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Real secondary index theory

ULRICH BUNKE

THOMAS SCHICK

In this paper, we study the family index of a family of spin manifolds. In particular, we
discuss to what extent the real index (of the Dirac operator of the real spinor bundle if
the fiber dimension is divisible by 8) which can be defined in this case contains extra
information over the complex index (the index of its complexification). We study this
question under the additional assumption that the complex index vanishes on the k –
skeleton of B . In this case, we define new analytical invariants yck 2H k�1.BIR=Z/ ,
certain secondary invariants.

We give interesting nontrivial examples. We then describe this invariant in terms of
known topological characteristic classes.

57R20

1 Introduction

1.0.1 The index of a family of Fredholm operators parametrized by a space B is
an element in the K–theory K�.B/ of this parameter space. If the base is in fact a
smooth compact manifold without boundary, and this family is a family of fiberwise
generalized Dirac operators on a smooth fiber bundle over B , then after adding some
further geometric structures in order to define the Bismut super connection we can
do local index theory in the sense of Berline, Getzler and Vergne [4]. Let us denote
by E the family with this collection of geometric structures, by D.E/ the family of
Dirac operators, and by index.E/ the index of this family. Local index theory provides
a closed form �.E/ on B (see Definition 2.1) which represents a cohomology class
Œ�.E/� 2H�.B;R/. The local index theorem states that

chR.index.E//D Œ�.E/� :

1.0.2 The focus of the present paper is not a generalization of this type of result. Let
us illustrate the philosophy of the present paper in the case above. We start with local
index theory and produce the even form �.E/. We then observe that this form is closed
and therefore represents a cohomology class Œ�.E/� 2 H ev.B;R/. We observe that
this class in fact only depends on index.E/ 2 K0.B/. The classifying space of the
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functor K0 is BU �Z. By naturality we conclude that there must be a universal class
chR

univ 2H ev.BU �Z;R/ such that Œ�.E/�D f �chR
univ , if f W B!BU �Z classifies

index.E/. We know that H ev.BU;R/ is a polynomial ring in generators cR
2
; cR

4
; : : : .

Then we finally look for a formula which expresses chR
univ in terms of these generators,

this way obtaining the Chern character. Of course this is a well known possible way
toward the family index formula.

1.0.3 In fact the real subject of the present paper is a secondary version of this approach.
Let K�

k
.B/ denote the k ’th step of the Atiyah-Hirzebruch filtration of K–theory (see

2.1.6), ie the subgroup of classes which vanish when restricted to the .k�1/–skeleton
of B (so that K�

0
.B/DK.B/). Under the assumption that index.E/ 2 K�

k
.B/, the

Chern class ck.index.E// 2H k.B;Z/ (note that we use a nonstandard notation where
the subscript is equal to the degree) admits a natural lift to smooth Deligne cohomology
yck.E/ 2H k

Del.B/ (see 2.1.8 and 2.1.17). This lift is a differential-geometric (or even
global-analytic) invariant which varies continuously with the geometry. In particular it
has a curvature !.yck.E// 2Ak.B/, which can be expressed through �.E/.

1.0.4 We rigidify the situation be imposing additional geometric constraints. We
in fact assume that the family of Dirac operators D.E/ is a family of twisted Dirac
operators on a family of Spin–manifolds, and that the twisting bundle is a real bundle.
Let n be the fiber-dimension of this family. It follows from the presence of the real
structure that, if kCn� 2.4/ then the class yck.E/ is flat (see 2.1.19). This means that
!.yck.E//D 0. Since any two geometric structures can be connected by a path we can
now conclude that under this assumptions yck.E/ is a differential-topological invariant.
In Section 3.3 we give some nontrivial examples.

1.0.5 Note that the flat part of H k
Del.B/ can be identified with H k�1.B;R=Z/. Thus,

given a family of n–dimensional spin manifolds and a real twisting bundle such
that index.E/ 2 K�

k
.B/ and k C n � 2 .mod 4/ we have defined a class yck.E/ 2

H k�1.B;R=Z/. This class is natural under pullback.

The index of the family D.E/ has a real refinement indexR.E/2KO�n.B/ (see Section
2.2). We prove that in fact yck.E/ only depends on indexR.E/ and that 2yck.E/ D 0

(see Proposition 3.2 and Proposition 3.5).

Let U�n
l
.B/�KO�n.B/ be the subset of classes which after complexification belong

to K�n
l
.B/. What we have constructed so far is a natural transformation

d�n
B;4kC1�nW U

�n
4kC2�n.B/!H 4kC1�n.B;R=Z/

such that d�n
B;4kC1�n

.indexR.E//D yc4kC2.E/.
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1.0.6 The universal situation is given by the fiber sequence

�n.U=O/
�ni
! �n.BO �Z/!�n.BU �Z/ :

It is obtained by application of the functor �n to the fibration U=O
i
�! BO! BU ,

where we construct BO DEU=O and thus obtain the inclusion i W U=O! BO . A
class x 2KO�n.B/ is represented by a map f W B!�n.BO �Z/. If x belongs to
U�n
1 .B/, then this map factors up to homotopy through a map gW B ! �n.U=O/.

Thus there must be a universal class

xd4kC1�n 2H 4kC1�n.�n.U=O/;R=Z/

such that g� xd4kC1�n D d�n
B;4kC1�n

.x/. Note that this universal class has the special
property that g� xd4kC1�n only depends on the homotopy class of the composition
�ni ıg .

1.0.7 The main purpose of the present paper is the calculation of the universal class
xd4kC1�n in terms of the classically known generators of the cohomology of �n.U=O/.
The result is presented in Theorem 4.10.

1.0.8 If nD2; 3; 4; 5 or nD1; k>0, then xd4kC1�nD0. If nD0 or nD1; kD0 then
the class d�n

B;4kC1�n
.x/ is a classical characteristic class of x (ie it can be expressed

in terms of the dimension and Stiefel–Whitney classes). If n D 7, in principle it is
also a well-known characteristic class (albeit for KO7 which is not considered much),
ie pulls back from the classifying space U=O .

The dimension nD 6 is interesting since in this case the classes are definitely not just
classical characteristic classes of x .

See Section 4.5 for all that.

1.0.9 For the convenience of the reader we have added two appendixes. In the first we
recall (with proof) some material about transgression.

In the second we recall the results of Cartan [8] about the cohomology of the spaces
�n.U=O/ and about the action of various maps and transgressions on this cohomology.

2 Real local index theory

2.1 Chern classes of geometric families in Deligne cohomology

2.1.1 We consider a fiber bundle � W E!B with closed n–dimensional fibers. We
assume that the vertical bundle T v� WD ker.d�/ is oriented and equipped with a spin
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structure. We choose a vertical Riemannian metric gT v� and a horizontal distribution
T h� , ie a complement of T v� in TE . Finally, we let W WD .W;rW ; hW / be an
auxiliary complex vector bundle with hermitian metric and metric connection. The
data described so far make up a geometric family E over B .

2.1.2 We assume that W admits a real structure Q 2 End.WjR/ which is compatible
with the connection and the metric. Then W is the complexification of a real bundle
WR D .WR;r

WR ; hWR/. The latter can be identified with the C1–eigenbundle of Q.

2.1.3 The data which we compressed in the notion of a geometric family induces a
family of elliptic operators D.E/ over B . Indeed, for b 2 B the operator D.E/.b/ is
the spin Dirac operator of the Riemannian spin manifold Eb WD �

�1.b/ twisted by the
bundle WjEb

. The family index of D.E/ is the element index.E/ 2K�n.B/.

2.1.4 For k 2 N0 we introduce a natural transformation ck W K
n.B/! H k.B;Z/

given by the Chern class. In order to have a uniform notation in the even and odd
dimensional case we use a notation which differs from the conventional one. So if n is
even, then we set c2k WD ck and c2kC1 WD 0, where ck W K

0.B/!H 2k.B;Z/ is the
Chern class in the usual notation. If n is odd, then we set c2k D 0 and define c2kC1

such that the following diagram is commutative

Kn.B/
c2kC1

! H 2kC1.B;Z/
k k

zKnC1.†B/
c2kC2

! H 2kC2.†B;Z/

where zK denotes the reduced K–theory and the vertical isomorphisms are the natural
suspension isomorphisms.

2.1.5 The Chern character is a natural transformation

chW Kn.B/!
M

k�n.2/

H k.B;Q/ :

Here again for the even part chW K2n.B/!
L

k�0.2/H k.B;Q/ we use the usual
convention, while the odd part is defined such that the following diagram is commutative:

K2n�1.B/
ch //

L
k�1.2/H k.B;Q/

zK2n.†B/
ch // L

k�0 .mod 2/
zH k.†B;Q/

For k 2N0 let chk W K
�.B/!H k.B;Q/ denote the corresponding component.
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2.1.6 The ring K�.B/ has a natural decreasing filtration, the Atiyah–Hirzebruch
filtration [1],

� � � �K�kC1.B/�K�k .B/� � � � �K�0 .B/DK�.B/ :

Recall that x 2K�
k
.B/ iff f �xD 0 for any .k�1/–dimensional CW–complex X and

continuous map f W X ! B .

2.1.7 Fix now k 2 N0 and define m 2 N such that k D 2m or k D 2m � 1. If
x 2K�

k
.B/, then we have

(1) ck.x/Q D .�1/m�1.m� 1/! chk.x/

where ck.x/Q 2H k.B;Q/ is the natural image of ck.x/ in cohomology with rational
coefficients.

2.1.8 Let H�Del.B/ denote the smooth Deligne cohomology of B . In the present
paper we use its description in terms of differential characters given by Cheeger–
Simons [9]. Let Zk�1 be the group of smooth singular chains on B . A class yx 2
H k

Del.B/ is a homomorphism yxW Zk�1 ! R=Z such that there exists a differential
form !.yx/ 2 Ak.B/ with the property that for any smooth singular k –chain C we
have yx.@C /D Œ

R
C !.yx/�, where Œr �2R=Z denotes the class of r 2R. Note that !.yx/

is uniquely determined by yx . It is called the curvature of yx . It is necessarily closed
and has integral periods.

The association B 7!H�Del.B/ is a contravariant functor from smooth manifolds and
smooth maps to graded abelian groups. There is a natural exact sequence

H k�1.B;Z/!Ak�1.B/= im.d/
ya
!H k

Del.B/
v
!H k.B;Z/! 0 ;

where a is given by

ya.ˇ/.Z/D
h Z

Z

˛
i
; ˇ 2Ak�1.B/ :

Note that !.ya.ˇ//D dˇ . The map v has the following description. Let yx 2H k
Del.B/.

We choose a smooth R–valued .k�1/–cochain T such that TjZk�1 D yx . This is
possible since R is divisible. Then we have dT D ! � c for some Z–valued k –
cochain c . It follows that c is closed, and we set v.yx/ WD Œc�. For details we refer to
Cheeger–Simons [9].

2.1.9 A complex vector bundle W !B represents an element ŒW �2K0.B/. Assume
that W comes with a hermitian metric hW and metric connection rW . We set W WD
.W; hW ;rW /. For k 2N0 , Cheeger–Simons [9] constructed a natural lift yc2k.W/ 2
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H 2k
Del.B/ of c2k.ŒW �/ such that v.yc2k.W//D c2k.ŒW �/ and !.yc2k.W// 2A2k.B/ is

the Chern–Weil representative of c2k.ŒW �/R associated to the connection rW .

2.1.10 The bundle W can be considered as a geometric family W over B with
zero-dimensional fiber in a natural way. In this case we have index.W/D ŒW �.

Therefore we can consider the geometric family E over B as a generalization of a
hermitian vector bundle with connection over B . It is now an obvious question whether
one can define a natural lift yck.E/ 2H k

Del.B/ of ck.index.E//.

2.1.11 The geometric data associated with the geometric family E induces a connection
rT v� on the vertical bundle in a natural way. In fact, if we choose for a moment a
Riemannian metric gTB on the base, then we can define a Riemannian metric gTE on
the total space E as the orthogonal sum of the vertical metric gT v� and the metric
gT h� on the horizontal bundle obtained by lifting gTB . Then rT v� is the projection
of the Levi-Civita connection of gTE to the vertical bundle. This connection does
not depend on the choice of gTB . We refer to [4] for details. By yA.rT v�/ 2A�.E/
we denote the Chern–Weil representative of the yA–class of T v� . Furthermore, let
ch.rW / 2A.E/ be the Chern–Weil representative of the Chern character of W .

Definition 2.1 The local index form �.E/ 2 A.B/ of the geometric family E is
defined by

�.E/ WD
Z

E=B

yA.rT v�/ch.rW / :

2.1.12 The Atiyah-Singer index theorem for families states that

ch.index.E//R D Œ�.E/� ;

where Œ!� 2H�.B;R/ denotes the class represented by the closed form ! . Here we
once and for all fix the isomorphism between de Rham cohomology H�

dR
.M / and

singular cohomology H�.B;R/ which is induced by the integration map. This means
that the value of the class Œ!� on the cycle Z is given by

R
Z ! .

2.1.13 The form �.E/ plays the role of the Chern–Weil representative of the Chern
character of an index bundle with connection r index.E/ for D.E/ though we are not able
to define the latter object. In particular, the local index form also determines candidates
for the Chern–Weil representatives ck.r

index.E// of the Chern classes ck.index.E//.
Unfortunately we are not able to define natural lifts yck.E/ 2H k

Del.B/ of ck.index.E//
with curvature !.yck.E//D ck.r

index.E//.
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2.1.14 Assume that index.E/ 2K�
k
.B/ and k D 2m or k D 2m� 1. By Equation

(1) we have
ck.index.E//R D Œ.�1/m�1.m� 1/!�k.E/� :

In [6, Definition 8.19] we have constructed a natural class

yck.E/ 2H k
Del.B/

with curvature !.yck.E//D�k.E/ and v.yck.E//D ck.index.E//. Instead of repeating
the rather indirect construction [6] we give here a direct description which could be
taken as definition of yck.E/ as well. Note that yck.E/ D 0 by definition if n 6� k.2/

(recall that n is the dimension of the fiber of E ).

2.1.15 Let Z 2 Zk�1 be a smooth cycle. We must prescribe yck.E/.Z/. We can
find a smooth manifold X (not necessarily closed) of the homotopy type of a .k�1/–
dimensional CW–complex, a map f W X !B , and a smooth .k�1/–cycle Z0 in X ,
such that f�Z0 DZ . We could eg take for f W X !B the inclusion of a thickening
of the trace jZj � B of Z and Z D Z0 . Note that 0D f �index.E/D index.f �E/.
Therefore we can find a perturbation of the family of Dirac operators D.f �E/ by a
family of selfadjoint smoothing operators Q (which are odd in the even-dimensional
case) such that the family D.f �E/CQ is invertible. In [6] the pair .f �E ;Q/ was
called a tamed geometric family and denoted by f �Et .

2.1.16 If Ft is a tamed geometric family over some base B , then the super connection
formalism provides an eta-form �.Ft / 2A.B/ such that d�.Ft /D�.E/. We refer
to [6] and [4] for details. The form �.Ft / depends on the taming. Assume that F 0t
is a second taming of the same underlying geometric family. Then the difference
�.Ft /� �.F 0t / is a closed form. As a consequence of the index theorem for boundary
tamed families [6] we know that

Œ�.Ft /� �.F 0t /�D ch.x/R

for some x 2K�.B/. In fact, we can take x D index..F � I/bt/, where the boundary
taming is induced by Ft and F 0t .

2.1.17 We can now prescribe yck.E/.Z/ as follows.

Definition 2.2

(2) yck.E/.Z/ WD
h
.�1/m�1.m� 1/!

Z
Z 0
�k�1.f �Et /

i
2R=Z :

In order to see that yck.E/ is well defined note that .m�1/! chk is an integral cohomology
class. Therefore the right-hand side does not depend on the choice of the taming. One
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also checks independence of f;X;Z0 . The relation !.yck.E//D�k.E/ follows from
d�.f �Et /D f

��.E/.

2.1.18 Up to this point we have not employed the fact that the geometric bundle
WD .W;rW ; hW / comes with a real structure Q. Because of the existence of Q the
geometric bundle W is isomorphic to its hermitian conjugate xW. We conclude from
the general equality

ch2k.r
xV /D .�1/kch2k.r

V /

that chl.r
W /D 0 if l 6� 0.4/.

2.1.19 Recall that nD dim.E/� dim.B/.

Lemma 2.3 If kC n 6� 0.4/, then �k.E/D 0.

Proof We have
�.E/D

Z
E=B

yA.rT v�/ch.rW / :

Since the form yA.rT v�/ is nontrivial only in degrees 4l , l � 0, we immediately see
that �k.E/D 0 if kC n 6� 0.4/.

2.1.20 We call a class yx 2H k
Del.B/ flat if !.yx/D 0. By Lemma 2.3 the class yck.E/

is flat if kCn� 2.4/. The Deligne cohomology of B fits into the exact sequence (see
Cheeger–Simons [9])

(3) 0!H k�1.B;R=Z/
yb
!H k

Del.B/
!
!Ak.B/

such that v ı ybW H k�1.B;R=Z/!H k.B;Z/ is the Bockstein operator associated to
the exact sequence of coefficients

0! Z!R!R=Z! 0 :

By (3), a flat class in H k
Del.B/ can be considered as a class in H k�1.B;R=Z/. From

now on we consider H k�1.B;R=Z/ as a subset of H k
Del.B/ and do not write yb

anymore.

2.1.21 The first assertion of the following proposition is just the conclusion of the
preceding discussion.

Proposition 2.4 (1) Let E be a geometric family over B such that the geometric
twisting bundle W admits a real structure. Let k � 0 and assume that index.E/2
K�

k
.B/. If furthermore kCn� 2.4/ (where nD dim.E/� dim.B/ is the fiber

dimension of E ) then yck.E/ 2H k
Del is flat and therefore gives rise to a class in

H k�1.B;R=Z/.
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(2) The class yck.E/ 2 H k�1.B;R=Z/ is independent of the geometric structures,
ie it only depends on the differentiable fiber bundle E!B , the choice of spin
structure and orientation of the vertical bundle T v� , and on the real vector
bundle WR .

Proof In order to show the independence of the geometric structures we argue using
the connectedness of the space P of these structures. We can set up a universal family
Euniv over P � B and define yck.Euniv/ 2 H k�1.P � B;R=Z/. It follows from the
homotopy invariance of the cohomology functor and the naturality of the construction
of these classes with respect to pullback, that the specializations of yck.Euniv/ at different
parameter points p; q are cohomologous on the one hand, and give the classes yck.Ep/

and yck.Eq/ associated to the families Ep and Eq equipped with geometric structures
given by p and q , respectively, on the other hand.

2.1.22 The main goal of the present paper is to understand the nature of the class
yck.E/ 2H k�1.B;R=Z/ in terms of the topology of the geometric family.

2.2 The real index

2.2.1 The group KO0.B/ is defined as the group completion of the semigroup of
isomorphism classes of real vector bundles over B . The functor B 7!KO0.B/ extends
to an 8–periodic multiplicative cohomology theory KO� . Complexification of real
vector bundles induces a natural transformation cBW KO0.B/!K0.B/ which extends
to a natural transformation cBW KO�.B/!KO�.B/ of multiplicative cohomology
theories.

If kC n 6� 0.4/, then the composition

KO�n.B/
cB
�!K�n.B/

chk
��!H k.B;Q/

vanishes.

2.2.2 In view of this observation the desirable explanation of the fact that �k.E/D 0

if k C n � 2.4/ is that index.E/ 2 K�n.B/ is in fact of the form cB.indexR.E//
for a real refinement of the index indexR.E/ 2KO�n.B/. In fact, the spinor bundle
carries additional structures which are “preserved” upon twisting by real bundles.
Using these structures we can indeed refine the index index.E/ 2K�n.B/ to a class
indexR.E/ 2KO�n.B/.

For the purpose of illustration we sketch the construction of indexR.E/. Although this
is well known, the following exposition is designed to be a useful reference for the
interested reader.
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2.2.3 Depending on the class of n modulo 8 we are going to use quite different
pictures of KO�n.B/. We make use of the real Clifford algebras C p;q associated to
RpCq with quadratic form �x2

1
� � � � �x2

p Cx2
pC1
C � � �Cx2

pCq .

In one picture an element of KOn is represented as a family of selfadjoint odd Fred-
holm operators on a graded C n;0 –module. Another representation is as a family
of antisymmetric Fredholm operators which anticommute with an action of C 0;n�1 .
In this case there is no grading. Finally an element of K1.B/ is represented by a
family of selfadjoint Fredholm operators (and there is again no grading). We refer to
Atiyah–Singer [3] and Karoubi [11] for further details.

2.2.4 n� 0.8/

The spinor bundle S.T v�/ is the complexification of a real spinor bundle SR.T
v�/.

Thus V D S.T v�/˝W is the complexification of VR WD SR.T
v�/˝WR . The

Dirac operator D.E/ comes from the Dirac operator DR.E/ on VR . The refined
index indexR.E/ 2KO0.B/ is just the index of the family of real Fredholm operators
DR.E/C .

2.2.5 n� 1.8/

The spinor bundle S.T v�/ admits a real structure, which anticommutes with Clifford
multiplication. It induces a real structure on V which anticommutes with D.E/. Let
VR be again the real C1–eigenbundle of the real structure on V . The operator iD.E/
commutes with this real structure and therefore induces an antisymmetric operator
D.E/R on VR . This family represents indexR.E/ 2KO�1.B/.

2.2.6 n� 2.8/

The spinor bundle S.T v�/ has a quaternionic structure which is odd with respect to the
Z=2Z–grading and commutes with Clifford multiplication. Thus we obtain an induced
quaternionic structure J on V . We consider D.E/R WD JD.E/ as an antisymmetric
real operator on VCR . It anticommutes with the action of C 0;1 which is induced by
multiplication by i . Therefore the family D.E/R together with the C 0;1 –module
structure represents indexR.E/ 2KO�2.B/.

2.2.7 n� 3.8/

The spinor bundle carries a quaternionic structure which commutes with Clifford
multiplication. We get an induced quaternionic structure J on V commuting with
D.E/. The antisymmetric operator D.E/R WD iD.E/ anticommutes with the action of
C 0;2 generated by J and iJ . Therefore the family D.E/R on VR together with the
C 0;2 –module structure represents indexR.E/ 2KO�3.B/.
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2.2.8 n� 4.8/

The spinor bundle S.T v�/ carries a quaternionic structure which commutes with the
grading and Clifford multiplication. It induces a quaternionic structure J on V which
commutes with D.E/. We consider the antisymmetric operator D.E/R WD iD.E/
on the bundle VR which anticommutes with the Clifford algebra C 0;3 generated by
i;J; iJ . Therefore the family D.E/R on VR together with the C 0;3 –module structure
represents indexR.E/ 2KO�4.B/.

2.2.9 n� 5.8/

The spinor bundle S.T v�/ carries a quaternionic structure which anticommutes with
the Clifford multiplication. It induces a quaternionic structure J on V which anticom-
mutes with D.E/. We form the real selfadjoint operator

D.E/R WD
�

D.E/ 0

0 �D.E/

�
on VR˚VR with its standard odd grading�

0 1

1 0

�
:

This operator commutes with the Clifford algebra C 3;0 generated by�
0 J

�J 0

�
;

�
0 iJ

�iJ 0

�
;

�
1 0

0 �1

�
:

The C 3;0 –equivariant operator D.E/R represents indexR.E/2KO3.B/ŠKO�5.B/.

2.2.10 n� 6.8/

The spinor bundle S.T v�/ carries a real structure which anticommutes with the grading.
In induces a real structure Q on V which is odd and commutes with D.E/. We consider
the selfadjoint operator D.E/R WD D.E/ on VR . This bundle is Z=2Z–graded and
admits an action of C 2;0 generated by Q and iQ commuting with D.E/R . The
C 2;0 –equivariant operator D.E/R represents index.E/R 2KO2.B/ŠKO�6.B/.

2.2.11 n� 7.8/

The spinor bundle S.T v�/ admits a real structure which commutes with the Clifford
multiplication. In induces a real structure Q on V which commutes with D.E/. We
consider the real symmetric operator D.E/R which is obtained by restricting D.E/ to
the 1–eigenbundle of Q. The operator D.E/R represents indexR.E/ 2KO1.B/Š

KO�7.B/.
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3 The analytic invariant

3.1 Construction of a natural transformation dn
B;k�1

3.1.1 Recall that complexification of real vector bundles induces a natural transforma-
tion of multiplicative cohomology theories cBW KOn.B/!Kn.B/. The real index
indexR.E/ 2KO�n.B/ is a refinement of index.E/ 2K�n.B/ in the sense that

cB.indexR.E//D index.E/ :

3.1.2 For k � 0 and n 2 Z we define the group U n
k
.B/ by the following exact

sequence

0! U n
k .B/!KOn.B/

qB
!Kn.B/=Kn

k.B/ ;

where qB is the composition of cB with the projection onto the quotient. We also
define U n

1.B/ by the exact sequence

0! U n
1.B/!KOn.B/!Kn.B/:

Since qB is a natural transformation the association B 7! U n
k
.B/ extends to a functor

with values in abelian groups.

3.1.3 Assume that k � n� 2.4/.

Definition 3.1 We define the natural transformation

dn
B;k�1W U

n
k .B/!H k�1.B;R=Z/

by the requirement that
dn

B;k�1.x/ WD yck�1.E/ ;

where E is any geometric family of dimension 8l�n, l 2Z, such that xD indexR.E/.

3.1.4 We must check that the definition of dn
B;k�1

makes sense.

Proposition 3.2 If k � n� 2.4/, then there is a unique homomorphism

dn
B;k�1W U

n
k .B/!H k�1.B;R=Z/

such that dn
B;k�1

.indexR.E//D yck.E/ for any geometric family over B of dimension
8l � n, l 2 Z, with indexR.E/ 2 U n

k
.B/. This homomorphism is natural with respect

to continuous maps.
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Proof The essential parts of the proof are given in Lemma 3.3 and Lemma 3.4 below.
It immediately follows from these Lemmas that for given B there exist a unique map
dn

B;k�1
satisfying the requirement. Additivity and naturality with respect to smooth

maps of dn
B;k�1

follows from naturality and additivity of the class yck.E/. But then
naturality extends to continuous maps since U n

k
.�/ as well as H k�1.�;R=Z/ are weak

homotopy functors.

3.1.5 The following lemma establishes that dn
B;k

is well defined.

Lemma 3.3 If indexR.E/D 0, then yck.E/D 0.

Proof Assume that indexR.E/D 0. In this case we can find a smoothing perturbation
of the real operator D.E/R which is invertible. We call this perturbation a real taming.
By complexification a real taming induces a taming Et which is compatible with the
additional symmetries determining the real structure.

These additional symmetries imply that the Chern form of the Bismut super connection
associated to D.E/ and its tamed perturbation vanishes. Since the �–form is derived
from this Chern form we conclude that �.Et /D 0 if the taming is induced from a real
taming. The assertion of the Lemma now follows from the description of yck.E/ in
terms of the �–form (see Section 2.1.17).

3.1.6 The following lemma shows how to realize K–theory classes.

Lemma 3.4 If x 2 KOn.B/, then there exists a geometric family E as above such
that indexR.E/D x .

Proof By the periodicity of KO�.B/ we can assume that n< 0. By definition,

KOn.B/DeKOn.BC/DeKO0.†nBC/ ;

where BC is obtained from B by adjoining an additional base point, and eKOn.BC/

denotes the reduced KO –theory.

Let now x 2KOn.B/ correspond to zx 2eKO0.†nBC/. Let pW Sn�BC!†nBC be
the natural projection and WR DW CR ˚W �R be the real Z=2Z–graded vector bundle
over Sn �BC representing p�zx .

We form two geometric families E˙ with underlying bundle Sn �BC! BC with its
standard fibrewise orientation and spin structure and with the real twisting bundle W ˙R .
Then by Bott periodicity or the index theorem, x D indexR.EC[BC E�/jB .

Algebraic & Geometric Topology, Volume 8 (2008)



1106 Ulrich Bunke and Thomas Schick

3.2 Some properties of dn
B;k�1

3.2.1 We approach the study of the natural transformation dn
B;k�1

from two sides.
First, in view of its definition through the analysis of families of Dirac operators
we use mainly analytical arguments in order to show some simple properties of this
transformation. This is the subject to the present section.

A finer study in Section 4 leading to a complete understanding of the transformation
uses methods from topology and the observation that a natural transformation comes
from a universal one between suitable classifying spaces. It should be noted that most
results of this section, the important exception being Corollary 3.7, will also follow
from the topological description, and will not be needed to derive this description.

3.2.2 There is a natural transformation

rBW K
�.B/!KO�.B/ :

It is determined by the special case rBW K
0.B/!KO0.B/ which associates to a class

represented by a complex vector bundle the class represented by the underlying real
vector bundle. It is easy to see that

rB ı cB D 2

(multiplication by 2).

3.2.3 We now prove the following proposition.

Proposition 3.5 We have 2dn
B;k�1

D 0.

Proof Fix x 2 U n
k
.B/. The homology class dn

B;k�1
.x/ 2 H k�1.B;R=Z/ is deter-

mined by its values on all smooth cycles Z2Zk�1 on B .

Given a .k�1/–cycle Z there exists a manifold X which is homotopy equivalent to a
.k�1/–dimensional CW-complex, a smooth map f W X ! B , and a .k�1/–cycle Z0

in X such that f�Z0 DZ (compare 2.1.15). By the naturality of dn
�;k�1

we have

2dn
B;k�1.x/.Z/D 2f �dn

B;k�1.x/.Z
0/D dn

X ;k�1.2f
�x/.Z0/ :

It thus suffices to show that 2f �x D 0.

Since f �x 2 U n
k
.X / and X is (up to homotopy equivalence) .k�1/–dimensional we

have cX .f
�x/D 0. This implies 0D rX ı cX .f

�x/D 2f �x .

3.2.4 We have defined dn
B;k�1

in terms of eta forms of families of Dirac operators.
In the following we show that it suffices to understand eta forms for zero-dimensional
families. Note that the latter are essentially objects of linear algebra.
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3.2.5 If x 2U�n
1 .B/, then there exist a real Z=2Z–graded vector bundle over †nBC

which represents the class zx2eKO0.†nBC/ corresponding to x under the identification
KO�n.B/ŠeKO0.†nBC/. Let WR DW CR ˚W �R be the pullback of this bundle to
Sn �B under the natural map Sn �B!†nBC .

The bundle � W Sn�B!B has a natural fibrewise orientation and spin structure. The
round metric of Sn induces a fibrewise metric gT v� . The canonical decomposition
T .Sn �B/ D pr�

SnTSn ˚ pr�
B

TB yields the horizontal distribution pr�
B

TB . After
choosing geometric bundles W˙R D .W

˙
R ;r

W ˙R ; hW ˙R / we obtain the geometric family
E˙ and E WD EC [B .E�/op over B , with underlying bundle Sn � B , such that
indexR.E/D x .

3.2.6 Since cB.x/D 0 by assumption we know that the complexification W of WR

represents the trivial element 0D ŒW � 2K0.Sn �B/. Thus (possibly after adding a
trivial bundle of formal dimension zero) the bundle W admits an odd unitary selfadjoint
(not necessary parallel) automorphism U .

3.2.7 The bundles W˙R give rise to geometric families F˙ over Sn �B where the
underlying zero-dimensional fiber bundle is idW Sn �B! Sn �B , and the twisting
bundle is W˙R . We let F WDFC[Sn�B .F�/op . Then we have indexR.F/D ŒWR� 2

KO0.Sn �B/ and index.F/D ŒW �D 0 2K0.Sn �B/. The automorphism U gives
a taming Ft of F . In particular, we have a well-defined form �.Ft / 2 A.Sn �B/

such that d�.Ft /D�.F/D ch.rW /.

3.2.8 For r >> 0 the operator rU can be considered as a sort of taming of the family
E . It is not a taming in the strong sense since U is not smoothing along the fibers
of � . Rather it is a local taming in the sense of [6]. Local index theory works for
local tamings as well. We let Et .r/ be the geometric family E tamed with rU and let
�.Et .r// be the associated �–form.

3.2.9 We now establish a proposition.

Proposition 3.6 We have

lim
r!1

�.Et .r//D

Z
Sn�B=B

�.F/:

Proof This assertion is proved using the adiabatic limit techniques developed eg in
[7]. The general method gives

lim
r!1

�.Et .r//D

Z
Sn�B=B

yA.rT v�/�.Ft / :

The result now follows from yA.rT v�/D pr�
Sn

yA.rTSn

/D 1, since yA.rTSn

/D 1 for
the round metric (which is also locally conformally flat).
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3.2.10 A closed form ! 2 Ak�1.B/ represents a class Œ!� 2 H k�1.B;R/. By
Œ!�R=Z 2 H k�1.B;R=Z/ we denote its natural image. Let m be determined by
2mD k or 2mD kC 1. Then definition (2) together with Proposition 3.6 implies the
following corollary.

Corollary 3.7 With the notation above

d�n
B;k�1.x/D

h
.�1/m�1.m� 1/!

Z
Sn�B=B

�kCn�1.F/
i

R=Z
:

In fact, in view of Proposition 3.5 we could also omit the sign .�1/m�1 .

3.2.11 We consider the sequence

0! Z!R!R=Z! 0

and let ˇ00W H k�1.B;R=Z/!H k.B;Z/ be the associated Bockstein operator. Recall
from 2.1.20, that ˇ00 coincides with the composition

H k�1.B;R=Z/!H k
Del.B/

v
!H k.B;Z/ :

Proposition 3.8 For x 2 U 0
4kC2

.B/ we have

.ˇ00 ı d0
4kC1/.x/D .c4kC2 ı cB/.x/ :

Proof We write x D indexR.E/ for a suitable geometric family E over B . Then we
have the chain of equalities

.ˇ00 ı d0
4kC1/.x/D .v ı yc4kC2/.E/D c4kC2.index.E//D .c4kC2 ı cB/.x/ :

3.3 Nontrivial examples

In Section 4.4 we will give a complete description of the universal classes dn
�;k

, which
also decides when exactly these classes can be nontrivial. In this section, we want to
construct explicit and easy nontrivial examples over low dimensional spheres as base
manifolds.
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3.3.1 Let MSpin� be the spin bordism cohomology theory and ˛W MSpin�!KO�

be the ˛–genus introduced by Hitchin [10]. Note that ˛W MSpin�.�/!KO�.�/ is
surjective. If E is a closed spin manifold, then we write ˛.E/ for the result of ˛
applied to the class ŒE� 2MSpin�.�/ represented by E .

The most important common feature of the following examples is that they all come with
a trivial twisting bundle. In other words, the respective geometric family E represents
an element ŒE; �� 2MSpin�n.S i/ (with n 2 N0 and i 2 f0; 1; 2g depending on the
case), such that indexR.E/D ˛.ŒE; ��/.

3.3.2 n� 1.8/, k D 1

Let E be a closed spin manifold of dimension n� 1.8/ with ˛.E/D 12KO�1.�/Š

Z=2Z. Such manifolds exist by the 3.3.1.

We choose a Riemannian metric gTE . Then we consider E as a geometric family E
over the point � with the trivial twisting bundle WRDE�R. We claim that yc1.E/ 6D 0.

Note that H 1
Del.�/ D R=Z and yc1.E/.Œ��/ D Œ�0.Et /�R=Z , where Et is any taming.

The degree 0 part �0.Et / is defined even for a pretamed manifold in the sense of [6],
and if the pretaming is trivial, then it is one half of the usual Atiyah–Patodi–Singer
eta invariant [2]. Now we have �0.E/ D 0 since D.E/ anticommutes with the real
structure and thus has symmetric spectrum. Since by spectral flow (taming essentially
means that the underlying operators are invertible)

Œ�0.Et /� �
0.E/�R=Z D

h1

2
dim ker D.E/

i
R=Z

Œ�0.Et /�R=Z D
h1

2
dim ker D.E/

i
R=Z

:we see that

The condition ˛.E/ 6D0 says that dim ker D.E/�1.2/. Therefore, d1
�;0
.indexR.E//D

Œ�0.Et /�R=Z D Œ
1
2
�R=Z 6 D 0 2H 0.�;R=Z/.

3.3.3 n� 0.8/, k D 2

We consider a family E! S1 of closed spin manifolds with fiber dimension n� 0.8/

and ˛.E/ 6D 0. Indeed for any given spin manifold M of dimension n� 0.8/ such a
bundle with fiber M exists by [10]. We will in addition assume that

˛.M /
Def
D yA.M /D 0:

We equip E with geometric structures and consider the trivial twisting bundle E�WR .
Let E denote the corresponding geometric family over S1 . Since ˛.M /D 0 we have
index.E/ 2K0

2
.S1/D 0 and thus indexR.E/ 2 U 0

2
.S1/.
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We claim that yc2.E/ 6D 0. We consider a taming Et . For a > 0 the standard metric
gTS1

of S1 and the horizontal distribution of E induces a Riemannian metric gTE
a D

gT v� ˚ a��gTS1

on the total space E . Since E is spin we can consider the total
Dirac operator D.a/ on E and its perturbation Dt .a/ which is induced by the taming.
In the adiabatic limit a! 0 the operator Dt .a/ becomes invertible. In other words,
for small a the perturbation Dt .a/ is induced by a local taming. As in [5], we haveh

lim
a!0

�0.Dt .a//
i

R=Z
D

h Z
S1

�1.Et /
i

R=Z
D dn

S1;1
.indexR.E//.ŒS1�/ 2R=Z :

For sufficiently small a the class Œ�0.Dt /.a/�R=Z is independent of the adiabatic
parameter. As in 3.3.2, since ˛.E/ 6D 0 and �0.D.a//D 0 we have Œ�0.Dt .a//�R=ZD

Œ1
2
�R=Z . Thus dn

S1;1
6D 0 2H 1.S1;R=Z/.

This result can be interpreted as follows: The holonomy of the determinant line bundle
of E is �1 2 U.1/.

3.3.4 nD 7.8/, k D 3

We consider a family E! S2 of closed spin manifolds with fiber dimension n� 7.8/

and ˛.E/ 6D 0. Such a family exists [10] for any given closed spin manifold M of
dimension n� 7.8/. We choose geometric structures and consider the trivial twisting
bundle E�R. In this way we obtain a geometric family E . Since K1.S2/D 0 we have
index.E/D 0 and therefore indexR.E/2U 7

3
.S2/. We claim, that d7

S2;2
.indexR.E// 6D

0 2H 2.S2;R=Z/.

We proceed as in 3.3.3. We consider a taming Et . It induces a perturbation Dt .a/ of
the total operator D.a/ on E . We have againh

lim
a!0

�0.Dt .a//
i

R=Z
D

h Z
S2

�2.Et /
i

R=Z
D d7

S2;2
.indexR.E//.ŒS2�/ :

Again, for sufficiently small a the class Œ�0.Dt .a//�R=Z is independent of the adiabatic
parameter. Since ˛.E/ 6D 0 and �0.D.a// D 0 we have Œ�0.Dt .a//�R=Z D Œ

1
2
�R=Z .

This implies the claim.

4 Topological universal classes

4.1 Transgression of the Chern classes

4.1.1 As proposed in 3.2.1 we shall understand d0
B;4kC1

through its universal example.
In the present section we start with the definition of this universal class. We will obtain
an expression of this class in terms of familiar characteristic classes of real vector
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bundles. In Theorem 4.7 we show that the transformation d0
B;4kC1

is indeed induced by
the corresponding universal example. In Theorem 4.8 we will then identify d�n

B;4kC1�n

in topological terms for all n. Then we will establish some vanishing results and more
details about the topological side.

4.1.2 In the present section all spaces have distinguished base points and all maps are
base point preserving. Let O and U be the direct limits of O.n/ and U.n/ induced by
the embedding into the left upper corner. The embeddings Rn ,!Cn , n 2N , induce
embeddings O.n/ ,! U.n/ and cW O ,! U . The map c induces the complexification
transformation cB . (see 2.2.1).

4.1.3 Let EU ! BU be a universal bundle for U . We can consider BO WDEU=O

and obtain a bundle

(4) U=O
i
�! BO

p
�! BU

with fiber U=O over the base point of BU , compare (12) and (11) in B.2.1.

In the following, we use the transgression homomorphism for cohomology associated
to this fibration (4). For the convenience of the reader, we have collected the main
definitions and properties of transgression in general (with proofs) in Appendix A, and
of transgression and cohomology of the spaces in the fibration U=O!BO!BU in
Lemma B.6 in Appendix B.

4.1.4 We will use the following definition.

Definition 4.1 We define the universal transgressed Chern classes

d4kC1 WD T .c
Q
4kC2

/ 2H 4kC1.U=O;Q/ ;

where c
Q
4kC2

is the image of the universal Chern class c4kC2 under the natural map

H 4kC2.BU;Z/!H 4kC2.BU;Q/:

4.1.5 We now consider the following commutative diagram:

(5)

0 ����! Z
2�
����! Z

q
����! Z=2Z ����! 0??yD ??y 1

2
�

??yl

0 ����! Z ����! Q ����! Q=Z ����! 0

Definition 4.2 We define xd4kC1 2H 4kC1.U=O;Q=Z/ as the image of d4kC1 under
the natural map H 4kC1.U=O;Q/!H 4kC1.U=O;Q=Z/.
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4.1.6 The cohomology ring of BO with coefficients in Z=2Z is a polynomial ring

Z=2ZŒw1; w2; : : : � ;

where wi 2H i.BO;Z=2Z/ are the universal Stiefel–Whitney classes. It is well known
(see Milnor and Stasheff [12]) that

(6) ˇ.w2k [w2kC1/D p�c4kC2;

where ˇ is the cohomological Bockstein operator associated to the exact sequence of
coefficients in the first row of (5). In particular, 2p�c4kC2 D 0 2H 4kC2.BOIZ/, as
also stated in Appendix B.

4.1.7 Let l�W H
4kC1.BO;Z=2Z/!H 4kC1.BO;Q=Z/ be induced by l of (5). Note

that by Lemma B.5 the map l� factors over the image of ˇ .

Definition 4.3 We define

zd4kC1 WD l�u 2H 4kC1.BO;Q=Z/;

where u 2H 4kC1.BO;Z=2Z/ is such that ˇ.u/D p�c4kC2 .

Such an u exists by (6) and l�u is independent of the choice since we have fixed ˇ.u/.

4.1.8 Let i W U=O ,! BO be the inclusion.

Lemma 4.4 We have i� zd4kC1 D
xd4kC1 . Moreover, 2 zd4kC1 D 0 and 2xd4kC1 D 0.

Proof The first assertion is a special case of Proposition A.12, where we use the
equality 2p�.c4kC2/D 0. Note that the homomorphism l is given by division by 2.

The second assertion follows from the fact that 2 zd4kC1 D 2l�uD l�.2u/D 0 for u of
Definition 4.3, and 2xd4kC1 D i�.2 zd4kC1/D 0.

4.1.9 By (6) we have the following corollary.

Corollary 4.5 We have zd4kC1 D l�.w2k [w2kC1/.
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4.2 A topological description of d0
B;4kC1

4.2.1 In this subsection we pretend that pW BO!BU is a smooth fiber bundle. To be
precise, we should replace this bundle by an N –equivalent finite-dimensional smooth
bundle for N sufficiently large.

Let W CR ! BO be the universal bundle. Then pW BO ! BU classifies its com-
plexification, ie if W C ! BU is the universal bundle over BU , then we have an
isomorphism W CR ˝R C Š p�W C which induces a real structure Q (complex con-
jugation) on p�W C . We can assume that W CR comes with a metric hW

C

R , and we
choose a connection rW

C

R . We set WCR WD .W
C

R ;r
W
C

R ; hW
C

R / and let WC be its
complexification.

4.2.2 We now consider the Z=2Z–graded bundle W WDWC˚W� with W� WD SWC .
It admits an odd unitary selfadjoint (not necessary parallel) automorphism

R WD

�
0 Q

Q 0

�
:

We form the geometric families G˙ on BO with underlying fiber bundle idW B!B

and twisting bundles p�W˙ . Then the family G D GC [B G� admits a taming Gt

induced by R. The associated �–form satisfies d�.Gt / D �.G/ D ch.rp�W /. By
construction we have ch4kC2.r

p�W / D 2p�ch4kC2.r
W C/ and ch4k.r

p�W / D 0

(compare 2.1.18).

4.2.3 Let i W U=O! BO be the inclusion of the fiber. Then

di��4kC1.Gt /D 2.i� ıp�/ ch4kC2.r
W C/D 0

since p ı i is a constant map. Thus we can consider the class

Œi��4kC1.Gt /� 2H 4kC1.U=O;R/:

4.2.4 Let dR
4kC1

2 H 4kC1.U=O;R/ be the image of d4kC1 2 H 4kC1.U=O;Q/
under the natural map induced by the map of coefficients r W Q ,!R.

Lemma 4.6 We have

Œi��4kC1.Gt /�D
2dR

4kC1

.2k/!
:

Proof The proof follows from the fact that in the smooth situation there is the al-
ternative description of the transgression T RW H 4kC2.BU;R/!H 4kC1.U=O;R/
given in Proposition A.11. Let x 2H 4kC2.BU;R/ be represented by a closed form
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X 2A4kC2.BU /. Then there is some form Y 2A4kC1.BO/ such that dY D p�X .
The class T R.x/ 2H 4kC1

dR
.U=O;R/ is then represented by i�Y 2A4kC1.U=O/.

In our case

x D 2 chR
4kC2.ŒW

C�/; X D 2 ch4kC2.r
W C/; Y D �4kC1.Gt /

so that
Œi��4kC1.Gt /�D T R.2 chR

4kC2.ŒW
C�//:

Note that

ch4kC2.ŒW
C�/D

1

.2k/!
c

Q
4kC2

C decomposable classes;

where for reasons of degree each decomposable summand contains at least one factor
c4lC2 which is transgressive by Table 1. Hence by Proposition A.10

T .2 ch4kC2.ŒW
C�//D

2

.2k/!
T .c4kC2/D

2d4kC1

.2k/!
:

This implies the assertion since T R ı r� D r� ıT by Lemma A.7.

4.2.5 We now consider a manifold B and x 2 eKO0.B/. Let X W B ! BO be a
classifying map for x . We assume that x 2 U 0

1.B/. Then we can assume that X

factors through the inclusion i W U=O ! BO , ie without loss of generality we can
assume that X W B! U=O .

We define xdR
4kC1

2H 4kC1.B;R=Z/ as the image of dR
4kC1

under the map of coeffi-
cients R!R=Z, or equivalently, as the image of xd4kC1 under the map of coefficients
Q=Z!R=Z. We now come to the main result of this subsection.

Theorem 4.7 d0
B;4kC1

.x/DX � xdR
4kC1

.

Proof Let x be of the form ŒV CR �� ŒV
�

R �, where V �R WD RN �B is trivial. Then
we have an isomorphism V CR ŠX �W CR . The metric hW

C

R and the connection rW
C

R

induce a metric hV
C

R and a connection rV
C

R on V CR . In this way we obtain a geometric
bundle VCR D .V CR ;r

V
C

R ; hV
C

R /. Furthermore, we equip V �R with the canonical
geometry and get V�R .

Set V˙ WD V˙R˝C and consider the Z=2Z–graded bundle V WD VC˚V� . Because
ŒV � D 0 in K0.B/ we can choose a unitary odd selfadjoint (not necessary parallel)
automorphism U of V .

We form the geometric families H˙ over B with underlying bundle idW B! B and
twisting bundle V˙ . Furthermore we define H WD HC [B .H�/op . Then we have
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indexR.H/D x and d0
4kC1;B

.x/D yc4kC2.H/. The isomorphism U induces a taming
Ht . By Corollary 3.7 we thus have

yc4kC2.H/D Œ.2k/!�4kC1.Ht /�R=Z 2H 4kC1.B;R=Z/ :

We now consider the bundle zV WD VC ˚ xV� ˚ xVC ˚V� with the Z=2Z–grading
diag.1; 1;�1;�1/ and the two odd automorphisms

zU WD

0BB@
0 0 0 U�

0 0 xUC 0

0 xU� 0 0

UC 0 0 0

1CCA ; zR WD

0BB@
0 0 RC 0

0 0 0 R�

RC 0 0 0

0 R� 0 0

1CCA ;

where R˙ is the C–linear isomorphism between V ˙R ˝C and its complex conjugate
given by complex conjugation.

Note that Œ zR; zU � D 0. The bundle zV gives rise to a geometric family zH D zHC [B

. zH�/op , where the underlying fiber bundle of zH˙ is again idW B!B , and the twisting
bundles are zV˙ . For each ˛ 2 Œ0; �=2� the operator

cos.˛/ zU C sin.˛/ zR

defines a taming zHt˛ . The family . zHt˛ /˛ defines a taming yHt of yH WD pr�
B
zH over

Œ0; �=2��B . A computation shows that d�. yHt /D pr�
B

ch.r zV /D 0. We conclude the
following equality of de Rham cohomology classes

Œ�4kC1. zHt0
/�D Œ�4kC1. zHt�=2

/� :

An inspection of the definitions shows that

�4kC1. zHt0
/D 2�4kC1.Ht /

�4kC1. zHt�=2
/D .X � ı i�/�4kC1.Gt /:

We conclude with Lemma 4.6 that

yc4kC2.H/DX �
h
i�
.2k/!

2
�4kC1.Gt /

i
R=Z
DX � xdR

4kC1 :

4.3 The topological interpretation of d�n
B;4kC1�n

4.3.1 Recall that the classifying space of KO�n is �nBO . In view of the fibration

�n.U=O/!�nBO!�nBU
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we see that the classifying map X W B!�nBO of an element x 2 U�n
1 .B/ factors

(up to homotopy) over �n.U=O/, since then the composition

B
X
�!�nBO!�nBU

is null homotopic.

Let �nW H 4kC1.U=O;R/!H 4kC1�n.�n.U=O/;R/ be the n–fold iteration of the
loop map introduced in Definition A.1.

Theorem 4.8 We have

d�n
B;4kC1�n.x/DX �

h.m� 1/!

.2k/!
�ndR

4kC1

i
R=Z
DX �

h.m� 1/!

.2k/!
�nT .cR

4kC2/
i

R=Z
;

where m is determined by 2mD 4kC 3� n or 2mD 4kC 2� n.

Proof We employ Corollary 3.7. Let yx 2eKO0.†nB/ correspond to x 2KO�n.B/

under the identification KO�n.B/ Š eKO0.†nB/. Let zx 2 eKO0.Sn � B/ be the
pullback of yx under the natural map Sn �B!†nB .

Note that the classifying map Y W †nB ! U=O of yx is the adjoint of X W B !

�n.U=O/, and that the composition zX W Sn�B!U=O of the projection Sn�B!

†nB and Y is the classifying map of zx .

Then we have

d�n
B;4kC1�n.x/D

h
.m� 1/!

Z
Sn�B=B

�4kC1.Ht /
i

R=Z
;

where Ht is constructed as in the proof of Theorem 4.7. In that proof we have also
shown that

Œ�4kC1.Ht /�D
h1

2
. zX � ı i�/�4kC1.Gt /

i
:

We now apply Lemma 4.6 in order to conclude that

Œ�4kC1.Ht /�D
zX �dR

4kC1

.2k/!
:

Thus d�n
B;4kC1�n.x/D

"
.m� 1/!

.2k/!

Z
Sn�B=B

zX �dR
4kC1

�
R=Z

:

The assertion now follows from the general fact that for any z 2H 4kC1.U=O;R/ we
have Z

Sn�B=B

zX �z D†nY �z DX ��nz ;
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where † is the suspension isomorphism. For the first equality we use that integration
over the fiber essentially is the suspension isomorphism in the above construction.
The second equality is a special case of the relation between suspension and loop
homomorphism proved in Lemma A.6.

4.3.2 Theorem 4.7 and Theorem 4.8 give a topological description of the value of
d�n

B;4kC1�n
.x/ only under the additional assumption that x 2U�n

1 .B/�U�n
4kC2�n

.B/.
In order to see that this determines d�n

B;4kC1�n
completely we argue as follows.

Let x 2U�n
4kC2�n

.B/. Then the cohomology class d�n
B;4kC1�n

.x/ of degree 4kC1�n

is determined by its restriction d�n
B;4kC1�n

.x/jB4kC1�n to the .4kC 1� n/–skeleton
B4kC1�n of B . We have xjB4kC1�n 2 U�n

1 .B4kC1�n/. Thus we know the topological
description of d�n

B4kC1�n;4kC1�n
.xjB4kC1�n/, which equals d�n

B;4kC1�n
.x/jB4kC1�n by

naturality.

4.4 Explicit calculation of the universal class

Theorem 4.8 does give a topological interpretation of our invariant 3.1. However,
we want to be even more precise and explicitly compute the corresponding universal
cohomology classh.m� 1/!

.2k/!
�nd4kC1

i
Q=Z

D

h.m� 1/!

.2k/!
�nT .c

Q
4kC2

/
i

Q=Z
2H 4kC1�n.�nU=O;Q=Z/ ;

where m is determined by 2mD 4kC 3� n or 2mD 4kC 2� n. In particular, we
will show that for half of the parameters n (mod .8/) this class vanishes

We will make use of many of the results about the cohomology of BO , BU and their
loop spaces collected in Appendix B.

4.4.1 Consider the map of fibrations

U ����! EU ����! BU??yp

??y ??yid

U=O
i

����! BO
Bc
����! BU;

where the upper row is the universal principal U –bundle, and the lower row is obtained
from the upper by dividing out the subgroup O .
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4.4.2 By Lemma B.6, c
Q
4kC2

2H 4kC2.BU;Q/ is transgressive in the second (and
of course also in the first) fibration. We have to compute the transgression T .c4kC2/ 2

H 4kC1.U=O;Q/. To do this, we observe that the upper fibration is the path space
fibration, and therefore by Lemma A.4 the transgression TU of this fibration coincides
with the loop homomorphism. By Theorem B.4 we obtain TU .c4kC2/D c4kC1 (even
in integral cohomology). Moreover, transgression is natural, therefore

p�.T .c
Q
4kC2

//D TU .c
Q
4kC2

/D c
Q
4kC1

2H�.U;Q/:

By Theorem B.2, Theorem B.3 and Table 1, p�W H�.U=O;Q/!H�.U;Q/ is injec-
tive and p�.a4kC1=2/D c4kC1 .

Notation 4.9 In order to avoid an inflationary appearance of the exponent Q from
now on we will use the same symbol for an integral cohomology class and its image in
rational cohomology. It will be clear from the context which meaning the symbol has.

Consequently (with the new convention 4.9 ) we can write

T .c4kC2/D
1

2
a4kC1 2H 4kC1.U=OIQ/:

4.4.3 Our next goal is the calculation of

�nT .c4kC2/D�
n
�1

2
a4kC1

�
2H 4kC1�n.�n.U=O/;Q/ :

We consider the fibration

(7) �n.U=O/!�nBO!�nBU

which is the n–fold loop of the fibration considered above.

4.4.4 In the following, we use the Bott periodicity maps to identify �n.U=O/ with
the spaces listed in Theorem B.1:

n 0 1 2 3 4 5 6 7
�n.U=O/ U/O BO �Z O O/U U/Sp BSp�Z Sp Sp/U

4.4.5 Unfortunately, our knowledge about the map �n is not complete enough to
calculate �n.T c4kC2/ directly. We use the following trick:

Using that map ˛W U=O! U (compare Section B.2, Item (16)) we have 1
2
a4kC1 D

˛� 1
2
c4kC1 . Therefore,

�n
�1

2
a4kC1

�
D .�n˛/��n

�1

2
c4kC1

�
:
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4.4.6 We shall first compute �n.c4kC1/. By Theorem B.4

�.c4kC1/D .2k/! ch4k :

Note that �BU D�.BU �Z/ so that we can iterate the argument.

Next, .2k/! ch4k D 2k � c4k C decomposable. We conclude that

�..2k/! ch4k/D 2k�.c4k/D 2kc4k�1 :

4.4.7 Now, an easy induction allows us to compute �n.c4kC1/ for each n 2 N .
However, because of the factors appearing in our formulas, we really have to study
..m� 1/!=.2k/!/�n.c4kC1/, where mD 2k C 1� n=2 if n is even, and mD 2k C

1� .n� 1/=2 if n is odd. In the induction, this factor cancels the factors (like .2k/)
which show up in the calculations above, and we get (with m depending on n and k

as above)

(8) �n
�.m� 1/!

.2k/!
c4kC1

�
D

(
c4kC1�n n even

.2k � .n� 1/=2/! ch4kC1�n n odd :

4.4.8 From this and the calculation of the map in cohomology induced by the map
�n˛W �n.U=O/ ! �nU , we read off the cohomology classes we are interested
in. Since we are really only interested in the image of the class under the map in
cohomology induced by the map of coefficients Q!Q=Z, we obtain the following
list:

Theorem 4.10h.m� 1/!

.2k/!
T .c4kC2/

i
Q=Z
D

h1

2
a4kC1

i
Q=Z
2H 4kC1.U=OIQ=Z/

h
�.
.m� 1/!

.2k/!
T .c4kC2//

i
Q=Z
D

(
Œ1
2

ch0�Q=Z 2H 0.BO �Z;Q=Z/ 4kC 1D n

0 2H 4k.BO �ZIQ=Z/ 4kC 1> nh
�2.

.m� 1/!

.2k/!
T .c4kC2//

i
Q=Z
D 0 2H 4k�1.O;Q=Z/h

�3.
.m� 1/!

.2k/!
T .c4kC2//

i
Q=Z
D 0 2H 4k�2.O=U;Q=Z/h

�4.
.m� 1/!

.2k/!
T .c4kC2//

i
Q=Z
D 0 2H 4k�3.U=Sp;Q=Z/h

�5.
.m� 1/!

.2k/!
T .c4kC2//

i
Q=Z
D 0 2H 4k�4.BSp�Z;Q=Z/
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h
�6.

.m� 1/!

.2k/!
T .c4kC2//

i
Q=Z
D

h1

2
y4k�5

i
Q=Z
2H 4k�5.Sp;Q=Z/h

�7.
.m� 1/!

.2k/!
T .c4kC2//

i
Q=Z
D

h1

2
.c4k�6C c2c4k�8C � � �C c2k�4c2k�2/

i
Q=Z

2H 4k�6.Sp=U;Q=Z/

For n � 8, the answer can be read off from the list by reduction mod 8 by Bott
periodicity.

In particular, the natural transformation d�n
B;4kC1�n

vanishes for n congruent to
2; 3; 4; 5 mod 8, and, if k > 0, also for n � 1 .mod 8/. In the other cases, since
the universal classes are nontrivial, there are nontrivial examples.

Proof As observed above, we simply have to take the cohomology classes on the
right-hand side of Equation (8), divide them by 2, and then apply the map from rational
cohomology to cohomology with coefficients in Q=Z. Finally through �n˛ we pull
back the result to �n.U=O/. In this step we use the results of Section B.2.

Note first that xn WD c4kC1�n (n even) and xn WD .2k�.n�1/=2/! ch4kC1�n (n odd)
belong to the integral lattice in rational cohomology. Therefore Œ1

2
.�n˛/��nxn�R=ZD

0 if 1
2
.�n˛/� preserves the integral lattices. This is the case whenever �n˛ maps

the Chern classes to twice a generator of the integral cohomology, ie if �n.U=O/

equals O , O=U , or U=Sp by the Table 1. This observation accounts for the zeros for
nD 2; 3; 4 in the theorem.

Because of Proposition A.8h
T
�
�5
�.m� 1/!

.2k/!
c4kC2

��i
Q=Z
D

h
�T

�
�4
�.m� 1/!

.2k/!
c4kC2

��i
Q=Z
D 0 ;

we obtain the zero for nD5. We now discuss the case nD1. We have ŒT .c4kC2/�Q=ZD

l�.w2k [w2kC1/, where l� is induced by the map of coefficients

Z=2Z!Q=2Z
�1=2
���!Q=Z

(compare 4.1.5 and Corollary 4.5). If k > 0, then �.w2k [w2kC1/D 0 since the loop
map is applied to a decomposable class. Note that .m� 1/!=.2k/! D 1 in this case.
Thus h

�
�.m� 1/!

.2k/!
T .c4kC2/

�i
Q=Z
D l��.w2k [w2kC1/D 0

for k > 0.

For the calculation of Œ�7..m� 1/!=.2k/!T .c4kC2//�Q=Z we proceed as follows. The
class .2k � 3/! ch4k�6 2H 4k�6.Sp=U;Q/ belongs to the integral lattice. In fact, if

Algebraic & Geometric Topology, Volume 8 (2008)



Real secondary index theory 1121

we write .2k � 3/! ch4k�6 D �4k�6.c2; c4; : : : ; c4k�6/ with the Newton polynomial
�4k�6 , then the right-hand side can be interpreted as an integral cohomology class in
H 4k�6.Sp=U;Z/. We now have

l�Œ�4k�6.c2; c4; : : : ; c4k�6/�Z=2Z D

h
�7
�.m� 1/!

.2k/!
T .c4kC2/

�i
Q=Z

:

The cohomology H 4k�6.Sp=U;Z=2Z/ is an exterior algebra generated by Œc2�Z=2Z ,
Œc4�Z=2Z; : : : . Considered—in this algebra—the Newton polynomial

�4k�6.c2; c4; : : : ; c4k�6/

D�.2k � 3/
X

i1C2i2C���C.2k�3/i2k�3

D2k�3

.�1/i1C���Ci2k�3
.i1C � � �C i2k�3� 1/!

i1! : : : i2k�3!
c

i1

2
: : : c

i2k�3

4k�6
:

It simplifies considerably and gives exactly the expression asserted, if we use that

l�Œc2l �Z=2Z D

h1

2
c2l

i
Q=Z

:

4.5 The relation with ordinary characteristic classes

4.5.1 Let us consider the fibration

�n.U=O/
�ni
! �nBO!�nBU :

We have constructed and calculated the universal cohomology classh
�n
�.m� 1/!

.2k/!
T .c4kC2/

�i
Q=Z
2H 4kC1�n.�n.U=O/;Q=Z/ :

If this class would be of the form .�ni/�u for some u 2 H 4kC1�n.�nBO;Q=Z/,
then the invariant d�n

B;4kC1�n
.x/, x 2 U�n

4kC1�n
.B/, could be expressed in terms of

familiar characteristic classes of the element x 2KO�n.B/.

4.5.2 In the case nD 0 we indeed haveh
�n
�.m� 1/!

.2k/!
T .c4kC2/

�i
Q=Z
D ŒT .c4kC2/�Q=Z D i�l�.w2k [w2kC1/

(above we have written wl for i�wl in order to save notation, but in the current
discussion it makes sense not to omit i� ). In particular we can extend d0

B;4kC1
to all

of KO0.B/ by setting d0
B;4kC1

.x/ WD l�.w2k [w2kC1/.
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4.5.3 In the case nD 1 and 4k D 0 it is obvious that the class comes from �1BO .
As we have seen in Section 3.3.2, if x 2 KO�1.X / is represented by a family of
anti-selfadjoint real Fredholm operators .Fb/b2B , then d0

B;0
.x/ is represented by the

locally constant R=Z–valued function b 7! Œ1
2

dim ker Fb �R=Z

4.5.4 In the case nD 6 the classh
�6
�.m� 1/!

.2k/!
T .c4kC2/

�i
Q=Z
D

h
�6
� 1

2k.2k � 1/.2k � 2/
T .c4kC2/

�i
Q=Z

definitely is not a pullback from �6BO D Sp=U . In fact H�.Sp=U;Q=Z/ is con-
centrated in even degrees, while our class is of odd degree. We see that in this case
our invariant d�6

B;4k�5
is more exotic and therefore more interesting. Unfortunately,

we haven’t been able to produce simple examples of nontriviality for this invariant in
Section 3.3.

4.5.5 For nD 7, the map Sp=U ! U=O induces a surjection in cohomology with
Z=2Z–coefficients by Lemma B.7. Therefore, all our classes pull back from U=O .

4.6 Extendibility

4.6.1 Given x 2 KO�n.B/, in order to define d�n
4kC1�n

.x/ using topology we
had to assume that x 2 U�n

1 .B/. Our analytic definition however works under the
weaker condition that x 2 U�n

4kC2�n
.B/. Of course, if B4kC1�n � B denotes a

4kC 1� n–skeleton, we have xjB4kC1�n 2 U�n
1 .B4kC1�n/. We also have seen that

d�n
4kC1�n

.xjB4kC1�n/D d�n
4kC1�n

.x/jB4kC1�n determines d�n
4kC1�n

.x/ uniquely. The
interesting feature of the analytic definition is that it shows that d�n

4kC1�n
.xjB4kC1�n/

admits an extension from B4kC1�n to B .

In the following Lemmas we give an alternative proof of this property.

4.6.2 Let f W B!�nBO be a map. Assume that the restriction f r WD fjBr W Br !

�nBO of f to a r –skeleton Br of B factors over a map gr W Br ! �n.U=O/

(ie f r D�ni ıgr , where i W U=O!BO is as above). Assume further that rCn� 1

.mod 8/. Let R be some abelian group.

Lemma 4.11 If x 2 H k.�nU=O;R/ satisfies 2x D 0, then the class .gr /�.x/

extends from Br to B .

Since the map H r .BIR/!H r .Br IR/ is injective, this extension is unique. Note
that the Lemma in particular applies to the cohomology classes listed in Theorem 4.10.
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Proof Let K.RI r/ denote the Eilenberg–Mac Lane space which represents the functor
H r .: : : ;R/. We represent the cohomology class x by a map xW �n.U=O/!K.RI r/.
It suffices to show that .gr /�.x/ extends to a .rC1/–skeleton BrC1 of B (such that
Br � BrC1 ). In fact, it then further extends to B since the inclusion BrC1! B is a
.rC1/–equivalence.

The universal example is given by the space B D KrC1 which is obtained from
�n.U=O/ by attaching .rC1/–cells in such a way as to kill the kernel of the map
.�ni/r W �k�

n.U=O/! �r .�
nBO/. Here f is obtained from �ni W �n.U=O/!

�nBO , which extends to some map f W KrC1!�nBO by the construction of KrC1

(and elementary obstruction theory), and gr is the inclusion of the r –skeleton of
�n.U=O/ (and therefore of KrC1 ) into �n.U=O/.

In our case we have �r .�
n.U=O// Š Z and ker.�ni/r Š 2Z (as follows from

Bott periodicity and the long exact homotopy sequence (in low degrees) of U=O!

BO! BU ). If �W Sr !�n.U=O/ represents a generator of �r .�
n.U=O//, and if

hW Sr !�n.U=O/ represents twice this generator, ie a generator of ker.�ni/r , then
h�.gr /�x D 2��.gr /�x D 0. Thus the map x ı h is null homotopic, and therefore
.gr /�x extends to KrC1 .

4.6.3 Let still f W B!�nBO be a map and assume that the restriction f 4kC1�n D

fjB4kC1�n W B4kC1�n!�nBO of f to a 4kC1�n–skeleton B4kC1�n of B factors
over a map g4kC1�nW B4kC1�n!�n.U=O/ (ie f 4kC1�nD�ni ıg4kC1�n , where
i W U=O! BO is as above).

Lemma 4.12 If

x D
h
�n
�.m� 1/!

.2k/!
T .c4kC2/

�i
Q=Z
2H 4k�nC1.�n.U=O//

is one of the classes of Theorem 4.10, then .f 4kC1�n/�x extends from B4kC1�n

to B .

4.6.4 Note that half of the cases are already covered by Lemma 4.11, namely whenever
the dimension condition is satisfied, ie when .4kC 1� n/C n� 1 .mod 8/, in other
words, if k is even.

4.6.5 Moreover, the cases n� 0 .mod 8/ as well as n� 1 .mod 8/ (and 4kC1D n)
are trivial, because in these cases we have seen that the characteristic class x already
pulls back from �nBO to �n.U=O/: it is expressed in terms of Stiefel–Whitney
classes in the first case, and in terms of the dimension of the bundle in the second case.
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4.6.6 We use the proof Lemma 4.11 to deal with the remaining cases. This proof
shows that it suffices to treat the case B4kC1�n D S4kC1�n and to show that the
pullback class .f 4kC1�n/�x vanishes for arbitrary f W S4k�nC1!�n.U=O/ (and
therefore extends over the disc D4kC2�n ).

4.6.7 Observe that, by Equation (8), the cohomology class x is obtained as pull
back of 1

2
c4kC1�n or 1

2
.2k � .n� 1/=2/! chŒ4k�.n�1/� from U or BU , respectively

(depending on the parity of n). However, on all spheres the Chern character is integral,
ie for an arbitrary map f W Sk ! BU , f �ch 2H�.Sk IZ/.

4.6.8 If n� 7 .mod 8/ and k odd (and 4k > n) then 4kC 1� n� 4. This implies
1
2
.2k � .n� 1/=2/! 2 Z. So the cohomology class 1

2
.2k � .n� 1/=2/!chŒ4k�.n�1/�

pulls back to 0 in H�.S4k�.n�1/IQ=Z/ for an arbitrary map S4k�.n�1/! BU by
by 4.6.7. As observed in 4.6.4, n� 7 .mod 8/ and k even is covered by Lemma 4.11.

4.6.9 For n� 6 .mod 8/ and an arbitrary map f W S4k�nC1! U , by Lemma A.6
and Theorem B.4

f �
�1

2
c4kC1�n

�
D†�1F�

�1

2
�c4kC1�n

�
D†�1

�
F�

1

2

�
2k �

n

2

�
!chŒ4k�n�

�
:

Here, †W H 4k�n.S4k�n/!H 4k�nC1.S4k�nC1/ is the suspension isomorphism and

F W S4k�n
!�U D BU �Z

is the adjoint of f W †S4k�nDS4k�nC1!U . Again, if 4k�n�4 then .2k�n=2/!2

2Z and therefore by 4.6.7 F�.1
2
.2k � n=2/!chŒ4k�.n�1/�D 0. However, if 4k�nD 2

then, since n � 6 .mod 8/ k is even and therefore .4k C 1� n/C n � 1 .mod 8/,
such that this case is covered by Lemma 4.11.

4.6.10 If n� 2; 3; 4; 5 .mod 8/, then x D 0, which trivially extends. This concludes
the proof of Lemma 4.12.

Appendix A Transgression

A.1 Transgression in cohomology

A.1.1 In this section, we want to recall the general definition of transgression and
its basic properties. Special cases are “suspension” or “looping”. All of this is well
known, and included here for the convenience of the reader.

A.1.2 The situation is the following: let f W E ! B be a map, and b 2 B a point.
Write Fb WD f

�1.b/. Let i W Fb!E be the inclusion. Let H� be any (generalized)
cohomology theory. In the following, the loop spaces �B are defined with respect to
the basepoint b . Suspensions are reduced suspensions.
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A.1.3 The adjoint of the identity map �B!�B gives a canonical map †�B!B .
This induces H�.B/!H�.†�B/.

Definition A.1 We define the loop map

�W H�.B/!H��1.�B/:

as the composition of H�.B/ ! H�.†�B/ with the suspension isomorphism
H�.†�B/!H��1.�B/.

By construction and functoriality of the suspension isomorphism, the loop map is
functorial, too.

A.1.4 Given the map f W E!B , consider the cofibration sequence E!Zf !Cf ,
where Zf is the mapping cylinder and Cf the mapping cone. The inclusion B!Zf

is a homotopy equivalence. The long exact sequence in cohomology of this cofibration
gives

H k.B/

k

� � � ! H k.Cf / ! H k.Zf /
f �

��! H k.E/ ! � � �

In particular, H k.Cf / maps surjectively onto ker.f �/�H k.B/.

A.1.5 Consider now �Cf . Since the composition F
i
�!E

f
�! B is the constant map

to b , we can define a canonical map

l W F !�Cf ; x 7! cx;

where cx is the loop in Cf with cx.0/D b 2 B , cx.t/D .x; t/ 2 E � .0; 1/ � Cf ,
and cx.1/ is the cone point in Cf .

Mapping B to the second cone point gives the second map j in the cofibration sequence
B! Cf

j
!†E . From this we conclude that the kernel of H k.Cf /!H k.B/ equals

im.j �/. The composition F !�Cf !�†E can be factored as F
i
!E!�†E ,

where the second map is the adjoint of the identity map †E!†E .

A.1.6 We now recall the definition of transgression.

Definition A.2 We define the transgression

T W H k.B/� ker.f k/!H k�1.F /= im.i�/

as the composition

ker.f �/ŠH k.Cf /= im.j �/
�
�!H k�1.�Cf /= im..�j /�/!H k�1.F /= im.i�/ :
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Note that for the second map we used the factorization which shows that im..�j /�/

goes into im.i�/.

It is clear from the construction that transgression is natural with respect to the map
f W E! B , ie given a diagram

E0
H //

f 0

��

E

f

��
B0

h // B

we have an equality of the form T 0 ı h� DH� ıT .

Definition A.3 The elements of ker.f �/ �H�.B/ are called transgressive. These
are the classes whose transgression is defined.

A.1.7 Next we relate transgression to the loop map and to suspension.

Lemma A.4 The transgression in the fibration �B ! PB ! B , where PB is the
(contractible) space of paths ending at b coincides with the loop map.

Proof Carry out the construction. If f W PB ! B is the start point projection, use
the homotopy equivalence Cf ! B which maps .p; s/ 2 PB � .0; 1/� Cf to p.s/

(recall that s D 1 corresponds to the cone point).

Lemma A.5 The transgression of B ,! CB!†B is the suspension isomorphism
†W H kC1.†B/!H k.B/.

Proof Carry out the construction. Use the “folding” homotopy equivalence Cf !†B

(where f W CB ! †B is the projection). The composition of †B ! Cf with this
homotopy equivalence is the identity map. Starting with H�.†B/, we have to pull
back with this map and then use the suspension isomorphism (by naturality of the
latter).

A.1.8 Let f W †X ! Y be a map with adjoint F W X ! �Y . Then we have a
commutative diagram of fibrations:

X ����! CX ����! †X??yF

??y ??yf
�Y ����! PY ����! Y
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Lemma A.6 Then for each a 2H�.Y /,

(9) F�.�a/D†f �a :

Proof This follows from naturality of transgression and the fact that both � and †
are transgression homomorphisms by Lemma A.4 and Lemma A.5.

A.1.9 In the construction of the transgression, we consider in particular the following
commutative diagram of maps:

(10)

F
i

����! E
f

����! B??yid

??y ??y
F ����! CE ����! Cfx??id

x?? x??
F ����! CF ����! †F

By naturality, the transgression homomorphism in E
f
�! B is determined by the

transgression in CF !†F (this is of course, what we used in the construction), since
H�.Cf /!H�.B/ surjects onto the transgressive classes.

A.1.10 We now prove the following lemma.

Lemma A.7 Let ˆW H�! h� be a natural transformation between generalized coho-
mology theories. Transgression commutes with this natural transformation.

Proof Let f W E! B be a continuous map. First observe that by naturality ˆ maps
ker.H�.f // to ker.h�.f // and im.H�.i// to im.h�.i//, so that the assertion makes
sense.

The construction of the transgression homomorphism only uses maps induced from
continuous maps between topological spaces (and their inverses) and the suspension
isomorphism. By definition, a natural transformation between cohomology theories is
compatible with such homomorphisms, and therefore also with transgression.

A.1.11 Let F
i
�! E

f
�! B be a sequence of maps as above. This gives rise to the

transgression homomorphism T W H�.B/� ker.f �/!H��1.F /= im.i�/.

Applying the loop space functor we also get the sequence of maps

�F
�i
��!�E

�f
��!�B;
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with associated transgression homomorphism

T�W H
�.�B/� ker.�f �/!H��1.�F /= im..�i/�/ :

Proposition A.8 If x 2H n.B/ is transgressive, then

�T .x/D T�.�x/ 2H n�2.�F /= im..�i/�/:

Proof We obtain the following commutative diagram

(11)

†�F
†�i
����! †�E

†�f
����! †�B??ypF

??y ??ypB

F
i

����! E
f

����! B

where the vertical maps are adjoints of the identity maps �� ! ��. Since we work
with the reduced suspension, the inclusion †�F ,!†�E is the fiber of †�f . By
naturality of the transgression, p�

F
.T x/ D T†�.p

�
B

x/ for each transgressive class
x 2H�.B/. The suspension isomorphism maps by definition p�

F
.T x/ to �.T x/ and

p�
B

x to �x . By Lemma A.7 transgression commutes with the suspension isomorphism
(indeed the suspension isomorphism can be interpreted as a natural transformation
between cohomology theories). Therefore we have �.T x/D T�.�x/.

A.2 Transgression and products

A.2.1 Let �W B!B�B be the diagonal map. We still consider the map f W E!B .

Definition A.9 (1) A class x 2H�.B/ is called a nontrivial product, if x D��y

for some y 2H�.B �B/ such that .idB � fbg/
�y D 0D .fbg � idB/

�y .

(2) We say that the first factor of a nontrivial product x is transgressive, if xD��y

for an y such that .f � idB/
�y D 0 2H�.E �B/, similarly we define that the

second factor is transgressive.

A.2.2 Note that if one of the factors of a product is transgressive, then so is the product.

Proposition A.10 The transgression of a nontrivial product with at least one transgres-
sive factor is zero.
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Proof This follows from naturality of the transgression. Consider the diagram

F ����! E ����! B??yid

??y.idE�f /ı�

??y�
F ����! E �B ����! B �Bx??id

x??idB�fbg

x??idB�fbg

F ����! E ����! B

Let us assume that x is transgressive in the first factor. By Ti we denote the trans-
gressions associated to the corresponding rows. Then we have T1.x/ D T2.y/ D

T3..idB � fbg/
�y/D 0, since .idB � fbg/

�y D 0.

A.2.3 Let us consider the following example. Define N WD T 2 n .D2/ı , ie N is the
two torus with an open disc removed. Let f W N ! T 2 be the map which collapses the
boundary of N to one point. On the one hand, the fundamental class ŒT 2�2H 2.T 2;Z/
is transgressive. On the other hand, ŒT 2� is a nontrivial product of 1–dimensional
cohomology classes, and none of the factors is transgressive.

Collapsing the complement of an open disc in T 2 to a point gives a degree 1 map
gW T 2! S2 . If we write S2 D†S1 , we then get a diagram:

S1 ����! CS1 DD2 ����! †S1 D S2x??id
S1

x?? x??g

S1 ����! N
f

����! T 2

Here, g�ŒS2�D ŒT 2�, where ŒS2� 2H 2.S2;Z/ is the fundamental class. By naturality,
T .ŒT 2�/D T .ŒS2�/D ŒS1� 2H 1.S1;Z/ is the fundamental class of S1 , in particular
nonzero.

This shows that at least one of the factors in Proposition A.10 has to be transgressive
for the assertion to hold.

A.3 Transgression in ordinary cohomology and the relation with the
Bockstein

A.3.1 We now want to describe how one can construct the transgression in ordinary
singular cohomology with coefficients on the level of chains. Let f W E ! B be
a map with fiber i W F ,! E over b 2 B . Let R be an abelian group. Assume
that x 2 H k.B;R/ is transgressive, ie we have f �x D 0. We choose a cocycle
c 2 C k.B;R/ representing x . Then the cocycle f �c is a boundary, ie there exists
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a chain c0 2 C k�1.E;R/ with dc0 D f �c . The restriction of c0 to F is closed,
since di�c0 D i�dc0 D i�p�c . It follows that i�c0 represents a cohomology class
Œi�c0� 2H k�1.F;R/. The cocycle c0 is well defined only up to closed cocycles in E .
It follows that the class Œc0� is well defined only up to the image of i� . Hence we get a
well-defined class zT .x/ 2H k�1.F /= im.i�/.

Proposition A.11 We have zT .x/D T .x/.

Proof The recipe described in the proposition defines a transformation zT which is
again natural with respect to the map f W E! B . As explained in the A.1.9 it must
coincide with the transgression T if it does so in the special case of the cofibration
B!CB!†B . But in this case the above description produces exactly the suspension
isomorphism which is by definition the transgression map T .

A.3.2 If f W E!B is a map of smooth manifolds and RDR, then we could replace
the singular cochains by differential forms and construct zT on the level of forms. Again
we get zT D T .

A.3.3 For a cohomology class x 2H�.X;Z/ let xQ 2H�.X;Q/ denote the image
of x under the canonical coefficient homomorphism Z!Q. Let n 2N and ˇ be the
Bockstein transformation associated to the sequence

0! Z
�n
�! Z! Z=nZ! 0 :

A.3.4 Let x 2 H k.X;Z/ be such that nx is transgressive. Note that then qQ is
transgressive, too. Since nf �x D 0 by the Bockstein exact sequence there exist
u 2H k�1.E;Z=nZ/ with ˇ.u/D f �x . Recall that T .nx/ is an equivalence class
of cohomology classes.

Proposition A.12 We have

T .nx/ 3 i�u;(12)

nT .xQ/ 3 i�uQ:(13)

Proof We use the description of the transgression on the singular cochain level given
in Proposition A.11. Let c be an integral cocycle representing x . Let c0 be an integral
cochain of E with dc0 D nf �c . Then i�c0 represents T .nx/.

The reduction of c0 modulo nZ becomes closed and therefore represents a coho-
mology class u 2 H k�1.E;Z=nZ/. By the explicit construction of the Bockstein
homomorphism, ˇ.u/D f �x . Equation (12) follows.

Since transgression commutes with the passage to rational coefficients by Lemma A.7,
Equation (13) follows from Equation (12).
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Appendix B Cohomology of BO , BU and their loop spaces

B.1 The cohomology

B.1.1 In this appendix, we summarize the main results about the cohomology of BO ,
BU and their loop spaces, and the relations between them, including the determination
of the transgression homomorphisms. These results are all classical, and almost all of
them can be found in Cartan’s papers [8], where these calculations were essential in his
cohomological proof of Bott periodicity. Since they are scattered over these papers, we
collect them here in more convenient form. All results without a proof or a different
reference can be found in [8].

B.1.2 Bott periodicity gives canonical (up to homotopy) homotopy equivalences
between �nBO and other classical spaces summarized in the following list.

Theorem B.1

n�1 �1 0 1 2 3 4 5 6 7

�n.U=O/ U=O BO�Z O O=U U=Sp BSp�Z Sp Sp=U U=O

or SO�Z=2 SO=U�Z=2

This extends 8–periodically.

In the following, we will frequently identify the (cohomology of) different loop spaces
of spaces in this table using the corresponding homotopy equivalence without further
mentioning it. Note that we have done so already throughout the body of the paper.

B.1.3 In the following, L.xi1
;xi2

; : : : / denotes a polynomial algebra in the generators
xi , where by convention xi has (cohomological) degree i , and E.yi1

;yi2
; : : : / denotes

an exterior algebra, with similar degree conventions for the generators.

B.1.4 In the following list, we describe the cohomology of the connected component
of the base point in �kBO . Note that we “rename” some of the usual characteristic
classes like the Pontryagin classes: p4 is a cohomology class in H 4 etc.
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Theorem B.2

k �kBO H�.�kBO0;Z/ H�.�kBO0;Z=2Z/ H�.�kBO0;ZŒ
1
2
�/

0 BO L.p4;p8; : : : /˚ 2–Tors L.w1; w2; : : : / L.p4;p8; : : : /

1 O � L.d1; d3; : : : / E.v3; v7; : : : /

2 O=U L.u2;u6; : : : /

3 U=Sp E.a1; a5; : : : /

4 BSp �Z L.y4;y8; : : : /

5 Sp E.y3;y7; : : : /

6 Sp=U L.u2;u6; : : : /
� E.c2; c4; : : : / L.c2; c6; : : : /

6 Sp=U
LŒc2; c4; : : : �P

iCjD2k.�1/ic2ic2j

7 U=O E.a4kC1/˚ 2–Tors E.w1; w2; : : : / E.a1; a5; : : : /

We add the following detailed explanations, using the description of the loop spaces as
in Theorem B.1.

(1) (a) H�.BOIZ/ contains a subalgebra isomorphic to the quotient by its torsion.
(b) This is a polynomial algebra L.p4;p8; : : : /.
(c) The torsion is annihilated by 2, it is the image of Bockstein.
(d) Reduction mod 2 maps p4k to .w2k/

2 .
(e) The classes w2kC1 2 H 2kC1.BO;Z=2Z/ have unique lifts to

H 2kC1.BO;Z/ which we also denote by w2kC1 .
(f) The same is true for every class in degree k for k not divisible by 4, since

in these degrees H k.BO;Z/ is annihilated by 2.

(2) Most complicated is the cohomology of SO with Z–coefficients, for reasons of
space simply denoted � in the list (case k D 1). We can say the following:
(a) The torsion in H�.SO;Z/ is annihilated by 2, it is the image of Bockstein.
(b) The quotient of H�.SO;Z/ by its torsion is an exterior algebra E.v3; v7; : : :/.

It does not split back to H�.SO;Z/ because of the product structure (com-
pare with H�.SO;Z=2Z/).

(c) But of course, each monomial vi1
: : : vis

has an inverse image vi1
: : : vis

2

H�.SO;Z/ (only additive! no multiplicative structure) which is well defined
up to torsion, and the products are correct up to torsion.

(3) The integral cohomology of Sp=U (case k D 6) is the dual of L.u2;u6; : : : /.
This shows in particular, that it is torsion-free. As a ring, it is the quotient of
L.c2; c4; : : : / by the ideal generated by the elements

P
iCjD2k.�1/ic2ic2j .

(4) (a) H�.U=O;Z/ contains a subalgebra isomorphic to the quotient by its torsion,
this is an exterior algebra E.a1; a5; : : : /.

(b) The torsion is annihilated by 2, it is the image of Bockstein.
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(c) Reduction mod 2 maps a4kC1 to w2kw2kC1Cˇ.w4kCw2w4k�2C� � �C

w2k�2w2kC2/.

B.1.5 We also need the complex case, ie BU (and will later relate BO to BU ).
The case of BU is of course much easier because of 2–periodicity, and since the
cohomology does not contain torsion.

Theorem B.3

k natural homotopy equivalence of �kBU to H�.�kBU0;Z/;
0 BU L.c2; c4; : : : /

1 U E.c1; c3; : : : /

2 BU �Z:

B.1.6 We now describe the effect of the loop map �W H�.X /! H��1.�X / for
integral cohomology and some of the spaces in Theorem B.1.

For the following table, recall that the universal Chern character is a certain rational
polynomial in the universal Chern classes, and we have a unique integral lift k! ch2k 2

H 2k.BU �ZIZ/.

Theorem B.4

Space X �X x 2H�.X;Z/ �.x/ 2H��1.�X;Z/
BU U c2k c2k�1

U BU �Z c2k�1 .k � 1/! ch2k�2

BSp Sp y4k y4k�1

BO O p4k 2v4k�1CTors

Proof We only have to prove that �.c2k�1/D .k � 1/! chk�2 . For this, observe that

c2k�1 D�.c2k/D�..k � 1/! ch2k/D .k � 1/!�.ch2k/;

since the other summands in ch2k are decomposable and because the loop map applied
to a decomposable class is zero by Proposition A.10. Now the Chern character is
compatible with Bott periodicity, and therefore �2.ch2k/D ch2k�2 . Consequently

�c2k�1 D .k � 1/!�2.ch2k/D .k � 1/! ch2k�2:
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B.1.7 Now consider the next lemma.

Lemma B.5 The natural map

l�W H
4kC1.BO;Z=2Z/!H 4kC1.BO;Q=Z/

of Equation (5) factors through the image of the Bockstein homomorphism

ˇW H 4kC1.BO;Z=2Z/!H 4kC2.BO;Z/:

Proof We have the following map of long exact sequences:

2��
! H 4kC1.BO;Z/

q�
! H 4kC1.BO;Z=2Z/

ˇ
! H 4kC2.BO;Z/ !

1
2
�� # l� # k

! H 4kC1.BO;Q/ ! H 4kC1.BO;Q=Z/
ˇ0

! H 4kC2.BO;Z/ !

The assertion now follows from the fact that H 4kC1.BO;Q/D 0.

B.2 Maps between loop spaces of BO

B.2.1 There is a large number of canonical maps between the different spaces in
Theorem B.1 and in Theorem B.3 which are important for us and which are described
in the following list:

(1) the inclusion cW O! U (given by complexification)

(2) the induced map BcW BO ! BU , which gives rise to Bc � idZW BO �Z!
BU �Z

(3) the inclusion qW U ! Sp (given by tensoring with the quaternions)

(4) the induced map BqW BU ! BSp

(5) the inclusion f W U !O (given by forgetting the complex structure)

(6) the induced map Bf W BU ! BO

(7) the inclusion j W Sp! U (given by forgetting the quaternionic structure)

(8) the induced map Bj W BSp!BU , which gives rise to Bj � idZW BSp�Z!
BU �Z

(9) the projection pW U ! U=O

(10) the projection P W U ! U=Sp

(11) the inclusion of the fiber i W U=O!BO obtained by dividing the total space of
the universal principal U –fibration U ! EU ! BU by O (here we use the
fact that EU=O is a model for BO )
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(12) the fibration BO! BU constructed in (11)

(13) the map �7
i W Sp=U !U=O obtained by looping this fibration seven times, it is

the fiber of the map U=O!BO obtained by looping the fibration BO!BU

seven times

(14) the (similar) inclusion of the fiber I W Sp=U ! BU

(15) the (similar) inclusion of the fiber �W O=U ! BU

(16) a map ˛W U=O! U given as composition

U=O
�
�!�Sp=U

�I
��!�BU

�
�! U

where the first map is the Bott periodicity homotopy equivalence, and the third is
the usual homotopy equivalence (which is also part of (complex) Bott periodicity)

(17) a similar map ˇW U=Sp! U , given as composition

U=Sp
�
�!�O=U

��
��!�BU

�
�! U

B.2.2 The following relations hold between these maps. As usual, we will freely
use the Bott periodicity homotopy equivalences of Theorem B.1 and Theorem B.3 to
identify certain loop spaces with other spaces (therefore, strictly speaking, the following
assertions are true up to homotopy).

(1) It is a general fact in the theory of classifying spaces that one way to construct
Bc in (2) is the fibration map of (12), which therefore can be identified with
Bc . Reason: the identity map EU ! EU , where the domain is considered
as contractible O –principle bundle and the target as contractible U –principle
bundle intertwines, using the inclusion cW O ! U the structures as principle
bundles. Therefore the induced map on the quotients is the map Bc .

(2) The map (1) is obtained from (2) by applying the loop space transformation (and
using the Bott periodicity identifications of �BO

�
�!O and �BU

�
�!U ).

(3) Similarly, (7) is obtained by applying the loop space functor to (8).

(4) By construction, looping (14) gives (16).

(5) By construction, looping (15) gives (17).

(6) Cartan [8] proves that O=U ! BU , ie (15) is obtained by applying the loop
space functor to the inclusion (1), O! U .

(7) Cartan [8] proves that looping (7) gives (14). This requires to check that his
explicitly given maps Sp=U ! BU and O=U ! BU are the fiber inclusions
we claim they are.
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(8) Cartan [8] also checks that looping (17) gives (8).

(9) Cartan [8] proves that looping (16) gives (2). Strictly speaking, in this and
the previous case he considers the corresponding maps of universal coverings
SU=Sp! SU which loops to BSp!BU , and SO=SU ! SO which loops
to BO ! BU . Since we know that U=Sp ! U and O=U ! O induce
isomorphisms on �1 –level (all isomorphic to Z), the claim follows.

B.2.3 To conclude, we have shown that in the sequence

Bc � idW BO �Z! BU �Z

cW O! U

�W O=U ! BU

ˇW U=Sp! U

Bj � idW BSp�Z! BU �Z

j W Sp! U

I W Sp=U ! BU

˛W U=O! U

Bc � idW BO �Z! BU �Z

each map is obtained by looping the previous one (and applying Bott periodicity to
identify the loop spaces with the next spaces in the list).

B.2.4 In Table 1, we list the effect of the maps in cohomology. Again, this is due to
Cartan [8], with a few exceptions easily obtained from his work. In these cases, the
reason is indicated in the last column of Table 1. Recall that we always only consider
the cohomology of the connected component of the base point. “By looping” means
that we know that certain maps are obtained from each other by applying the loop space
functor (and some canonical homotopy equivalences), and that we know the effect of
the natural loop map functor �W H�.X /!H��1.�X / by Theorem B.4.

B.2.5 In two cases, we have to take the different components into account: note
that ch0 2 H 0.BU �ZIZ/ has the value d (times the canonical generator) on the
component of BU �Z labeled by d 2 Z. Correspondingly, we have a real version
chR

0 2H 0.BO�ZIZ/ and a quaternionic version chH
0 2H 0.Bsp�ZIZ/, describing

the dimension of the virtual universal real or quaternionic bundle, respectively. For
these classes we get the (obvious) following relations under the maps induced by
“complexification” or “forgetting the quaternionic structure”, respectively. See Table 2
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f W X ! Y x 2H�.Y;Z/ f �.x0/ 2H�.X0;Z/ reason
BSp! BU c4k y4k

c4kC2 0

O=U ! BU c4kC2 2u4kC2

c4k �2 �
P

0<i<2k.�1/if �.c2i/=2 �f
�.c4k�2i/=2

Sp=U ! BU c2k c2k

c2k mod 2 c2k

Sp! U c4kC1 0 by looping
c4kC3 y4kC3 by looping

U=Sp! U c4kC1 2a4kC1 true dually in homology
c4kC3 0 true dually in homology

U ! Sp y4k�1 2c4k�1 by looping (since prod-
ucts suspend to zero)

BU ! BSp y4k

P
iCjD2k.�1/ic2ic2j

SO! U c4kC3 2v4kC3C 2–Tor
c4kC1 2–Tor

U ! U=O a4kC1 2c4kC1

U=O! U c4kC1 a4kC1CTors
c4kC3 Tors

U !O v4kC3 c4kC3

BO! BU c4k p4k

c4kC2 w2
2kC1

c4k mod 2 w2
2k

BU ! BO p4k

P
iCjDk.�1/ic2ic2j

w2kC1 0

w2k c2k mod 2

U=O! BO wk mod 2 wk mod 2

p4k 0 mod 2 it maps to 0, and
pulled back further to
U it is also 0, ie no 2–
torsion and no free part

Table 1

f W X ! Y x 2H 0.Y;Q/ f �.x/ 2H 0.X;Q/

BSp�Z! BU �Z ch0 2 chH
Œ0�

BO �Z! BU �Z ch0 chR
Œ0�

Table 2
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B.2.6 We conclude with two lemmas.

Lemma B.6 In the fibration

U=O
i
�! BO

Bc
��! BU;

the classes c
Q
4kC2

2H 4kC2.BU IQ/ are transgressive.

Proof The pull back of c4kC2 to BO is 2–torsion in integral cohomology, therefore
vanishes in rational cohomology.

Lemma B.7 In the fibration Sp=U
�7i
��! U=O

˛
�! U , the Leray–Serre spectral se-

quence for H�.�;Z=2Z/ collapses at the E2 –term. In particular, the edge homomor-
phism

.�7i/�W H�.U=OIZ=2Z/!H�.Sp=U IZ=2Z/

is surjective, whereas the edge homomorphism

˛�W H�.U IZ=2Z/ ,!H�.U=OIZ=2Z/

is injective.

Proof E2 D H�.U=OIZ=2Z/ ˝ H�.Sp=U IZ=2Z/ is the tensor product of an
exterior algebra over Z=2Z with exactly one generator in each positive even degree
with an exterior algebra over Z=2 with one generator in each positive odd degree, ie an
exterior algebra over Z=2Z with one generator in each positive degree. It converges to
an exterior algebra over Z=2Z with one generator in each positive degree. Any nonzero
differential would result in an E1–term which is too low dimensional, therefore the
spectral sequence necessarily collapses. The statement about the edge homomorphisms
is an immediate consequence.
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