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Real secondary index theory

ULRICH BUNKE
THOMAS SCHICK

In this paper, we study the family index of a family of spin manifolds. In particular, we
discuss to what extent the real index (of the Dirac operator of the real spinor bundle if
the fiber dimension is divisible by 8) which can be defined in this case contains extra
information over the complex index (the index of its complexification). We study this
question under the additional assumption that the complex index vanishes on the k—
skeleton of B. In this case, we define new analytical invariants ¢ € H' k=1 (B;R/7Z),
certain secondary invariants.

We give interesting nontrivial examples. We then describe this invariant in terms of
known topological characteristic classes.

57R20

1 Introduction

1.0.1 The index of a family of Fredholm operators parametrized by a space B is
an element in the K—theory K*(B) of this parameter space. If the base is in fact a
smooth compact manifold without boundary, and this family is a family of fiberwise
generalized Dirac operators on a smooth fiber bundle over B, then after adding some
further geometric structures in order to define the Bismut super connection we can
do local index theory in the sense of Berline, Getzler and Vergne [4]. Let us denote
by £ the family with this collection of geometric structures, by D(E) the family of
Dirac operators, and by index (&) the index of this family. Local index theory provides
a closed form Q(€) on B (see Definition 2.1) which represents a cohomology class
[Q2(E)] € H*(B,R). The local index theorem states that

ch® (index(€)) = [Q(E)] .

1.0.2 The focus of the present paper is not a generalization of this type of result. Let
us illustrate the philosophy of the present paper in the case above. We start with local
index theory and produce the even form €2(€). We then observe that this form is closed
and therefore represents a cohomology class [Q2(€)] € H®(B,R). We observe that
this class in fact only depends on index(€) € K°(B). The classifying space of the
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1094 Ulrich Bunke and Thomas Schick

functor K° is BU x Z. By naturality we conclude that there must be a universal class
R R . :
ch . € H"(BU xZ,R) such that [Q(E)] = f*chy,,,if f: B— BU xZ classifies
index(€). We know that H®V(BU, R) is a polynomial ring in generators cg{, c}?, e
Then we finally look for a formula which expresses chEliV in terms of these generators,
this way obtaining the Chern character. Of course this is a well known possible way

toward the family index formula.

1.0.3 In fact the real subject of the present paper is a secondary version of this approach.
Let K;/(B) denote the k’th step of the Atiyah-Hirzebruch filtration of K—theory (see
2.1.6), ie the subgroup of classes which vanish when restricted to the (k—1)—skeleton
of B (so that K§(B) = K(B)). Under the assumption that index() € K; (B), the
Chern class ¢k (index(€)) € H*(B,Z) (note that we use a nonstandard notation where
the subscript is equal to the degree) admits a natural lift to smooth Deligne cohomology
k(&) € Héel(B) (see 2.1.8 and 2.1.17). This lift is a differential-geometric (or even
global-analytic) invariant which varies continuously with the geometry. In particular it
has a curvature (¢ (€)) € A¥(B), which can be expressed through ©2(£).

1.0.4 We rigidify the situation be imposing additional geometric constraints. We
in fact assume that the family of Dirac operators D(&) is a family of twisted Dirac
operators on a family of Spin—manifolds, and that the twisting bundle is a real bundle.
Let n be the fiber-dimension of this family. It follows from the presence of the real
structure that, if k +n = 2(4) then the class ¢ (€) is flat (see 2.1.19). This means that
w(Cx(£)) = 0. Since any two geometric structures can be connected by a path we can
now conclude that under this assumptions ¢ (€) is a differential-topological invariant.
In Section 3.3 we give some nontrivial examples.

1.0.5 Note that the flat part of Hll)‘el(B) can be identified with H*~1(B,R/Z). Thus,
given a family of n—dimensional spin manifolds and a real twisting bundle such
that index(€) € K;(B) and k +n = 2 (mod 4) we have defined a class ¢ (£) €
HK=1'(B,R/Z). This class is natural under pullback.

The index of the family D (&) has areal refinement indexg (£) € KO™"(B) (see Section
2.2). We prove that in fact ¢ (£) only depends on indexg (£) and that 2¢(€) = 0
(see Proposition 3.2 and Proposition 3.5).

Let U;"(B) C KO™"(B) be the subset of classes which after complexification belong
to Kl_” (B). What we have constructed so far is a natural transformation

= U 4k+1—
B,’ftk+1—n' U4kn+2_n(B) —H "(B,R/Z)

such that dl;,’ztk+1—n (indexgr (£)) = Car+2(E).
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1.0.6 The universal situation is given by the fiber sequence
Qi
QUU/0) = Q"(BOxZ)— Q"(BU x 7).

It is obtained by application of the functor 2" to the fibration U/O % BO— BU ,
where we construct BO = EU /O and thus obtain the inclusion i: U/O — BO. A
class x € KO™"(B) is represented by amap f: B — Q"(BO x Z). If x belongs to
U, (B), then this map factors up to homotopy through a map g: B — Q"(U/O).
Thus there must be a universal class

dafey1—n € H*T17(Q"(U/0). R/ 2)

such that g*c?4k+1_n =dg"y ;41— (X). Note that this universal class has the special

property that g*dsx+1—, only depends on the homotopy class of the composition
Q'iog.
1.0.7 The main purpose of the present paper is the calculation of the universal class

dy k+1—n in terms of the classically known generators of the cohomology of Q" (U/O).
The result is presented in Theorem 4.10.

1.08 Ifn=2,3,4,50rn=1,k>0,then 674k+1_,,=O. Ifn=0o0orn=1,k=0 then

—n . . . .
the class d Bo4k+1—n (x) is a classical characteristic class of x (ie it can be expressed

in terms of the dimension and Stiefel-Whitney classes). If » = 7, in principle it is
also a well-known characteristic class (albeit for KO’ which is not considered much),
ie pulls back from the classifying space U/O.

The dimension 7 = 6 is interesting since in this case the classes are definitely not just
classical characteristic classes of x.

See Section 4.5 for all that.

1.0.9 For the convenience of the reader we have added two appendixes. In the first we
recall (with proof) some material about transgression.

In the second we recall the results of Cartan [8] about the cohomology of the spaces
Q"(U/0O) and about the action of various maps and transgressions on this cohomology.

2 Real local index theory

2.1 Chern classes of geometric families in Deligne cohomology

2.1.1 We consider a fiber bundle 7n: £ — B with closed n—dimensional fibers. We
assume that the vertical bundle 7Vx := ker(d ) is oriented and equipped with a spin
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structure. We choose a vertical Riemannian metric g7 ” and a horizontal distribution
Thx,ie a complement of 7% in TE. Finally, we let W := (W, V? 1) be an
auxiliary complex vector bundle with hermitian metric and metric connection. The
data described so far make up a geometric family £ over B.

2.1.2 We assume that W admits a real structure Q € End(W|gr) which is compatible
with the connection and the metric. Then W is the complexification of a real bundle
Wgr = (Wr, V& 1PR) The latter can be identified with the +1—eigenbundle of Q.

2.1.3 The data which we compressed in the notion of a geometric family induces a
family of elliptic operators D(£) over B. Indeed, for b € B the operator D(E)(D) is
the spin Dirac operator of the Riemannian spin manifold Ej := 7~ !(b) twisted by the
bundle W|g, . The family index of D() is the element index(£) € K" (B).

2.1.4 For k € Ny we introduce a natural transformation ¢;: K"(B) — H*(B,Z)
given by the Chern class. In order to have a uniform notation in the even and odd
dimensional case we use a notation which differs from the conventional one. So if 7 is
even, then we set ¢ox = ¢ and cpp4q := 0, where ¢;: K°(B) — H?K(B,Z) is the
Chern class in the usual notation. If » is odd, then we set ¢;; = 0 and define ¢, 41
such that the following diagram is commutative

C2k+1

K"(B) = H?*+tY(B,7)
| [
K"t1(z=B) 7 Hk+2(zB,7)

where K denotes the reduced K —theory and the vertical isomorphisms are the natural

suspension isomorphisms.

2.1.5 The Chern character is a natural transformation

ch: K"(B) > P H*(B.Q).

k=n(2)

Here again for the even part ch: K2"(B) — @kzo(z) H*(B, Q) we use the usual
convention, while the odd part is defined such that the following diagram is commutative:

K2-1() — Br=1) H*(B,Q)

~ h ~
R(ZB) —> @r=o (mod 2y T (ZB.Q)

For k € Ny let chy: K*(B) — H*(B, Q) denote the corresponding component.
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2.1.6 The ring K*(B) has a natural decreasing filtration, the Atiyah—-Hirzebruch
filtration [1],

- C Kp 1 (B) CKg(B)C---C Kj(B)=K*(B) .

Recall that x € K}'(B) iff f*x =0 for any (k—1)—dimensional CW—complex X and
continuous map f: X — B.

2.1.7 Fix now k € Ny and define m € N such that k = 2m or k =2m — 1. If
x € K;(B), then we have

1) cx(X)g = (1)1 (m —1)! chy (x)

where ¢ (x)g € H k(B, Q) is the natural image of ¢ (x) in cohomology with rational
coefficients.

2.1.8 Let HJ (B) denote the smooth Deligne cohomology of B. In the present
paper we use its description in terms of differential characters given by Cheeger—
Simons [9]. Let Z*~! be the group of smooth singular chains on B. A class X €
ngl(B) is a homomorphism %: Z¥~! — R/Z such that there exists a differential
form w(X) € A¥(B) with the property that for any smooth singular k—chain C we
have X(0C) =[ /- w(X)], where [r] € R/Z denotes the class of r € R. Note that »(X)
is uniquely determined by X. It is called the curvature of X. It is necessarily closed
and has integral periods.

The association B — HJ_(B) is a contravariant functor from smooth manifolds and

smooth maps to graded abelian groups. There is a natural exact sequence

H*'(B,Z) > A1 (B)/im(d) > HE,(B) > H¥(B,Z) -0,

where a is given by

ap2)=[ [ a] ped®).

Note that w(@(B)) = dB. The map v has the following description. Let X € Hll)‘el(B).
We choose a smooth R-valued (k—1)—cochain 7" such that 7| zx—1 = X. This is
possible since R is divisible. Then we have dT = w — ¢ for some Z-valued k-
cochain c¢. It follows that ¢ is closed, and we set v(X) := [c]. For details we refer to
Cheeger—Simons [9].

2.1.9 A complex vector bundle W — B represents an element [W] € K°(B). Assume
that W comes with a hermitian metric 4" and metric connection V. We set W :=
(W, h" VW) . For k € Ny, Cheeger—Simons [9] constructed a natural lift ¢,; (W) €
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H]%S(B) of ¢ ([W1]) such that v(¢ox (W)) = cox ([W]) and w (¢ (W)) € A2k (B) is
the Chern—Weil representative of ¢, ([W])r associated to the connection v,

2.1.10 The bundle W can be considered as a geometric family WW over B with
zero-dimensional fiber in a natural way. In this case we have index(WW) = [W].

Therefore we can consider the geometric family £ over B as a generalization of a
hermitian vector bundle with connection over B. It is now an obvious question whether
one can define a natural lift ¢ (£) € ngl(B) of ¢y (index(&)).

2.1.11 The geometric data associated with the geometric family £ induces a connection
VT’7 on the vertical bundle in a natural way. In fact, if we choose for a moment a
Riemannian metric g7 on the base, then we can define a Riemannian metric g7 £ on
the total space E as the orthogonal sum of the vertical metric gT"™ and the metric
gTh” on the horizontal bundle obtained by lifting g7 . Then VT'T s the projection
of the Levi-Civita connection of g7 to the vertical bundle. This connection does
not depend on the choice of g78. We refer to [4] for details. By AA(VTU” ) e A*(E)
we denote the Chern—Weil representative of the A—class of T?7. Furthermore, let
ch(V¥) € A(E) be the Chern—-Weil representative of the Chern character of W .

Definition 2.1 The local index form Q(€) € A(B) of the geometric family & is
defined by

QE) = /E s ANVT"Tyeh (V) .

2.1.12 The Atiyah-Singer index theorem for families states that
ch(index(&))r = [Q(E)]

where [w] € H*(B,R) denotes the class represented by the closed form . Here we
once and for all fix the isomorphism between de Rham cohomology Hj.(M) and
singular cohomology H* (B, R) which is induced by the integration map. This means
that the value of the class [w] on the cycle Z is given by [’ Z 0.

2.1.13 The form (&) plays the role of the Chern—Weil representative of the Chern
character of an index bundle with connection Vi"eX(€) for D(E) though we are not able
to define the latter object. In particular, the local index form also determines candidates
for the Chern—Weil representatives cy (Vindex(€)) of the Chern classes ¢ (index()).
Unfortunately we are not able to define natural lifts ¢ (€) € H]lj‘el(B) of ¢ (index(&))
with curvature w(¢x (£)) = ¢ (Vindex(©))
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2.1.14 Assume that index(€) € K;(B) and k = 2m or k = 2m — 1. By Equation
(1) we have
ey (index(E)r = [(=1)" " (m — 1)1Q*(£)] .

In [6, Definition 8.19] we have constructed a natural class
& (€) € Hpy(B)

with curvature o (¢ (€)) = Q¥ (&) and v(¢x (£)) = ¢k (index(€)). Instead of repeating
the rather indirect construction [6] we give here a direct description which could be
taken as definition of ¢ (€) as well. Note that ¢ (£) = 0 by definition if n # k(2)
(recall that » is the dimension of the fiber of £).

2.1.15 Let Z € Z¥=! be a smooth cycle. We must prescribe ¢ (£)(Z). We can
find a smooth manifold X (not necessarily closed) of the homotopy type of a (k—1)—
dimensional CW—complex, a map f: X — B, and a smooth (k—1)—cycle Z" in X,
such that fxZ’ = Z. We could eg take for f: X — B the inclusion of a thickening
of the trace |Z| C B of Z and Z = Z’. Note that 0 = f*index(€) = index( f*E£).
Therefore we can find a perturbation of the family of Dirac operators D( f*E) by a
family of selfadjoint smoothing operators O (which are odd in the even-dimensional
case) such that the family D(/*E) + Q is invertible. In [6] the pair (f*E, Q) was
called a tamed geometric family and denoted by f*&;.

2.1.16 If F; is atamed geometric family over some base B, then the super connection
formalism provides an eta-form n(F;) € A(B) such that dn(F;) = Q(E). We refer
to [6] and [4] for details. The form n(F;) depends on the taming. Assume that F;
is a second taming of the same underlying geometric family. Then the difference
n(Fr) —n(F;) is a closed form. As a consequence of the index theorem for boundary
tamed families [6] we know that

[n(Fs) —n(F))] = ch(x)r

for some x € K*(B). In fact, we can take x = index((F x I)), where the boundary
taming is induced by F; and F;.

2.1.17 We can now prescribe ¢ (£)(Z) as follows.

Definition 2.2

@) 8(ENZ) = [y m— 1) /Z e | eR/E

In order to see that ¢ (€) is well defined note that (m—1)! chy is an integral cohomology
class. Therefore the right-hand side does not depend on the choice of the taming. One
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also checks independence of f, X, Z’. The relation w(¢y(£)) = QK (€) follows from
dn(f*&) = f*Q(E).
2.1.18 Up to this point we have not employed the fact that the geometric bundle
W = (W, V% h") comes with a real structure Q. Because of the existence of Q the
geometric bundle W is isomorphic to its hermitian conjugate W. We conclude from
the general equality B

chai (V9) = (—1) ehy (VV)
that ch; (VW) =0 if / # 0(4).

2.1.19 Recall that n = dim(E) — dim(B).
Lemma 2.3 If k 4+ n £ 0(4), then QK(€) = 0.

Proof We have
QE) = / ANVT ™) ch(VY) .
E/B

Since the form AA(VTU” ) is nontrivial only in degrees 4/, / > 0, we immediately see
that QK(E) =0 if k +n # 0(4). O

2.1.20 We call aclass X € Hl])‘el(B) flat if w(X) = 0. By Lemma 2.3 the class ¢ (€)
is flat if kK +n = 2(4). The Deligne cohomology of B fits into the exact sequence (see
Cheeger—Simons [9])

3) 0— H*'(B,R/Z) 5 HE,(B) S A%(B)

such that vob: H*! (B,R/Z) — H*(B,7) is the Bockstein operator associated to
the exact sequence of coefficients

0>Z—->R—>R/Z—0.

By (3), a flat class in H]])‘el(B) can be considered as a class in H¥~1(B, R/Z). From
now on we consider Hk_l(B,R/Z) as a subset of H]])‘el(B) and do not write b
anymore.

2.1.21 The first assertion of the following proposition is just the conclusion of the
preceding discussion.

Proposition 2.4 (1) Let £ be a geometric family over B such that the geometric
twisting bundle W admits a real structure. Let k > 0 and assume that index () €
K} (B). If furthermore k +n = 2(4) (where n = dim(E) —dim(B) is the fiber
dimension of £) then ¢ () € H]’;e] is flat and therefore gives rise to a class in
H*KY(B,R/Z).
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(2) The class & (£) € H*1(B,R /7)) is independent of the geometric structures,
ie it only depends on the differentiable fiber bundle E — B, the choice of spin
structure and orientation of the vertical bundle TVm, and on the real vector
bundle Wpg.

Proof In order to show the independence of the geometric structures we argue using
the connectedness of the space P of these structures. We can set up a universal family
Euniv over P x B and define & (Euniv) € H* (P x B,R/Z). It follows from the
homotopy invariance of the cohomology functor and the naturality of the construction
of these classes with respect to pullback, that the specializations of ¢y (Euniy) at different
parameter points p, g are cohomologous on the one hand, and give the classes ¢ ()
and ¢y (&) associated to the families £, and &; equipped with geometric structures
given by p and ¢, respectively, on the other hand. |

2.1.22 The main goal of the present paper is to understand the nature of the class
& (&) € H*Y(B,R/Z) in terms of the topology of the geometric family.

2.2 The real index

2.2.1 The group KO°(B) is defined as the group completion of the semigroup of
isomorphism classes of real vector bundles over B. The functor B +— KO°(B) extends
to an 8—periodic multiplicative cohomology theory KO*. Complexification of real
vector bundles induces a natural transformation cg: KO°(B) — K°(B) which extends
to a natural transformation cg: KO*(B) — KO*(B) of multiplicative cohomology
theories.

If k + n £ 0(4), then the composition

h
KO™(B) 2 k™(B) =% H*(B,Q)
vanishes.

2.2.2 In view of this observation the desirable explanation of the fact that % (&) = 0
if kK +n = 2(4) is that index(£) € K~"(B) is in fact of the form cp(indexg(£))
for a real refinement of the index indexg (£) € KO™"(B). In fact, the spinor bundle
carries additional structures which are “preserved” upon twisting by real bundles.
Using these structures we can indeed refine the index index(€) € K~"(B) to a class
indexg (£) € KO™"(B).

For the purpose of illustration we sketch the construction of indexg (£). Although this
is well known, the following exposition is designed to be a useful reference for the
interested reader.
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2.2.3 Depending on the class of » modulo 8 we are going to use quite different
pictures of KO™"(B). We make use of the real Clifford algebras C#+¢ associated to
RP*4 with quadratic form —x% — —XI% + x;_H +--+ x;_m.

In one picture an element of KO" is represented as a family of selfadjoint odd Fred-
holm operators on a graded C"™°-module. Another representation is as a family
of antisymmetric Fredholm operators which anticommute with an action of C%"~1,
In this case there is no grading. Finally an element of K'(B) is represented by a
family of selfadjoint Fredholm operators (and there is again no grading). We refer to
Atiyah-Singer [3] and Karoubi [11] for further details.

224 n=0(8)

The spinor bundle S(7'V7) is the complexification of a real spinor bundle Sgr(7T"x).
Thus V = S(T'?n) ® W is the complexification of Vg := Sr(T"7) ® Wr. The
Dirac operator D(E) comes from the Dirac operator Dr(€) on Vr. The refined
index indexg (£) € KO°(B) is just the index of the family of real Fredholm operators
Dr(&)™T.

225 n=1(8)

The spinor bundle S(7?7) admits a real structure, which anticommutes with Clifford
multiplication. It induces a real structure on V' which anticommutes with D(E). Let
VR be again the real +1-eigenbundle of the real structure on V. The operator i D(E)
commutes with this real structure and therefore induces an antisymmetric operator
D(E)r on Vg. This family represents indexg () € KO~(B).

22.6 n=2(8)

The spinor bundle S(7°¥ ) has a quaternionic structure which is odd with respect to the
7,/ 27 —grading and commutes with Clifford multiplication. Thus we obtain an induced
quaternionic structure J on V. We consider D(E)g := JD(E) as an antisymmetric
real operator on Vﬂ'{ . It anticommutes with the action of C%! which is induced by
multiplication by i. Therefore the family D(£)r together with the C%!-module
structure represents indexg (£) € KO™2(B).

227 n=3(8)

The spinor bundle carries a quaternionic structure which commutes with Clifford
multiplication. We get an induced quaternionic structure J on )V commuting with
D(€). The antisymmetric operator D(E)R := i D(E) anticommutes with the action of
C%2? generated by J and iJ . Therefore the family D(£)r on VR together with the
C %2 _module structure represents indexg () € KO~3(B).
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22.8 n=4(8)

The spinor bundle S(7V7) carries a quaternionic structure which commutes with the
grading and Clifford multiplication. It induces a quaternionic structure J on )V which
commutes with D(E). We consider the antisymmetric operator D(E)r := iD(E)
on the bundle Vg which anticommutes with the Clifford algebra C%3 generated by
i, J,iJ . Therefore the family D(£)g on Vg together with the C%>3—module structure
represents indexg (£) € KO™*(B).

229 n=5(8)

The spinor bundle S(7'V ) carries a quaternionic structure which anticommutes with
the Clifford multiplication. It induces a quaternionic structure J on )} which anticom-
mutes with D(E). We form the real selfadjoint operator

DE) 0 )

D(‘S)R::( 0 —D(E)

on Vr @ VR with its standard odd grading

(Ta)-

This operator commutes with the Clifford algebra C3:* generated by

0 J 0 iJ 1 0
-J 0 )\ —=iJ 0 ) \0—-1)"
The C3-°—equivariant operator D(E)R represents indexg (£) € KO3 (B) = KO3 (B).

2210 7= 6(8)

The spinor bundle S(7"V ) carries a real structure which anticommutes with the grading.
In induces a real structure Q on V which is odd and commutes with D(E). We consider
the selfadjoint operator D(E)R := D(E) on Vr. This bundle is Z/2Z—graded and
admits an action of C2° generated by Q and iQ commuting with D(E)r. The
C?:9_equivariant operator D(€)R represents index(£)gr € KO*(B) = KO~%(B).

2211 n=7(8)

The spinor bundle S(7Vx) admits a real structure which commutes with the Clifford
multiplication. In induces a real structure Q on V which commutes with D(E). We
consider the real symmetric operator D(€)r which is obtained by restricting D(€) to
the 1—eigenbundle of Q. The operator D(E)R represents indexg (£) € KO'(B) =
KO~ (B).
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3 The analytic invariant

3.1 Construction of a natural transformation dj ,

3.1.1 Recall that complexification of real vector bundles induces a natural transforma-
tion of multiplicative cohomology theories cg: KO"(B) — K"(B). The real index
indexg (£) € KO™"(B) is a refinement of index(£) € K~"(B) in the sense that

cp(indexg (£)) = index(€) .

3.1.2 For k = 0 and n € Z we define the group U;(B) by the following exact
sequence

0— UJ'(B) — KO"(B) 58 K"(B)/K}(B)

where gp is the composition of c¢p with the projection onto the quotient. We also
define U/, (B) by the exact sequence

0— U (B) — KO"(B) — K"(B).

Since ¢p is a natural transformation the association B — U}'(B) extends to a functor
with values in abelian groups.

3.1.3 Assume that k —n =2(4).

Definition 3.1 We define the natural transformation
ak—1: UL(B) > H*"'(B.R/Z)

by the requirement that
d oy (%) 1= Co1 (€) |

where £ is any geometric family of dimension 8/ —n, / € Z, such that x = indexg (£).
3.1.4 We must check that the definition of d x—; makes sense.

Proposition 3.2 If k —n = 2(4), then there is a unique homomorphism
it UL (B) —> H*"'(B.R/Z)

such that dy , _, (indexg (€)) = ¢ (£) for any geometric family over B of dimension
8/ —n, | € Z, with indexg (£) € U}!(B). This homomorphism is natural with respect
to continuous maps.
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Proof The essential parts of the proof are given in Lemma 3.3 and Lemma 3.4 below.
It immediately follows from these Lemmas that for given B there exist a unique map
d 1”3’ x— satisfying the requirement. Additivity and naturality with respect to smooth
maps of d l’;’ x_; follows from naturality and additivity of the class cx(€). But then
naturality extends to continuous maps since U} (-) as well as H k=1 R /7.) are weak
homotopy functors. O

3.1.5 The following lemma establishes that d , is well defined.
Lemma 3.3 If indexg(£) = 0, then ¢ (£) = 0.

Proof Assume that indexg (£) = 0. In this case we can find a smoothing perturbation
of the real operator D(E£)r which is invertible. We call this perturbation a real taming.
By complexification a real taming induces a taming &; which is compatible with the
additional symmetries determining the real structure.

These additional symmetries imply that the Chern form of the Bismut super connection
associated to D(€) and its tamed perturbation vanishes. Since the n—form is derived
from this Chern form we conclude that n(£;) = 0 if the taming is induced from a real
taming. The assertion of the Lemma now follows from the description of ¢ (€) in
terms of the n—form (see Section 2.1.17). O

3.1.6 The following lemma shows how to realize K —theory classes.

Lemma 3.4 If x € KO"(B), then there exists a geometric tamily £ as above such
that indexg () = x.

Proof By the periodicity of KO*(B) we can assume that n < 0. By definition,
KO"(B) = KO"(B+) = KO°(X"B.) ,

where B is obtained from B by adjoining an additional base point, and I?é”(B+)
denotes the reduced KO—theory.

Let now x € KO™(B) correspond to X € [%O(EnBJ,_). Let p: S"x B4 — X" B4 be
the natural projection and Wg = W]g @® Wg be the real Z /27 —graded vector bundle
over S" x By representing p*X.

We form two geometric families £ with underlying bundle S” x By — B with its
standard fibrewise orientation and spin structure and with the real twisting bundle Wﬂg:.
Then by Bott periodicity or the index theorem, x = indexg (€T Up +E g |
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3.2 Some properties of dj , |

3.2.1 We approach the study of the natural transformation dg, x—; from two sides.
First, in view of its definition through the analysis of families of Dirac operators
we use mainly analytical arguments in order to show some simple properties of this
transformation. This is the subject to the present section.

A finer study in Section 4 leading to a complete understanding of the transformation
uses methods from topology and the observation that a natural transformation comes
from a universal one between suitable classifying spaces. It should be noted that most
results of this section, the important exception being Corollary 3.7, will also follow
from the topological description, and will not be needed to derive this description.

3.2.2 There is a natural transformation
rg: K*(B) — KO*(B) .

It is determined by the special case rg: K°(B) — KO°(B) which associates to a class
represented by a complex vector bundle the class represented by the underlying real
vector bundle. It is easy to see that

rpocp = 2
(multiplication by 2).

3.2.3 We now prove the following proposition.

Proposition 3.5 We have 2d’;

Bk—1— 0.

Proof Fix x € U}'(B). The homology class dg’k_l(x) € HK=Y(B,R/Z) is deter-
mined by its values on all smooth cycles Z€Z k=1 on B.

Given a (k—1)-cycle Z there exists a manifold X which is homotopy equivalent to a
(k—1)—dimensional CW-complex, a smooth map f: X — B, and a (k—1)—cycle Z’
in X such that fxZ’ = Z (compare 2.1.15). By the naturality of d", _, we have

2dp () 2Z) =2f"dg , (NZ) =dy ,_, 2f*x)(Z)).
It thus suffices to show that 2 f*x = 0.
Since f*x € Uy(X) and X is (up to homotopy equivalence) (k—1)—dimensional we

have ¢y (f*x) = 0. This implies 0 = ry ocy (f*x) =2/ *x. O

3.2.4 We have defined dg, P

In the following we show that it suffices to understand eta forms for zero-dimensional

in terms of eta forms of families of Dirac operators.

families. Note that the latter are essentially objects of linear algebra.
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3.2.5 If x e U'(B), then there exist a real Z /27 —graded vector bundle over X" B
which represents the class X € KO° (X" B4) corresponding to x under the identification
KO™(B) = 1?60(2" B1). Let W = WH{ @ Wy be the pullback of this bundle to
S™ x B under the natural map S” x B — X" B .

The bundle 7: S” x B — B has a natural fibrewise orientation and spin structure. The
round metric of S” induces a fibrewise metric g7 7. The canonical decomposition
T(S"x B) =prg,TS" & prB TB yields the horlzontal distribution przTB. After
choosing geometric bundles W = (Wi, VW hWR ) we obtain the geometric family
E* and £ := £V Up (5_)"p over B, with underlying bundle S” x B, such that
indexg (£) = x.

3.2.6 Since cp(x) = 0 by assumption we know that the complexification W of Wr
represents the trivial element 0 = [W] € K°(S" x B). Thus (possibly after adding a
trivial bundle of formal dimension zero) the bundle W admits an odd unitary selfadjoint
(not necessary parallel) automorphism U .

3.2.7 The bundles W]?{f give rise to geometric families F* over S” x B where the
underlying zero-dimensional fiber bundle is id: S” x B — S” x B, and the twisting
bundle is Wﬁ. We let F := F 1T Ugnyp (F7)°P. Then we have indexg (F) = [WRr] €
KO°(S™ x B) and index(F) = [W] =0 € K°(S" x B). The automorphism U gives
a taming F; of F. In particular, we have a well-defined form n(F;) € A(S” x B)
such that dn(F;) = QF) = ch(VY).

3.2.8 For r >> 0 the operator *U can be considered as a sort of taming of the family
E. It is not a taming in the strong sense since U is not smoothing along the fibers
of . Rather it is a local taming in the sense of [6]. Local index theory works for
local tamings as well. We let & (r) be the geometric family £ tamed with U and let
n(E:(r)) be the associated n—form.

3.2.9 We now establish a proposition.

Proposition 3.6 We have
tim 0D = [,
r—o0 S"xB/B

Proof This assertion is proved using the adiabatic limit techniques developed eg in
[7]. The general method gives

Jim n@) = [ AT .

S"xB/B

The result now follows from AA(VTU” ) = DPrgn AA(VTSn) =1, since AA(VTSn) =1 for
the round metric (which is also locally conformally flat). O
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3.2.10 A closed form w € AK~1(B) represents a class [w] € H*~'(B,R). By
wlr/z € H k=1(B,R/Z) we denote its natural image. Let m be determined by
2m =k or 2m =k + 1. Then definition (2) together with Proposition 3.6 implies the
following corollary.

Corollary 3.7 With the notation above
X —1 m_lm—l!/ k+”_1.7-"] .
A @ = [0 =t | A

In fact, in view of Proposition 3.5 we could also omit the sign (—1)"~1.
3.2.11 We consider the sequence
0>Z—>R—>R/Z—0

and let B”: H*=1(B,R/7Z)— H*(B,Z) be the associated Bockstein operator. Recall
from 2.1.20, that 8" coincides with the composition

H*Y(B.R/Z) -~ HE (B) > H*(B.7) .

Proposition 3.8 For x € U, . ,(B) we have

skt

(B" 0 dgy41)(X) = (Car+20¢B)(x) .

Proof We write x = indexg (&) for a suitable geometric family £ over B. Then we
have the chain of equalities

(B" 0 dy 1 1)(X) = (Vo Cag12)(E) = Cap42(index(€)) = (capt20¢p)(x) . D

3.3 Nontrivial examples

In Section 4.4 we will give a complete description of the universal classes d”, , which
also decides when exactly these classes can be nontrivial. In this section, we want to
construct explicit and easy nontrivial examples over low dimensional spheres as base
manifolds.
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3.3.1 Let MSpin* be the spin bordism cohomology theory and «: MSpin* — KO*
be the a—genus introduced by Hitchin [10]. Note that a: MSpin* (x) — KO*(x*) is
surjective. If E is a closed spin manifold, then we write «(E) for the result of «
applied to the class [E] € MSpin* (x) represented by E.

The most important common feature of the following examples is that they all come with
a trivial twisting bundle. In other words, the respective geometric family £ represents
an element [E, ] € MSpin™"(S?) (with n € Ny and i € {0, 1,2} depending on the
case), such that indexr () = «([E, ]).

332 n=18), k=1

Let E be a closed spin manifold of dimension 7 = 1(8) with a(E) =1¢€ KO™!(x) =
7 /27 . Such manifolds exist by the 3.3.1.

We choose a Riemannian metric g7£ . Then we consider E as a geometric family £
over the point * with the trivial twisting bundle Wg = E xR. We claim that ¢;(£) #0.

Note that H},(x) = R/Z and ¢;(€)([]) = [no(é})]R/Z, where &; is any taming.
The degree 0 part n°(&;) is defined even for a pretamed manifold in the sense of [6],
and if the pretaming is trivial, then it is one half of the usual Atiyah—Patodi—Singer
eta invariant [2]. Now we have 1°(£) = 0 since D(£) anticommutes with the real
structure and thus has symmetric spectrum. Since by spectral flow (taming essentially
means that the underlying operators are invertible)

1€ =1 (Ol z = | 5 dimker D]

1
we see that [no(é't)]R/Z = [5 dim ker D(S)]R/Z .

The condition «( E) # 0 says that dimker D(E) = 1(2). Therefore, d i o(indexgr (€)) =
[ (ENIr/z = [3r/z ~0€ H(x,R/Z).
333 n=08), k=2

We consider a family £ — S of closed spin manifolds with fiber dimension 7 = 0(8)
and o (E) # 0. Indeed for any given spin manifold M of dimension » = 0(8) such a
bundle with fiber M exists by [10]. We will in addition assume that

Def

a(M) = A(M) =0.

We equip E with geometric structures and consider the trivial twisting bundle E x Wg.
Let &£ denote the corresponding geometric family over S'. Since a(M) = 0 we have
index(€) € Kg(Sl) = () and thus indexg (€) € UZO(SI).
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We claim that ¢,(€) # 0. We consider a taming &;. For a > 0 the standard metric
gTs " of S and the horizontal distribution of & induces a Riemannian metric gg E —
gT' " ®an*gTs " on the total space E. Since E is spin we can consider the total
Dirac operator D(a) on E and its perturbation Dy(a) which is induced by the taming.
In the adiabatic limit @ — 0 the operator D;(a) becomes invertible. In other words,

for small a the perturbation D;(a) is induced by a local taming. As in [5], we have
lim 7°(Dy (@) | :[[ ‘e, = dh (indexa(@)(S') € R/Z .
Lim i@, =[ [ n'E], ,=d5 (ndexn(€)1s") € R/

For sufficiently small a the class [nO(D,)(a)]R/Z is independent of the adiabatic
parameter. As in 3.3.2, since a(E) # 0 and 7°(D(a)) = 0 we have [nO(D,(a))]R/Z =

[1Ir/z - Thus dg,  #0€ HY(S'.R/Z).

This result can be interpreted as follows: The holonomy of the determinant line bundle
of £is —1 e U(1).
334 n=7@8), k=3

We consider a family £ — S?2 of closed spin manifolds with fiber dimension n = 7(8)
and a(E) # 0. Such a family exists [10] for any given closed spin manifold M of
dimension n = 7(8). We choose geometric structures and consider the trivial twisting
bundle E xR. In this way we obtain a geometric family £. Since K'(S?) =0 we have
index(€) = 0 and therefore indexg (£) € U37 (S?). We claim, that d;z’z(indexR (&) #
0e H>(S?,R/7Z).

We proceed as in 3.3.3. We consider a taming &;. It induces a perturbation D;(a) of
the total operator D(a) on E. We have again

Lim * ], =[ [ @], , = dds sndesa @5

Again, for sufficiently small a the class [n°(D;(a))]r /7, is independent of the adiabatic
parameter. Since «(E) # 0 and n°(D(a)) = 0 we have [nO(Dt(a))]R/Z = [%]R/Z.
This implies the claim.

4 Topological universal classes

4.1 Transgression of the Chern classes

4.1.1 As proposed in 3.2.1 we shall understand dg, 4k through its universal example.
In the present section we start with the definition of this universal class. We will obtain

an expression of this class in terms of familiar characteristic classes of real vector
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bundles. In Theorem 4.7 we show that the transformation dg sk+1 1sindeed induced by

the corresponding universal example. In Theorem 4.8 we will then identify d%, . | _,
in topological terms for all n. Then we will establish some vanishing results and more

details about the topological side.

4.1.2 In the present section all spaces have distinguished base points and all maps are
base point preserving. Let O and U be the direct limits of O(n) and U(n) induced by
the embedding into the left upper corner. The embeddings R” < C”, n € N, induce
embeddings O(n) — U(n) and ¢: O — U . The map ¢ induces the complexification
transformation cpg. (see 2.2.1).

4.1.3 Let EU — BU be a universal bundle for U . We can consider BO := EU/O
and obtain a bundle

) v/oL oL Bu
with fiber U /O over the base point of BU, compare (12) and (11) in B.2.1.

In the following, we use the transgression homomorphism for cohomology associated
to this fibration (4). For the convenience of the reader, we have collected the main
definitions and properties of transgression in general (with proofs) in Appendix A, and
of transgression and cohomology of the spaces in the fibration U/O — BO — BU in
Lemma B.6 in Appendix B.

4.1.4 We will use the following definition.

Definition 4.1 We define the universal transgressed Chern classes

dagr = T(cZ ,,) € H¥T1(U/0.Q)

where cQ

4%+ 1s the image of the universal Chern class ¢4f 4> under the natural map

H**2(BU,7) — H**2(BU, Q).

4.1.5 We now consider the following commutative diagram:

0 7z 27 .70 — 0
T
0 z Q Q/Z — 0

Definition 4.2 We define 674k+1 e H**1(U/0,Q/Z) as the image of d4) 41 under
the natural map H**+'(U/0,Q) - H*+'(U/0,Q/7).
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4.1.6 The cohomology ring of BO with coefficients in Z/2Z is a polynomial ring
Z/ZZ[wl,wz, .. ] s

where w; € H (BO, 7 /27) are the universal Stiefel-Whitney classes. It is well known
(see Milnor and Stasheff [12]) that

(6) B(wak Uwag41) = p*carsa.

where f is the cohomological Bockstein operator associated to the exact sequence of
coefficients in the first row of (5). In particular, 2p*c4p 4, =0 € H**2(BO: 7), as
also stated in Appendix B.

4.1.7 Letly: H*+tY(BO,Z/27)— H*+'(BO,Q/Z) be induced by / of (5). Note
that by Lemma B.5 the map /4 factors over the image of .

Definition 4.3 We define
dag+1 =l € H¥T1(B0O,Q/ 1),

where u € H***t1(B0O,7Z/27) is such that B(u) = P¥Cartn-

Such an u exists by (6) and /4u is independent of the choice since we have fixed 8(u).

4.1.8 Leti: U/O < BO be the inclusion.
Lemma 4.4 We have i*g4k+1 = c74k+1 . Moreover, 2J4k+1 =0 and 2674k+1 =0.

Proof The first assertion is a special case of Proposition A.12, where we use the
equality 2p*(c4x+2) = 0. Note that the homomorphism / is given by division by 2.

The second assertion follows from the fact that 234;{_,_1 =2l4u = 1,,(2u) = 0 for u of
Definition 4.3, and 2d45 11 =i *(2d4r41) = 0. O

4.1.9 By (6) we have the following corollary.
Corollary 4.5 We have 674k+1 =l (wor Uwog41)-
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0

4.2 A topological description of d ,, +1

4.2.1 In this subsection we pretend that p: BO — BU is a smooth fiber bundle. To be
precise, we should replace this bundle by an N —equivalent finite-dimensional smooth
bundle for N sufficiently large.

Let W]g — BO be the universal bundle. Then p: BO — BU classifies its com-
plexification, ie if W+ — BU is the universal bundle over BU, then we have an
isomorphism ng ®Rr C = p*W* which induces a real structure Q (complex con-
jugation) on p*W ™. We can assume that W]R—{F comes with a metric 7% , and we
choose a connection V& . We set Wi = (W, VWﬂg,hWﬂg) and let W7 be its
complexification.

4.2.2 We now consider the Z/27Z—graded bundle W := W+ @ W~ with W~ := W+,
It admits an odd unitary selfadjoint (not necessary parallel) automorphism

- (32)

We form the geometric families G* on BO with underlying fiber bundle id: B — B
and twisting bundles p*Wi. Then the family G = GT Ug G~ admits a taming G,
induced by R. The associated n—form satisfies dn(G;) = Q(G) = ch(VP' W), By
construction we have ch4k+2(Vp*W) = 2p*ch4k+2(VW+) and chyr (VP'") =0
(compare 2.1.18).

4.2.3 Leti: U/O — BO be the inclusion of the fiber. Then
di*y* (G = 2% 0 p*) ehyr42(V" ) =0
since poi is a constant map. Thus we can consider the class

[i*n4k+1 (gt)] c H4k+l (U/O, R)
424 Let dyy € H*TI(U/O.R) be the image of dyrsy € H*+1(U/0.Q)
under the natural map induced by the map of coefficients r: Q — R.

Lemma 4.6 We have R

2d
. dk+1 2

Proof The proof follows from the fact that in the smooth situation there is the al-
ternative description of the transgression TR: H*+2(BU R) — H*+(U/0,R)
given in Proposition A.11. Let x € H 4k+2(BU,R) be represented by a closed form
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X € A*k+2(BU). Then there is some form Y € A**1(BO) such that dY = p* X .
The class TR(x) e H:;]l;"'l (U/O,R) is then represented by i*Y € A**+1(U/0).

In our case
+
x=2chf (WD), X =2chya(V"), ¥ =p*T1(G))

so that
[i*n** 1G] = TR (2 ch (W T).
Note that

1
chyp (W) = a0 %H + decomposable classes,

where for reasons of degree each decomposable summand contains at least one factor
c47+> which is transgressive by Table 1. Hence by Proposition A.10

2 2d4g+1
T(2ch W)= —T =
(2chyr42((WT)) 25! (Cak+2) k)]
This implies the assertion since TR o r« =r« 0T by Lemma A.7. O

4.2.5 We now consider a manifold B and x € I?éO(B). Let X: B — BO be a
classifying map for x. We assume that x € U2 (B). Then we can assume that X
factors through the inclusion i: U/O — BO, ie without loss of generality we can
assume that X: B—U/O.

We define d4k+1 € H*+1(B,R/Z) as the i image of d4k+1 under the map of coeffi-
cients R — R /Z, or equivalently, as the image of dy k-1 under the map of coefficients

Q/Z — R/Z. We now come to the main result of this subsection.

« R
Theorem 4.7 dB4k+1(x) d4k+1'

Proof Let x be of the form [V+] [Vg ], where Vi = = RN x B is trivial. Then
we have an isomorphism Vi =~ X "‘WJr The metric hWR and the connection VWR
induce a metric /"R and a connectlon VVR on VJr In this way we obtain a geometric
bundle Vﬁ = (V+, VVR nVe ). Furthermore, we equip Vi with the canonical
geometry and get Vi

Set V* := Vﬁ ® C and consider the Z /27 —graded bundle V := V' @ V™. Because
[V]=0 in K°(B) we can choose a unitary odd selfadjoint (not necessary parallel)
automorphism U of V.

We form the geometric families H* over B with underlying bundle id: B — B and
twisting bundle V*. Furthermore we define H := H+ U (H™)°. Then we have
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indexg (H) = x and dz?k +1.8(0) = Cak+2(H). The isomorphism U induces a taming
‘H;. By Corollary 3.7 we thus have

Cak2(H) = (2R N ()R /2 € H¥T1(B.R/Z) .

We now consider the bundle V:= Vt & V- @ VT @ V~ with the Z/2Z—grading
diag(1,1,—1,—1) and the two odd automorphisms

0 0 0 U~ 0 0 Rt 0
~ 0 0 U*r o ~ 0 0 0 R~
U'_oﬁ—oo’R'_R+ooo’

ut o 0 0 0 R 0 0

where R* is the C—linear isomorphism between V]}gt ® C and its complex conjugate
given by complex conjugation.

Note that [R, U] = 0. The bundle V gives rise to a geometric family H = H+ Up
(H™)°P, where the underlying fiber bundle of H* is again id: B — B, and the twisting
bundles are V*. For each « € [0, 7/2] the operator

cos(a) U+ sin(oc)ﬁ

defines a taming ﬁ,a. The family (ﬁ,a)a defines a tamingj:z, of H:= pr%ﬁ over
[0, /2] x B. A computation shows that dn(H;) = pr}ch(VV) = 0. We conclude the
following equality of de Rham cohomology classes

[ ()] = [ (i, )] -
An inspection of the definitions shows that

774k+1 (ﬁto) — 2774k+1 (Ht)
n4k+l (th/z) — (X* o i*)n4k+1(gt)-

We conclude with Lemma 4.6 that

N w s (2K)! "
Cak2(H) =X [l %U”Jrl(gt)] = X"y yy - o

4.3 The topological interpretation of d ", +1n

4.3.1 Recall that the classifying space of KO™" is Q" BO. In view of the fibration

Q"(U/0) — Q"BO — Q"BU
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we see that the classifying map X: B — Q" BO of an element x € UJ"(B) factors
(up to homotopy) over Q"(U/O), since then the composition

X
B — Q"BO — Q"BU
is null homotopic.

Let Q": H*+t1(U/0,R) - H*H1=7(Q"(U/0),R) be the n—fold iteration of the
loop map introduced in Definition A.1.

Theorem 4.8 We have

By m=11 T (m—1)!
dg'srr1-n(X) = [ ! E‘HJR/Z:X[ 20! T(C4k+2)]R/Z’

where m is determined by 2m =4k +3 —n or 2m =4k +2—n.
Proof We employ Corollary 3.7. Let X € KOO(E”B) correspond to x € KO™"(B)

under the identification KO™"(B) =~ KOO(E”B) Let X € KOO(S” X B) be the
pullback of X under the natural map S” x B — X" B.

Note that the classifying map Y: X"B — U/O of X is the adjoint of X: B —
Q"(U/0), and that the composition X: S” x B — U/O of the projection §" x B —
"B and Y is the classifying map of X.

Then we have

—n _ Rt 4k+1
Bak+1-n(¥) [(m 1)-/SHXB/B’7 (Ht)}R/Z’

where H; is constructed as in the proof of Theorem 4.7. In that proof we have also
shown that

l =,
et () = [ o™ G |
We now apply Lemma 4.6 in order to conclude that

v* R

X*d
4k+1 _ 4k+1
[ (Hol = k)]
(m—1)! ]
Thus X X* d
B4k+1—n( )= |: k) Jsnxn/B 4k+1 R/Z

The assertion now follows from the general fact that for any z € H 4k+1(U /0, R) we
have

/ X*z=3"Y*; = X*Q"z
S"xB/B
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where ¥ is the suspension isomorphism. For the first equality we use that integration
over the fiber essentially is the suspension isomorphism in the above construction.
The second equality is a special case of the relation between suspension and loop
homomorphism proved in Lemma A.6. |

4.3.2 Theorem 4.7 and Theorem 4.8 give a topological description of the value of
dE”Z k+1—n (%) only under the additional assumption that x € U"(B) C U, " ,_ (B).

In order to see that this determines dl;,’i k+1_n completely we argue as follows.

Let x € U, ", ,_, (B). Then the cohomology class dl;ﬁk+1_n (x) of degree 4k +1—n

is determined by its restriction d g%, . |, (X)|gak+1-n to the (4k + 1 —n)—skeleton
B4 F1=1 of B. We have x| gar+1-n € Uz (B*$T17) Thus we know the topological

descrip-tion of d1;51k+1—n,4k+1—n (X pa+1-n), Whichequals dp’y, (X)) par+1-n by
naturality.

4.4 Explicit calculation of the universal class

Theorem 4.8 does give a topological interpretation of our invariant 3.1. However,
we want to be even more precise and explicitly compute the corresponding universal
cohomology class

(m-1)! _,

[ (2k)! d4k+l]Q/Z
_m=1)!
_[ (2k)!

Q”T(c%+2)]Q/Z e H*+1=nQny 10,Q/7)

where m is determined by 2m = 4k +3 —n or 2m = 4k + 2 —n. In particular, we
will show that for half of the parameters n (mod (8)) this class vanishes

We will make use of many of the results about the cohomology of BO, BU and their
loop spaces collected in Appendix B.

4.4.1 Consider the map of fibrations

U EU BU
I | Ji
v/o —— Bo -2, BU,

where the upper row is the universal principal U —bundle, and the lower row is obtained
from the upper by dividing out the subgroup O.
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4.4.2 By Lemma B.6, C%Jrz € H*+2(BU, Q) is transgressive in the second (and

of course also in the first) fibration. We have to compute the transgression 7 (c4f42) €
H*+1(U/0,Q). To do this, we observe that the upper fibration is the path space
fibration, and therefore by Lemma A.4 the transgression 777 of this fibration coincides
with the loop homomorphism. By Theorem B.4 we obtain Ty (c4442) = cak+1 (even
in integral cohomology). Moreover, transgression is natural, therefore

PTG ) =Tulcg ) =c2 . € H*(U.Q).
By Theorem B.2, Theorem B.3 and Table 1, p*: H*(U/O,Q) — H*(U, Q) is injec-
tive and p*(a4x+1/2) = Cak+1-

Notation 4.9 1In order to avoid an inflationary appearance of the exponent @ from
now on we will use the same symbol for an integral cohomology class and its image in
rational cohomology. It will be clear from the context which meaning the symbol has.

Consequently (with the new convention 4.9 ) we can write
1
T(car+2) = F%ak+1 € H** (U /0;Q).
4.4.3 Our next goal is the calculation of

QT (cakrn) = 2" (3asin) € HHHQMU/0).Q)
We consider the fibration
@) Q"U/0)— Q"BO — Q"BU
which is the n—fold loop of the fibration considered above.

4.4.4 In the following, we use the Bott periodicity maps to identify Q" (U/O) with
the spaces listed in Theorem B.1:

n 0 1 2 3 4 5 6 7
Q"(U/0)|UIO BOxZ O O/U UlSp BSpxZ Sp Sp/U

4.4.5 Unfortunately, our knowledge about the map Q2" is not complete enough to
calculate Q" (T c4+2) directly. We use the following trick:

Using that map a: U/O — U (compare Section B.2, Item (16)) we have %a4k+1 =
a*%c4k+1. Therefore,

Qn(%%kﬂ) = (Q"a)* Q" (%C4k+1) :
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4.4.6 We shall first compute 2" (c4x+1). By Theorem B.4
Q(cqr+1) = (2k)! chyy.
Note that QBU = Q(BU x Z) so that we can iterate the argument.
Next, (2k)! chy; = 2k - c45 + decomposable. We conclude that
Q((2k)! chyy) = 2kQ(car) = 2kcap—1 -

4.4.7 Now, an easy induction allows us to compute Q2"(c441) for each n € N.
However, because of the factors appearing in our formulas, we really have to study
((m =11/ (c4g+1), where m = 2k + 1 —n/2 if n is even, and m = 2k +
1 —(m—1)/2 if n is odd. In the induction, this factor cancels the factors (like (2k))
which show up in the calculations above, and we get (with m depending on n and k
as above)

n( (m—1! Cak+1-n n even
8 Q
® (Tamr (2k)! caen) = {(2k—(n—1)/2)!ch4k+1_,, nodd .

4.4.8 From this and the calculation of the map in cohomology induced by the map
Qa: Q'U/0) — Q"U, we read off the cohomology classes we are interested
in. Since we are really only interested in the image of the class under the map in
cohomology induced by the map of coefficients Q — Q/Z, we obtain the following
list:

Theorem 4.10
[%T(QHZ)_Q/Z — [%a4k+1]Q/Z e H*\(U/0;Q/7)
[Q((r?zk)') T(aks2)) lojz = {E)%;h:)%/(ZBZZOZ(;Bg/Z)Z’Q/Z) ji i 1 j:
@2 Tewan] , =0 HY0.0/2)
@' Teu)], , =0 H42(0/U.0/2)
2 Teasa] , =0 € B4 W sp.0/2)
@ S Tew)] , =0 € HH 4 BSp < 2.Q/2)
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|2 Tess ], = [3rwes] , € HE5p.0/2)
— 1)
[97((7?%)1!). T((«’4k+2))}(@/Z = [%(C4k—6 +caCap—g +- -+ Czk—402k—2)]Q/Z

e H**=%(Sp/U,Q/Z)

For n > 8, the answer can be read off from the list by reduction mod 8 by Bott
periodicity.

In particular, the natural transformation dg", +1_p Vanishes for n congruent to
2,3,4,5 mod 8, and, if k > 0, also for n = 1 (mod 8). In the other cases, since

the universal classes are nontrivial, there are nontrivial examples.

Proof As observed above, we simply have to take the cohomology classes on the
right-hand side of Equation (8), divide them by 2, and then apply the map from rational
cohomology to cohomology with coefficients in Q/Z. Finally through Q"« we pull
back the result to 2"(U/O). In this step we use the results of Section B.2.

Note first that x, := ¢4 41—, (n even) and x, := (2k—(n—1)/2)! chyg 41—, (n odd)
belong to the integral lattice in rational cohomology. Therefore [%(Q”a)*ﬂ”xn]R /7=
0 if %(Q”a)* preserves the integral lattices. This is the case whenever Q"« maps
the Chern classes to twice a generator of the integral cohomology, ie if Q"(U/O)
equals O, O/ U, or U/Sp by the Table 1. This observation accounts for the zeros for
n =2,3,4 in the theorem.

Because of Proposition A.8

[T(QS(%C‘%-H))]Q/Z - [QT(Q4<(n(qzz)lz)!c“k“))]@/z =0,

we obtain the zero for n =15. We now discuss the case n=1. We have [T (¢4 42)]g/z =
l«(war Uwygy1), where [y is induced by the map of coefficients

222 - 0/22 2% /7,

(compare 4.1.5 and Corollary 4.5). If k£ > 0, then Q(wpx Uwjk 1) = 0 since the loop
map is applied to a decomposable class. Note that (m — 1)!/(2k)! = 1 in this case.
Thus

— 1!
[Q(%T(Qk“))](@/z = 12w Uwog41) =0
for k > 0.

For the calculation of [Q7((m —1)!/(2k)!T (car+2)]o /2, we proceed as follows. The
class (2k —3)!chyx_g € H**=6(Sp/ U, Q) belongs to the integral lattice. In fact, if
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we write (2k —3)!chyp_g = 045—6(c2,Ca, ..., Ca—g) With the Newton polynomial
04k—g, then the right-hand side can be interpreted as an integral cohomology class in
H**=%(Sp/U,Z). We now have

(m—1)!
(2k)!

T(C4k+2))]

Ix[o4k—6(c2.Car ... Cak—6)lz /22 = [97( 0z

The cohomology H*¥=6(Sp/U,Z/27Z) is an exterior algebra generated by [c2]z /275
[c4]z/27. - - . . Considered—in this algebra—the Newton polynomial

O4k—6(C2.Cay ..., Cak—s)

=—@k=3) ) (iR

i1 +2ip4+2k—3)izi_3
=2k—3

3(11 +“.+12k_3_1)!6’;1 22]2‘_g
i) . iyp_3! -

It simplifies considerably and gives exactly the expression asserted, if we use that

1

lxlcatlz 2z = [ECZI]Q/Z .

4.5 The relation with ordinary characteristic classes

4.5.1 Let us consider the fibration
Ql‘l :
Q"U/0) = Q"BO — Q"BU .

We have constructed and calculated the universal cohomology class

(m—1)! P
Q" (LT |, e H* 1@ v/0).Q/2).
[ (Car T ], (@"(U/0).Q/2)
If this class would be of the form (2"i)*u for some u € H*T1="(Q"B0,Q/7),
then the invariant dl;”f‘ kt1—nX)s x €U | (B), could be expressed in terms of
familiar characteristic classes of the element x € KO™"(B).

4.5.2 In the case n = 0 we indeed have

o (G e

= [T (car+2)o/z =i " s (War Uwog41)
Q/Z
(above we have written w; for i*w; in order to save notation, but in the current
discussion it makes sense not to omit i *). In particular we can extend dg to all

4k+1
of KO°(B) by setting dg’4k+1(x) = Le(Wor Uwog41).
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4.5.3 Inthe case n =1 and 4k = 0 it is obvious that the class comes from Q! BO.
As we have seen in Section 3.3.2, if x € KO~!(X) is represented by a family of
anti-selfadjoint real Fredholm operators (F})pep, then dg’ o(x) is represented by the
locally constant R /Z—valued function b [% dimker Fp|r /7

4.5.4 In the case n = 6 the class

[96<(n(12;)1!)! d (c4k+2))]@/z - [96(2k(2k — 11)(2k —2) T(c‘”‘“))]@/z

definitely is not a pullback from Q6BO = Sp/U . In fact H*(Sp/U,Q/Z) is con-
centrated in even degrees, while our class is of odd degree. We see that in this case
our invariant d;ﬂ x_s is more exotic and therefore more interesting. Unfortunately,
we haven’t been able to produce simple examples of nontriviality for this invariant in

Section 3.3.

4.5.5 For n =7, the map Sp/U — U/O induces a surjection in cohomology with
7./ 2Z—coefficients by Lemma B.7. Therefore, all our classes pull back from U/O.

4.6 Extendibility

4.6.1 Given x € KO™(B), in order to define d,;" ,_ (x) using topology we
had to assume that x € U*(B). Our analytic definition however works under the
weaker condition that x € U 4_k”+2_n (B). Of course, if B**1=" — B denotes a
4k + 1 —n—skeleton, we have x| gax+1-n € UZ"(B**T17") We also have seen that
dyps—n (X pakt1-n) = d i (%) gak+1-n determines d" | (x) uniquely. The
interesting feature of the analytic definition is that it shows that d;" ' 1—n (| pak+1-n)

admits an extension from B*+1=7 1o B.
In the following Lemmas we give an alternative proof of this property.

4.6.2 Let f: B— Q"BO be a map. Assume that the restriction " := figr: B" —
Q"BO of f to a r—skeleton B” of B factors over a map g’: B" — Q"(U/O)
(ie f"=Q"iog",where i: U/O — BO is as above). Assume further that r +n =1
(mod 8). Let R be some abelian group.

Lemma 4.11 If x € H*(Q"U/O, R) satisfies 2x = 0, then the class (g")*(x)
extends from B” to B.

Since the map H”(B; R) — H"(B’; R) is injective, this extension is unique. Note
that the Lemma in particular applies to the cohomology classes listed in Theorem 4.10.
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Proof Let K(R;r) denote the Eilenberg—Mac Lane space which represents the functor
H" (..., R). We represent the cohomology class x by amap x: Q"(U/O)— K(R;r).
It suffices to show that (g7)*(x) extends to a (r+41)—skeleton B”*1 of B (such that
B”  B"t1). In fact, it then further extends to B since the inclusion B"T! — B is a
(r+1)—equivalence.

The universal example is given by the space B = K" ! which is obtained from
Q"(U/O) by attaching (r+1)—cells in such a way as to kill the kernel of the map
Q") mpQRYU/O0) - 7, (R"BO). Here f is obtained from Q"i: Q"(U/0O) —
Q" BO, which extends to some map f: K71 — Q" BO by the construction of K" !
(and elementary obstruction theory), and g’ is the inclusion of the r-skeleton of
Q™(U/O0) (and therefore of K" 1) into Q"(U/0).

In our case we have 7,(Q"(U/0)) = 7Z and ker(2"i), =~ 27 (as follows from
Bott periodicity and the long exact homotopy sequence (in low degrees) of U/O —
BO — BU). If ¢: S — Q"(U/O) represents a generator of ,(Q"(U/0O)), and if
h: ST — Q"(U/O) represents twice this generator, ie a generator of ker(2"7),, then
h*(g")*x =2¢*(g")*x = 0. Thus the map x o/ is null homotopic, and therefore
(g")*x extends to K" t1. O

4.6.3 Letstill f: B— Q"BO be a map and assume that the restriction f4k+1-7 —
fl‘B4k+lfn: BAk+1-n _ onpo of f toadk+1—n-skeleton BAk+1=n o B factors
over amap gkt1—n. ptkti-n_, Qny/0) (ie f4+1-1n = Qnjog4k+t1-n where
i: U/O — BO is as above).

Lemma 4.12 If

(I’I’l — 1)' 4k—
= [~ T |, eH* " @ w/o
=2 (T Tew) ]y (@"(U/0)
is one of the classes of Theorem 4.10, then (f*T1=")*x extends from B*k+1-7
to B.

4.6.4 Note that half of the cases are already covered by Lemma 4.11, namely whenever
the dimension condition is satisfied, ie when (4k +1—n)4+n =1 (mod 8), in other
words, if k is even.

4.6.5 Moreover, the cases 7 =0 (mod 8) aswellas =1 (mod 8) (and 4k +1=n)
are trivial, because in these cases we have seen that the characteristic class x already
pulls back from Q" BO to Q"(U/O): it is expressed in terms of Stiefel-Whitney
classes in the first case, and in terms of the dimension of the bundle in the second case.
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4.6.6 We use the proof Lemma 4.11 to deal with the remaining cases. This proof
shows that it suffices to treat the case B4 +1=7 = §4k+1-7 and to show that the
pullback class ( f4K+1=")*x vanishes for arbitrary f: S**7+1  Q*(U/0) (and
therefore extends over the disc D*k+2—n ).

4.6.7 Observe that, by Equation (8), the cohomology class x is obtained as pull
back of %C4k+1—n or %(Zk —(n—=1)/2)! ehg_n—1)) from U or BU, respectively
(depending on the parity of n). However, on all spheres the Chern character is integral,
ie for an arbitrary map f: Sk — BU, f*che H*(S*;7).

4.6.8 If n =7 (mod 8) and k odd (and 4k > n) then 4k 4+ 1 —n > 4. This implies
%(21{ —(n—1)/2)! € Z. So the cohomology class %(2]{ —(n—=1)/2)!chyk—n-1)]
pulls back to 0 in H* (S4k_(”_1); Q/7Z) for an arbitrary map S4k—n—1) _, By by
by 4.6.7. As observed in 4.6.4, n =7 (mod 8) and k even is covered by Lemma 4.11.
4.6.9 For n =6 (mod 8) and an arbitrary map f: S**—"+! - U by Lemma A.6
and Theorem B.4

P (3esksron) = 57 F* (39cutsron) = 57 (F75 (2%~ ) tehygen).
Here, X: H4k—n(§4k—ny 5 pp4k—n+1(g4k—n+1y is the suspension isomorphism and
F: S*%" QU = BUXZ
is the adjoint of f: RS4k—" = §4k—n+1 7 Again, if 4k —n >4 then (2k —n/2)! €
27. and therefore by 4.6.7 F*(%(2k —n/2)!lehyyg_(n—1)) = 0. However, if 4k —n =2

then, since n = 6 (mod 8) k is even and therefore (4k +1—n)+n =1 (mod 8),
such that this case is covered by Lemma 4.11.

4.6.10 If n=2,3,4,5 (mod 8), then x = 0, which trivially extends. This concludes
the proof of Lemma 4.12. O

Appendix A Transgression

A.1 Transgression in cohomology

A.1.1 In this section, we want to recall the general definition of transgression and
its basic properties. Special cases are “suspension” or “looping”. All of this is well
known, and included here for the convenience of the reader.

A.1.2 The situation is the following: let f: £ — B be a map, and b € B a point.
Write F := f~!(b). Let i: Fp — E be the inclusion. Let H* be any (generalized)
cohomology theory. In the following, the loop spaces 2B are defined with respect to
the basepoint b. Suspensions are reduced suspensions.
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A.1.3 The adjoint of the identity map Q2B — QB gives a canonical map ¥ QB — B.
This induces H*(B) - H*(XQB).

Definition A.1 We define the loop map

Q: H*(B) - H* ' (QB).
as the composition of H*(B) — H*(XQB) with the suspension isomorphism
H*(ZQB) — H*Y(QB).
By construction and functoriality of the suspension isomorphism, the loop map is
functorial, too.

A.1.4 Giventhe map f: E — B, consider the cofibration sequence £ — Zf — Cf,
where Z f is the mapping cylinder and C f* the mapping cone. The inclusion B — Z f
is a homotopy equivalence. The long exact sequence in cohomology of this cofibration
gives
H¥(B)
I
- — H¥Cf) - HYZf) — HNE) — -
In particular, H*(C f) maps surjectively onto ker(f*) C H¥(B).
A.1.5 Consider now QC /. Since the composition F S E i) B is the constant map
to b, we can define a canonical map

I: F—-QCf, x> cy,

where ¢y is the loop in Cf with ¢x(0) =b € B, ¢x(t) = (x,t) € Ex(0,1) C Cf,
and ¢ (1) is the cone point in Cf".

Mapping B to the second cone point gives the second map ; in the cofibration sequence
B — Cf->XE. From this we conclude that the kernel of HX(Cf) — H k(B) equals
im(j*). The composition F — QCf — QX E can be factored as F5>E — QX E,
where the second map is the adjoint of the identity map X F — X E.

A.1.6 We now recall the definition of transgression.

Definition A.2 We define the transgression
T: H*(B) D ker(f*) > H* ' (F)/im(i*)

as the composition

ker(f*) = HX(Cf)/im(j*) > HE=1(QC )/ im((2))*) — HE'(F)/ im(*) .
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Note that for the second map we used the factorization which shows that im((£2;)*)
goes into im(i *).
It is clear from the construction that transgression is natural with respect to the map

f+ E — B, ie given a diagram

E/LE
oo
B/LB

we have an equality of the form 7/ oh* = H*o T.

Definition A.3 The elements of ker( f*) C H*(B) are called transgressive. These
are the classes whose transgression is defined.

A.1.7 Next we relate transgression to the loop map and to suspension.

Lemma A.4 The transgression in the fibration QB — PB — B, where PB is the
(contractible) space of paths ending at b coincides with the loop map.

Proof Carry out the construction. If f: PB — B is the start point projection, use
the homotopy equivalence C f — B which maps (p,s) € PBx (0,1) C Cf to p(s)
(recall that s = 1 corresponds to the cone point). O

Lemma A.5 The transgression of B < CB — X B is the suspension isomorphism
¥: H*+1(2B) — H*(B).

Proof Carry out the construction. Use the “folding” homotopy equivalence C f — ¥ B
(where f: CB — X B is the projection). The composition of ¥ B — Cf with this
homotopy equivalence is the identity map. Starting with H*(X B), we have to pull
back with this map and then use the suspension isomorphism (by naturality of the
latter). O

Al18 Let f: XX — Y be a map with adjoint F: X — QY. Then we have a
commutative diagram of fibrations:

X — CX — XX

I b

QY —— PY —— Y
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Lemma A.6 Then foreacha € H*(Y),
) F*(Qa)=Xf"a.

Proof This follows from naturality of transgression and the fact that both 2 and ¥
are transgression homomorphisms by Lemma A.4 and Lemma A.5. O

A.1.9 In the construction of the transgression, we consider in particular the following
commutative diagram of maps:

F— g L, 3
fo ] |
(10) F CE cf
o] |
F CF SF

. . . f . .
By naturality, the transgression homomorphism in £ — B is determined by the
transgression in CF — X F (this is of course, what we used in the construction), since
H*(Cf) — H*(B) surjects onto the transgressive classes.

A.1.10 We now prove the following lemma.

Lemma A.7 Let ®: H* — h™ be a natural transformation between generalized coho-
mology theories. Transgression commutes with this natural transformation.

Proof Let f: E — B be a continuous map. First observe that by naturality ® maps
ker(H*(f)) to ker(h*(f)) and im(H*(i)) to im(h*(i)), so that the assertion makes
sense.

The construction of the transgression homomorphism only uses maps induced from
continuous maps between topological spaces (and their inverses) and the suspension
isomorphism. By definition, a natural transformation between cohomology theories is
compatible with such homomorphisms, and therefore also with transgression. O

ALll Let FS E L B be a sequence of maps as above. This gives rise to the
transgression homomorphism 7': H*(B) D ker( f*) — H*~1(F)/im(i*).

Applying the loop space functor we also get the sequence of maps

j Q
or % or ¥ aB.
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with associated transgression homomorphism

Tq: H*(Q2B) Dker(Qf*) — H* 1 (QF)/im((Qi)*) .

Proposition A.8 If x € H"(B) is transgressive, then

QT (x) = To(Qx) € H"2(QF)/ im((2)*).

Proof We obtain the following commutative diagram

j YQ
soF =2 sor =Y saB

(11) lpF l |7s

f

F — E —/— B
where the vertical maps are adjoints of the identity maps 2- — Q-. Since we work
with the reduced suspension, the inclusion XQF — Y QF is the fiber of ¥Qf. By
naturality of the transgression, py(7Tx) = Txq(ppx) for each transgressive class
x € H*(B). The suspension isomorphism maps by definition p7%(7'x) to Q(7x) and
ppX to Qx. By Lemma A.7 transgression commutes with the suspension isomorphism
(indeed the suspension isomorphism can be interpreted as a natural transformation
between cohomology theories). Therefore we have Q(7Tx) = Tq(R2x). O

A.2 Transgression and products

A.2.1 Let A: B— B X B be the diagonal map. We still consider the map f: E — B.

Definition A.9 (1) A class x € H*(B) is called a nontrivial product, if x = A*y
for some y € H*(B x B) such that (idg x {b})*y = 0= ({b} xidp)*y.

(2) We say that the first factor of a nontrivial product x is transgressive, if x = A*y
for an y such that (f xidg)*y =0 € H*(E x B), similarly we define that the
second factor is transgressive.

A.2.2 Note that if one of the factors of a product is transgressive, then so is the product.

Proposition A.10 The transgression of a nontrivial product with at least one transgres-
sive factor is zero.
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Proof This follows from naturality of the transgression. Consider the diagram

F—— E —— B

lid l(idExf)oA lA

F —— ExB —— BXxB

Let us assume that x is transgressive in the first factor. By 7; we denote the trans-
gressions associated to the corresponding rows. Then we have T1(x) = T3(y) =
T3((idp x {b})*y) =0, since (idp x {b})*y = 0. |

A.2.3 Let us consider the following example. Define N := T2\ (D?)°, ie N is the
two torus with an open disc removed. Let f: N — T2 be the map which collapses the
boundary of N to one point. On the one hand, the fundamental class [72] € H*(T?, Z)
is transgressive. On the other hand, [T'?] is a nontrivial product of 1—dimensional
cohomology classes, and none of the factors is transgressive.

Collapsing the complement of an open disc in 72 to a point gives a degree 1 map
g: T? - S2.If we write SZ = XS, we then get a diagram:

sl — > cs!=p? — - 35l =982

I I

f

Sl —— N —_— T2

Here, g*[S?] =[T?], where [S?] € H?(S?,Z) is the fundamental class. By naturality,
T(T?) =T(S?*)=[S'1e H'(S',Z) is the fundamental class of S!, in particular
nonzero.

This shows that at least one of the factors in Proposition A.10 has to be transgressive
for the assertion to hold.

A.3 Transgression in ordinary cohomology and the relation with the
Bockstein

A.3.1 We now want to describe how one can construct the transgression in ordinary
singular cohomology with coefficients on the level of chains. Let f: E — B be
a map with fiber i : F < E over b € B. Let R be an abelian group. Assume
that x € HX(B, R) is transgressive, ie we have f*x = 0. We choose a cocycle
ceCk(B,R) representing x. Then the cocycle f*c is a boundary, ie there exists
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a chain ¢y € CK—1(E, R) with dcy = f*c. The restriction of ¢o to F is closed,
since di*co =i*dcy = i* p*c. It follows that i *c¢o represents a cohomology class
[i*col € H*=1(F, R). The cocycle cq is well defined only up to closed cocycles in E .
It follows that the class [cq] is well defined only up to the image of i*. Hence we get a
well-defined class T'(x) € HK~1(F)/im(i*).

Proposition A.11 We have T (x) =T(x).

Proof The recipe described in the proposition defines a transformation T which is
again natural with respect to the map f: E — B. As explained in the A.1.9 it must
coincide with the transgression 7 if it does so in the special case of the cofibration
B — CB — X B. Butin this case the above description produces exactly the suspension
isomorphism which is by definition the transgression map 7 . O

A3.2 If f: E — B is a map of smooth manifolds and R = R, then we could replace
the singular cochains by differential forms and construct T on the level of forms. Again
we get T=T.

A.3.3 For a cohomology class x € H*(X,Z) let x@ € H*(X, Q) denote the image
of x under the canonical coefficient homomorphism Z — Q. Let n € N and S be the
Bockstein transformation associated to the sequence

02572 —>7/nZ—0.

A.34 Let x € H*(X,Z) be such that nx is transgressive. Note that then ¢@ is
transgressive, too. Since nf*x = 0 by the Bockstein exact sequence there exist
ue H*=Y(E,Z/nZ) with B(u) = f*x. Recall that T'(nx) is an equivalence class
of cohomology classes.

Proposition A.12 We have

(12) T(nx)>i*u,

(13) nT(xQ) 2 i*u®@.

Proof We use the description of the transgression on the singular cochain level given

in Proposition A.11. Let ¢ be an integral cocycle representing x. Let co be an integral
cochain of E with dco = nf*c. Then i*cq represents T'(nx).

The reduction of ¢y modulo nZ becomes closed and therefore represents a coho-
mology class u € H k=1(E,z /nZ). By the explicit construction of the Bockstein
homomorphism, B(u) = f*x. Equation (12) follows.

Since transgression commutes with the passage to rational coefficients by Lemma A.7,
Equation (13) follows from Equation (12). O
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Appendix B Cohomology of BO, BU and their loop spaces

B.1 The cohomology

B.1.1 In this appendix, we summarize the main results about the cohomology of BO,
BU and their loop spaces, and the relations between them, including the determination
of the transgression homomorphisms. These results are all classical, and almost all of
them can be found in Cartan’s papers [8], where these calculations were essential in his
cohomological proof of Bott periodicity. Since they are scattered over these papers, we
collect them here in more convenient form. All results without a proof or a different
reference can be found in [8].

B.1.2 Bott periodicity gives canonical (up to homotopy) homotopy equivalences
between 2" BO and other classical spaces summarized in the following list.

Theorem B.1

n—1 [ -1 0 1 2 3 4 5 6 1
Q"U/0)|U/O BOXZ O o/U U/Sp BSpxZ Sp Sp/U U/O
or SOxZ/2 SOJUXZ/2

This extends 8 —periodically.

In the following, we will frequently identify the (cohomology of) different loop spaces
of spaces in this table using the corresponding homotopy equivalence without further
mentioning it. Note that we have done so already throughout the body of the paper.

B.1.3 Inthe following, L(x;,, X;,,...) denotes a polynomial algebra in the generators
x;, where by convention x; has (cohomological) degree i, and E(y;,, yi,....) denotes
an exterior algebra, with similar degree conventions for the generators.

B.1.4 In the following list, we describe the cohomology of the connected component
of the base point in QK BO. Note that we “rename” some of the usual characteristic
classes like the Pontryagin classes: p4 is a cohomology class in H* etc.
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Theorem B.2

k Q¥BO H*(QKB0y,Z)  H*(Q*B0O,.Z2/2Z) H*(Q*BO,. Z[1))
0 BO L(ps,ps,...)»d2-Tors L(wi,wy,...) L(ps, pg,...)

1 0 * L(dl,d3,...) E(U3,U7,...)

2 O/U L(Mz,u6,...)

3 U/Sp E(ay,as,...)

4 BSpxZ L(ys, yg,...)

5 Sp E(y3.y7,...)

6 Sp/U L(uy,ug,...)* E(cy,cq,...) L(cy,cq,...)

6 Sp/U L[62,64,...]

Zi+j=2k (=Dicajca;
7 U/O E(ag41) ®2-Tors E(wy,wy,...) E(ay,as,...)
We add the following detailed explanations, using the description of the loop spaces as
in Theorem B.1.
(1) (a) H*(BO;Z) contains a subalgebra isomorphic to the quotient by its torsion.
(b) This is a polynomial algebra L(py4, ps,...).
(c) The torsion is annihilated by 2, it is the image of Bockstein.
(d) Reduction mod 2 maps paj to (wax)?.
(e) The classes wyky; € H?*k+1(B0O,7/2Z) have unique lifts to
H**1(BO, Z) which we also denote by w1 .
(f) The same is true for every class in degree k for k not divisible by 4, since
in these degrees H*(BO, 7)) is annihilated by 2.

(2) Most complicated is the cohomology of SO with Z —coefficients, for reasons of
space simply denoted * in the list (case k = 1). We can say the following:
(a) The torsion in H*(SO, Z) is annihilated by 2, it is the image of Bockstein.
(b) The quotient of H*(S O, Z) by its torsion is an exterior algebra E (v3,v7, .. .).
It does not split back to H* (SO, Z) because of the product structure (com-
pare with H*(SO,7/27)).
(c) But of course, each monomial v;, ...v;, has an inverse image vj, ...vj, €

H*(S0, Z) (only additive! no multiplicative structure) which is well defined
up to torsion, and the products are correct up to torsion.

(3) The integral cohomology of Sp/U (case k = 6) is the dual of L(u,, ug,...).
This shows in particular, that it is torsion-free. As a ring, it is the quotient of
L(cy,cq,...) by the ideal generated by the elements Zi—l—j:zk (—1)i62iC2j .

4) (a) H*(U/O,Z) contains a subalgebra isomorphic to the quotient by its torsion,
this is an exterior algebra E(ay,as,...).
(b) The torsion is annihilated by 2, it is the image of Bockstein.
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(c) Reduction mod 2 maps agj+1 to WogWok+41 + B(Wag +wWowgg—2 + -+
Wak—2Wok+2)-

B.1.S We also need the complex case, ie BU (and will later relate BO to BU).
The case of BU is of course much easier because of 2—periodicity, and since the
cohomology does not contain torsion.

Theorem B.3
k natural homotopy equivalence of QX BU to H*(QKBU,, 7).
0 BU L(C’2,6’4,...)
1 U E(C1,63,...)
2 BU x Z.

B.1.6 We now describe the effect of the loop map Q: H*(X) — H* 1(QX) for
integral cohomology and some of the spaces in Theorem B.1.

For the following table, recall that the universal Chern character is a certain rational
polynomial in the universal Chern classes, and we have a unique integral lift k! ch,j €
H?*(BU x7:7).

Theorem B.4
Space X QX xeH*(X,Z) Qx)e H* 1 (QX,Z)
BU U C2k C2k—1
U BU xZ Cok—1 (k — 1)' chyp >
BSp Sp Vak Vak-1
BO 0] Dak 2v4p—1 + Tors

Proof We only have to prove that Q(cpr_1) = (kK — 1)! chy_, . For this, observe that
Cak—1 = 2(cop) = Q((k — D! ehyy) = (k —1)!1Q(chyy),

since the other summands in ch,; are decomposable and because the loop map applied
to a decomposable class is zero by Proposition A.10. Now the Chern character is
compatible with Bott periodicity, and therefore ©22(ch,y) = chyx_,. Consequently

Qeap—y = (k—1)I1Q3%(chyy) = (k —1)! chyg_s. o
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B.1.7 Now consider the next lemma.

Lemma B.5 The natural map
ly: H*+Y(BO,2/27) — H**'(BO,Q/Z)
of Equation (5) factors through the image of the Bockstein homomorphism
B: H¥**1(BO,7/27) — H**2(BO. 7).

Proof We have the following map of long exact sequences:

2 g0, 7y B HYH1 (B0 7)22) B HY2(BO.Z) >

%X* l x| [
o HY%+1(B0.Q) - H¥%+1(B0.Q/7) 5 HY+2(B0O.7) >

The assertion now follows from the fact that H**1(BO, Q) =0. O

B.2 Maps between loop spaces of BO

B.2.1 There is a large number of canonical maps between the different spaces in
Theorem B.1 and in Theorem B.3 which are important for us and which are described
in the following list:

(1) the inclusion ¢: O — U (given by complexification)

(2) the induced map Bc: BO — BU, which gives rise to Bc xidgz: BO X Z —
BU x Z

(3) the inclusion ¢: U — Sp (given by tensoring with the quaternions)

(4) the induced map Bg: BU — BSp

(5) theinclusion f: U — O (given by forgetting the complex structure)

(6) the induced map Bf: BU — BO

(7) the inclusion j: Sp — U (given by forgetting the quaternionic structure)

(8) the induced map Bj: BSp — BU, which gives rise to Bj xidz: BSp X Z —
BU xZ

(9) the projection p: U - U/O
(10) the projection P: U — U/Sp

(11) the inclusion of the fiber i: U/O — BO obtained by dividing the total space of
the universal principal U —fibration U — EU — BU by O (here we use the
fact that EU /O is a model for BO)
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(12)
(13)

(14)
(15)
(16)

(17)

the fibration BO — BU constructed in (11)

the map QZ Sp/U — U /O obtained by looping this fibration seven times, it is
the fiber of the map U/O — BO obtained by looping the fibration BO — BU
seven times

the (similar) inclusion of the fiber I: Sp/U — BU
the (similar) inclusion of the fiber ¢: O/U — BU

amap a: U/O — U given as composition

~ Q ~
U0 Qsp/u 2L U S U

where the first map is the Bott periodicity homotopy equivalence, and the third is
the usual homotopy equivalence (which is also part of (complex) Bott periodicity)

a similar map B: U/Sp — U, given as composition

~ Q ~
U/sp > o/u 2% opu S U

B.2.2 The following relations hold between these maps. As usual, we will freely
use the Bott periodicity homotopy equivalences of Theorem B.1 and Theorem B.3 to
identify certain loop spaces with other spaces (therefore, strictly speaking, the following
assertions are true up to homotopy).

ey

2

3
“)
&)
(6)

(N

It is a general fact in the theory of classifying spaces that one way to construct
Bc in (2) is the fibration map of (12), which therefore can be identified with
Bc. Reason: the identity map EU — EU, where the domain is considered
as contractible O—principle bundle and the target as contractible U —principle
bundle intertwines, using the inclusion c¢: O — U the structures as principle
bundles. Therefore the induced map on the quotients is the map Bc.

The map (1) is obtained from (2) by applying the loop space transformation (and
using the Bott periodicity identifications of QBO—>0 and QBU—U).

Similarly, (7) is obtained by applying the loop space functor to (8).
By construction, looping (14) gives (16).
By construction, looping (15) gives (17).

Cartan [8] proves that O/U — BU , ie (15) is obtained by applying the loop
space functor to the inclusion (1), O — U.

Cartan [8] proves that looping (7) gives (14). This requires to check that his
explicitly given maps Sp/U — BU and O/U — BU are the fiber inclusions
we claim they are.
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(8) Cartan [8] also checks that looping (17) gives (8).

(9) Cartan [8] proves that looping (16) gives (2). Strictly speaking, in this and
the previous case he considers the corresponding maps of universal coverings
SU/Sp — SU which loops to BSp — BU, and SO/SU — SO which loops
to BO — BU. Since we know that U/Sp — U and O/U — O induce
isomorphisms on 5;—level (all isomorphic to Z ), the claim follows.

B.2.3 To conclude, we have shown that in the sequence

Bexid: BOXZ — BU xZ
c: 0 ->U
¢: O/U — BU
B:U/Sp—->U

Bj xid: BSpxZ — BU xZ
j:Sp—>U
I: Sp/U — BU
a:U/O—>U

Bcexid: BOXZ — BU x Z

each map is obtained by looping the previous one (and applying Bott periodicity to
identify the loop spaces with the next spaces in the list).

B.2.4 In Table 1, we list the effect of the maps in cohomology. Again, this is due to
Cartan [8], with a few exceptions easily obtained from his work. In these cases, the
reason is indicated in the last column of Table 1. Recall that we always only consider
the cohomology of the connected component of the base point. “By looping” means
that we know that certain maps are obtained from each other by applying the loop space
functor (and some canonical homotopy equivalences), and that we know the effect of
the natural loop map functor Q: H*(X) — H*~1(QX) by Theorem B .4.

B.2.5 In two cases, we have to take the different components into account: note
that chg € H°(BU x Z;7) has the value d (times the canonical generator) on the
component of BU x Z labeled by d € Z. Correspondingly, we have a real version
ch](l)R € H°(BO x Z;7) and a quaternionic version ch]gI € HY(Bsp xZ;7), describing
the dimension of the virtual universal real or quaternionic bundle, respectively. For
these classes we get the (obvious) following relations under the maps induced by
“complexification” or “forgetting the quaternionic structure”, respectively. See Table 2
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fX—->Y xe H*(Y,Z) f*(xo) € H*(Xo,Z) reason

BSp — BU ¢y Vak
Cak+2 0
O/U — BU  c¢4f+2 2Ugft2 .
Ca 2 Y gtk (D (2)/2 f* (Cak—2i) /2
Sp/U — BU ¢y Cok
¢y mod 2 Cok
Sp—->U Cak+1 0 by looping
Cak+3 Vak+3 by looping
U/Sp—-U Cak+1 2a4k+1 true dually in homology
Cak+3 0 true dually in homology
U—Sp Vak—1 2C4k—1 by looping (since prod-
ucts suspend to zero)
BU — BSp  yak Yivj=2k(=Dc2icr;
SO —-U Cak+3 24 +3 + 2-Tor
Cak+1 2-Tor
U—-U/O A4k+1 2¢4k41
Uu/o—-U Cak+1 A4k +1 + Tors
Cak+3 Tors
U—0 Vak+3 Cak+3
BO — BU Cak Pak
Cak+2 w§k+1
C4) mod 2 w%k
BU — BO  pux Yivj=k(—D'caicaj
Wak+1 0
Wojk ¢k mod 2
U/O— BO  w; mod?2 wy mod 2
Pak 0 mod 2 it maps to 0, and
pulled back further to
U it is also 0, ie no 2—
torsion and no free part
Table 1
[ XY xe H(Y,Q) f*(x)e H'(X,Q)
BSpxZ — BU XZ ch zch][fg]
BOXZ — BUXZ chy ch][%]
Table 2

Algebraic €& Geometric Topology, Volume 8 (2008)



1138 Ulrich Bunke and Thomas Schick

B.2.6 We conclude with two lemmas.

Lemma B.6 In the fibration
i B
U/OS BO =5 BU,

the classes c%{ o €H 4k+2(BU: Q) are transgressive.
Proof The pull back of c4%4, to BO is 2—torsion in integral cohomology, therefore
vanishes in rational cohomology. O

Lemma B.7 In the fibration Sp/U Q—7l> U/o Ny , the Leray—Serre spectral se-
quence for H* (-, 7Z./27) collapses at the E,—term. In particular, the edge homomor-
phism

Q7H*: H*(U/0:;2/22) — H*(Sp/U;Z/217)

is surjective, whereas the edge homomorphism
a*: H*(U;Z/27) <~ H*(U/O0;7Z/27)
is injective.

Proof E, = H*(U/O;7Z/27) ® H*(Sp/U;7Z/27Z) is the tensor product of an
exterior algebra over Z /27 with exactly one generator in each positive even degree
with an exterior algebra over Z /2 with one generator in each positive odd degree, ie an
exterior algebra over 7 /27 with one generator in each positive degree. It converges to
an exterior algebra over Z /27 with one generator in each positive degree. Any nonzero
differential would result in an Fo,—term which is too low dimensional, therefore the
spectral sequence necessarily collapses. The statement about the edge homomorphisms
is an immediate consequence. O
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