Computing knot Floer homology in cyclic branched covers

ADAM SIMON LEVINE

We use grid diagrams to give a combinatorial algorithm for computing the knot Floer homology of the pullback of a knot $K \subset S^3$ in its *m*-fold cyclic branched cover $\Sigma_m(K)$, and we give computations when m = 2 for over fifty three-bridge knots with up to eleven crossings.

57R58; 57M12, 57M27

1 Introduction

Heegaard Floer knot homology, developed by Ozsváth and Szabó [15] and independently by Rasmussen [18], associates to a nulhomologous knot K in a three-manifold Y a group $\widehat{HFK}(Y, K)$ that is an invariant of the knot type of K. If K is a knot in S^3 , then the inverse image of K in $\Sigma_m(K)$, the m-fold cyclic branched cover of S^3 branched along K, is a nulhomologous knot \widetilde{K} whose knot type depends only on the knot type of K, so the group $\widehat{HFK}(\Sigma_m(K), \widetilde{K})$ is a knot invariant of K. In this paper, we describe an algorithm that can compute $\widehat{HFK}(\Sigma_m(K), \widetilde{K})$ (with coefficients in $\mathbb{Z}/2$) for any knot $K \subset S^3$, and we give computations for a large collection of knots with up to eleven crossings.

Any knot $K \subset S^3$ can be represented by means of a *grid diagram*, consisting of an $n \times n$ grid in which the centers of certain squares are marked X or O, such that each row and each column contains exactly one X and one O. To recover a knot projection, draw an arc from the X to the O in each column and from the O to the X in each row, making the vertical strand pass over the horizontal strand at each crossing. We may view the diagram as lying on a standardly embedded torus $T^2 \subset S^3$ by making the standard edge identifications; the horizontal grid lines become α circles and the vertical ones β circles. Manolescu, Ozsváth, and Sarkar [12] showed that such diagrams can be used to compute $\widehat{HFK}(S^3, K)$ combinatorially; we shall use them to give a combinatorial description of the chain complex for $\widehat{HFK}(\Sigma_m(K), \widetilde{K})$ for any knot $K \subset S^3$.

Let $m \ge 2$ and let \tilde{T} be the surface obtained by gluing together *m* copies of *T* (denoted T_0, \ldots, T_{m-1}) along branch cuts connecting the *X* and the *O* in each

Published: 25 July 2008

Figure 1: Heegaard diagram $\tilde{D} = (\tilde{T}, \tilde{\alpha}, \tilde{\beta}, \tilde{w}, \tilde{z})$ for $(\Sigma_2(K), \tilde{K})$, where K is the right-handed trefoil. The solid and dashed lines represent different lifts of the α (horizontal/red) and β (vertical/blue) circles. The black squares and crosses represent two generators of $\tilde{C} = C\widehat{F}K(\tilde{D})$, and the shaded region is a disk that contributes to the differential.

column. Specifically, in each column, if the X is above the O, then glue the left side of the branch cut in T_k to the right side of the same cut in T_{k+1} (indices modulo m); if the O is above the X, then glue the left side of the branch cut in T_k to the right side of the same cut in T_{k-1} . The obvious projection $\pi: \tilde{T} \to T$ is an m-fold cyclic branched cover, branched around the marked points. Each α and β circle in T intersects the branch cuts a total of zero times algebraically and therefore has m distinct lifts to T, and each lift of each α circle intersects exactly one lift of each β circle. (We will describe these intersections more explicitly in Section 4.)

Denote by \mathcal{R} the set of embedded rectangles in T whose lower and upper edges are arcs of α circles, whose left and right edges are arcs of β circles, and which do not contain any marked points in their interior. Each rectangle in \mathcal{R} has m distinct lifts to \tilde{T} (possibly passing through the branch cuts as in Figure 1); denote the set of such lifts by $\tilde{\mathcal{R}}$.

Let S be the set of unordered mn-tuples \mathbf{x} of intersection points between the lifts of α and β circles such that each such lift contains exactly one point of \mathbf{x} . (We will give a more explicit characterization of the elements of S later.) Let C be the $\mathbb{Z}/2$ -vector space generated by S. Define a differential ∂ on C by making the coefficient of \mathbf{y} in $\partial \mathbf{x}$ nonzero if and only if the following conditions hold.

• All but two of the points in **x** are also in **y**.

There is a rectangle R∈ R whose lower-left and upper-right corners are in x, whose upper-left and lower-right corners are in y, and which does not contain any X, O, or point of x in its interior.

In Section 4, we shall define two gradings (Alexander and Maslov) on C, as well as a decomposition of C as a direct sum of complexes corresponding to spin^c structures on $\Sigma_m(K)$. We shall prove the following theorem.

Theorem 1.1 The homology of the complex (C, ∂) is isomorphic as a bigraded group to $\widehat{HFK}(\Sigma_m(K), \widetilde{K}; \mathbb{Z}/2) \otimes V^{\otimes n-1}$, where $V \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$ with generators in bigradings (0, 0) and (-1, -1).

In Section 2, we review the construction of knot Floer homology using multi-pointed Heegaard diagrams. In Section 3, we show how to obtain a Heegaard diagram for $(\Sigma_m(K), \tilde{K})$ given one for (S^3, K) , and we apply that discussion to grid diagrams in Section 4, proving Theorem 1.1. In Section 5, we give the values of $\widehat{HFK}(\Sigma_m(K), \tilde{K})$ for over fifty knots with up to eleven crossings. (Grigsby [6] has shown how to compute these groups for two-bridge knots, so our tables only include knots that are not two-bridge.) Finally, we make some observations and conjectures about these results in Section 6.

Acknowledgments I am grateful to Peter Ozsváth for suggesting this problem, providing lots of guidance, and reading a draft of this paper, and to John Baldwin, Josh Greene, Matthew Hedden, Robert Lipshitz, Tom Peters, and especially Eli Grigsby for many extremely helpful conversations. I would also like to thank the referees for their suggestions.

2 Review of knot Floer homology

Let us briefly recall the basic construction of knot Floer homology using multiple basepoints (Ozsváth–Szabó [15], Manolescu–Ozsváth–Sarkar [12] and Sarkar–Wang [20]). For simplicity, we work with coefficients modulo 2. A *multi-pointed Heegaard diagram* $\mathcal{D} = (\Sigma, \alpha, \beta, \mathbf{w}, \mathbf{z})$ consists of an oriented surface Σ ; two sets of closed, embedded, piecewise disjoint curves $\alpha = \{\alpha_1, \dots, \alpha_{g+n-1}\}$ and $\beta = \{\beta_1, \dots, \beta_{g+n-1}\}$ (where $g = g(\Sigma)$ and $n \ge 1$), each of which spans a g-dimensional subspace of $H_1(\Sigma; \mathbb{Z})$; and two sets of basepoints, $\mathbf{w} = \{w_1, \dots, w_n\}$ and $\mathbf{z} = \{z_1, \dots, z_n\}$, such that each component of $\Sigma - \bigcup \alpha_i$ and each component of $\Sigma - \bigcup \beta_i$ contains exactly one point of \mathbf{w} and one point of \mathbf{z} . We call the components of $\Sigma - \bigcup \alpha_i - \bigcup \beta_i$ regions and denote them R_1, \dots, R_N . The α and β curves specify a Heegaard decomposition

 $H_{\alpha} \cup_{\Sigma} H_{\beta}$ for a 3-manifold Y, oriented so that Σ acquires its orientation as ∂H_{α} . We obtain a knot or link K by connecting the w (resp. z) basepoints to the z (resp. w) basepoints with arcs in the complement of the α (resp. β) curves and push those arcs into H_{α} (resp. H_{β}). The orientations are such that K intersects Σ positively at the z basepoints and negatively at the w basepoints. In terms of Morse theory, the Heegaard diagram corresponds to a self-indexing Morse function f on Y with n critical points of index 0, g + n - 1 of index 1, g + n - 1 of index 2, and n of index 3. Given a Riemannian metric g, the knot K is given as a union of gradient flowlines connecting the index 0 and 3 critical points through the w and z basepoints. We shall always assume that the knot K is nulhomologous.

Let $CFK(\mathcal{D})$ be the $\mathbb{Z}/2$ -vector space generated by the intersection points between the (g+n-1)-dimensional tori $\mathbb{T}_{\alpha} = \alpha_1 \times \cdots \times \alpha_{g+n-1}$ and $\mathbb{T}_{\beta} = \beta_1 \times \cdots \times \beta_{g+n-1}$ in the symmetric product $Sym^{g+n-1}(\Sigma)$. The differential ∂ is defined by taking counts of holomorphic disks connecting intersection points:

$$\partial \mathbf{x} = \sum_{\mathbf{y} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}} \sum_{\substack{\phi \in \pi_{2}(\mathbf{x}, \mathbf{y}) | \\ \mu(\phi) = 1 \\ n_{\mathbf{w}}(\phi) = n_{\mathbf{z}}(\phi) = 0}} \#(\widehat{\mathcal{M}}(\phi))\mathbf{y}.$$

Each homotopy class of Whitney disks $\phi \in \pi_2(\mathbf{x}, \mathbf{y})$ has an associated *domain* in Σ : a 2-chain $D(\phi) = \sum a_i R_i$, such that ∂D is made of arcs of α curves that connect each point of \mathbf{x} to a point of \mathbf{y} and arcs of β curves that connect each point of \mathbf{y} to a point of \mathbf{x} . Then $n_{\mathbf{w}}(\phi)$ (resp. $n_{\mathbf{z}}(\phi)$) is the sum of the multiplicities of the regions containing points of \mathbf{w} (resp. \mathbf{z}). The *Maslov index* $\mu(\phi)$ can be given by formula due to Lipshitz [10]:

$$\mu(\phi) = e(D) + p_{\mathbf{x}}(\mathcal{D}) + p_{\mathbf{y}}(\mathcal{D}),$$

where e(D) is the Euler measure of D and $p_x(D)$ (resp. $p_y(D)$) is the sum, taken over all points $x \in \mathbf{x}$ (resp. $y \in Y$), of the average of the multiplicities of the four domains that come together at x (resp. y). The coefficient of \mathbf{y} represents the number of holomorphic representatives of ϕ and generally depends on the choice of almost complex structure on Σ .

Each generator **x** has an associated spin^{*c*} structure $\mathfrak{s}_{\mathbf{w}}(\mathbf{x}) \in \operatorname{Spin}^{c}(Y)$, obtained by considering the gradient of a compatible Morse function outside of regular neighborhoods of flowlines through the points of **x** and **w**. Given two generators **x** and **y**, let $\gamma_{\mathbf{x},\mathbf{y}}$ be any 1–cycle obtained by connecting **x** to **y** along the α circles and **y** to **x** along the β circles, and let $\epsilon(\mathbf{x}, \mathbf{y})$ be its image in

$$H_1(Y) \cong H_1(\Sigma) / \text{Span}([\alpha_i], [\beta_i] | i = 1, ..., g + n - 1).$$

Then $\mathfrak{s}_w(\mathbf{x}) = \mathfrak{s}_w(\mathbf{y})$ if and only if $\epsilon(\mathbf{x}, \mathbf{y}) = 0$. The complex $\widehat{CFK}(\mathcal{D})$ splits as a direct sum over $\mathfrak{s} \in \operatorname{Spin}^c(Y)$ of subcomplexes $\widehat{CFK}(\mathcal{D}, \mathfrak{s})$, each generated by those $\mathbf{x} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$ with $\mathfrak{s}_w(\mathbf{x}) = \mathfrak{s}$.

The restriction of $\mathfrak{s}_{\mathbf{w}}(\mathbf{x})$ to Y - K extends uniquely to a spin^c structure $\mathfrak{s}_{\mathbf{w},\mathbf{z}}(\mathbf{x})$ on the zero-surgery $Y_0(K)$. Given a Seifert surface F for K, we define the Alexander grading of \mathbf{x} (relative to F) as $A(\mathbf{x}) = \frac{1}{2} \langle c_1(\mathfrak{s}_{\mathbf{w},\mathbf{z}}(\mathbf{x})), [\widehat{F}] \rangle$, where \widehat{F} is an extension of F to $Y_0(K)$. This quantity is in independent of the choice of F up to an additive constant, and it is completely well-defined if Y is a rational homology sphere. The relative Alexander grading between two generators \mathbf{x} and \mathbf{y} , $A(\mathbf{x}, \mathbf{y}) = A(\mathbf{x}) - A(\mathbf{y})$, can also be given as the linking number of $\gamma_{\mathbf{x},\mathbf{y}}$ and K (ie the intersection number of $\gamma_{\mathbf{x},\mathbf{y}}$ with F), or by the formula $A(\mathbf{x}, \mathbf{y}) = n_{\mathbf{z}}(D) - n_{\mathbf{w}}(D)$ when \mathbf{x} and \mathbf{y} are in the same spin^c structure and \mathcal{D} is any domain connecting \mathbf{x} to \mathbf{y} . The latter formula shows that the complex $\widehat{CFK}(\mathcal{D})$ splits according to Alexander gradings.

When Y is a rational homology sphere, the complex $\widehat{CFK}(\mathcal{D})$ admits an absolute \mathbb{Q} -grading, the *Maslov grading*, which restricts to a relative \mathbb{Z} -grading on each $\widehat{CFK}(\mathcal{D}, \mathfrak{s})$.¹ The relative Maslov grading between two generators **x** and **y** with $\mathfrak{s}_{\mathbf{w}}(\mathbf{x}) = \mathfrak{s}_{\mathbf{w}}(\mathbf{y})$ is given by the integer $M(\mathbf{x}, \mathbf{y}) = \mu(D) - 2n_{\mathbf{w}}(D)$, where D is any domain connecting **x** to **y**. The differential lowers this grading by 1, so the grading descends to $\widehat{HFK}(Y, K)$. The relative \mathbb{Q} -grading between generators in different spin^c structures can be computed using a formula of Lipshitz and Lee [9].

Theorem 2.1 ([15; 12; 20]) For a suitable choice of complex structure, the homology of the complex ($\widehat{CFK}(\mathcal{D}), \partial$) is isomorphic to $\widehat{HFK}(Y, K) \otimes V^{\otimes n-1}$, where $V \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$ with generators in bigradings (-1, -1) and (0, 0), and $\widehat{HFK}(Y, K)$ is an invariant of the knot type of $K \subset Y$.

Call a diagram \mathcal{D} nice if every elementary domain that does not contain a basepoint is either a bigon or a square. According to results of Manolescu–Ozsváth–Sarkar [12] and Sarkar–Wang [20], the holomorphic disks are easy to describe when \mathcal{D} is nice.

Theorem 2.2 Let \mathcal{D} be a nice diagram, and let $\phi \in \pi_2(\mathbf{x}, \mathbf{y})$ be a Whitney disk in \mathcal{D} with $\mu(\phi) = 1$. Then ϕ admits a holomorphic representative if and only if $D(\phi)$ is either a bigon or a rectangle without any basepoint or point of \mathbf{x} in its interior.

It follows that when \mathcal{D} is nice, the coefficients $\#\widehat{\mathcal{M}}(\phi)$ in the boundary map can be determined from the combinatorics of the diagram, without reference to the choice of complex structure on Σ , so $\widehat{\mathrm{HFK}}(Y, K)$ can be computed algorithmically.

¹More generally, such a grading can be defined on $\widehat{CFK}(\mathcal{D},\mathfrak{s})$ whenever $c_1(\mathfrak{s})$ is torsion.

If K is a knot in S^3 , then a grid diagram for K, drawn on a torus as in Section 1, yields a Heegaard diagram $\mathcal{D} = (T^2, \alpha, \beta, \mathbf{w}, \mathbf{z})$ for the pair (S^3, K) , where the α circles are the horizontal lines of the grid, the β circles are the vertical lines, and the w and z basepoints are the points marked O and X, respectively. Every region of this diagram is a rectangle, so $\widehat{HFK}(S^3, K)$ can be computed combinatorially as above. Specifically, the generators correspond to permutations of the set $\{1, \ldots, n\}$, and the Alexander and Maslov gradings of each generator can be given by simple formulae (discussed later). Using this diagram, Baldwin and Gillam [1] have computed $\widehat{HFK}(S^3, K)$ for all knots with up to 12 crossings. Additionally, Manolescu, Ozsváth, Szabó, and Thurston [13] give a self-contained proof that this construction yields a knot invariant. (See also Sarkar and Wang [20], who show how to obtain good diagrams for knots in arbitrary 3-manifolds.)

3 Heegaard diagrams for cyclic branched covers of knots

Given a knot $K \subset S^3$ and an integer $m \ge 2$, the cover of $S^3 - K$ corresponding to the canonical homeomorphism $\pi_1(S^3 - K) \to \mathbb{Z}/m$ extends to an *m*-sheeted branched cover $\pi: \Sigma_m(K) \to S^3$, the *m*-fold cyclic branched cover, whose downstairs branch locus is *K* and whose upstairs branch locus is a knot $\tilde{K} \subset \Sigma_m(K)$. The manifold $\Sigma_m(K)$ can be constructed explicitly from *m* copies of S^3 – int *F*, where *F* is a Seifert surface for *K*, by connecting the negative side of a bicollar of *F* in the *k*th copy to the positive side in the (k + 1)th (indices modulo *m*). The inverse image of *K* in $\Sigma_m(K)$ is a knot \tilde{K} , which is nulhomologous because it bounds a Seifert surface (any of the lifts of the original Seifert surface *F*). This construction does not depend on the choice of Seifert surface. For details, see Rolfsen [19, chapters 6, 10].

The group of covering transformations of $\Sigma_m(K) \to S^3$ is cyclic of order *m*, generated by a map $\tau_m: \Sigma_m(K) \to \Sigma_m(K)$ that takes the *k*th copy of S^3 -int *F* to the (k+1)th (indices modulo *m*). If γ is a 1-cycle in S^3 , then by using transfer homomorphisms, we see that for any lift $\tilde{\gamma}$, the equation

(1)
$$\sum_{k=0}^{m-1} \tau_{m*}^k(\widetilde{\gamma}) = 0$$

holds in $H_1(\Sigma_m(K); \mathbb{Z})$. In particular, when m = 2, we have $\tau_{2*}(\tilde{\gamma}) = -\tilde{\gamma}$.

When *m* is a power of a prime *p*, the group $H_1(\Sigma_m(K); \mathbb{Z})$ is then finite and contains no p^r -torsion for any *r* (Gordon [5, page 16]). The order of $H_1(\Sigma_m(K))$ is equal to $\prod_{j=0}^{m-1} \Delta_K(\omega^j)$, where Δ_K is the Alexander polynomial of *K*, and ω is a primitive *m*th root of unity (Fox [4, page 149]). In particular, note that the action of the deck

transformation group on $H_1(\Sigma_m(K); \mathbb{Z})$ has no nonzero fixed points: if $\tau_{m*}(\alpha) = \alpha$, then

$$0 = \alpha + \tau_{m*}(\alpha) + \dots + \tau_{m*}^{m-1}(\alpha) = m\alpha,$$

by (1), so $\alpha = 0$.

Let $\mathcal{D} = (S, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{w}, \mathbf{z})$ be a multi-pointed Heegaard diagram for $K \subset S^3$ with genus g and n basepoint pairs.² If $f: S^3 \to \mathbb{R}$ is a self-indexing Morse function compatible with \mathcal{D} , then $\tilde{f} = f \circ \pi: \Sigma_m(K) \to \mathbb{R}$ is a self-indexing Morse function for the pair $(\Sigma_m(K), \tilde{K})$ whose critical points are simply the inverse images of the critical points of f. This function induces a Heegaard splitting $\Sigma_m(K) = \tilde{H}_{\alpha} \cup_{\tilde{S}} \tilde{H}_{\beta}$ that projects onto the Heegaard splitting of S^3 . A simple Euler characteristic argument shows that the genus of the new Heegaard surface $\tilde{S} = \pi^{-1}(S)$ is h = mg + (m-1)(n-1). Each α and β circle in S bounds a disk in $S^3 - K$ and hence has m distinct preimages in $\Sigma_m(K)$. Thus, we obtain a Heegaard diagram $\tilde{\mathcal{D}} = (\tilde{S}, \tilde{\alpha}, \tilde{\beta}, \tilde{\mathbf{w}}, \tilde{\mathbf{z}})$, where \tilde{S} is a surface of genus h and $\tilde{\alpha}$, $\tilde{\beta}$, $\tilde{\mathbf{w}}$, and $\tilde{\mathbf{z}}$ are the inverse images of the corresponding objects under the covering map.

The generators of the complex $\widehat{CFK}(\widetilde{D})$ may be described as follows.

Lemma 3.1 Any generator \mathbf{x} of $\widehat{\mathrm{CFK}}(\widetilde{\mathcal{D}})$ can be decomposed (non-uniquely) as $\mathbf{x} = \widetilde{\mathbf{x}}_1 \cup \cdots \cup \widetilde{\mathbf{x}}_m$, where $\mathbf{x}_1, \ldots, \mathbf{x}_m$ are generators of $\widehat{\mathrm{CFK}}(\mathcal{D})$, and $\widetilde{\mathbf{x}}_i$ is a lift of \mathbf{x}_i to $\widetilde{\mathcal{D}}$.

Proof Given a generator \mathbf{x} of $\widehat{CFK}(\widetilde{D})$, let $G_{\mathbf{x}}$ be a graph with vertices denoted $\{a_1, \ldots, a_{g+n-1}, b_1, \ldots, b_{g+n-1}\}$ and edges $\{e_x \mid x \in \mathbf{x}\}$, where e_x connects a_i to b_j if x is an intersection point between lifts of α_i and β_j . This is clearly a bipartite graph in which each vertex has incidence number m. By König's Theorem [3, Proposition 5.3.1], the edges of $G_{\mathbf{x}}$ can be partitioned (non-uniquely) into m perfect pairings, each of which corresponds to a lift of a generator of $\widehat{CFK}(\mathcal{D})$.

Example 3.2 As will be explained in Section 4, the diagram \tilde{D} in Figure 1 is the double branched cover of a grid diagram \mathcal{D} for the right-handed trefoil in S^3 . The generator **x** of $\widehat{CFK}(\tilde{D})$ indicated by the crosses can be decomposed either as lifts of the generators $\mathbf{x}_1 = (20143)$ and $\mathbf{x}_2 = (13240)$ or as lifts of $\mathbf{x}'_1 = (23140)$ and $\mathbf{x}'_2 = (10243)$ (where we identify generators of \mathcal{D} with permutations of $\{0, 1, 2, 3, 4\}$ as described by Manolescu, Ozsváth, and Sarkar [12]). This provides an example of the non-uniqueness of decompositions beyond reordering of the \mathbf{x}_i .

²We denote the Heegaard surface by S rather than Σ to avoid confusion with the notation $\Sigma_m(K)$.

Given a generator \mathbf{x}_0 of $\widehat{\mathrm{CFK}}(\mathcal{D})$, let $L(\mathbf{x}_0)$ denote the generator of $\widehat{\mathrm{CFK}}(\widetilde{\mathcal{D}})$ consisting of all *m* lifts of each point of \mathbf{x}_0 . Using the action of the deck transformation τ_m on \mathcal{D} , we may write $L(\mathbf{x}_0) = \widetilde{\mathbf{x}}_0 \cup \tau_m(\widetilde{\mathbf{x}}_0) \cup \cdots \cup \tau_m^{m-1}(\widetilde{\mathbf{x}}_0)$, where $\widetilde{\mathbf{x}}_0$ is any lift of \mathbf{x}_0 to \widetilde{D} .

Lemma 3.3 All generators of $\widehat{CFK}(\widetilde{D})$ of the form $\mathbf{x} = L(\mathbf{x}_0)$ are in the same spin^c structure, denoted \mathfrak{s}_0 and called the canonical spin^c structure on $\Sigma_m(K)$.

Proof (Adapted from Grigsby [7].) Let \mathbf{x}_0 and \mathbf{y}_0 be generators of $\widehat{CFK}(\mathcal{D})$; we shall show that $L(\mathbf{x}_0)$ and $L(\mathbf{y}_0)$ are in the same spin^{*c*} structure. Let $\gamma_{\mathbf{x}_0,\mathbf{y}_0}$ be a 1-cycle joining \mathbf{x}_0 and \mathbf{y}_0 as in Section 2, and let $\widetilde{\gamma}_{\mathbf{x}_0,\mathbf{y}_0}$ be a lift of $\gamma_{\mathbf{x}_0,\mathbf{y}_0}$ to \widetilde{S} . Then the 1-cycle

$$\widetilde{\gamma}_{\mathbf{x}_0,\mathbf{y}_0} + \tau_{m*}(\widetilde{\gamma}_{\mathbf{x}_0,\mathbf{y}_0}) + \dots + \tau_{m*}^{m-1}(\widetilde{\gamma}_{\mathbf{x}_0,\mathbf{y}_0})$$

connects $L(\mathbf{x}_0)$ and $L(\mathbf{y}_0)$. Then $\epsilon(L(\mathbf{x}_0), L(\mathbf{y}_0)) = 0$ by (1), so $L(\mathbf{x}_0)$ and $L(\mathbf{y}_0)$ are in the same spin^c structure.

Remark 3.4 Note that the spin^c structure \mathfrak{s}_0 is fixed under the action of τ_m . To see this, if $f: S^3 \to \mathbb{R}$ is a self-indexing Morse function for (S^3, K) , its pullback $\tilde{f}: \Sigma_m(K) \to \mathbb{R}$ is τ_m -invariant. Using a Riemannian metric on $\Sigma_m(K)$ that is the pullback of a metric on S^3 , the gradient $\nabla \tilde{f}$ is τ_m -invariant and projects onto ∇f , and the flowlines for \tilde{f} are precisely the lifts of flowlines for f. If N is the union of neighborhoods of flowlines through the points of \mathbf{x}_0 and \mathbf{w} , where \mathbf{x}_0 is a generator of $\widehat{CFK}(\mathcal{D})$, then $\tilde{N} = \pi^{-1}(N)$ is the union of neighborhoods of flowlines through the points of $L(\mathbf{x}_0)$ and $\tilde{\mathbf{w}}$. By suitably modifying $\nabla \tilde{f}$ on \tilde{N} , we may obtain a τ_m -invariant vector field that determines $\mathfrak{s}_{\tilde{\mathbf{w}}}(L(\mathbf{x}_0)) = \mathfrak{s}_0$.³ Now, if m is a prime power, then this property uniquely characterizes \mathfrak{s}_0 , for if \mathfrak{s}'_0 is another spin^c structure fixed under the action of τ_m , then the difference between \mathfrak{s}_0 and \mathfrak{s}'_0 is a class in $H_1(\Sigma_m(K); \mathbb{Z})$ that is fixed by τ_m and hence equals zero. For more about the significance of \mathfrak{s}_0 , see Grigsby, Ruberman, and Strle [8].

Proposition 3.5 If $\mathbf{x} = \tilde{\mathbf{x}}_1 \cup \cdots \cup \tilde{\mathbf{x}}_m$ as in Lemma 3.1, then the Alexander grading of \mathbf{x} (computed with respect to a lift of a Seifert surface for K) is equal to the average of the Alexander gradings of $\mathbf{x}_1, \ldots, \mathbf{x}_m$.⁴ In particular, for any generator \mathbf{x}_0 of $\widehat{\mathrm{CFK}}(\mathcal{D})$, we have $A(\mathbf{x}_0) = A(L(\mathbf{x}_0))$.

³In general, spin^c structures can always be pulled back under a local diffeomorphism using the vector field interpretation. Specifically, if $F: M \to N$ is a local diffeomorphism and ξ is a nonvanishing vector field on N that determines a given spin^c structure $\mathfrak{s} \in \operatorname{Spin}^{c}(N)$, then $F^{*}(\mathfrak{s}) \in \operatorname{Spin}^{c}(M)$ is determined by the vector field $(F_{*})^{-1}(\xi)$. The first Chern class is natural under this pullback.

⁴Note that we have specified a Seifert surface in order to define the Alexander grading. When *m* is a prime power, however, $\Sigma_m(K)$ is a rational homology sphere, so the Alexander grading does not depend at all on the choice of Seifert surface.

Proof We first consider the relative Alexander gradings. Let $F \subset S^3$ be a Seifert surface for K, and let \tilde{F} be a lift of F to $\Sigma_m(K)$. The translates $\tilde{F}, \tau_m(\tilde{F}), \ldots, \tau_m^{m-1}(\tilde{F})$ are all Seifert surfaces for \tilde{K} . The relative Alexander grading between two generators does not depend on the choice of Seifert surface, so for generators \mathbf{x}, \mathbf{y} of $\widehat{\mathrm{CFK}}(\tilde{D})$, we have

$$mA(\mathbf{x},\mathbf{y}) = \gamma_{\mathbf{x},\mathbf{y}} \cdot \widetilde{F} + \gamma_{\mathbf{x},\mathbf{y}} \cdot \tau_m(\widetilde{F}) + \dots + \gamma_{\mathbf{x},\mathbf{y}} \cdot \tau_m^{m-1}(\widetilde{F}),$$

where $\gamma_{\mathbf{x},\mathbf{y}}$ is a 1-cycle connecting \mathbf{x} and \mathbf{y} as above. The projection $\pi_*(\gamma_{\mathbf{x},\mathbf{y}})$ is a 1-cycle in S that goes from points of $\pi(\mathbf{x})$ to points of $\pi(\mathbf{y})$ along α circles and from points of $\pi(\mathbf{y})$ to points of $\pi(\mathbf{x})$ along β circles. Every intersection point of $\gamma_{\mathbf{x},\mathbf{y}}$ with one of the lifts of F corresponds to an intersection point of $\pi_*(\gamma_{\mathbf{x},\mathbf{y}})$ with F, so

$$\gamma_{\mathbf{x},\mathbf{y}}\cdot\widetilde{F}+\gamma_{\mathbf{x},\mathbf{y}}\cdot\tau_m(\widetilde{F})+\cdots+\gamma_{\mathbf{x},\mathbf{y}}\cdot\tau_m^{m-1}(\widetilde{F})=\pi_*(\gamma_{\mathbf{x},\mathbf{y}})\cdot F.$$

The restriction of $\pi_*(\gamma_{\mathbf{x},\mathbf{y}})$ to any α or β circle consists of *m* (possibly constant or overlapping) arcs. By perhaps adding copies of the α or β circle, we can arrange that these arcs connect a point of \mathbf{x}_1 with a point of \mathbf{y}_1 , a point of \mathbf{x}_2 with a point of \mathbf{y}_2 , and so on. In other words,

$$\pi_*(\gamma_{\mathbf{x},\mathbf{y}}) \equiv \gamma_{\mathbf{x}_1,\mathbf{y}_1} + \dots + \gamma_{\mathbf{x}_m,\mathbf{y}_m}$$

modulo the α and β circles in \mathcal{D} , whose intersection numbers with F are zero. We have:

$$A(\mathbf{x}, \mathbf{y}) = \frac{1}{m} (\gamma_{\mathbf{x}_1, \mathbf{y}_1} + \dots, + \gamma_{\mathbf{x}_m, \mathbf{y}_m}) \cdot F$$
$$= \frac{1}{m} (A(\mathbf{x}_1, \mathbf{y}_1) + \dots + A(\mathbf{x}_m, \mathbf{y}_m)).$$

Thus, the Alexander grading of a generator of $\widehat{CFK}(\widetilde{D})$ is given up to an additive constant by the average Alexander grading of its parts.

To pin down the additive constant, note that the branched covering map $\pi: \Sigma_m(K) \to S^3$ extends to an *unbranched* covering map from the zero-surgery on \tilde{K} to the zero-surgery on K, $\pi_0: Y_0(\tilde{K}) \to S_0^3(K)$. Since this is a local diffeomorphism, it is possible to pull back spin^{*c*} structures. Let \mathbf{x}_0 be a generator of $\widehat{CFK}(\mathcal{D})$ in Alexander grading 0, and let $\mathbf{x} = L(\mathbf{x}_0)$. (The symmetry $\widehat{HFK}(S^3, K, i) \cong \widehat{HFK}(S^3, K, -i)$ and the fact that rank $\widehat{HFK}(S^3, K) \equiv \det(K) \equiv 1 \pmod{2}$ [15] imply that such $\widehat{HFK}(S^3, K, 0)$ has odd rank, so such a generator \mathbf{x}_0 always exists.) As in the discussion following Lemma 3.3, we may find a nonvanishing vector field that determines $\mathfrak{s}_{\widetilde{w}}(\mathbf{x}) = \mathfrak{s}_0$ and is τ_m -equivariant. The unique extension (up to isotopy) of this vector field to $\Sigma_m(K)_0$ can also be made τ_m -invariant, so it is the pullback of an extension to S_0^3 of a vector field determining $\mathfrak{s}_{\mathbf{w}}(\mathbf{x}_0)$. It follows that $\underline{\mathfrak{s}}_{\widetilde{w},\widetilde{\mathbf{z}}}(\mathbf{x}) = \pi_0^*(\underline{\mathfrak{s}}_{\mathbf{w},\mathbf{z}}(\mathbf{x}_0))$. Now, if $\widehat{F} \subset Y_0(\widetilde{K})$

is obtained by capping off \tilde{F} in the zero-surgery, then $\pi_{0*}[\hat{F}] = [\hat{F}]$ in $H_2(S_3^0; \mathbb{Z})$. We therefore have:

$$\begin{aligned} \mathbf{A}(\mathbf{x}) &= \frac{1}{2} \left\langle c_1(\underline{\mathfrak{s}}_{\widetilde{\mathbf{w}},\widetilde{\mathbf{z}}}(\mathbf{x})), [\widehat{\widetilde{F}}] \right\rangle \\ &= \frac{1}{2} \left\langle c_1(\pi_0^*(\underline{\mathfrak{s}}_{\mathbf{w},\mathbf{z}}(\mathbf{x}_0))), [\widehat{\widetilde{F}}] \right\rangle \\ &= \frac{1}{2} \left\langle c_1(\underline{\mathfrak{s}}_{\mathbf{w},\mathbf{z}}(\mathbf{x}_0)), \pi_{0*}[\widehat{\widetilde{F}}] \right\rangle \\ &= \frac{1}{2} \left\langle c_1(\underline{\mathfrak{s}}_{\mathbf{w},\mathbf{z}}(\mathbf{x}_0)), [\widehat{F}] \right\rangle \\ &= 0 = A(\mathbf{x}_0). \end{aligned}$$

Thus, the additive constant C must equal 0.

Remark 3.6 When K is a two-bridge knot and m = 2, Grigsby [7] shows that for a specific diagram \mathcal{D} , the map L is surjective and preserves the relative Maslov grading. Therefore, for any two-bridge knot K, $\widehat{HFK}(\Sigma_2(K), \widetilde{K}, \mathfrak{s}_0) \cong \widehat{HFK}(S^3, K)$, up to a possible shift in the absolute Maslov grading. It may be possible to extend this result to a wider class of knots, such as alternating knots. However, in general L is neither surjective nor Maslov-grading-preserving.

Finally, we consider the regions in \tilde{D} . First, note that the preimage of any region R in \mathcal{D} consists of either m distinct regions, each of which is projected diffeomorphically onto R, or a single region. (In the former case, we say that R is *evenly covered*.) In particular, when \mathcal{D} is nice, each region of \mathcal{D} that does not contain a basepoint is a simply-connected polygon that misses the branch set, so it is evenly covered. Thus, we obtain the following proposition.

Proposition 3.7 Let \mathcal{D} be a nice Heegaard diagram for (S^3, K) , and let $\tilde{\mathcal{D}}$ be its *m*-fold cyclic branched cover. Then $\tilde{\mathcal{D}}$ is nice.

4 Grid diagrams and cyclic branched covers

Proof of Theorem 1.1 As described in Section 1, any oriented knot $K \subset S^3$ can be represented by means of a grid diagram. By drawing the grid diagram on a standardly embedded torus in S^3 , we may think of the grid diagram as a genus 1, multi-pointed Heegaard diagram $\mathcal{D} = (T^2, \alpha, \beta, \mathbf{w}, \mathbf{z})$ for the pair (S^3, K) , where the α circles are the horizontal lines of the grid, the β circles are the vertical lines, the w basepoints are in the regions marked O, and the z basepoints are in the regions marked X.

Note that the diagram \mathcal{D} is nice, so the differential can be computed combinatorially as described in Section 2. Specifically, the coefficient of y in ∂x is 1 if all but two of the points of x and y agree and there is a rectangle embedded in the torus with points of x as its lower-left and upper-right corners, points of y as its lower-right and upper-left corners, and no basepoints or points of x in its interior, and 0 otherwise. Note that there cannot be two such rectangles, or else K would be a split link.

A Seifert surface for K may be seen as follows. We may isotope K to lie entirely within H_{α} by letting the arcs of $K \cap H_{\beta}$ fall onto the boundary torus. In fact, it lies within a ball contained in H_{α} since the knot projection in the grid diagram never passes through the left edge of the grid. Take a Seifert surface F contained in this ball, and then isotope F and K so that K returns to its original position. F then intersects the Heegaard surface T^2 in n arcs, one connecting the two basepoints in each column of the grid diagram, and it intersects H_{β} in strips that lie above these arcs. The orientations of K and S^3 imply that the positive side of a bicollar for F lies on the *right* of one of these strips when the X is above the O and on the *left* when the O is above the X.

If we construct $\Sigma_m(K)$ by gluing together *m* copies of S^3 – int *F* as in Section 3, the Heegaard surfaces in each copy are connected exactly to each other as described in Section 1 to form a surface \tilde{T} . Hence, $\tilde{D} = (\tilde{T}, \tilde{\alpha}, \tilde{\beta}, \tilde{w}, \tilde{z})$ is a Heegaard diagram for $(\Sigma_m(K), \tilde{K})$ for which the results of Section 3 apply. In particular, it is a nice Heegaard diagram.

It remains to show that the domains that count for the differential in $\widehat{CFK}(D)$ are precisely the lifts of those that count for the differential in $\widehat{CFK}(D)$, as was asserted in Section 1. Since \widetilde{D} is a nice diagram with no bigons, any domain that counts for the differential is an embedded rectangle R. The projection of R to D, $\pi(R)$, is an immersed rectangle in \widetilde{D} whose edges are contained in at most two α circles and two β circles. By lifting $\pi(R)$ to the universal cover of T^2 , we see that $\pi(R)$ cannot intersect any α or β circle more than once, or else it would contain an entire column or row of the grid diagram and hence a basepoint. Therefore, $\pi(R)$ is an embedded rectangle that misses the basepoints, so it counts for the differential of $\widehat{CFK}(D)$. \Box

We shall now give a more explicit description of the generators of $\widehat{\mathrm{CFK}}(\widetilde{D})$ and their gradings in order to facilitate computation.

In the grid diagram \mathcal{D} , we label the α circles $\alpha_0, \ldots, \alpha_{n-1}$ from bottom to top and the β circles $\beta_0, \ldots, \beta_{n-1}$ from left to right. Each α circle intersects each β circle exactly once: $\beta_i \cap \alpha_j = \{x_{ij}\}$. Generators of $\widehat{CFK}(\mathcal{D})$ then correspond to permutations of the index set $\{0, \ldots, n-1\}$ via the correspondence $\sigma \mapsto (x_{0,\sigma(0)}, \ldots, x_{n-1,\sigma(n-1)})$.

For each grid point x, let w(x) denote the winding number of the knot projection around x. Let p_1, \ldots, p_{8n} (repetitions allowed) denote the vertices of the 2n squares containing basepoints, and set

$$a = \frac{1-n}{2} + \frac{1}{8} \sum_{i=1}^{8n} w(p_i).$$

According to Manolescu, Ozsváth, and Sarkar [12], the Alexander grading of a generator **x** of $\widehat{CFK}(\mathcal{D})$ is given by the formula

(2)
$$A(\mathbf{x}) = a - \sum_{x \in \mathbf{x}} w(x).$$

There is also a formula for the Maslov grading of a generator, but it is not relevant for our purposes.

The generators of $\widehat{CFK}(\widehat{\mathcal{D}})$ can be described easily as follows. For any $i = 0, \ldots, n-1$ and $j = 0, \ldots, n-1$, each lift of β_i meets exactly one lift of α_j . Specifically, let $\widetilde{\beta}_j^k$ denote the lift of β_j on the *k*th copy of \mathcal{D} (for $k = 0, \ldots, m-1$). Let $\widetilde{\alpha}_j^k$ denote the lift of α_j that intersects the leftmost edge of the *k*th grid diagram ($\widetilde{\beta}_0^k$). Let $\widetilde{x}_{i,j}^k$ denote the lift of $x_{i,j}$ on the *k*th diagram. Define a map $g: \mathbb{Z}/n \times \mathbb{Z}/n \times \mathbb{Z}/m \to \mathbb{Z}/m$ by $g(i, j, k) = k - w(x_{i,j}) \mod m$. The lift of α_j that meets a particular $\widetilde{\beta}_i^k$ is given by the following lemma.

Lemma 4.1 The point $\tilde{x}_{i,j}^k$ is the intersection between $\tilde{\beta}_i^k$ and $\tilde{\alpha}_j^{g(i,j,k)}$.

Proof We induct on *i*. For i = 0, we have $w(x_{0,j}) = 0$, and by construction $\tilde{\alpha}_j^k$ meets $\tilde{\beta}_0^k$. For the induction step, let *S* be the segment of α_j from $x_{i,j}$ to $x_{i+1,j}$. Note that $w(x_{i+1,j})$ is equal to $w(x_{i,j}) + 1$ if *S* passes below the *X* and above the *O* in its column, $w(x_{i,j}) - 1$ if it passes above *X* and below *O*, and $w(x_{i,j})$ otherwise. Similarly, if $\tilde{x}_{i,j}^k$ lies on $\tilde{\alpha}_j^l$, then by the previous discussion, $\tilde{x}_{i+1,j}^k$ lies on $\tilde{\alpha}_j^{l-1}$ in the first case, on $\tilde{\alpha}_j^{l+1}$ in the second, and on $\tilde{\alpha}_j^l$ in the third (upper indices modulo *m*). This proves the induction step.

We may then identify the generators of $\widehat{CFK}(\widetilde{D})$ with the set of *m*-to-one maps

$$\phi: \{0, \dots, n-1\} \times \{0, \dots, m-1\} \to \{0, \dots, n-1\}$$

such that for each j = 0, ..., n - 1, the function $g(\cdot, j, \cdot)$ assumes all *m* possible values on $\phi^{-1}(j)$. In other words, if we shade the *m* lifts of each α circle with different colors as in Figure 1 and arrange the copies of \mathcal{D} horizontally, a generator is a

selection of mn grid points so each column contains one point and each row contains m points, one of each color. It is not difficult to enumerate such maps algorithmically.

To split up the generators of $\widehat{CFK}(\widetilde{D})$ according to spin^{*c*} structures, we simply need to express $\epsilon(\mathbf{x}, \mathbf{y})$ in terms of a \mathbb{Z} -module presentation for $H_1(\Sigma_m(K); \mathbb{Z})$. We obtain such a presentation from the Heegaard decomposition of $\Sigma_m(K)$: the generators a_j^k $(0 \le j \le n-1, 0 \le k \le m-1)$ corresponding to the 1-handles dual to the α circles and relations corresponding to the 2-handles spanned by the β circles. By Lemma 4.1, the relations are

$$0 = [\tilde{\beta}_i^k] = \sum_{j=1}^n a_j^{g(i,j,k)} \quad (0 \le i \le n-1, 0 \le k \le m-1).$$

To express $\epsilon(\mathbf{x}, \mathbf{y})$ in terms of this basis, one simply counts the number of times that a representative $\gamma_{\mathbf{x}, \mathbf{y}}$ crosses the α circles.

To compute the Alexander grading of a generator **x**, we decompose it as $\mathbf{x} = \widetilde{\mathbf{x}}_1 \cup \cdots \cup \widetilde{\mathbf{x}}_m$ using Lemma 3.1 and then use Proposition 3.5 and (2) to write:

$$A(\mathbf{x}) = \frac{1}{m} (A(\mathbf{x}_1) + \dots + A(\mathbf{x}_m))$$
$$= \frac{1}{m} \sum_{k=1}^m \left(a - \sum_{x \in \mathbf{x}_k} w(x) \right)$$
$$= a - \frac{1}{m} \sum_{k=1}^m \sum_{x \in \mathbf{x}_k} w(\pi(x))$$
$$= a - \frac{1}{m} \sum_{x \in \mathbf{x}} w(\pi(x)).$$

Computing the relative Maslov grading between two generators in the same spin^c structure requires finding a domain D connecting them, which is simply a matter of linear algebra, and then using the formula $M(\mathbf{x}) - M(\mathbf{y}) = \mu(D) - 2n_{\mathbf{w}}(D)$. The relative Maslov grading between generators in different spin^c structures can be computed similarly using the formula of Lee and Lipshitz [9]. Since all the basepoints in the Heegaard diagrams used in this paper are contained in 4m-gonal regions, it is not possible to compute the absolute Maslov gradings or the spectral sequence from $\widehat{HFK}(\Sigma_2(K), \widetilde{K})$ to $\widehat{HF}(\Sigma_2(K))$ combinatorially. However, when m = 2, the groups $\widehat{HF}(\Sigma_2(K))$, or at least the correction terms $d(\Sigma_2(K), \mathfrak{s})$, can in many instances be computed via other means (Ozsváth and Szabó [16]). In such cases, it is often possible to pin down the absolute Maslov gradings for $\widehat{HFK}(\Sigma_2(K), \widetilde{K})$. Specifically, the relative Maslov \mathbb{Q} -grading and the action of $H_1(\Sigma_2(K))$ on Spin^c($\Sigma_2(K)$) usually

provide enough information to match the groups $\widehat{HFK}(\Sigma_2(K), \widetilde{K}, \mathfrak{s})$ up with the rational numbers $d(\Sigma_2(K), \mathfrak{s})$ that are computed via some other means. If there is a spin^c structure \mathfrak{s} in which $\widehat{HFK}(\Sigma_2(K), \widetilde{K}, \mathfrak{s})$ has rank 1, then the absolute Maslov grading of that group equals the corresponding d invariant, and the rest of the absolute gradings are completely determined.

5 Results

The following tables list the ranks for $\widehat{HFK}(\Sigma_2(K), \widetilde{K}; \mathbb{Z}/2)$ by means of the Poincaré polynomials:

$$p_{\mathfrak{s}}(q,t) = \sum_{i,j} \dim_{\mathbb{Z}/2} \widehat{\mathrm{HFK}}_j(\Sigma_2(K), \widetilde{K}, \mathfrak{s}, i; \mathbb{Z}/2) t^i q^j.$$

The Maslov \mathbb{Q} -gradings are normalized so that in the canonical spin^c structure \mathfrak{s}_0 , the nonzero elements in Alexander grading g(K) have Maslov grading g(K). For each knot, the first line gives $p_{\mathfrak{s}_0}(q,t)$, and each subsequent line gives $p_{\mathfrak{s}}(q,t)$ for a pair of conjugate spin^c structures. We identify spin^c structures with elements of $H_1(\Sigma_2(K);\mathbb{Z})$, which is either a cyclic group or the sum of two cyclic groups, taking \mathfrak{s}_0 to 0. (Of course, the choice of basis for $H_1(\Sigma_2(K);\mathbb{Z})$ is not canonical.) In each spin^c structure, most of the nonzero groups lie along a single diagonal; the terms corresponding to the groups not on that diagonal are underlined.

These results were computed using a program written in C++ and *Mathematica*, based on Baldwin and Gillam's program [1] for computing $\widehat{HFK}(S^3, K)$. Most of the grid diagrams were obtained using Marc Culler's program *Gridlink* [2]. Using available computer resources, it was possible to compute $\widehat{HFK}(\Sigma_2(K), \widetilde{K})$ for all the threebridge knots with up to eleven crossings and arc index ≤ 9 , and for many knots with arc index 10. (Grigsby [6] has a much more efficient algorithm for computing $\widehat{HFK}(\Sigma_2(K), \widetilde{K})$ when K is two-bridge, so we do not list those knots here.)

$$\begin{array}{rcl} K & H_1(\Sigma_2(K);\mathbb{Z}) & \mathfrak{s} & \sum_{i,j} \dim_{\mathbb{Z}/2} \widehat{\mathrm{HFK}}_j(\Sigma_2(K), \widetilde{K}, \mathfrak{s}, i; \mathbb{Z}/2) t^i q^j \\ \\ 8_5 & \mathbb{Z}/21 & 0 & q^{-3}t^{-3} + 3q^{-2}t^{-2} + 4q^{-1}t^{-1} + 5 + 4qt + 3q^2t^2 + q^3t^3 \\ & \pm 1 & q^{5/21}(q^{-2}t^{-2} + 3q^{-1}t^{-1} + 3 + 3qt + q^2t^2) \\ & \pm 2 & q^{20/21} \\ & \pm 3 & q^{8/7} \\ & \pm 4 & q^{17/21}(q^{-1}t^{-1} + 1 + qt) \\ & \pm 5 & q^{20/21} \\ & \pm 6 & q^{4/7} \\ & \pm 7 & q^{2/3}(q^{-1}t^{-1} + 3 + qt) \\ & \pm 8 & q^{5/21}(q^{-2}t^{-2} + 3q^{-1}t^{-1} + 3 + 3qt + q^2t^2) \\ & \pm 9 & q^{2/7}(q^{-2}t^{-2} + 2q^{-1}t^{-1} + 3 + 2qt + q^2t^2) \\ & \pm 10 & q^{17/21}(q^{-1}t^{-1} + 1 + qt) \end{array}$$

Algebraic & Geometric Topology, Volume 8 (2008)

```
K \quad H_1(\Sigma_2(K);\mathbb{Z}) \quad \mathfrak{s} \quad \sum_{i,j} \dim_{\mathbb{Z}/2} \widehat{\mathrm{HFK}}_j(\Sigma_2(K), \widetilde{K}, \mathfrak{s}, i; \mathbb{Z}/2) t^i q^j
                                                                                            \begin{array}{ccc} 0 & q^{-3}t^{-3} + 3q^{-2}t^{-2} + 6q^{-1}t^{-1} + 7 + 6qt + 3q^{2}t^{2} + q^{3}t^{3} \\ \pm 1 & q^{7/27}(q^{-2}t^{-2} + 3q^{-1}t^{-1} + 5 + 3qt + q^{2}t^{2}) \end{array} 
810
                                        \mathbb{Z}/27
                                                                                            \pm 2 \quad q^{1/27}
                                                                                            \pm 3 \quad q^{1/3}
                                                                                             \pm 4 \quad q^{4/27}(q^{-1}t^{-1}+1+qt) 
                                                                                            \pm 5 \quad \hat{q}^{13/27}
                                                                                            \pm 6 \quad q^{1/3}
                                                                                         \begin{array}{rcl} \pm 0 & q^{1/2} \\ \pm 7 & q^{-8/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 8 & q^{-11/27}(q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \\ \pm 9 & q^{-1}t^{-1} + 1 + qt \\ \pm 10 & q^{25/27} \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/27}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 & q^{10/
                                                                                        \begin{array}{c} \pm 10 \quad q \quad 10/27 (2q^{-1}t^{-1} + 3 + 2qt) \\ \pm 11 \quad q^{1/3} (q^{-2}t^{-2} + 2q^{-1}t^{-1} + 3 + 2qt + q^{2}t^{2}) \\ \pm 13 \quad q^{22/27} (q^{-1}t^{-1} + 1 + qt) \end{array}
                                                                                         0 3q^{-2}t^{-2} + 8q^{-1}t^{-1} + 11 + 8qt + 3q^{2}t^{2}

±1 q^{13/33}(2q^{-1}t^{-1} + 3 + 2qt)

±2 q^{-14/33}(q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2})

±3 q^{6/11}
815
                                        \mathbb{Z}/33
                                                                                            \pm 4 \quad q^{10/33}
                                                                                           \begin{array}{c} \pm 5 & q^{-5/33}(q^{-1}t^{-1} + 1 + qt) \\ \pm 6 & q^{2/11} \end{array} 
                                                                                           \begin{array}{c} \pm 0 & q \\ \pm 7 & q^{10/33} \\ \pm 8 & q^{7/33}(q^{-1}t^{-1} + 1 + qt) \end{array}
                                                                                          \pm 9 \quad q^{10/11}
                                                                                         \pm 10 \quad q^{13/33}(2q^{-1}t^{-1}+3+2qt)
                                                                                         \pm 11 q^{2/3}
                                                                                        \begin{array}{c} \pm 11 \quad q^{-1} \\ \pm 12 \quad q^{-3/11}(q^{-1}t^{-1} + 1 + qt) \\ \pm 13 \quad q^{-14/33}(q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \\ \pm 14 \quad q^{7/33}(q^{-1}t^{-1} + 1 + qt) \\ \end{array}
                                                                                         \pm 15 \quad q^{-4/11}(q^{-2}t^{-2}+2q^{-1}t^{-1}+3+2qt+q^{2}t^{2})
                                                                                         \pm 16 \quad q^{-5/33}(q^{-1}t^{-1}+1+qt)
                                                                                              0 \quad q^{-3}t^{-3} + 4q^{-2}t^{-2} + 8q^{-1}t^{-1} + 9 + 8qt + 4q^{2}t^{2} + q^{3}t^{3}
816
                                        \mathbb{Z}/35
                                                                                           \pm 1 \quad \hat{q}^{16/35}(q^{-1}t^{-1}+1+qt)
                                                                                            \pm 2 q^{29/35}
                                                                                            \pm 3 \quad q^{4/35}(q^{-1}t^{-1}+1+qt)
                                                                                            \pm 4 \quad q^{11/35}(q^{-2}t^{-2} + 3q^{-1}t^{-1} + 5 + 3qt + q^{2}t^{2})
                                                                                           \begin{array}{c} \pm 7 \quad q \quad (q \quad t \quad \pm 3q \quad t \\ \pm 5 \quad q^{3/7}(q^{-1}t^{-1} + 3 + qt) \\ \pm 6 \quad q^{16/35}(q^{-1}t^{-1} + 1 + qt) \end{array}
                                                                                           \begin{array}{c} \pm 5 & q^{2/5}(2q^{-1}t^{-1}+3+2qt) \\ \pm 7 & q^{9/35} \\ \pm 8 & q^{9/35} \end{array}
                                                                                          \pm 9 \quad q^{1/35}
                                                                                         \pm 10 \ q^{5/7}
                                                                                           \pm 11 \quad q^{11/35}(q^{-2}t^{-2} + 3q^{-1}t^{-1} + 5 + 3qt + q^{2}t^{2}) 
                                                                                         \pm 12 q^{29/35}
                                                                                        \pm 13 q^{9/35}
                                                                                         \pm 14 \ q^{3/5}
                                                                                         \pm 15 \quad q^{6/7}(q^{-1}t^{-1}+1+qt)
                                                                                         \pm 16 \ q^{1/35}
                                                                                         \pm 17 \quad q^{4/35}(q^{-1}t^{-1}+1+qt)
```

 $\sum_{i,j} \dim_{\mathbb{Z}/2} \widehat{\mathrm{HFK}}_{j}(\Sigma_{2}(K), \widetilde{K}, \mathfrak{s}, i; \mathbb{Z}/2) t^{i} q^{j}$ $K \quad H_1(\Sigma_2(K);\mathbb{Z})$ 5

817 $\mathbb{Z}/37$

- $q^{-3}t^{-3} + 4q^{-2}t^{-2} + 8q^{-1}t^{-1} + 11 + 8qt + 4q^{2}t^{2} + q^{3}t^{3}$ $q^{2/37}_{2/37}$ 0
 - ± 1
 - $q^{8/37}(q^{-1}t^{-1}+3+qt)$ $q^{18/37}$ ± 2
 - ± 3 $q^{-5/37}(q^{-1}t^{-1}+1+qt)$ ± 4
 - $q^{13/37}(q^{-2}t^{-2}+3q^{-1}t^{-1}+3+3qt+q^{2}t^{2})$ ± 5
 - $\hat{q}^{-2/37}$ ± 6
 - $q^{-13/37}(q^{-2}t^{-2}+3q^{-1}t^{-1}+3+3qt+q^{2}t^{2})$ ± 7
 - $q^{17/37}(q^{-1}t^{-1}+1+qt)$ ± 8
 - $q^{14/37}$ ± 9
 - $q^{-22/37}$ ± 10
 - ± 11
 - ± 12
 - $\begin{array}{l} q^{-17/37}(q^{-1}t^{-1}+1+qt) \\ q^{-8/37}(q^{-1}t^{-1}+3+qt) \\ q^{5/37}(q^{-1}t^{-1}+3+qt) \\ q^{22/37} \\ q^{22/37} \end{array}$ ± 13
 - ± 14
 - $\hat{q}^{6/37}$ ± 15
 - ± 16
 - $q^{-6/37}$ $q^{-14/37}$ ± 17
 - $q^{-18/37}$
- $\begin{array}{rcl} (0,0) & q^{-3}t^{-3} + 5q^{-2}t^{-2} + 10q^{-1}t^{-1} + 13 + 10qt + 5q^{2}t^{2} + q^{3}t^{3} \\ \pm (0,1) & q^{7/15}(q^{-1}t^{-1} + 1 + qt) \\ \pm (0,2) & q^{-2/15} \\ \pm (0,3) & e^{1/5} \end{array}$ $8_{18} \quad \mathbb{Z}/3 \oplus \mathbb{Z}/15$

 - $\begin{array}{c} \pm(0,2) \quad q \quad 2^{-1/2} \\ \pm(0,3) \quad q^{1/5}(q^{-1}t^{-1}+1+qt) \\ \pm(0,4) \quad q^{7/15}(q^{-1}t^{-1}+1+qt) \\ \pm(0,5) \quad q^{-2/3} \end{array}$
 - $\begin{array}{rcrr} \pm(0,5) & q & -1/5 \\ \pm(0,6) & q^{-1/5}(q^{-1}t^{-1}+1+qt) \\ \pm(0,7) & q^{-2/15} \\ \pm(1,0) & q^{-2/3} \\ \pm(1,1) & q^{7/15}(q^{-1}t^{-1}+1+qt) \\ \pm(1,2) & q^{-7/15}(q^{-1}t^{-1}+1+qt) \end{array}$

 - $\begin{array}{l} \pm(1,1) \quad q^{-7/15}(q^{-1}t^{-1}+1+qt) \\ \pm(1,2) \quad q^{-7/15}(q^{-1}t^{-1}+1+qt) \\ \pm(1,3) \quad q^{-7/15}(q^{-1}t^{-1}+1+qt) \\ \pm(1,4) \quad q^{7/15}(q^{-1}t^{-1}+1+qt) \\ \pm(1,5) \quad q^{-2/3} \\ \pm(1,5) \quad q^{-2/3} \end{array}$

 - $\pm(1,6)$ $q^{2/15}$
 - $\begin{array}{l} \pm(1,0) \quad q^{-1} \\ \pm(1,7) \quad q^{-2/15} \\ \pm(1,8) \quad q^{-7/15}(q^{-1}t^{-1}+1+qt) \end{array}$

 - $\begin{array}{c} \pm(1,0) \quad q \\ \pm(1,9) \quad q^{2/15} \\ \pm(1,10) \quad q^{2/3} \end{array}$
 - $\pm(1,11) q^{2/15}$
- $\begin{array}{rrr} \pm (1,11) & q^{-7/15} \\ \pm (1,12) & q^{-7/15} (q^{-1}t^{-1} + 1 + qt) \\ \pm (1,13) & q^{-2/15} \\ \pm (1,14) & q^{2/15} \end{array}$ $q^{-3}t^{-3} + q^{-2}t^{-2} + q + q^2t^2 + q^3t^3$ $\mathbb{Z}/3$ 819 0 $q^{2/3}(q^{-1}t^{-1}+1+qt)$ ± 1
- $\begin{array}{l} q^{-2}t^{-2}+2q^{-1}t^{-1}+3+2qt+q^{2}t^{2} \\ q^{7/9}(q^{-1}t^{-1}+1+qt) \end{array}$ 820 $\mathbb{Z}/9$ 0 ± 1 $q^{1/9}(q^{-1}t^{-1}+1+qt)$ ± 2 ± 3 1
 - $q^{4/9}$ ± 4

K	$H_1(\Sigma_2(K);\mathbb{Z})$	5	$\sum_{i,j} \dim_{\mathbb{Z}/2} \widehat{\mathrm{HFK}}_j(\Sigma_2(K), \widetilde{K}, \mathfrak{s}, i; \mathbb{Z}/2) t^i q^j$
821	Z/15	1 ±1	$q^{-2}t^{-2} + 4q^{-1}t^{-1} + 5 + 4qt + q^{2}t^{2}$ $q^{-2/15}(q^{-1}t^{-1} + 1 + qt)$
		± 2 ± 2	$q^{7/15}$ $e^{-1/5}(e^{-1}t^{-1}+2+et)$
		± 3 ± 4	q = (q = t + 5 + qt) $a^{-2/15}(a^{-1}t^{-1} + 1 + at)$
		+5	$a^{-1/3}$
		± 6	$q^{1/5}$
		±7	q ^{7/15}
9 ₄₂	$\mathbb{Z}/7$	0	$q^{-2}t^{-2} + 2q^{-1}t^{-1} + 2 + q + 2qt + q^{2}t^{2}$
		±1	$q_{5/7}^{3/7}$
		± 2	$q^{5/7}(q^{-1}t^{-1}+3+qt)$
		± 3	$q^{0/7}(q^{-1}t^{-1}+1+qt)$
9 ₄₃	ℤ/13	0 + 1	$q^{-3}t^{-3} + 3q^{-2}t^{-2} + 2q^{-1}t^{-1} + 1 + 2qt + 3q^{2}t^{2} + q^{3}t^{3}$ $a^{10/13}(a^{-1}t^{-1} + 3 + at)$
		$^{\pm 1}_{+2}$	$q^{1/13}(q^{-1}t^{-1}+1+at)$
		± 3	$q^{12/13}$
		± 4	$q^{4/13}(q^{-2}t^{-2}+q^{-1}t^{-1}+1+qt+q^{2}t^{2})$
		± 5	<i>q</i> ^{16/13}
		± 6	$q^{9/13}(q^{-1}t^{-1}+1+qt)$
9 ₄₄	$\mathbb{Z}/17$	0	$q^{-2}t^{-2} + 4q^{-1}t^{-1} + 7 + 4qt + q^{2}t^{2}$
		±1 ±2	$q^{-15/17}(a^{-1}t^{-1} + 1 + at)$
		$\pm 2 + 3$	$q^{-4/17}$ $(q^{-1} + 1 + q^{-1})$
		$\pm 3 \\ \pm 4$	q a ^{8/17}
		± 5	$q^{4/17}$
		± 6	$q^{-16/17}$
		± 7	$q^{-1/17}(q^{-1}t^{-1}+1+qt)$
		± 8	$q^{-2/17}(q^{-1}t^{-1}+3+qt)$
9 ₄₅	ℤ/23	0	$q^{-2}t^{-2} + 6q^{-1}t^{-1} + 9 + 6qt + q^{2}t^{2}$
		±1 ±2	$q^{-9/23}(2q^{-1}l^{-1}+3+2ql)$
		$^{\pm 2}_{\pm 3}$	$a^{-3/23}(a^{-1}t^{-1}+3+at)$
		± 4	$a^{-13/23}$
		± 5	$q^{7/23}$
		± 6	$q^{11/23}$
		±7	$q^{-1/23}$
		± 8	$q^{-6/23}(q^{-1}t^{-1}+1+qt)$
		±9 +10	$q = \frac{1}{12} (2q + t + 3 + 2qt)$ $q = \frac{18}{23} (q - 1t - 1 + 1 + qt)$
		± 10 ± 11	$\frac{q}{q^{-2/23}} \frac{(q^{-1}t^{-1} + 1 + qt)}{(q^{-1}t^{-1} + 1 + qt)}$
9 ₄₆	$\mathbb{Z}/3 \oplus \mathbb{Z}/3$	(0,0)	$2q^{-1}t^{-1} + 5 + 2qt$
		±(0,1)	$q^{-2/3}(q^{-1}t^{-1}+3+qt)$
		$\pm(1,0)$	1
		$\pm(1,1)$	$\frac{1}{-4/3}$
		$\pm(1,2)$	$q \sim 10^{-1}$

Algebraic & Geometric Topology, Volume 8 (2008)

 $\sum_{i,j} \dim_{\mathbb{Z}/2} \widehat{\operatorname{HFK}}_j(\Sigma_2(K), \widetilde{K}, \mathfrak{s}, i; \mathbb{Z}/2) t^i q^j$ $H_1(\Sigma_2(K);\mathbb{Z})$ K 5 $(0,0) \quad q^{-3}t^{-3} + 4q^{-2}t^{-2} + 6q^{-1}t^{-1} + 5 + 6qt + 4q^{2}t^{2} + q^{3}t^{3}$ $\pm (0,1) \quad q^{-1/9}(q^{-1}t^{-1} + 3 + qt)$ $\pm (0,2) \quad q^{-4/9}(q^{-1}t^{-1} + 1 + qt)$ $\pm (0,3) \quad q^{-1}t^{-1} + 1 + qt$ $\pm (0,4) \quad q^{-7/9}$ $\pm (1,0) \quad q^{-1/3}$ $\pm (1,1) \quad a^{-1/9}(a^{-1}t^{-1} + 2 + 2)$ 947 $\mathbb{Z}/3 \oplus \mathbb{Z}/9$ $\begin{array}{c} \dots & q & \dots & (q^{-1}t^{-1}+3+qt) \\ \pm (1,2) & q^{-1/9}(q^{-1}t^{-1}+3+qt) \\ \pm (1,3) & q^{-1/3} \\ \pm (1,4) & q^{-1/3} \end{array}$ $\pm (1,1)$ $q^{-1/9}(q^{-1}t^{-1}+3+qt)$ $\pm(1,4) q^{-7/9}$ $\pm (1,5) \quad q^{-4/9}(q^{-1}t^{-1}+1+qt)$ $\begin{array}{c} \pm (1,5) \quad q \quad d^{-1}(q^{-1}t^{-1} + 1 + qt) \\ \pm (1,6) \quad q^{-1/3} \\ \pm (1,7) \quad q^{-4/9}(q^{-1}t^{-1} + 1 + qt) \\ \pm (1,8) \quad q^{-7/9} \end{array}$ $\begin{array}{rrr} (0,0) & q^{-2}t^{-2} + 7q^{-1}t^{-1} + 11 + 7qt + q^{2}t^{2} \\ \pm (0,1) & q^{-4/9}(q^{-1}t^{-1} + 1 + qt) \\ \pm (0,2) & q^{2/9}(2q^{-1}t^{-1} + 3 + 2qt) \\ \end{array}$ $\mathbb{Z}/3 \oplus \mathbb{Z}/9$ 9₄₈ $\pm (0,3) \quad q^{-1}t^{-1} + 1 + qt$ $\pm(0,4)$ $q^{-1/9}$ $\begin{array}{l} \pm (0,4) \quad q \\ \pm (1,0) \quad q^{1/3} \\ \pm (1,1) \quad q^{2/9} (2q^{-1}t^{-1} + 3 + 2qt) \end{array}$ $\begin{array}{c} \pm (1,1) \quad q \quad (2q^{-1} + 3 + 2qt) \\ \pm (1,2) \quad q^{2/9} (2q^{-1}t^{-1} + 3 + 2qt) \\ \pm (1,3) \quad q^{1/3} \end{array}$ $\pm (1,4) \quad q^{-4/9}(q^{-1}t^{-1}+1+qt)$ $\pm(1,5) q^{-1/9}$ $\pm(1,6) q^{1/3}$ $\pm(1,7) q^{-1/9}$ $\begin{array}{l} \pm(1,7) \quad q^{-1/5} \\ \pm(1,8) \quad q^{-4/9}(q^{-1}t^{-1}+1+qt) \\ (0,0) \quad 3q^{-2}t^{-2}+6q^{-1}t^{-1}+7+6qt+3q^{2}t^{2} \\ \pm(0,1) \quad q^{-2/5}(q^{-2}t^{-2}+q^{-1}t^{-1}+1+qt+q^{2}t^{2}) \\ \pm(0,2) \quad q^{2/5} \end{array}$ **9**49 $\mathbb{Z}/5 \oplus \mathbb{Z}/5$ $\begin{array}{l} \pm(0,2) \quad q \\ \pm(1,0) \quad q^{-2/5}(q^{-2}t^{-2}+q^{-1}t^{-1}+1+qt+q^{2}t^{2}) \\ \pm(1,1) \quad q^{-1/5}(q^{-1}t^{-1}+1+qt) \end{array}$ $\begin{array}{l} \pm (1,1) \quad q \quad \frac{1}{2} + (1+1+qt) \\ \pm (1,2) \quad q^{1/5}(2q^{-1}t^{-1}+3+2qt) \\ \pm (1,3) \quad q^{1/5}(2q^{-1}t^{-1}+3+2qt) \\ \pm (1,4) \quad q^{-2/5}(q^{-2}t^{-2}+q^{-1}t^{-1}+1+qt+q^{2}t^{2}) \\ \pm (2,0) \quad q^{2/5} \end{array}$ $\pm (2,1)$ $q^{1/5}(2q^{-1}t^{-1}+3+2qt)$ $\begin{array}{c} \pm(2,1) \quad q^{-1/2}(2q^{-1}t^{-1}+1+qt) \\ \pm(2,2) \quad q^{-1/5}(q^{-1}t^{-1}+1+qt) \end{array}$ $\pm(2,3) q^{2/5}$ $\pm (2, 4) \quad q^{-1/5}(q^{-1}t^{-1} + 1 + qt)$ $q^{-4}t^{-4} + q^{-3}t^{-3} + t^{-1} + q + q^{2}t + q^{3}t^{3} + q^{4}t^{4}$ 10_{124} {0} 0 10128 $\mathbb{Z}/11$ 0 $2q^{-3}t^{-3} + 3q^{-2}t^{-2} + q^{-1}t^{-1} + q + qt + 3q^{2}t^{2} + 2q^{3}t^{3}$ $\pm 1 \qquad q^{\hat{8}/11}(2q^{-1}t^{-1}+3+2qt)$ $q^{10/11}(q^{-1}t^{-1}+1+qt)$ ± 2 $\begin{array}{cccc} \pm 2 & q & (q & t + 1 + qt) \\ \pm 3 & q^{6/11}(q^{-1}t^{-1} + 1 + qt) \end{array}$ $q^{-4/11}(q^{-2}t^{-2}+q^{-1}t^{-1}+q+qt+q^{2}t^{2})$ +4 $q^{2/11}(q^{-1}t^{-1}+1+qt)$ ± 5

```
H_1(\Sigma_2(K);\mathbb{Z}) \quad \mathfrak{s} \quad \sum_{i,j} \dim_{\mathbb{Z}/2} \widehat{\mathrm{HFK}}_j(\Sigma_2(K), \widetilde{K}, \mathfrak{s}, i; \mathbb{Z}/2) t^i q^j
     K
                                                                    \begin{array}{rrr} 0 & 2q^{-2}t^{-2}+6q^{-1}t^{-1}+9+6qt+2q^{2}t^{2} \\ \pm 1 & q^{-8/25}(q^{-2}t^{-2}+2q^{-1}t^{-1}+3+2qt+q^{2}t^{2}) \\ \pm 2 & q^{-7/25}(q^{-1}t^{-1}+1+qt) \end{array}
10_{129}
                                 \mathbb{Z}/25
                                                                    \pm 3 \quad q^{3/25}(2q^{-1}t^{-1}+3+2qt)
                                                                    \pm 4 \quad q^{-3/25}(q^{-1}t^{-1}+1+qt)
                                                                    \pm 5 1
                                                                    \pm 6 q^{12/25}
                                                                    \pm 7 \quad q^{8/25}
                                                                   \begin{array}{ccc} \pm 7 & q \\ \pm 8 & q^{-12/25} \\ \pm 9 & q^{2/25}(q^{-1}t^{-1} + 3 + qt) \end{array}
                                                                  \pm 10 1
                                                                  \pm 11 \quad q^{7/25}(q^{-1}t^{-1}+1+qt)
                                                                  \pm 12 \quad q^{23/25}(q^{-1}t^{-1}+1+qt)
                                                                   0 2q^{-2}t^{-2} + 4q^{-1}t^{-1} + 5 + 4qt + 2q^{2}t^{2}

±1 q^{4/17}(q^{-2}t^{-2} + 2q^{-1}t^{-1} + 3 + 2qt + q^{2}t^{2})

±2 q^{16/17}
                                 \mathbb{Z}/17
10_{130}
                                                                    \begin{array}{r} \pm 2 & q \\ \pm 3 & q^{19/17}(q^{-1}t^{-1}+1+qt) \\ \pm 4 & q^{13/17}(2q^{-1}t^{-1}+3+2qt) \end{array}
                                                                    \pm 5 \quad q^{15/17}(q^{-1}t^{-1}+1+qt)
                                                                    \pm 6 \quad q^{8/17}
                                                                    \begin{array}{c} \pm 0 \quad q^{9/17} \\ \pm 7 \quad q^{9/17} (q^{-1}t^{-1} + 1 + qt) \\ \pm 8 \quad q^{1/17} (q^{-1}t^{-1} + 1 + qt) \end{array}
                                                                    \begin{array}{ll} 0 & 2q^{-2}t^{-2} + 8q^{-1}t^{-1} + 11 + 8qt + 2q^{2}t^{2} \\ \pm 1 & q^{-18/31}(q^{-1}t^{-1} + 1 + qt) \end{array}
10_{131}
                                 \mathbb{Z}/31
                                                                     \begin{array}{c} \pm 1 & q \\ \pm 2 & q^{-10/31} (q^{-1}t^{-1} + 1 + qt) \end{array} 
                                                                   \begin{array}{c} \begin{array}{c} q & (q^{-1}t^{-1} + 1 + qt) \\ \pm 3 & q^{-7/31}(q^{-1}t^{-1} + 3 + qt) \\ \pm 4 & q^{-9/31} \end{array}
                                                                   \begin{array}{c} - & q \\ \pm 5 & q^{15/31} \\ \pm 6 & q^{3/31} \end{array}
                                                                    \begin{array}{c} \pm 0 & q \\ \pm 7 & q^{-14/31}(q^{-1}t^{-1} + 1 + qt) \\ \pm 8 & q^{-5/31}(2q^{-1}t^{-1} + 5 + 2qt) \end{array}
                                                                  \begin{array}{r} \pm 8 \quad q \quad (2q \quad t^{-1} + 5 + 2qt) \\ \pm 9 \quad q^{-1/31} \\ \pm 10 \quad q^{-2/31}(q^{-1}t^{-1} + 1 + qt) \\ \pm 11 \quad q^{-8/31}(q^{-2}t^{-2} + 4q^{-1}t^{-1} + 5 + 4qt + q^{2}t^{2}) \\ \pm 12 \quad q^{-19/31}(q^{-1}t^{-1} + 3 + qt) \\ \pm 12 \quad q^{-4/31}(q^{-1}t^{-1} + 3 + qt) \end{array}
                                                                 \begin{array}{ccc} \pm 12 & q & 27/31 \left( q^{-1}t^{-1} + 3 + qt \right) \\ \pm 13 & q^{-4/31} \left( 2q^{-1}t^{-1} + 3 + 2qt \right) \\ \pm 14 & q^{-25/31} \\ \pm 15 & q^{11/31} \end{array}
                                                                    \begin{array}{c} 0 \quad q^{-2}t^{-2} + (2q^{-1} + \underline{1})t^{-1} + (2 + \underline{q}) + (2q + \underline{q}^2)t + q^2t^2 \\ \pm 1 \quad q^{2/5} \\ \end{array} 
10132
                                  \mathbb{Z}/5
                                                                     \pm 2 \quad q^{3/5}(q^{-1}t^{-1}+1+qt) 
                                                                    \begin{array}{ccc} 0 & q^{-2}t^{-2} + 5q^{-1}t^{-1} + 7 + 5qt + q^{2}t^{2} \\ \pm 1 & q^{-3/19} \end{array}
10_{133}
                                 \mathbb{Z}/19
                                                                     \begin{array}{c} \pm 1 & q \\ \pm 2 & q^{-12/19}(q^{-1}t^{-1} + 1 + qt) \end{array} 
                                                                    \begin{array}{cccc} \pm 3 & q^{-8/19}(q^{-1}t^{-1}+1+qt) \\ \pm 4 & q^{9/19} \\ \end{array}
                                                                    \pm 5 \quad q^{1/19}
                                                                    \pm 6 \quad q^{-13/19}(q^{-1}t^{-1}+3+qt)
                                                                    \pm 7 q^{5/19}
                                                                   \begin{array}{c} - & q \\ \pm 8 & q^{-2/19}(2q^{-1}t^{-1} + 3 + 2qt) \\ \pm 9 & q^{-15/19} \end{array}
```

Algebraic & Geometric Topology, Volume 8 (2008)

 $H_1(\Sigma_2(K);\mathbb{Z}) \quad \mathfrak{s} \quad \sum_{i,j} \dim_{\mathbb{Z}/2} \widehat{\mathrm{HFK}}_j(\Sigma_2(K), \widetilde{K}, \mathfrak{s}, i; \mathbb{Z}/2) t^i q^j$ K 0 $2q^{-3}t^{-3} + 4q^{-2}t^{-2} + 4q^{-1}t^{-1} + 3 + 4qt + 4q^{2}t^{2} + 2q^{3}t^{3}$ ±1 $q^{8/23}(q^{-1}t^{-1} + 1 + qt)$ 10_{134} $\mathbb{Z}/23$ $\pm 2 \quad q^{9/23}(q^{-2}t^{-2}+q^{-1}t^{-1}+1+qt+q^{2}t^{2})$ $\begin{array}{c} \pm 2 \quad q^{3/2}(q^{-2}t^{-2}+2q^{-1}t^{-1}+3+2qt+q^{2}t^{2}) \\ \pm 3 \quad q^{3/23}(q^{-2}t^{-2}+2q^{-1}t^{-1}+3+2qt+q^{2}t^{2}) \\ \pm 4 \quad q^{-10/23}(q^{-3}t^{-3}+q^{-2}t^{-2}+q+q^{2}t^{2}+q^{3}t^{3}) \end{array}$ $\pm 5 \quad q^{16/23}(q^{-1}t^{-1}+1+qt)$ $\pm 6 \quad q^{12/23}(q^{-1}t^{-1} + 1 + qt)$ $\pm 7 \quad q^{1/23}(q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2})$ $\pm 8 \quad \hat{q}^{29/23}$ $\begin{array}{c} \pm 0 \quad q^{4/23}(q^{-1}t^{-1}+1+qt) \\ \pm 10 \quad q^{18/23}(2q^{-1}t^{-1}+3+2qt) \end{array}$ $\pm 11 \quad q^{25/23}$ $0 \quad 3q^{-2}t^{-2} + 9q^{-1}t^{-1} + 13 + 9qt + 3q^{2}t^{2}$ 10_{135} $\mathbb{Z}/37$ $\pm 1 \quad q^{\hat{1}4/37}$ $\pm 2 q^{-18/37}$ $\begin{array}{c} \pm 2 & q \\ \pm 3 & q^{15/37}(2q^{-1}t^{-1} + 3 + 2qt) \end{array}$ $\pm 4 \quad q^{2/37}$ $\begin{array}{r} \begin{array}{c} \pm 5 \\ \pm 5 \\ \pm 6 \\ q^{-14/37}(q^{-1}t^{-1} \pm 1 + qt) \\ \pm 6 \\ q^{-14/37}(q^{-2}t^{-2} \pm 2q^{-1}t^{-1} \pm 3 \pm 2qt + q^{2}t^{2}) \\ \pm 7 \\ q^{-17/37}(q^{-1}t^{-1} \pm 1 + qt) \end{array}$ $\pm 11 \quad q^{29/37}(q^{-1}t^{-1}+1+qt)$ $\pm 12 q^{18/37}$ $\pm 13 \ q^{-2/37}$ $\pm 14 \quad q^{6/37}(q^{-2}t^{-2} + 2q^{-1}t^{-1} + 3 + 2qt + q^{2}t^{2})$ $\begin{array}{r} \pm 1.7 \quad q \quad (q \quad t \quad \pm 2q \quad t \quad + \\ \pm 15 \quad q^{5/37}(2q^{-1}t^{-1} + 3 + 2qt) \\ \pm 16 \quad q^{-5/37}(q^{-1}t^{-1} + 1 + qt) \end{array}$ $\begin{array}{c} \dots & q \\ \pm 17 \\ \pm 17 \\ q^{13/37}(q^{-1}t^{-1} + 1 + qt) \\ \pm 18 \\ q^{22/37} \end{array}$ $1 \quad q^{-2}t^{-2} + 4q^{-1}t^{-1} + 6 + q + 4qt + q^{2}t^{2}$ 10136 $\mathbb{Z}/15$ $\pm 1 \quad q^{7/15}$ $\pm 2 \quad q^{13/15}(q^{-1}t^{-1}+3+qt)$ $\pm 3 \quad q^{1/5}$ $\pm 4 \quad q^{7/15}$ $\pm 5 \quad q^{2/3}(q^{-1}t^{-1}+1+qt)$ $\pm 6 \quad q^{4/5}(2q^{-1}t^{-1}+3+2qt)$ $\pm 7 \quad q^{13/15}(q^{-1}t^{-1}+3+qt)$ $\begin{array}{ccc} 0 & q^{-4}t^{-4} + q^{-3}t^{-3} + 2qt^{-1} + 3q^2 + 2q^3t + q^3t^3 + q^4t^4 \\ \pm 1 & q^{5/3}(q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^2t^2) \end{array}$ 10139 $\mathbb{Z}/3$ $\mathbb{Z}/9$ $0 \quad q^{-2}t^{-2} + 2q^{-1}t^{-1} + 3 + 2qt + q^{2}t^{2}$ 10_{140} $\pm 1 \quad q^{11/9}(q^{-1}t^{-1}+1+qt)$ $\pm 2 q^{8/9}$ ± 3 1 $\pm 4 \quad q^{5/9}(q^{-1}t^{-1}+1+qt)$ $\begin{array}{rrrr} 0 & q^{-3}t^{-3} + 2q^{-2}t^{-2} + 2q^{-1}t^{-1} + 1 + 2qt + 3q^{2}t^{2} + 2q^{3}t^{3} \\ \pm 1 & q^{1/15}(q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \\ \pm 2 & q^{4/15}(q^{-1}t^{-1} + 1 + qt) \\ \pm 3 & q^{-2/5}(q^{-3}t^{-3} + q^{-2}t^{-2} + q + q^{2}t^{2} + q^{3}t^{3}) \\ \pm 1 & q^{1/15}(q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \\ \pm 4 & q^{2/3}(q^{-1}t^{-1} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \\ \pm 4 & q^{2/3}(q^{-1}t^{-1} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \\ \pm 4 & q^{2/3}(q^{-1}t^{-1} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \\ \end{array}$ 10_{142} $\mathbb{Z}/15$ $\begin{array}{c} \pm 1 & q \\ \pm 6 & q^{2/3}(2q^{-1}t^{-1} + 3 + 2qt) \\ \pm 2 & q^{7/5} \end{array}$ $\pm 2 \quad q^{4/15}(q^{-1}t^{-1}+1+qt)$

Algebraic & Geometric Topology, Volume 8 (2008)

 $H_1(\Sigma_2(K);\mathbb{Z}) \quad \mathfrak{s} \quad \sum_{i,j} \dim_{\mathbb{Z}/2} \widehat{\mathrm{HFK}}_j(\Sigma_2(K), \widetilde{K}, \mathfrak{s}, i; \mathbb{Z}/2) t^i q^j$ K $\begin{array}{ll} 0 & q^{-2}t^{-2} + (q^{-1} + \underline{2q})t^{-1} + \underline{q} + 4q^2 \\ \pm 1 & q^{4/3}(2q^{-1}t^{-1} + 3 + 2qt) \end{array} \\ \end{array}$ 10145 $\mathbb{Z}/3$ $\begin{array}{rrr} 0 & 2q^{-2}t^{-2} + 7q^{-1}t^{-1} + 9 + 7qt + 2q^{2}t^{2} \\ \pm 1 & q^{7/27}(q^{-1}t^{-1} + 3 + qt) \\ \pm 2 & q^{1/27} \\ \end{array}$ 10_{147} $\mathbb{Z}/27$ $\begin{array}{rrr} \pm 3 & q^{3/2}(2q^{-1}t^{-1} \pm 5 \pm 2qt) \\ \pm 4 & q^{4/27}(q^{-2}t^{-2} \pm 3q^{-1}t^{-1} \pm 3 \pm 3qt \pm q^{2}t^{2}) \\ \pm 5 & q^{13/27} \\ \pm 5 & q^{13/27} \end{array}$ $\pm 6 \quad q^{1/3}$ $\begin{array}{c} \pm 0 & q^{19/27}(q^{-1}t^{-1}+3+qt) \\ \pm 7 & q^{19/27}(q^{-1}t^{-1}+3+qt) \\ \pm 8 & q^{16/27}(q^{-1}t^{-1}+1+qt) \end{array}$ $\pm 9 \quad q^{-1}t^{-1} + 1 + qt$ $\pm 10 q^{25/27}$ $\pm 11 \ \dot{q}^{37/27}$ $\pm 12 \ q^{1/3}$ $\frac{1}{\pm 13} \frac{1}{q^{22/27}} (2q^{-1}t^{-1} + 3 + 2qt)$ $\begin{array}{rrrr} 0 & q^{-3}t^{-3} + 4q^{-2}t^{-2} + 10q^{-1}t^{-1} + 15 + 10qt + 4q^{2}t^{2} + q^{3}t^{3} \\ \pm 1 & q^{8/45}(q^{-1}t^{-1} + 3 + qt) \\ \pm 2 & q^{-13/45}(q^{-2}t^{-2} + 3q^{-1}t^{-1} + 3 + 3qt + q^{2}t^{2}) \\ \pm 3 & q^{-2/5} \\ \pm 4 & a^{38/45} \end{array}$ 10158 $\mathbb{Z}/45$ $\pm 4 \quad q^{38/45}$ $\pm 5 \quad q^{4/9}(q^{-1}t^{-1}+3+qt)$ $\pm 6 q^{2/5}$ $\begin{array}{r} \pm 0 \quad q^{-13/45}(q^{-2}t^{-2}+3q^{-1}t^{-1}+3+3qt+q^{2}t^{2}) \\ \pm 8 \quad q^{17/45}(q^{-2}t^{-2}+3q^{-1}t^{-1}+3+3qt+q^{2}t^{2}) \\ \pm 9 \quad q^{2/5}(2q^{-1}t^{-1}+5+2qt) \\ \pm 9 \quad q^{2/5}(2q^{-1}t^{-1}+5+2qt) \end{array}$ $\begin{array}{c} \pm 9 \quad q \quad (2q \quad t \quad \pm 3 \pm 2qt) \\ \pm 10 \quad q^{-2/9}(2q^{-1}t^{-1} \pm 5 \pm 2qt) \\ \pm 11 \quad q^{-22/45} \end{array}$ $\pm 12 q^{-2/5}$ $\pm 13 q^{2/45}$ $\pm 14 q^{38/45}$ $\begin{array}{c} \pm 14 \quad q^{2-1/4} \\ \pm 15 \quad q^{-1}t^{-1} + 3 + qt \\ \pm 16 \quad q^{-22/45} \\ \pm 17 \quad q^{17/45}(q^{-2}t^{-2} + 3q^{-1}t^{-1} + 3 + 3qt + q^{2}t^{2}) \end{array}$ $\pm 18 \ q^{-2/5}$ $\pm 19 \quad q^{8/45}(q^{-1}t^{-1}+3+qt)$ $\begin{array}{c} \pm 19 \quad q \quad (q \quad t \quad + 3 + qt) \\ \pm 20 \quad q^{1/9}(q^{-1}t^{-1} + 1 + qt) \\ \pm 21 \quad q^{2/5} \end{array}$ $\pm 22 \quad \dot{q}^{2/45}$ $\begin{array}{rrr} 0 & q^{-3}t^{-3} + 4q^{-2}t^{-2} + 4q^{-1}t^{-1} + 3 + 4qt + 4q^{2}t^{2} + q^{3}t^{3} \\ \pm 1 & q^{1/21}(q^{-1}t^{-1} + 1 + qt) \\ \pm 2 & q^{4/21}_{-1}(q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \end{array}$ 10_{160} $\mathbb{Z}/21$ $\pm 5 \quad q^{4/21}(q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2})$ $\pm 6 \quad q^{5/7}(2q^{-1}t^{-1} + 3 + 2qt)$ $\pm 7 \quad q^{4/3}$ $\begin{array}{ccc} & q & \cdots & (q^{-1}t^{-1} + 1 + qt) \\ \pm 9 & q^{6/7}(q^{-1}t^{-1} + 3 + qt) \\ \pm 10 & q^{16/21} \end{array}$ $\pm 8 \quad q^{1/21}(q^{-1}t^{-1}+1+qt)$ $0 \quad q^{-3}t^{-3} + (q^{-2} + 1)t^{-2} + 2qt^{-1} + 3q^2 + 2q^3t + (q^2 + q^4)t^2 + q^3t^3$ 10_{161} $\mathbb{Z}/5$ $\begin{array}{r} \pm 1 \quad q^{9/5}(2q^{-1}t^{-1}+3+2qt) \\ \pm 2 \quad q^{6/5}(q^{-2}t^{-2}+q^{-1}t^{-1}+1+qt+q^{2}t^{2}) \end{array}$

Algebraic & Geometric Topology, Volume 8 (2008)

K	$H_1(\Sigma_2(K);\mathbb{Z})$	\$	$\sum_{i,j} \dim_{\mathbb{Z}/2} \widehat{\operatorname{HFK}}_j(\Sigma_2(K), \widetilde{K}, \mathfrak{s}, i; \mathbb{Z}/2) t^i q^j$
10164	ℤ/45	$\begin{array}{c} 0 \\ \pm 1 \\ \pm 2 \\ \pm 3 \\ \pm 4 \\ \pm 5 \\ \pm 6 \\ \pm 7 \\ \pm 8 \\ \pm 9 \\ \pm 10 \\ \pm 111 \\ \pm 12 \\ \pm 13 \\ \pm 14 \\ \pm 15 \\ \pm 16 \\ \pm 17 \\ \pm 18 \\ \pm 19 \\ \pm 22 \end{array}$	$\begin{array}{l} 3q^{-2}t^{-2} + 11q^{-1}t^{-1} + 17 + 11qt + 3q^{2}t^{2} \\ q^{17/45}(q^{-1}t^{-1} + 1 + qt) \\ q^{-22/45} \\ q^{2/45} \\ q^{4/9}(q^{-1}t^{-1} + 3 + qt) \\ q^{-2/5} \\ q^{-2/45} \\ q^{8/45}(q^{-2}t^{-2} + 3q^{-1}t^{-1} + 5 + 3qt + q^{2}t^{2}) \\ q^{-2/5}(q^{-2}t^{-2} + 2q^{-1}t^{-1} + 3 + 2qt + q^{2}t^{2}) \\ q^{-2/9} \\ q^{-13/45}(q^{-1}t^{-1} + 1 + qt) \\ q^{2/5} \\ q^{38/45} \\ q^{2/45} \\ q^{2/45} \\ q^{-13/45}(q^{-1}t^{-1} + 1 + qt) \\ q^{8/45}(q^{-2}t^{-2} + 3q^{-1}t^{-1} + 5 + 3qt + q^{2}t^{2}) \\ q^{2/5} \\ q^{17/45}(q^{-1}t^{-1} + 1 + qt) \\ q^{19}(2q^{-1}t^{-1} + 1 + qt) \\ q^{19}(2q^{-1}t^{-1} + 3 + 2qt) \\ q^{-2/5} \\ q^{38/45} \end{array}$
11 <i>n</i> ₁₂	ℤ/13	$\begin{array}{c} 0 \\ \pm 1 \\ \pm 2 \\ \pm 3 \\ \pm 4 \\ \pm 5 \\ \pm 6 \end{array}$	$ \begin{array}{l} q^{-2}t^{-2} + (\underline{q^{-2}} + 4q^{-1})t^{-1} + \underline{q^{-1}} + 6 + (\underline{1} + 4q)t + q^{2}t^{2} \\ q^{-2/13} \\ q^{-8/13}(q^{-1}t^{-1} + 3 + qt) \\ q^{-18/13} \\ q^{-6/13} \\ q^{-6/13} \\ q^{-11/13}(2q^{-1}t^{-1} + 3 + 2qt) \\ q^{-7/13}(q^{-1}t^{-1} + 1 + qt) \end{array} $
11 <i>n</i> ₁₉	ℤ/5	$\begin{array}{c} 0 \\ \pm 1 \\ \pm 2 \end{array}$	$\begin{array}{l} q^{-3}t^{-3} + 2q^{-2}t^{-2} + (q^{-1} \pm \underline{1})t^{-1} + \underline{q} + (q \pm \underline{q^2})t + 2q^2t^2 + q^3t^3 \\ q^{4/5}(q^{-2}t^{-2} + q^{-1}t^{-1} + 1 \pm qt + q^2t^2) \\ q^{6/5}(q^{-1}t^{-1} + 3 \pm qt) \end{array}$
11 <i>n</i> ₂₀	ℤ/23	$\begin{array}{c} 0 \\ \pm 1 \\ \pm 2 \\ \pm 3 \\ \pm 4 \\ \pm 5 \\ \pm 6 \\ \pm 7 \\ \pm 8 \\ \pm 9 \\ \pm 10 \\ \pm 11 \end{array}$	$\begin{array}{l} 2q^{-2}t^{-2} + 6q^{-1}t^{-1} + 8 + q + 6qt + 2q^{2}t^{2} \\ q^{17/23}(q^{-1}t^{-1} + 3 + qt) \\ q^{-1/23} \\ q^{-8/23}(q^{-2}t^{-2} + 2q^{-1}t^{-1} + 2 + q + 2qt + q^{2}t^{2}) \\ q^{19/23}(2q^{-1}t^{-1} + 5 + 2qt) \\ q^{11/23} \\ q^{14/23}(q^{-1}t^{-1} + 1 + qt) \\ q^{5/23}(q^{-1}t^{-1} + 3 + qt) \\ q^{7/23} \\ q^{20/23}(2q^{-1}t^{-1} + 3 + qt) \\ q^{10/23}(q^{-1}t^{-1} + 1 + qt) \\ q^{10/23}(q^{-1}t^{-1} + 1 + qt) \end{array}$
11 <i>n</i> ₃₈	ℤ/3	$\begin{array}{c} 0 \\ \pm 1 \end{array}$	$ \begin{array}{l} q^{-2}t^{-2} + (2q^{-1} + \underline{1})t^{-1} + \underline{2 + 3q} + (2q + \underline{q^2})t + q^2t^2 \\ q^{4/3}(q^{-1}t^{-1} + 1 + qt) \end{array} $
11 <i>n</i> ₄₉	{0}	0	$q^{-2}t^{-2} + (\underline{4q^{-3}} + 2q^{-1})t^{-1} + \underline{9q^{-2}} + 2 + (4q^{-1} + 2q)t + q^{2}t^{2}$

Algebraic & Geometric Topology, Volume 8 (2008)

1184

 $H_1(\Sigma_2(K);\mathbb{Z})$ \mathfrak{s} $\sum_{i,j} \dim_{\mathbb{Z}/2} \widehat{\mathrm{HFK}}_j(\Sigma_2(K), \widetilde{K}, \mathfrak{s}, i; \mathbb{Z}/2) t^i q^j$ K $\begin{array}{ll} 0 & q^{-3}t^{-3} + 5q^{-2}t^{-2} + 7q^{-1}t^{-1} + 7 + 7qt + 5q^{2}t^{2} + q^{3}t^{3} \\ \pm 1 & q^{-13/33}(q^{-1}t^{-1} + 1 + qt) \end{array}$ 11n₉₅ $\mathbb{Z}/33$ $\pm 2 \quad \hat{q}^{14/33}$ $\begin{array}{rcl} \pm 2 & q^{-1/1} \\ \pm 3 & q^{5/11} (q^{-1}t^{-1} + 1 + qt) \\ \pm 4 & q^{-10/33} (q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \\ \pm 5 & q^{5/33} (2q^{-1}t^{-1} + 3 + 2qt) \\ \pm 6 & q^{-2/11} (q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \\ \pm 6 & q^{-2/11} (q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \end{array}$ $\begin{array}{cccc} \vdots & q & - p & (q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \\ \pm 7 & q^{-10/33}(q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \\ \pm 8 & q^{26/33} \\ \pm 2 & q^{10/33}(q^{-2}t^{-2} + q^{-1}t^{-1} + 1 + qt + q^{2}t^{2}) \end{array}$ $\begin{array}{c} \pm 0 \quad q^{-1/1} \\ \pm 9 \quad q^{1/11}(q^{-1}t^{-1} + 1 + qt) \\ \pm 10 \quad q^{-13/33}(q^{-1}t^{-1} + 1 + qt) \\ \pm 11 \quad q^{1/3}(q^{-1}t^{-1} + 1 + qt) \\ \end{array}$ $\pm 12 \quad q^{3/11}(2q^{-1}t^{-1}+3+2qt)$ $\pm 13 q^{14/33}$ $\pm 14 \ q^{26/33}$ $\pm 15 \quad q^{4/11}(q^{-1}t^{-1}+3+qt)$ $\pm 16 \quad q^{5/33}(2q^{-1}t^{-1}+3+2qt)$ $0 \quad q^{-2}t^{-2} + (5q^{-1} + 2q)t^{-1} + 7 + 4q^2 + (5q + 2q^3)t + q^2t^2$ $11n_{102}$ $\mathbb{Z}/3$ $\pm 1 \quad q^{1/3}(2q^{-1}t^{-1}+5+2qt)$ $0 \quad q^{-2}t^{-2} + (4q^{-3} + 2q^{-1})t^{-1} + 9q^{-2} + 2 + (4q^{-1} + 2q)t + q^{2}t^{2}$ $11n_{116}$ {0} $\begin{array}{rl} 0 & 3q^{-2}t^{-2} + 9q^{-1}t^{-1} + 11 + 9qt + 3q^{2}t^{2} \\ \pm 1 & q^{9/35}(2q^{-1}t^{-1} + 5 + 2qt) \end{array}$ 11*n*₁₁₇ $\mathbb{Z}/35$ $\pm 2 \quad q^{1/35}$ $\pm 3 \quad q^{11/35}(q^{-1}t^{-1}+3+qt)$ $\pm 4 \quad q^{4/35}(q^{-2}t^{-2} + 3q^{-1}t^{-1} + 3 + 3qt + q^{2}t^{2})$ $\begin{array}{c} \pm 7 & q & q & q & 1 \\ \pm 5 & q^{3/7}(q^{-1}t^{-1} + 3 + qt) \\ \pm 6 & q^{9/35}(2q^{-1}t^{-1} + 5 + 2qt) \end{array}$ $\pm 7 \quad q^{-2/5}(q^{-2}t^{-2}+2q^{-1}t^{-1}+2+\underline{q}+2qt+q^{2}t^{2})$ $\pm 8 \quad q^{16/35}(q^{-1}t^{-1}+1+qt)$ $\pm 9 \quad q^{29/35}$ $\begin{array}{c} -\cdots & q & (2q^{-t}t^{-1} + 5 + 2qt) \\ \pm 11 & q^{4/35}(q^{-2}t^{-2} + 3q^{-1}t^{-1} + 3 + 3qt + q^{2}t^{2}) \\ \pm 12 & q^{1/35} \end{array}$ $\pm 13 \quad q^{16/35}(q^{-1}t^{-1} + 1 + qt)$ $\pm 14 q^{7/5}$ $\pm 15 \quad q^{6/7} (2q^{-1}t^{-1} + 3 + 2qt)$ $\pm 16 \quad q^{29/35}$ $\pm 17 \quad q^{11/35}(q^{-1}t^{-1}+3+qt)$ $\begin{array}{cccc} 0 & q^{-3}t^{-3} + 4q^{-2}t^{-2} + 4q^{-1}t^{-1} + 3 + 4qt + 4q^{2}t^{2} + q^{3}t^{3} \\ \pm 1 & q^{5/21}(q^{-1}t^{-1} + 1 + qt) \\ \pm 2 & q^{20/21} \\ \pm 2 & q^{10/21} \end{array}$ $11n_{118}$ $\mathbb{Z}/21$ $\pm 3 \quad q^{1/7}(2q^{-1}t^{-1}+3+2qt)$ $\pm 4 \quad q^{-4/21}(q^{-2}t^{-2}+q^{-1}t^{-1}+1+qt+q^{2}t^{2})$ $\pm 5 q^{20/21}$ $\pm 6 \quad q^{4/7}$ $\begin{array}{rcl} \pm 0 & q^{3/2} \\ \pm 7 & q^{-1/3}(q^{-1}t^{-1}+1+qt) \\ \pm 8 & q^{5/21}(q^{-1}t^{-1}+1+qt) \\ \pm 9 & q^{2/7}(q^{-1}t^{-1}+3+qt) \\ \pm 10 & q^{-4/21}(q^{-2}t^{-2}+q^{-1}t^{-1}+1+qt+q^{2}t^{2}) \end{array}$

 $H_1(\Sigma_2(K);\mathbb{Z}) \quad \mathfrak{s} \quad \sum_{i,j} \dim_{\mathbb{Z}/2} \widehat{\mathrm{HFK}}_j(\Sigma_2(K), \widetilde{K}, \mathfrak{s}, i; \mathbb{Z}/2) t^i q^j$ K $0 \quad 2q^{-2}t^{-2} + 7q^{-1}t^{-1} + 9 + 2qt + 2q^{2}t^{2}$ $\pm 1 \quad q^{13/27}$ $11n_{122}$ $\mathbb{Z}/27$ $\begin{array}{c} \pm 1 & q \\ \pm 2 & q^{-2/27}(2q^{-1}t^{-1}+3+2qt) \\ \pm 3 & q^{1/3}(2q^{-1}t^{-1}+5+2qt) \end{array}$ $\pm 6 \quad q^{1/3}$ $\begin{array}{c} \pm 5 & q \\ \pm 7 & q^{-11/27} \\ \pm 8 & q^{-5/27}(q^{-1}t^{-1} + 3 + qt) \end{array}$ $\begin{array}{r} \pm 8 \quad q \quad 5/2^{-1}(q \quad t \quad 1 + 3 + qt) \\ \pm 9 \quad q^{-1}t^{-1} + 1 + qt \\ \pm 10 \quad q^{-23/27} \\ \pm 11 \quad q^{-20/27}(q^{-2}t^{-2} + 3q^{-1}t^{-1} + 3 + 3qt + q^{2}t^{2}) \end{array}$ $\pm 12 \ q^{1/3}$ $\pm 13 \quad q^{-17/27}(q^{-1}t^{-1}+3+qt)$ $\begin{array}{rrr} 0 & 2q^{-2}t^{-2} + 4q^{-1}t^{-1} + (\underline{q^{-1}} + 4) + 4qt + 2q^{2}t^{2} \\ \pm 1 & q^{-7/15} \\ \pm 2 & q^{-13/15}(\underline{q^{-1}t^{-1} + 3 + qt}) \\ \pm 3 & q^{-1/5}((\underline{q^{-2} + 2q^{-1}})t^{-1} + (q^{-1} + 4) + (1 + 2q)t) \\ \pm 4 & q^{-7/15} \\ \pm 5 & q^{-2/3}(\underline{q^{-2}t^{-2} + 3q^{-1}t^{-1} + 3 + 3qt + q^{2}t^{2}}) \\ + 4 & q^{-7/15} \end{array}$ 11n138 $\mathbb{Z}/15$ $\pm 6 \quad q^{-9/5}$ $\begin{array}{c} -1 & q \\ \pm 7 & q^{-13/15}(q^{-1}t^{-1} + 3 + qt) \end{array}$ $\begin{array}{rr} 0 & 2q^{-1}t^{-1} + 5 + 2qt \\ \pm 1 & q^{-4/9} \\ \pm 2 & q^{-16/9} \end{array}$ 11*n*₁₃₉ $\mathbb{Z}/9$ ± 3 1 $\pm 4 \quad q^{-10/9}(q^{-1}t^{-1}+3+qt)$ $0 \quad 5q^{-1}t^{-1} + 11 + 5qt$ $11n_{141}$ $\mathbb{Z}/21$ ± 1 $q^{-10/21}$ $\begin{array}{c} -1 & q \\ \pm 2 & q^{2/21}(2q^{-1}t^{-1} + 5 + 2qt) \end{array}$ $\pm 3 \quad q^{-2/7}(2q^{-1}t^{-1} + 5 + 2qt)$ $\pm 4 \quad q^{8/21}(q^{-1}t^{-1}+3+qt)$ $\pm 5 \quad q^{2/21}(2q^{-1}t^{-1}+5+2qt)$ $\pm 6 q^{6/7}$ $\pm 7 \quad q^{2/3}(2q^{-1}t^{-1}+5+2qt)$ $\pm 8 \quad q^{-10/21}$ $\pm 9 \quad q^{10/7}$ $\pm 10 \ q^{8/21}(q^{-1}t^{-1}+3+qt)$ $\begin{array}{rr} 0 & q^{-2}t^{-2} + 8q^{-1}t^{-1} + 15 + 8qt + q^{2}t^{2} \\ \pm 1 & q^{2/33}(q^{-1}t^{-1} + 3 + qt) \end{array}$ $11n_{142}$ $\mathbb{Z}/33$ $\begin{array}{rcl} \pm 1 & q^{-r, s, s}(q^{-1}t^{-1} + 3 + qt) \\ \pm 2 & q^{8/33}(2q^{-1}t^{-1} + 5 + 2qt) \\ \pm 3 & q^{6/11}(q^{-1}t^{-1} + 3 + qt) \\ \pm 4 & q^{32/33} \\ \pm 4 & q^{32/33} \end{array}$ $\begin{array}{c} - & q & \frac{3}{3} \\ \pm 6 & q^{2/11} (q^{-1}t^{-1} + 3 + qt) \\ \pm 7 & q^{32/33} \\ \pm \circ & \end{array}$ $\pm 5 q^{-16/33}$ $\pm 8 \quad q^{-4/33}$ $\pm 9 \quad q^{10/11}(q^{-1}t^{-1}+3+qt)$ $\pm 10 \quad q^{2/33}(q^{-1}t^{-1}+3+qt)$ $\pm 11 q^{4/3}$ $\pm 12 q^{8/11}(2q^{-1}t^{-1}+5+2qt)$ $\begin{array}{r} \pm 1.5 \quad q^{\circ/3.5}(2q^{-1}t^{-1}+5+2qt) \\ \pm 14 \quad q^{-4/33} \\ \pm 15 \quad q^{-4/11}(2q^{-1}t^{-1}+5+2qt) \\ \pm 16 \quad q^{-16/33} \end{array}$

Algebraic & Geometric Topology, Volume 8 (2008)

```
H_1(\Sigma_2(K);\mathbb{Z}) s \sum_{i,j} \dim_{\mathbb{Z}/2} \widehat{HFK}_j(\Sigma_2(K), \widetilde{K}, \mathfrak{s}, i; \mathbb{Z}/2) t^i q^j
     K
                                                        \begin{array}{rcl} 0 & q^{-3}t^{-3} + (\underline{q}^{-4} + 3q^{-2})t^{-2} + (2q^{-3} + 3q^{-1})t^{-1} + (\underline{2q^{-2}} + 3) \\ & + (2q^{-1} + 3q)t + (\underline{1} + 3q^{2})t^{2} + q^{3}t^{3} \\ \pm 1 & q^{-10/9}((q^{-1} + 1)t^{-1} + (2+q) + (1+q^{2})t) \\ & + 2 & q^{-4/9} \end{array} 
11n_{143}
                              \mathbb{Z}/9
                                                       \pm 2 \ q^{-4/9}
                                                        \pm 3
                                                        \pm 4 \quad q^{-7/9}(q^{-2}t^{-2}+3q^{-1}t^{-1}+3+3qt+q^{2}t^{2})
11n<sub>145</sub>
                              \mathbb{Z}/9
                                                                  q^{-3}t^{-3} + (2q^{-2} + 1)t^{-2} + (q^{-1} + 4q)t^{-1} + 7q^{2} + (q + 4q^{3})t^{-1}
                                                                  \begin{array}{c} q & t & t & t & t \\ + (2q^2 + t^4)t^2 + q^3t^3 \\ q^{10/9}(q^{-2}t^{-2} + 3q^{-1}t^{-1} + 5 + 3qt + q^2t^2) \end{array}
                                                        \pm 1
                                                        \pm 2 q^{22/9}
                                                        \pm 3 q^2
                                                        \pm 4 \quad q^{16/9}(q^{-2}t^{-2}+3q^{-1}t^{-1}+5+3qt+q^{2}t^{2})
```

6 Observations

Grigsby [7] showed that when $K \subset S^3$ is a two-bridge knot, the Heegaard Floer knot homology of $\tilde{K} \subset \Sigma_2(K)$ in the canonical spin^{*c*} structure is isomorphic as a bigraded $\mathbb{Z}/2$ -vector space to that of $K \subset S^3$: ie, $\widehat{HFK}(\Sigma_2(K), \tilde{K}, \mathfrak{s}_0) \cong \widehat{HFK}(S^3, K)$, up to an overall shift in the Maslov grading. Our results suggest that the same is true for a wider class of knots. Specifically, define the δ -grading on $\widehat{HFK}(Y, K, \mathfrak{s})$ as the difference between the Alexander and Maslov gradings. We say that $\widehat{HFK}(Y, K, \mathfrak{s})$ is *thin* if it is supported in a single δ -grading. We make the following conjecture.

Conjecture 6.1 Let $K \subset S^3$ be a knot for which $\widehat{HFK}(S^3, K)$ is thin. Then

 $\widehat{\mathrm{HFK}}(\Sigma_2(K), \widetilde{K}, \mathfrak{s}_0) \cong \widehat{\mathrm{HFK}}(S^3, K)$

as bigraded groups, up to a possible shift in the absolute Maslov grading.

It is well-known (Ozsváth–Szabó [14] or Rasmussen [17]) that $\widehat{HFK}(S^3, K)$ is thin whenever K is alternating (and hence for all two-bridge knots). More generally, let \mathcal{Q} be the smallest set of link types such that:

- The unknot is in Q.
- Suppose L admits a projection such that the two resolutions at some crossing, L₀ and L₁, are both in Q and satisfy det(L₀) + det(L₁) = det(L). Then L is in Q.

The links in Q are called *quasi-alternating*; for instance, any alternating link is quasialternating. Manolescu and Ozsváth [11] that whenever L is quasi-alternating, both $\widehat{HFK}(S^3, L)$ and the Khovanov homology of L are thin. Conjecture 6.1 would then imply that $\widehat{HFK}(\Sigma_2(K), \widetilde{K}, \mathfrak{s}_0)$ is thin whenever K is quasi-alternating.

Figure 2: To see that the knots 10_{134} (left) and $11n_{117}$ (right) are quasialternating, resolve the marked crossings in the order indicated.

One may also ask under what conditions $\widehat{HFK}(\Sigma_2(K), \widetilde{K}, \mathfrak{s})$ is thin for spin^c structures $\mathfrak{s} \neq \mathfrak{s}_0$. The knots 10_{134} and $11n_{117}$ both satisfy the hypothesis and conclusion of Conjecture 6.1. Indeed, they are both quasi-alternating, as illustrated in Figure 2. However, each one admits a spin^c structure \mathfrak{s} on $\Sigma_2(K)$ in which $\widehat{HFK}(S^2(K), \widetilde{K}, \mathfrak{s})$ is not thin. There are no known examples of alternating knots for which this phenomenon occurs, though.

On the other hand, when $\widehat{HFK}(S^3,K)$ is not thin, the isomorphism between $\widehat{HFK}(S^3,K)$ and $\widehat{HFK}(\Sigma_2(K), \tilde{K}, \mathfrak{s}_0)$ generally fails. A few patterns are worth mentioning. Note that for the knots considered here, in each Alexander grading *i*, the total rank of $\widehat{HFK}(\Sigma_2(K), \tilde{K}, \mathfrak{s}_0, i)$ is at least that of $\widehat{HFK}(S^3, K, i)$, and the two ranks are congruent modulo 2. Some examples in which the ranks fail to be equal are $11n_{49}$, $11n_{102}$, and $11n_{116}$. Even when the total ranks of $\widehat{HFK}(\Sigma_2(K), \tilde{K}, \mathfrak{s}_0, i)$ and $\widehat{HFK}(S^3, K, i)$ are the same for all *i*, the relative Maslov gradings can differ. A common pattern is that the Maslov gradings of all the groups in one δ -grading of $\widehat{HFK}(S^3, K)$ are shifted by a constant amount in $\widehat{HFK}(\Sigma_2(K), \tilde{K}, \mathfrak{s}_0)$, such as with the knots 9_{42} and 10_{161} , where the groups are shifted by 2 and 3, respectively. However, there are also examples where the relative Maslov gradings in different Alexander gradings change in different ways. For example, for 10_{145} , the total ranks of $\widehat{HFK}(S^3, K, i)$ and $\widehat{HFK}(\Sigma_2(K), \tilde{K}, \mathfrak{s}_0, i)$ are the same for each *i*, but $\widehat{HFK}(S^3, K)$ is supported in two δ -gradings while $\widehat{HFK}(\Sigma_2(K), K, \mathfrak{s}_0)$ is supported in three.

Finally, note that the pretzel knots $8_{20} = P(2, 3, -3)$ and $10_{140} = P(4, 3, -3)$ have identical knot Floer homology but can be distinguished by $\widehat{HFK}(\Sigma_2(K), \widetilde{K})$. The relative Maslov gradings between spin^c structures are necessary in this case. For another such example, see Grigsby [7].

References

- JA Baldwin, WD Gillam, Computations of Heegaard Floer knot homology arXiv: math/0610167
- [2] M Culler, Gridlink: a tool for knot theorists www.math.uic.edu/~culler/gridlink/
- [3] R Diestel, Graph theory, third edition, Graduate Texts in Mathematics 173, Springer, Berlin (2005) MR2159259
- [4] R H Fox, A quick trip through knot theory, from: "Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961)", Prentice–Hall, Englewood Cliffs, N.J. (1962) 120–167 MR0140099
- [5] CM Gordon, Some aspects of classical knot theory, from: "Knot theory (Proc. Sem., Plans-sur-Bex, 1977)", Lecture Notes in Math. 685, Springer, Berlin (1978) 1–60 MR521730
- [6] JE Grigsby, Combinatorial description of knot Floer homology of cyclic branched covers arXiv:math/0610238
- JE Grigsby, *Knot Floer homology in cyclic branched covers*, Algebr. Geom. Topol. 6 (2006) 1355–1398 MR2253451
- [8] J Grigsby, D Ruberman, S Strle, Knot concordance and Heegaard Floer homology invariants in branched covers arXiv:math/0701460
- [9] **DA Lee, R Lipshitz**, Covering spaces and Q-gradings on Heegaard Floer homology arXiv:math/0608001
- [10] R Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955–1097 MR2240908
- [11] C Manolescu, P Ozsváth, On the Khovanov and knot Floer homologies of quasialternating links arXiv:math/0708.3249v1
- [12] C Manolescu, P Ozsváth, S Sarkar, A combinatorial description of knot Floer homology arXiv:math/0607691
- [13] C Manolescu, P Ozsváth, Z Szabó, D Thurston, On combinatorial link Floer homology arXiv:math/0610559
- [14] P Ozsváth, Z Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003) 225–254 MR1988285
- [15] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58–116 MR2065507
- [16] P Ozsváth, Z Szabó, Knots with unknotting number one and Heegaard Floer homology, Topology 44 (2005) 705–745 MR2136532
- [17] JA Rasmussen, Floer homology of surgeries on two-bridge knots, Algebr. Geom. Topol. 2 (2002) 757–789 MR1928176

- [18] **JA Rasmussen**, *Floer homology and knot complements*, PhD thesis, Harvard University (2003) arXiv:math/0306378
- [19] D Rolfsen, *Knots and links*, Mathematics Lecture Series 7, Publish or Perish, Houston, TX (1990) MR1277811
- [20] S Sarkar, J Wang, A combinatorial description of some Heegaard Floer homologies arXiv:math/0607777

Department of Mathematics, Columbia University 2990 Broadway, New York, NY 10027, USA

alevine@math.columbia.edu

Received: 9 December 2007 Revised: 4 March 2008