEkCl.X /

Š // zEkClC1.†X /

The resulting stable operation need not be unique, however. For that one needs to know
that a certain lim1 term vanishes. There are technical conditions that guarantee this
which, as we note later, hold in our context.

A stable operation extends in the obvious way to an operation on the cohomology of
spectra. There is no analogue of an unstable operation in this case.

Using the same techniques as for the structure maps we can identify operations with
maps between the representing spectra or spaces.

� Stable operations F�.�/!E�Cl.�/ correspond to maps of the spectrum F

to E of degree l , and thus Sl.F;E/Š zEl.F /.

� Unstable operations Fk.�/!El.�/ correspond to maps Fk !El and thus
U l

k
.F;E/ŠEl.Fk/.

Additive operations Within the family of unstable operations lie the additive op-
erations which we denote by Al

k
.F;E/� U l

k
.F;E/. A generic unstable operation

need not preserve any of the structure of Fk.X /, even that of being an abelian group.
An additive operation is one that does preserve the additive structure. Using the fact
that the additive structure of Fk.X / comes from the H –space structure of Fk it is
straightforward to show that within El.Fk/ the additive operations are:

ker
�
.���p1

�
�p2

�/W El.Fk/!El.Fk �Fk/
�

where �W Fk � Fk ! Fk is the H –map and p1 , p2 are the projections onto the
two factors. This is the subspace of primitives and is written PEl.Fk/. Thus
Al

k
.F;E/Š PEl.Fk/.
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Co-operations If the spectrum F and the spaces .Fk/k2Z have strong E–duality
then the cohomology rings zE�.F / and E�.Fk/ are the E�–duals of the corresponding
homology groups. Therefore one can analyse the groups of operations by studying these
homology groups. This is often a Good Thing To Do. Firstly, the topological issues
alluded to in the paragraph on duality all occur on the cohomology side; homology
is discrete. Secondly, it is easier to find explicit elements in the homology using
pushforwards from key test spaces.

Anything worth studying gets a name, in this case co-operations. As with operations
these come in three flavours: stable, unstable and additive. The stable co-operations
are zE�.F /. The unstable ones are E�.F�/. The additive co-operations are the
indecomposables of E�.F�/: for each k 2 Z we define

QE�.Fk/ WD coker
�
.���p1��p2�/W E�.Fk �Fk/!E�.Fk/

�
:

This is a quotient of E�.Fk/; let zqk denote the quotient map. Assuming sufficient
duality the E�–dual of QE�.Fk/ is PE�.Fk/, which we know to be isomorphic to
A�

k
.F;E/.

In Boardman, Johnson and Wilson [3] the authors regrade the additive co-operations
by defining Q.E;F /k� WDQE�.Fk/, with the total degree of Q.E;F /ki being k � i .
The reason for this is that the algebraic structure of QE�.Fk/ makes more sense with
the new grading. For this paper there is not much difference between the two options
as we mainly deal with all unstable operations and when we do explicitly consider
additive operations then we are concerned with finding identities and these, of course,
hold whatever the grading scheme in use. We choose Q.E;F /�� because [3] is the
main background for this paper and so we are trying to use their conventions whenever
possible.

The regraded quotient map of degree k is:

qk W E�.Fk/!Q.E;F /k�:

The stabilisation map �k W †
1Fk ! F induces the stabilisation map of co-operations:

�k�W E�.Fk/! zE�.Fk/Š zE�.†
1Fk/! zE��k.F /:

This factors through the quotient to additive co-operations. Thus we can define the
maps:

Q�k�W QEi.Fk/! zEi�k.F /;

Q.�/W Q.E;F /ki !
zEi�k.F /:

The former is of degree k , the latter of degree 0.
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This seems an appropriate place to note that if the spectrum F and the spaces .Fk/k2Z

have strong E�–duality then the potential lim1 –problem referred to above disappears:
a stable operation is completely determined by its unstable components. See Boardman
[2, Section 9] for more on this issue.

Operations, maps and functionals We therefore have three ways of thinking about
operations: as operations, as maps (or classes), and as functionals on co-operations
(assuming sufficient duality). We shall distinguish between these views using fonts and
alphabets: Roman (italic) for operations, Greek for maps and Gothic for functionals.
We shall attempt to make our notation as transparent as possible: the stable operation
r will correspond to the stable map � and to the functional r on stable co-operations.

In each of the three cases we have a natural restriction map from the stable to the
unstable operations which factors through the additive ones. These restriction maps do
not correspond exactly: there are signs to insert at the appropriate junctures. The full
diagram (which is an expansion of Boardman, Johnson and Wilson [3, 6.10]) is:

(2–2)

Sl.F;E/ //

Š

��
.�1/kl

AkCl
k

.F;E/
� //

Š

��

UkCl
k

.F;E/

Š

��
zEl.F /

�k
�

//

Š

��
.�1/k

PEkCl.Fk/
� //

Š

��
.�1/k

EkCl.Fk/

Š

��

Dl zE�.F /
DQ.�/ // DlQ.E;F /k�

Dqk // DlE�.Fk/:

Recall from the paragraph on duality that we write DlM� for the l –th component of
the E�–dual of M� .

Constant operations and based operations There is one particular type of operation
that we have to consider, if only so that we know how to ignore them later. These
are constant operations. Each v 2E� defines an operation on F�.X / by x 7! v1X ,
where 1X is the unit in the algebra E�.X /.

Juxtaposed to constant operations are the based operations. An operation r W Fk.�/!

El.�/ is based if it maps zero to zero. This is, of course, automatic for an additive
operation but not for a general unstable operation.

The reason for mentioning these two types of operation together is that every (unstable)
operation has a decomposition as the sum of a constant operation and a based operation.
For an operation r W F�.�/!E�.�/ let vr 2E�DE�.pt/ be the image of 02F�D
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F�.pt/ under r , then let zr be the based operation given by zr.x/D r.x/� vr 1X for
x 2 F�.X /.

The based operations correspond to the classes in zEl.Fk/ and thereby to the based
maps, ŒFk ;El �C . The based functionals are dual to the reduced homology groups,
zE�.Fk/.

In each case, the projection from the unbased to the based version is the obvious one.
Where we have a possibly unbased operation r , map � , or functional r we shall denote
the corresponding based one by zr , z� , or zr.

Suspension and looping There is a method of getting new unstable operations from
old. Given an unstable operation rk W F

k.�/!El.�/ we can define another unstable
operation rk�1W F

k�1.�/!El�1.�/ via:

rk�1W F
k�1.X /! zFk�1.X /Š zFk.†X /

zrk
�! zEl.†X /Š zEl�1.X /�El�1.X /:

The corresponding idea in the world of maps is to use the equivalences Ek�1 '�Ek

and so given a map �k W Fk !El we define �k�1 via:

�k�1W Fk�1 '�Fk

�z�k
���!�El 'El�1:

For functionals the push-forward on co-operations defines the following suspension
map:

†W El�1.Fk�1/! zEl�1.Fk�1/Š zEl.†Fk�1/
.�1/k�1#k�1�
����������! zEl.Fk/�El.Fk/:

The sign here is part of the baggage that comes with dealing with graded and ungraded
objects. We dualise this map to one on functionals.

We shall denote this process of getting one operation, map, or functional from another
by �. Thus, for functionals, �DD†.

The diagram relating these maps is:

U l
k
.F;E/

Š //

�
��

El.Fk/
Š //

�

��
.�1/k

DlE�.Fk/

�

��
U l�1

k�1
.F;E/

Š // El�1.Fk�1/
Š // Dl�1E�.Fk�1/

We should emphasise that we have defined looping for unbased operations, maps
and functionals. However, the construction factors through the projection to the
corresponding based objects.
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Colimits The spectrum F is built from the spaces Fk using the signed suspension
maps .�1/k#k W †Fk ! FkC1 . This expresses F as equivalent to the colimit of the
sequence .†1Fk/ in the category of spectra. Applying E–homology leads to:

zE�.F /Š colimk
zE�.†

1Fk/Š colimk
zE�.Fk/Š colimk E�.Fk/:

The last isomorphism is because the suspension map factors through the projection to
reduced homology and so this projection defines an isomorphism on the colimits.

In particular,

zEl.F /Š colimk
zElCk.Fk/Š colimk ElCk.Fk/:

As the suspension map also factors through the quotient to additive co-operations, we
can replace E�.Fk/ by Q.E;F /k� as appropriate.

Complex orientation Our cohomology theories are complex orientable so they admit
universal Chern classes. That is, say for F�.�/, there is an element xF 2 F2.CP1/
which restricts to a generator of zF�.CP1/ under the canonical inclusion CP1

�CP1 .
If, identifying once and for all CP1 with S2 , xF restricts to the image of the unit
under the natural isomorphisms zF�C2.S2/Š zF�.S0/Š F� then we say that xF is a
strict universal Chern class. Any universal Chern class can be modified to a strict one
so there is no loss in assuming that all universal Chern classes are strict.

A complex orientable cohomology theory together with a choice of universal Chern
class is called a complex oriented cohomology theory. Our results use a choice of
universal Chern class in their proof but are independent of this choice.

A universal Chern class defines an isomorphism F�.CP1/ Š F�ŒŒxF ��. The F –
homology of CP1 is then the free F�–module on generators ˇF

i of degree �2i

defined so that .xF /i.ˇF
j /D ı

i
j .

The H –space structure of CP1 is a map CP1 �CP1! CP1 . In cohomology
this induces a map:

F�ŒŒxF ��Š F�.CP1/! F�.CP1 �CP1/Š F�ŒŒxF

1 ;x
F

2 ��:

The image of xF under this map is known as the formal group law of the cohomology
theory F�.�/. We shall write this formal power series as:

xF

1 CF
xF

2

(the “F ” is to indicate the cohomology theory).

In certain circumstances it is possible to substitute elements of an F�–algebra into the
formal power series that this represents. (The only difficulty here is with convergence
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of the resulting sum; so it works, for example, on nilpotent elements and it works
if the algebra is complete with respect to some filtration and successive powers of
the elements that one is substituting in lie further and further down in the filtration.)
The properties of the formal group law imply that, when this is possible, the resulting
operation is associative, commutative, unital and has inverses—hence the name “formal
group law”. We shall denote iterations of this process with the adorned summation
notation: XF

We shall need one more fact about the structure of the formal group law as a power
series. It follows from the basic properties of formal group laws that there are identities:

(2–3) xF

1 CF
xF

2 D xF

1 CxF

2 R1.x
F

1 ;x
F

2 /D xF

2 CxF

1 R2.x
F

1 ;x
F

2 /

for some formal power series R1.x
F

1
;xF

2
/;R2.x

F

1
;xF

2
/.

A particular case where substitution is allowed is the element xF of F�ŒŒxF ��. Substi-
tuting this into both variables we define:

Œ2�F .x
F /D xF

C
F

xF
2 F�ŒŒxF ��:

It is straightforward to see that the resulting formal power series has leading term 2xF

and so can be again substituted in to the formal group law. Iterating this procedure,
we define Œn�F .xF / WD xF C

F
Œn� 1�F .x

F /. This formal power series is called the
n–series of F�.�/.

There is an alternative derivation of these formal power series. The H –space struc-
ture on CP1 defines an n–th power map CP1! CP1 . Using the isomorphism
F�.CP1/Š F�ŒŒxF ��, the image of xF under the pull-back via this map is a formal
power series in xF and it is not hard to see that it is Œn�F .xF /.

A particularly important case of this is the p–series for p a prime. This is of the form:

(2–4) Œp�F .x
F /D pxF

C

X
j�1

gF
j .x

F /jC1

for some gF
j 2 F�2j .

If the coefficient ring of F�.�/ is p–local then there is a refinement of the notion
of a universal Chern class called a p–typical Chern class. In [9], Quillen showed
that a p–typical Chern class always exists. If xF is a p–typical Chern class then the
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reduction of the p–series modulo p has the form:

(2–5) Œp�F .x
F /�

XF

i�1

vF
i .x

F /p
i

mod p

for some vF
i 2 F�2.pi�1/ . Note the adorned summation sign. In particular if F� has

characteristic p then (2–5) is an equality. The height of the formal group law is the
least n such that vF

n ¤ 0.

The formal group law, and thus the p–series, depends on the choice of universal Chern
class. If we make a different choice of (strict) universal Chern class then we obtain
new coefficients in (2–4), say zgF

j . These are related to the original coefficients by
equations of the form:

zgF
j D gF

j mod .gF
1 ; : : : ;g

F
j�1/:

Thus although the p–series depends on the choice of universal Chern class, the condi-
tions that we ask for in Theorem A do not.

Let us choose universal Chern classes for F�.�/ and E�.�/. The universal Chern
class for F�.�/ is represented by a map xF W CP1! F2 . Applying E–homology
leads to a push-forward xF

�W E�.CP1/! E�.F2/. The universal Chern class of
E�.�/ defines the generators ˇE

i for E�.CP1/. Let bi D xF

�ˇ
E
i and define:

b.s/D
X
i�0

bis
i
2E�.F�/ŒŒs��:

We shall use the same notation, ie bi , for the images of the bi in the additive and stable
co-operations.

2.3 Algebraic structure

The various groups of operations and co-operations have considerable algebraic struc-
ture. The full list is long so we shall only describe what we need. For all the gory
details, see Boardman [2] and Boardman, Johnson and Wilson [3].

The main structures that we shall use are the multiplicative and bimodule structures
on the sets of co-operations and the bimodule structure on the sets of operations. This
is further complicated by the fact that there are two multiplications on the unstable
co-operations.

Once we have introduced these algebraic structures we shall consider how some of the
data we have already seen behaves algebraically.
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Co-operation multiplications The more important—for our purposes—multiplica-
tion is defined using the maps on the spaces Fk and spectrum F which represent
the multiplication in F�.�/. That is, the map �l;k W F l � Fk ! F lCk defines a
push-forward:

E�.F l/�E�.Fk/!E�.F l �Fk/
�l;k�
���!E�.F lCk/:

As �l;k is a component of an infinite loop map we also get multiplications on the
additive and stable sets of co-operations which all correspond under the maps from
unstable co-operations to additive and to stable. For unstable co-operations we shall
write this multiplication as .a; b/ 7! aıb . For the others we shall just use the abutment
notation. Note that as the quotient from unstable to additive co-operations has a
nontrivial degree, the correct formula on a product is:

qiCj .a ı b/D .�1/j jajqi.a/qj .b/

for a 2E�.F i/ and b 2E�.Fj /.

For additive and stable co-operations these multiplications are graded commutative
(taking the total degree in the regraded additive realm). For unstable co-operations this
is still true but the issue is somewhat complicated by the fact that the set of unstable
co-operations, E�.F�/, has two indices which are used in different ways: the first
is a genuine grading whereas the second is really only a labelling. However this
multiplication does use this second index. To describe exactly how, we would need
to introduce yet more of the structure and it turns out that, for our purposes, this is
unnecessary since any element with both indices even commutes with everything. On
the few occasions where we need to consider other elements we shall give the explicit
commutation formula.

In light of this confusion, we add that when we speak of the degree of an element in
E�.F�/ we shall be using the first index only.

The set of unstable co-operations has another multiplication which comes from the
H –map Fk �Fk! Fk . This is graded commutative with the “honest” grading. Note
that this product only makes sense for elements which have the same second index.
We shall write this multiplication as .a; b/ 7! a� b .

The interaction of the two multiplications is controlled by a coproduct,  , which is
induced by the diagonal map Fk ! Fk �Fk . That is, if  .c/D

P
i c0i ˝ c00i then:

.a� b/ ı c D
X

i

.�1/jbjj c
0
i
j.a ı c0i/� .b ı c00i /:

This is the only place where we use this coproduct.
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The reason that the �–product does not appear in the additive or stable realms is that it
is what is being quotiented out when passing to the additive co-operations. Specifically,
the quotient on a �–product is:

qk.a� b/D �U;k.a/bC .�1/jajjbj�U;k.b/a;

where �U;k is the appropriate augmentation.

Bimodule structure The various groups of operations from F –cohomology to E–
cohomology have the structure of .E��F�/–bimodules. The left E�–action is:

.v � r/.˛/D vr.˛/

whilst the right F�–action is:

.r � v/.˛/D r.v˛/:

In terms of maps these actions are given by composition with certain maps of the
representing spaces. For v 2El DEl.pt/ we define �vW Ek !EkCl by:

Ek Š pt�Ek

v�1
��!El �Ek

�l;k

���!EkCl :

In the stable case we use the smash product and view v as an element of zEl.S/ (we
could have used the smash product in the unstable case as well since the multiplication
factors through the smash product). Using these maps we define the left action of E�

and right action of F� by appropriate composition:

v � �D .�v/�; � � v D �.�v/:

The left action of E� agrees with the obvious action on E�.Fk/.

For co-operations we have an obvious left action of E� as the coefficient ring. The
right action of F� is given by push-forwards:

.�v/�W E�.Fk/!E�.FkCl/:

Unpacking the construction of �v , and using the definition of the ı–multiplication, we
see that there is an element Œv� 2E0.F l/ such that the right action of v on E�.Fk/

is: c 7! c ı Œv�. The element Œv� is the image of 1 under the map v�W E� DE�.pt/!
E�.F l/. There are corresponding actions in the additive and stable realms since the
map �v is a component of an infinite loop map.

Diagram (2–2) is then a diagram of .E��F�/–bimodules.
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Algebraic suspension The suspension map on functionals has a particularly pleasant
structure. The suspension isomorphism zE0.S

0/Š zE1.S
1/ defines a canonical element

u1 2
zE1.S

1/ as the image of the unit. This element determines the suspension
isomorphism as follows. The E�–module zE�.S1/ is free of rank one generated by
u1 so we have the following isomorphisms:

(2–6) zEk.†X /D zEk.S
1
^X /Š

�
zE�.S

1/˝E�
zE�.X /

�
k
Š zEk�1.X /

where the final map is u1˝ c 7! c .

From Equation (2–1), the map #k�1W †Fk�1! Fk factors as �1;k�1.�1 ^ 1/. Thus
the following diagram commutes:

zEl�1.Fk�1/
Š // � zE�.S1/˝E�

zE�.Fk�1/
�
l

Š //

�1�˝1

��

zEl.S
1 ^Fk�1/

Š //

.�1^1/�

��

zEl.†Fk�1/

#k�1�

��

�
zE�.F1/˝E�

zE�.Fk�1/
�
l

// zEl.F1 ^Fk�1/

�1;k�1�

��
zEl.Fk/

D // zEl.Fk/

The upper route is, up to sign, the suspension map. Thus from the lower route, we can
see that this map is:

c 7! .�1/k�1e ı c

where e D �1�u1 2
zE1.F1/. We shall use the same notation for the image of e in

Q.E;F /1
1

. In the stable realm it maps to the identity (the maps which define stable
co-operations as the colimit of unstable are, up to sign, ı–multiplication by e ).

The commutation law for, coproduct of and augmentation of the element e are:

a ı e D .�1/jCke ı a; a 2Ej .Fk/I

 .e/D e˝ 11C 11˝ eI

�U;1.e/D 0:

Algebraic Chern class Returning to the series
P

bis
i , the first two terms are readily

identifiable in terms of the algebraic structure. The first, b0 , is 12 , the �–unit in
E0.F2/. The second, as our Chern classes were strict, is �eı2 . These quotient to the
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(regraded) additives as follows:

q2.b0/D q2.12/D 0

q2.b1/D q2.�e ı e/D q1.e/q1.e/D e2:

The bi ı–commute with everything as they lie in E2i.F2/. Their coproducts and
augmentations are:

 .bk/D
X

iCjDk

bi ˝ bj I

�U;2.bk/D

(
0 if k > 0;

1 if k D 0:

2.4 Morava K–theory

The Morava K–theories will be our main examples of target theories. These are a family
of multiplicative generalised cohomology theories indexed by primes and nonnegative
integers. There are some peculiarities corresponding to prime 2 which we wish to
avoid so we fix an odd prime, p . For any prime the theory corresponding to zero is
ordinary rational cohomology so any interesting behaviour peculiar to the Moravian
theories would be expected to rear its head for strictly positive integers, and this is
true for the phenomenon we have observed, hence we choose n � 1. Thus we have
fixed our attention on K.n/�.�/, the n–th Morava K–theory at the prime p , for n> 0

and p odd. (The prime is not explicit in the notation as it is quite unusual to vary it in
the course of a discussion whereas it is sometimes fruitful to consider different values
of n.)

The coefficient ring of K.n/�.�/ is:

K.n/� D Fp Œvn; v
�1
n �

where jvnj D �2.pn� 1/. This is a graded field and hence all modules over this ring
are free. Two consequences of this are that K.n/�.�/ has a Künneth formula and has
strong duality.

The p–series for K.n/�.�/ (with its standard complex orientation) is:

Œp�K.n/.s/D vnspn

:
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3 Analysing the p–series

In this section we analyse what information can be gleaned from the p–series of the
two cohomology theories under consideration. From now on we assume that E�.�/

and F�.�/ satisfy the conditions of Theorem A. That is, they are multiplicative graded
cohomology theories which are commutative and complex orientable and the following
conditions hold.

(1) The coefficient ring of E�.�/ has characteristic p .

(2) The formal group law of E�.�/ has finite height, say n.

(3) The coefficient of the first term in the p–series for E�.�/ is invertible.

(4) The various groups of operations from F�.�/ to E�.�/ are dual over the
coefficient ring of E�.�/ to the corresponding groups of co-operations.

As mentioned in the introduction, our result is about complex orientable theories but
uses a choice of complex orientation for each theory in the proof. We therefore fix strict
universal Chern classes for E�.�/ and F�.�/, with that for E�.�/ being p–typical.

The main tool in our analysis is a result from Ravenel and Wilson [10].

Theorem 3.1 (Ravenel–Wilson) The following identity holds in E�.F�/ŒŒs��:

b.Œp�E.s//D Œp�F .b.s//;

where, in expanding out the right-hand side, the coefficients gF
j of the p–series for

F�.�/ act via the right action of F� on E�.F�/.

Recall that b.s/D
P

i�0 bis
i .

To unpack this we use the fact that the maps which represent the addition and multipli-
cation in F�.�/ defined the �– and ı–multiplications on E�.F�/. Therefore, when
expanding the right-hand side, we need to translate addition to �–multiplication and
multiplication to ı–multiplication. This leads to:

(3–1) b

�
psC

X
i>0

gE
i siC1

�
D b.s/�p � F

i>0

�
b.s/ıiC1

ı ŒgF
i �
�
:
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3.1 Additive co-operations

Equation (3–1) looks horrendous but simplifies considerably when we quotient to the
additive co-operations. Throughout this section we shall be working in the additive
realm; that is, with Q.E;F /�� and formal power series over this.

As �U;2b.s/D 1, we find that in Q.E;F /��ŒŒs��:

b

�
psC

X
i>0

gE
i siC1

�
D pb.s/C

X
i>0

b.s/iC1ŒgF
i �:

In the additive realm it is a tautology that the left and right Z–actions agree. As
E�.F�/ is an E�–module it has characteristic p and thus we may replace both sides
by their reductions modulo p . As E�.�/ is p–local this yields:

(3–2) b

�XE

i>0

vE
i spi

�
D

X
i>0

b.s/iC1ŒgF
i �:

From this equation we shall deduce the following result.

Proposition 3.2 Recall that n is the height of the formal group law of E�.�/. There
is a natural number h such that in Q.E;F /�� :

(3–3) vE
n bhC1

1
D b

hCpn

1
ŒgF

pn�1�:

An upper bound for h is the sum of the set:

fj W 1< j < pn; ŒgF
j�1�¤ 0 mod .ŒgF

1 �; : : : ; Œg
F
j�2�/g:

Proof Our strategy for proving (3–3) is to equate powers of s in (3–2) and read off
certain identities. To begin, we examine the left-hand side of (3–2) to find its leading
term. The left-hand side is of the form b.r.s// where r.s/D

PE
i>0 v

E
i spi

. As b.s/

has leading term b1s , the leading term of b.r.s// is the product of b1 and the leading
term of r.s/.

To find this leading term we use the formula in (2–3). Let ri.s/, i 2 f1; 2g, be formal
power series in s with leading terms ais

li and suppose that 1� l1 < l2 . Then (2–3)
shows that:

r1.s/CE
r2.s/D r1.s/ mod sl2

D a1sl1 mod sl1C1:

As r.s/ is a summation (using the formal group law of E�.�/) of monomials of
strictly increasing degree, the above shows that its leading term will be the first nonzero
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monomial. Our assumptions on the cohomology theory E�.�/ imply that this is
vE

n spn

. Hence the leading term of the left-hand side of (3–2) is vE
n b1spn

.

Now let us consider the right-hand side of (3–2). As b.s/ has leading term b1s , b.s/k

has leading term bk
1

sk . Therefore the coefficient of sk in the right-hand side of (3–2)
is of the form:

(3–4) bk
1 Œg

F
k�1�C

k�1X
jD2

cj Œg
F
j�1�

for some cj .

For 1< k < pn define ak to be the sum of the set

fj W 1< j � k; ŒgF
j�1�¤ 0 mod .ŒgF

1 �; : : : ; Œg
F
j�2�/g:

Note that apn�1 is the upper bound claimed in the statement of the proposition. Note
also that akC1 � ak .

We shall now show that b
ak

1
ŒgF

k�1
�D0 for 1<k<pn . From (3–4), the coefficient of s2

in the right-hand side of (3–2) is b2
1
ŒgF

1
�. As p is odd, pn>2 so by equating coefficients

of s2 in (3–2) we see that b2
1
ŒgF

1
�D0. If ŒgF

1
�D0 then a2D0 and b

a2

1
ŒgF

1
�D ŒgF

1
�D0.

Otherwise, ŒgF
1
�¤ 0 whence a2 D 2 and so b

a2

1
ŒgF

1
�D b2

1
ŒgF

1
�D 0.

Suppose that we have shown that b
aj

1
ŒgF

j�1
�D 0 for 1< j � k < pn� 1. If ŒgF

k
�D 0

mod .ŒgF
1
�; : : : ; ŒgF

k�1
�/ then we can extend this to j D k C 1 with no difficulty.

Otherwise, let us consider what happens when we multiply (3–2) by b
ak

1
. The coefficient

of skC1 in the right-hand side is now:

b
akCkC1
1

ŒgF
k �C

kX
jD2

cj b
ak

1
ŒgF

j�1�D b
akCkC1
1

ŒgF
k �D b

akC1

1
ŒgF

k �:

The first equality is by our assumption, since ak � aj , and the second by the definition
of akC1 . As kC 1< pn the coefficient of skC1 on the left-hand side of (3–2) is zero
whence we deduce that b

akC1

1
ŒgF

k
�D 0. Hence b

ak

1
ŒgF

k�1
�D 0 for all 1< k < pn .

By considering the coefficients of spn

in (3–2) we see that:

vE
n b1 D b

pn

1
ŒgF

pn�1�C

pn�1X
jD2

cj Œg
F
j�1�

for some cj . By multiplying both sides by b
apn�1

1
we deduce that:

vE
n b

apn�1C1

1
D b

apn�1Cpn

1
ŒgF

pn�1�

as required.
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It is entirely possible that (3–3) will hold for some smaller integer and the minimum
such value is an interesting invariant of the cohomology theory F�.�/. In light of the
fact that b1 D e2 we get slightly finer control if we consider this as an identity about e

rather than b1 .

Moreover, this integer is independent of the choice of complex orientations of the two
theories since changing the universal Chern classes changes the coefficients by lower
order terms.

Definition 3.3 Let E�.�/ and F�.�/ be complex orientable, graded, commutative,
multiplicative cohomology theories. Suppose that the coefficient ring, E� , has charac-
teristic p and that the formal group law for E�.�/ has finite height, say n.

Define the E–additive loop height of F�.�/ to be the least positive integer h for
which the identity:

vE
n eh
D e2.pn�1/ChŒgF

pn�1�

holds in Q.E;F /�� .

In the case that F�.�/DE�.�/ we shall refer to this as the self additive loop height
of E�.�/.

Examples 3.4 (1) By Proposition 3.2 the maximum possible E–additive loop
height is pn.pn� 1/ where n is the height of the formal group law of E�.�/.

(2) If F�.�/ is p–local then we easily see that the maximum possible E–additive
loop height is 2.pn� 1/=.p� 1/ where n is the height of the formal group law
of E�.�/. The distinct lack of any relations in K.n/�.BP�/, as demonstrated
in Ravenel and Wilson [10], allows one to conclude that the K.n/–additive loop
height for BP is 2.pn� 1/=.p� 1/.

(3) On the other hand, Wilson [12, Proposition 1.1(j)] implies the self additive loop
height of K.n/�.�/ is 1.

3.2 Unstable co-operations

The analysis of the p–series in the unstable realm follows from that in the additive
context due to a very useful trick: ı–multiplication by e factors through additive
co-operations. That is, if we have unstable co-operations a; c such that qk.a/D qk.c/

then e ıaD e ı c . Thus we can ignore Equation (3–1) and apply the additive results to
the unstable situation.
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We have an unstable version of Definition 3.3:

Definition 3.5 Let E�.�/ and F�.�/ be complex orientable, graded, commutative,
multiplicative cohomology theories. Suppose that the coefficient ring, E� , has charac-
teristic p and that the formal group law for E�.�/ has finite height, say n.

Define the E–unstable loop height of F�.�/ to be the least positive integer h for
which the identity:

vE
n eıh D eı.2.p

n�1/Ch/
ı ŒgF

pn�1�

holds in E�.F�/.

In the case that F�.�/DE�.�/ we shall refer to this as the self unstable loop height
of E�.�/.

The argument above produces:

Lemma 3.6 The E–unstable loop height of F�.�/ is at least the E–additive loop
height and at most one more. In particular, pn.pn� 1/C 1 is an upper bound whilst
2.pn� 1/=.p� 1/C 1 is an upper bound if F�.�/ is p–local.

Careful examination of Wilson [12, Proposition 1.1(j)] reveals that the self unstable
loop height of K.n/�.�/ is 1.

4 Splitting co-operations

In this section we use the results of the previous one to define how to construct a
stable operation from an unstable one. Our strategy will be to use the formula from
Proposition 3.2, and its unstable version, to define idempotents in the co-operation
algebras which will split the co-operations.

4.1 Idempotents

Definition 4.1 Let s 2E0.F0/ denote the unstable co-operation:

s WD .vE
n /
�1eı2.p

n�1/
ı ŒgF

pn�1�:

Recall that one of the conditions on the cohomology theory E�.�/ is that the element
vE

n 2E� is invertible, hence s is well defined.
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Proposition 4.2 Let h be the E–unstable loop height of F�.�/. Let m be the least
integer such that h� 2m.pn� 1/. The co-operation s has the following properties:

(1) s ı sım D sım ; whence sım is an idempotent for the ı–multiplication.

(2) e ı s D s ı e .

(3) eıh ı s D eıh D s ı eıh .

(4) There is some s0 2E�1.F�1/ such that e ı s0 D s .

Proof

(1) As h is the E–unstable loop height of F�.�/ we have the identity:

vE
n eıh D eı.2.p

n�1/Ch/
ı ŒgF

pn�1�

which rearranges to:

eıh D .vE
n /
�1eı.2.p

n�1/Ch/
ı ŒgF

pn�1�:

By definition, h� 2m.pn�1/. Hence ı–multiplying by eı.2m.pn�1/�h/ yields:

eı2m.pn�1/
D .vE

n /
�1eı2.p

n�1/
ı eı2m.pn�1/

ı ŒgF
pn�1�;

which leads to:

.vE
n /
�meı2m.pn�1/

ı ŒgF
pn�1�

ım

D .vE
n /
�1eı2.p

n�1/
ı ŒgF

pn�1� ı .v
E
n /
�meı2m.pn�1/

ı ŒgF
pn�1�

ım:

This is another way of saying that s ı sım D sım .

(2) As s has both indices zero it ı–commutes with everything.

(3) From
eıh D .vE

n /
�1eı.2.p

n�1/Ch/
ı ŒgF

pn�1�

we deduce that:
eıh D eıh ı s:

Then s ı eıh D eıh as s ı–commutes with everything.

(4) As 2.pn� 1/ > 1 the element s0 D .vE
n /
�1eı.2.p

n�1/�1/ ı ŒvF
n � is well-defined.

It clearly has the desired property.

From part (1) of Proposition 4.2 we deduce the following splitting.

Corollary 4.3 There is an isomorphism of graded E�–algebras:

E�.F�/! sım ıE�.F�/˚ .Œ1�� sım/ ıE�.F�/:
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As the suspension operation is, up to sign, ı–multiplication by e we deduce from
part (2) of Proposition 4.2 that suspension restricts to an operation on the algebra
sım ıE�.F�/ compatible with its inclusion in E�.F�/ and with the corresponding
projection from E�.F�/. Thus there is an injection of E�–modules:

(4–1) colimk sım ıElCk.Fk/! colimk ElCk.Fk/:

Lemma 4.4 The map in (4–1) is an isomorphism.

Proof We need to show that it is surjective. Up to sign, the suspension operation is
ı–multiplication by e . Therefore, part (3) of Proposition 4.2 implies that for h the E–
unstable loop height of F�.�/, †h factors through the projection onto sım ıE�.F�/.
This is sufficient to deduce that the map in (4–1) is surjective.

The right-hand side of (4–1) is identified with zEl.F /. The left-hand side also has a
simple description.

Proposition 4.5 For any k; l 2 Z the natural map:

sım ıElCk.Fk/! colimk sım ıElCk.Fk/

is an isomorphism.

Proof To prove this it is sufficient to show that suspension induces an isomorphism:

sım ıElCk.Fk/! sım ıElCkC1.FkC1/

for each l and k in Z. This follows from parts (1) and (4) of Proposition 4.2. Modulo
signs, the inverse is given by ı–multiplication by the element s0 2E�1.F�1/.

Putting these together we observe that for each k 2 Z the natural morphism sım ı

E�Ck.Fk/Š zE�.F / of E�–modules is an isomorphism. It therefore has an inverse.

Definition 4.6 For k; l 2 Z let ıW zEl.F /!ElCk.Fk/ be the map:

zEl.F /Š colimk ElCk.Fk/

Š colimk sım ıElCk.Fk/

Š sım ıElCk.Fk/

!ElCk.Fk/;

where the isomorphisms are as above. We refer to ı as the destabilisation map.
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Proposition 4.7 The destabilisation map ı is right-inverse to the stabilisation map
�k�W ElCk.Fk/! zEl.F /. The image of ı is the image of the iterated suspension map
†hW ElCk�h.Fk�h/!ElCk.Fk/ where h is the E–unstable loop height of F�.�/.
In the particular case k D l D 0, ı is a homomorphism of algebras.

The whole of the above can also be done in the additive realm and the two correspond
under the quotient map.

Let us conclude this section by making two remarks about the element s . Although
its definition involves terms from the formal group law, the iterated product, sım , is
independent of the choice of complex orientation since the lower-order terms vanish.
Also, if F�.�/ is p–local then mD 1.

5 Operations and maps

The results of the previous section readily dualise to operations due to our assumption
that operations from F�.�/ to E�.�/ are dual to co-operations. In this section we
interpret our results in the languages of operations and maps. It will be obvious from this
formulation that the dual of the destabilisation map respects composition of operations
and maps. We now state our main theorem.

Theorem 5.1 Let E�.�/ and F�.�/ be two graded multiplicative cohomology theo-
ries that are commutative and complex orientable. Suppose in addition that the following
conditions hold.

(1) The coefficient ring, E� , of E�.�/ has characteristic p .

(2) The formal group law of E�.�/ has finite height, say n.

(3) The coefficient of the first term in the p–series for E�.�/ is invertible.

(4) The various E�–modules of operations from F�.�/ to E�.�/ are the E�–duals
to the corresponding E�–modules of co-operations.

Let h be the E–unstable loop height of F�.�/.

Then there is a delooping map:

�1W UkCl
k

.F;E/! Sl.F;E/

�1W EkCl.Fk/! zE
l.F /equivalently:

�1W ŒFk ;EkCl �! fF;Eg
land:
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left-inverse to the natural restriction map; thus in the last formulation �1�1 is the
identity on fF;Egl .

Let rk 2 UkCl
k

.F;E/ and let �k 2EkCl.Fk/ be the corresponding class. The compo-
nents of �1rk and �1�k are:

.�1rk/j D .�1/lj .vE
n /
�a.�brk/.g

F
pn�1/

a;

.�1�k/j D .v
E
n /
�a.�b�k/.g

F
pn�1/

a;

where a; b � 0 are chosen such that b � h and j � k D 2.pn� 1/a� b . In particular:

.�1rk/k D .�1/lk.vE
n /
�m.�2m.pn�1/rk/.g

F
pn�1/

m;

.�1�k/k D .v
E
n /
�m.�2m.pn�1/�k/.g

F
pn�1/

m
I

where m is the least natural number such that h� 2m.pn� 1/, and for j � k � h:

.�1rk/j D .�1/lj�k�j rk ;

.�1�k/j D�
k�j�k :

Moreover, an operation rk W F
k.�/!EkCl.�/ is a component of a stable operation if

and only if it is the h–fold loop of an operation. Similarly, a map �k W Fk !EkCl is
an infinite loop map if and only if it is an h–fold loop map.

Proof The delooping map is defined by dualising the destabilisation map, ı , and using
the correspondence between operations, maps and functionals to translate it across to
the other realms. As the stabilisation map on co-operations is dual to the restriction
map on operations, the map �1 is left-inverse to the natural restriction map.

To determine the components of �1rk and �1�k we first examine the components
of an arbitrary stable operation or map. As h is the E–unstable loop height of F�.�/,
we have the identity:

vE
n eıh D eı.2.p

n�1/Ch/
ı ŒgF

pn�1�:

Under stabilisation the element e maps to the identity co-operation so the above
stabilises to:

vE
n D Œg

F
pn�1�:

By assumption vE
n is invertible. Hence if c is a stable co-operation cD .vE

n /
�1cŒgF

pn�1
�.

Dualising, if r is a stable operation then .vE
n /
�1r ŒgF

pn�1
�D r . Let .rk/ be the sequence

Algebraic & Geometric Topology, Volume 8 (2008)



Stable and unstable operations in mod p cohomology theories 1087

of unstable operations determined by restricting r to each degree. The restriction maps
are bimodule maps and so we obtain the identity:

rk D .v
E
n /
�1rk�2.pn�1/g

F
pn�1:

Now rk�2.pn�1/ D�
2.pn�1/rk and hence:

rk D .v
E
n /
�1.�2.pn�1/rk/g

F
pn�1:

Thus once we know one component of r , say rk , we can reconstruct the rest using the
following procedure:

(1) For j < k simply take the .k � j /–fold loop of rk .

(2) For j >k take the b–fold loop of rk where b is such that j�kCbD2.pn�1/a

for some a> 0. Then the periodicity ensures that:

rj D .v
E
n /
�arj�2.pn�1/a.g

F
pn�1/

a

D .vE
n /
�ark�b.g

F
pn�1/

a

D .vE
n /
�a.�brk/.g

F
pn�1/

a:

Thus the description of components of �1rk and �1�k will follow from the final
statement in the theorem: that an h–fold loop map is an infinite loop map. This is a
direct consequence of the fact that the image of the destabilisation map is the same as
the image of the h–th iterate of the suspension map. Hence the image of the delooping
map is the image of the h–th iterate of the looping map.

It is worth pointing out that we make no assumptions about the map gF
pn�1

. It is
possible that this is zero, whence there are no stable maps from F�.�/ to E�.�/.
This happens, for example, when considering operations from one Morava K–theory
to a different one. Of course, then our result is trivial.

As K.n/�.�/ has self unstable loop height of 1 we get the following corollary.

Corollary 5.2 A map ˛W K.n/k !K.n/l is an infinite loop map if and only if it is a
loop map.

One further fact to record about the delooping map is that it respects composition.

Proposition 5.3 Let E�.�/;F�.�/;G�.�/ be graded multiplicative cohomology
theories such that the delooping maps �1

FE
, �1

GF
, and �1

GE
are all defined. Let

�j W Gj ! Fk and �k W Fk !El be maps. Then:

�1GE.�k�j /D�
1
FE.�k/�

1
GF .�j /:
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Proof Firstly we note that both sides are well-defined. Due to our assumptions it is
sufficient to show that this equation holds component by component. Moreover, due to
the periodicity and the fact that looping respects composition it is sufficient to show
that it holds for one component. Let i be greater than the F –unstable loop height
of G�.�/, the E–unstable loop height of F�.�/ and the E–unstable loop height of
G�.�/. Then:�

�1FE.�k/�
1
GF .�j /

�
j�i
D
�
�1FE.�k/

�
k�i

�
�1GF .�j /

�
j�i

D .�i�k/.�
i�j /

D�i.�k�j /I

as required.

6 The Bousfield–Kuhn functor

In this section we relate our splitting to one that is a direct consequence of the existence
of the Bousfield–Kuhn functor. In [7], Kuhn showed that the K.n/–localisation of
p–local spectra factors through the functor �1 ; this extended work of Bousfield in [4]
for the case nD 1. For each n� 1, Kuhn constructed a functor ˆn from p–local based
spaces to p–local spectra such that ˆn�

1 is the K.n/–localisation functor, LK.n/ .
Although the source category of ˆn in [7] was p–local spaces, careful examination of
its construction reveals that the assumption of p–locality is not used. Moreover, the
original functor constructed by Bousfield in [4] did not have the requirement that the
spaces be p–local and subsequent use of the Bousfield–Kuhn functor has not imposed
p–locality; see, for example, Resk [11]. So we have a functor, which we shall denote
again by ˆn , from the category of based spaces to the category of spectra with the
property that ˆn�

1 DLK.n/ .

As we now recall, the functorial properties of ˆn define a map:

‚nW
zK.n/kCl.Fk/! zK.n/l.F /

for any spectrum F . To see this, let Fk be the zeroth space of †kF and recall that
K.n/kCl is the zeroth space of the spectrum †kClK.n/. As ˆn is a functor from
based spaces to K.n/–local spectra it defines a map on morphism sets:

ŒFk ;K.n/kCl �C! fLK.n/†
kF;LK.n/†

kClK.n/g0:

We can simplify the target of this map. The spectrum †kClK.n/ is already K.n/–
local allowing us to drop the second LK.n/ . This, together with sorting out the
suspensions, means that the target is naturally isomorphic to fLK.n/F;K.n/g

l which
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is zK.n/l.LK.n/F /. On the other hand, the source is zK.n/kCl.Fk/. Hence we have a
map:

zK.n/kCl.Fk/! zK.n/l.LK.n/F /Š zK.n/
l.F /:

We can extend this to the unreduced cohomology theory using the canonical projection
of unreduced onto reduced cohomology. Thus for any spectrum F the Bousfield–Kuhn
functor defines a map:

‚nW K.n/
kCl.Fk/! zK.n/l.F /:

Theorem 6.1 Let F�.�/ be a graded multiplicative cohomology theory that is com-
mutative and complex orientable. Then the delooping map:

�1W K.n/kCl.Fk/! zK.n/l.F /

is defined and agrees with ‚n .

Proof The pair K.n/�.�/ and F�.�/ satisfy all the conditions for the construction
of �1 and so it is at least defined. The map ‚n factors through the projection to
reduced cohomology by construction. The same is true for �1 as can be seen from
the formula in Theorem 5.1: recall that our definition of the loop of an unbased map
involved first projecting it to a based map and then taking the usual loop of the result.
Therefore to show that �1 and ‚n agree it is sufficient to show that they agree on
reduced cohomology; equivalently that they agree on based maps. In this situation the
loop of a map is as expected with no initial projection to based maps.

The first step in showing that �1 and ‚n are the same map is to observe that, as
both are left-inverse to �1 , if a class �k is a component of a stable class then
�1.�k/D‚n.�k/. By Theorem 5.1 any unstable class becomes the component of a
stable class after a finite number of loopings. Therefore it is enough to show that �1

and ‚n both commute with loops. In both cases this is immediate from the constructions
of the maps. For completeness we review the definition of the Bousfield–Kuhn functor
from Kuhn [7] and explain how the desired property follows.

There are three steps in defining ˆn .

(1) Let Z be a finite CW–complex with a self-map vW †dZ!Z , d > 0. Compo-
sition with v defines a map:

v�W Map.Z;X /!Map.†dZ;X /D�d Map.Z;X /

for any based space X . One can therefore define a spectrum with md –th space
Map.Z;X / and structure maps v� . This construction is functorial in X and so
defines a functor ˆ0

Z
from based spaces to spectra.
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(2) The second step is to compose the functor ˆ0
Z

with K.n/–localisation to produce
a functor ˆZ from spaces to K.n/–local spectra.

(3) The final step is to define a functor ˆn from spaces to K.n/–local spectra by
taking the direct limit of a sequence of functors, .ˆZk

/, for a suitable choice of
sequence of spaces .Zk/.

Both localisation and taking the direct limit of a sequence of spectra commute with the
suspension and loop operators acting on the category of spectra. Therefore to show
that ˆn , and thus ‚n , commutes with looping it is sufficient to show that this is true
for ˆ0

Z
. This follows from the fact that Map.Z; �X / D �Map.Z;X /. Thus the

spectrum for ˆ0
Z
.�X / is the spectrum �ˆ0

Z
.X / and similarly ˆ0

Z
.�˛/D�ˆ0

Z
.˛/

for a based map ˛W X ! Y .
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