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Computing knot Floer homology
in cyclic branched covers

ADAM SIMON LEVINE

We use grid diagrams to give a combinatorial algorithm for computing the knot Floer
homology of the pullback of a knot K � S3 in its m–fold cyclic branched cover
†m.K/ , and we give computations when m D 2 for over fifty three-bridge knots
with up to eleven crossings.

57R58; 57M12, 57M27

1 Introduction

Heegaard Floer knot homology, developed by Ozsváth and Szabó [15] and independently
by Rasmussen [18], associates to a nulhomologous knot K in a three-manifold Y a
group bHFK.Y;K/ that is an invariant of the knot type of K . If K is a knot in S3 ,
then the inverse image of K in †m.K/, the m–fold cyclic branched cover of S3

branched along K , is a nulhomologous knot zK whose knot type depends only on the
knot type of K , so the group bHFK.†m.K/; zK/ is a knot invariant of K . In this paper,
we describe an algorithm that can compute bHFK.†m.K/; zK/ (with coefficients in
Z=2) for any knot K � S3 , and we give computations for a large collection of knots
with up to eleven crossings.

Any knot K�S3 can be represented by means of a grid diagram, consisting of an n�n

grid in which the centers of certain squares are marked X or O , such that each row and
each column contains exactly one X and one O . To recover a knot projection, draw an
arc from the X to the O in each column and from the O to the X in each row, making
the vertical strand pass over the horizontal strand at each crossing. We may view the
diagram as lying on a standardly embedded torus T 2 � S3 by making the standard
edge identifications; the horizontal grid lines become ˛ circles and the vertical ones ˇ
circles. Manolescu, Ozsváth, and Sarkar [12] showed that such diagrams can be used
to compute bHFK.S3;K/ combinatorially; we shall use them to give a combinatorial
description of the chain complex for bHFK.†m.K/; zK/ for any knot K � S3 .

Let m � 2 and let zT be the surface obtained by gluing together m copies of T

(denoted T0; : : : ;Tm�1 ) along branch cuts connecting the X and the O in each
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Figure 1: Heegaard diagram zDD . zT ; z̨; ž ; zw;zz/ for .†2.K/; zK/ , where K

is the right-handed trefoil. The solid and dashed lines represent different lifts
of the ˛ (horizontal/red) and ˇ (vertical/blue) circles. The black squares and
crosses represent two generators of zC D �CFK. zD/ , and the shaded region is a
disk that contributes to the differential.

column. Specifically, in each column, if the X is above the O , then glue the left side
of the branch cut in Tk to the right side of the same cut in TkC1 (indices modulo
m); if the O is above the X , then glue the left side of the branch cut in Tk to the
right side of the same cut in Tk�1 . The obvious projection � W zT ! T is an m–fold
cyclic branched cover, branched around the marked points. Each ˛ and ˇ circle in
T intersects the branch cuts a total of zero times algebraically and therefore has m

distinct lifts to T , and each lift of each ˛ circle intersects exactly one lift of each ˇ
circle. (We will describe these intersections more explicitly in Section 4.)

Denote by R the set of embedded rectangles in T whose lower and upper edges are
arcs of ˛ circles, whose left and right edges are arcs of ˇ circles, and which do not
contain any marked points in their interior. Each rectangle in R has m distinct lifts to
zT (possibly passing through the branch cuts as in Figure 1); denote the set of such lifts
by zR.

Let S be the set of unordered mn–tuples x of intersection points between the lifts of
˛ and ˇ circles such that each such lift contains exactly one point of x. (We will give
a more explicit characterization of the elements of S later.) Let C be the Z=2–vector
space generated by S . Define a differential @ on C by making the coefficient of y in
z@x nonzero if and only if the following conditions hold.

� All but two of the points in x are also in y.
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� There is a rectangle R 2 zR whose lower-left and upper-right corners are in x,
whose upper-left and lower-right corners are in y, and which does not contain
any X , O , or point of x in its interior.

In Section 4, we shall define two gradings (Alexander and Maslov) on C , as well as a
decomposition of C as a direct sum of complexes corresponding to spinc structures
on †m.K/. We shall prove the following theorem.

Theorem 1.1 The homology of the complex .C; @/ is isomorphic as a bigraded group
to bHFK.†m.K/; zKIZ=2/ ˝ V ˝n�1 , where V Š Z=2 ˚ Z=2 with generators in
bigradings .0; 0/ and .�1;�1/.

In Section 2, we review the construction of knot Floer homology using multi-pointed
Heegaard diagrams. In Section 3, we show how to obtain a Heegaard diagram for
.†m.K/; zK/ given one for .S3;K/, and we apply that discussion to grid diagrams in
Section 4, proving Theorem 1.1. In Section 5, we give the values of bHFK.†m.K/; zK/

for over fifty knots with up to eleven crossings. (Grigsby [6] has shown how to compute
these groups for two-bridge knots, so our tables only include knots that are not two-
bridge.) Finally, we make some observations and conjectures about these results in
Section 6.

Acknowledgments I am grateful to Peter Ozsváth for suggesting this problem, pro-
viding lots of guidance, and reading a draft of this paper, and to John Baldwin, Josh
Greene, Matthew Hedden, Robert Lipshitz, Tom Peters, and especially Eli Grigsby for
many extremely helpful conversations. I would also like to thank the referees for their
suggestions.

2 Review of knot Floer homology

Let us briefly recall the basic construction of knot Floer homology using multiple base-
points (Ozsváth–Szabó [15], Manolescu–Ozsváth–Sarkar [12] and Sarkar–Wang [20]).
For simplicity, we work with coefficients modulo 2. A multi-pointed Heegaard diagram
DD .†;˛;ˇ;w; z/ consists of an oriented surface †; two sets of closed, embedded,
piecewise disjoint curves ˛D f˛1; : : : ; ˛gCn�1g and ˇ D fˇ1; : : : ; ˇgCn�1g (where
g D g.†/ and n� 1), each of which spans a g–dimensional subspace of H1.†IZ/;
and two sets of basepoints, wD fw1; : : : ; wng and zD fz1; : : : ; zng, such that each
component of †�

S
˛i and each component of †�

S
ˇi contains exactly one point

of w and one point of z. We call the components of †�
S
˛i �

S
ˇi regions and

denote them R1; : : : ;RN . The ˛ and ˇ curves specify a Heegaard decomposition
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H˛[†Hˇ for a 3–manifold Y , oriented so that † acquires its orientation as @H˛ . We
obtain a knot or link K by connecting the w (resp. z ) basepoints to the z (resp. w )
basepoints with arcs in the complement of the ˛ (resp. ˇ ) curves and push those arcs
into H˛ (resp. Hˇ ). The orientations are such that K intersects † positively at the z

basepoints and negatively at the w basepoints. In terms of Morse theory, the Heegaard
diagram corresponds to a self-indexing Morse function f on Y with n critical points
of index 0, gC n� 1 of index 1, gC n� 1 of index 2, and n of index 3. Given a
Riemannian metric g , the knot K is given as a union of gradient flowlines connecting
the index 0 and 3 critical points through the w and z basepoints. We shall always
assume that the knot K is nulhomologous.

Let bCFK.D/ be the Z=2–vector space generated by the intersection points between the
.gCn�1/–dimensional tori T˛ D ˛1�� � ��˛gCn�1 and Tˇ D ˇ1�� � ��ˇgCn�1 in
the symmetric product SymgCn�1.†/. The differential @ is defined by taking counts
of holomorphic disks connecting intersection points:

@xD
X

y2T˛\Tˇ

X
�2�2.x;y/j
�.�/D1

nw.�/Dnz.�/D0

#. �M.�//y:

Each homotopy class of Whitney disks � 2 �2.x; y/ has an associated domain in †:
a 2–chain D.�/D

P
aiRi , such that @D is made of arcs of ˛ curves that connect

each point of x to a point of y and arcs of ˇ curves that connect each point of y to a
point of x. Then nw.�/ (resp. nz.�/) is the sum of the multiplicities of the regions
containing points of w (resp. z). The Maslov index �.�/ can be given by formula due
to Lipshitz [10]:

�.�/D e.D/Cpx.D/Cpy.D/;

where e.D/ is the Euler measure of D and px.D/ (resp. py.D/) is the sum, taken
over all points x 2 x (resp. y 2 Y ), of the average of the multiplicities of the four
domains that come together at x (resp. y ). The coefficient of y represents the number
of holomorphic representatives of � and generally depends on the choice of almost
complex structure on †.

Each generator x has an associated spinc structure sw.x/2 Spinc.Y /, obtained by con-
sidering the gradient of a compatible Morse function outside of regular neighborhoods
of flowlines through the points of x and w. Given two generators x and y, let 
x;y be
any 1–cycle obtained by connecting x to y along the ˛ circles and y to x along the ˇ
circles, and let �.x; y/ be its image in

H1.Y /ŠH1.†/=Span.Œ˛i �; Œˇi � j i D 1; : : : ;gC n� 1/:
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Then sw.x/ D sw.y/ if and only if �.x; y/ D 0. The complex bCFK.D/ splits as a
direct sum over s 2 Spinc.Y / of subcomplexes bCFK.D; s/, each generated by those
x 2 T˛ \Tˇ with sw.x/D s.

The restriction of sw.x/ to Y �K extends uniquely to a spinc structure sw;z.x/ on
the zero-surgery Y0.K/. Given a Seifert surface F for K , we define the Alexander
grading of x (relative to F ) as A.x/D 1

2

D
c1.sw;z.x//; Œ�F �E, where �F is an extension

of F to Y0.K/. This quantity is in independent of the choice of F up to an additive
constant, and it is completely well-defined if Y is a rational homology sphere. The
relative Alexander grading between two generators x and y, A.x; y/DA.x/�A.y/,
can also be given as the linking number of 
x;y and K (ie the intersection number
of 
x;y with F ), or by the formula A.x; y/ D nz.D/� nw.D/ when x and y are in
the same spinc structure and D is any domain connecting x to y. The latter formula
shows that the complex bCFK.D/ splits according to Alexander gradings.

When Y is a rational homology sphere, the complex bCFK.D/ admits an absolute
Q–grading, the Maslov grading, which restricts to a relative Z–grading on each
bCFK.D; s/.1 The relative Maslov grading between two generators x and y with

sw.x/ D sw.y/ is given by the integer M.x; y/ D �.D/� 2nw.D/, where D is any
domain connecting x to y. The differential lowers this grading by 1, so the grading
descends to bHFK.Y;K/. The relative Q–grading between generators in different spinc

structures can be computed using a formula of Lipshitz and Lee [9].

Theorem 2.1 ([15; 12; 20]) For a suitable choice of complex structure, the homology
of the complex . bCFK.D/; @/ is isomorphic to bHFK.Y;K/˝ V ˝n�1 , where V Š

Z=2˚Z=2 with generators in bigradings .�1;�1/ and .0; 0/, and bHFK.Y;K/ is an
invariant of the knot type of K � Y .

Call a diagram D nice if every elementary domain that does not contain a basepoint is
either a bigon or a square. According to results of Manolescu–Ozsváth–Sarkar [12]
and Sarkar–Wang [20], the holomorphic disks are easy to describe when D is nice.

Theorem 2.2 Let D be a nice diagram, and let � 2 �2.x; y/ be a Whitney disk in D
with �.�/D 1. Then � admits a holomorphic representative if and only if D.�/ is
either a bigon or a rectangle without any basepoint or point of x in its interior.

It follows that when D is nice, the coefficients # �M.�/ in the boundary map can be
determined from the combinatorics of the diagram, without reference to the choice of
complex structure on †, so bHFK.Y;K/ can be computed algorithmically.

1More generally, such a grading can be defined on bCFK.D; s/ whenever c1.s/ is torsion.
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If K is a knot in S3 , then a grid diagram for K , drawn on a torus as in Section 1,
yields a Heegaard diagram D D .T 2;˛;ˇ;w; z/ for the pair .S3;K/, where the ˛
circles are the horizontal lines of the grid, the ˇ circles are the vertical lines, and
the w and z basepoints are the points marked O and X , respectively. Every region
of this diagram is a rectangle, so bHFK.S3;K/ can be computed combinatorially as
above. Specifically, the generators correspond to permutations of the set f1; : : : ; ng,
and the Alexander and Maslov gradings of each generator can be given by simple
formulae (discussed later). Using this diagram, Baldwin and Gillam [1] have computed
bHFK.S3;K/ for all knots with up to 12 crossings. Additionally, Manolescu, Ozsváth,

Szabó, and Thurston [13] give a self-contained proof that this construction yields a knot
invariant. (See also Sarkar and Wang [20], who show how to obtain good diagrams for
knots in arbitrary 3–manifolds.)

3 Heegaard diagrams for cyclic branched covers of knots

Given a knot K � S3 and an integer m� 2, the cover of S3�K corresponding to the
canonical homeomorphism �1.S

3�K/! Z=m extends to an m–sheeted branched
cover � W †m.K/! S3 , the m–fold cyclic branched cover, whose downstairs branch
locus is K and whose upstairs branch locus is a knot zK � †m.K/. The manifold
†m.K/ can be constructed explicitly from m copies of S3 � int F , where F is a
Seifert surface for K , by connecting the negative side of a bicollar of F in the kth
copy to the positive side in the .kC1/th (indices modulo m). The inverse image of K

in †m.K/ is a knot zK , which is nulhomologous because it bounds a Seifert surface
(any of the lifts of the original Seifert surface F ). This construction does not depend
on the choice of Seifert surface. For details, see Rolfsen [19, chapters 6, 10].

The group of covering transformations of †m.K/!S3 is cyclic of order m, generated
by a map �mW †m.K/!†m.K/ that takes the kth copy of S3�int F to the .kC1/th
(indices modulo m). If 
 is a 1–cycle in S3 , then by using transfer homomorphisms,
we see that for any lift z
 , the equation

(1)
m�1X
kD0

�k
m�.z
 /D 0

holds in H1.†m.K/IZ/. In particular, when mD 2, we have �2�.z
 /D�z
 .

When m is a power of a prime p , the group H1.†m.K/IZ/ is then finite and contains
no pr –torsion for any r (Gordon [5, page 16]). The order of H1.†m.K// is equal toQm�1

jD0 �K .!
j /, where �K is the Alexander polynomial of K , and ! is a primitive

mth root of unity (Fox [4, page 149]). In particular, note that the action of the deck
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transformation group on H1.†m.K/IZ/ has no nonzero fixed points: if �m�.˛/D ˛ ,
then

0D ˛C �m�.˛/C � � �C �
m�1
m� .˛/Dm˛;

by (1), so ˛ D 0.

Let D D .S;˛;ˇ;w; z/ be a multi-pointed Heegaard diagram for K � S3 with genus
g and n basepoint pairs.2 If f W S3!R is a self-indexing Morse function compatible
with D , then zf D f ı� W †m.K/!R is a self-indexing Morse function for the pair
.†m.K/; zK/ whose critical points are simply the inverse images of the critical points
of f . This function induces a Heegaard splitting †m.K/D zH˛ [ zS

zHˇ that projects
onto the Heegaard splitting of S3 . A simple Euler characteristic argument shows that
the genus of the new Heegaard surface zS D��1.S/ is hDmgC.m�1/.n�1/. Each
˛ and ˇ circle in S bounds a disk in S3 �K and hence has m distinct preimages
in †m.K/. Thus, we obtain a Heegaard diagram zD D . zS ; z̨; ž ; zw;zz/, where zS is a
surface of genus h and z̨ , ž , zw, and zz are the inverse images of the corresponding
objects under the covering map.

The generators of the complex bCFK. zD/ may be described as follows.

Lemma 3.1 Any generator x of bCFK. zD/ can be decomposed (non-uniquely) as
xD zx1[ � � � [ zxm , where x1; : : : ; xm are generators of bCFK.D/, and zxi is a lift of xi

to zD .

Proof Given a generator x of bCFK. zD/, let Gx be a graph with vertices denoted
fa1; : : : ; agCn�1; b1; : : : ; bgCn�1g and edges fex j x 2 xg, where ex connects ai

to bj if x is an intersection point between lifts of ˛i and ǰ . This is clearly a
bipartite graph in which each vertex has incidence number m. By König’s Theorem [3,
Proposition 5.3.1], the edges of Gx can be partitioned (non-uniquely) into m perfect
pairings, each of which corresponds to a lift of a generator of bCFK.D/.

Example 3.2 As will be explained in Section 4, the diagram zD in Figure 1 is the
double branched cover of a grid diagram D for the right-handed trefoil in S3 . The
generator x of bCFK. zD/ indicated by the crosses can be decomposed either as lifts
of the generators x1 D .20143/ and x2 D .13240/ or as lifts of x0

1
D .23140/ and

x0
2
D .10243/ (where we identify generators of D with permutations of f0; 1; 2; 3; 4g

as described by Manolescu, Ozsváth, and Sarkar [12]). This provides an example of
the non-uniqueness of decompositions beyond reordering of the xi .

2We denote the Heegaard surface by S rather than † to avoid confusion with the notation †m.K/ .
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Given a generator x0 of bCFK.D/, let L.x0/ denote the generator of bCFK. zD/ con-
sisting of all m lifts of each point of x0 . Using the action of the deck transformation
�m on D , we may write L.x0/D zx0[ �m.zx0/[ � � � [ �

m�1
m .zx0/, where zx0 is any lift

of x0 to zD .

Lemma 3.3 All generators of bCFK. zD/ of the form xDL.x0/ are in the same spinc

structure, denoted s0 and called the canonical spinc structure on †m.K/.

Proof (Adapted from Grigsby [7].) Let x0 and y0 be generators of bCFK.D/; we
shall show that L.x0/ and L.y0/ are in the same spinc structure. Let 
x0;y0

be a
1–cycle joining x0 and y0 as in Section 2, and let z
x0;y0

be a lift of 
x0;y0
to zS . Then

the 1–cycle
z
x0;y0

C �m�.z
x0;y0
/C � � �C �m�1

m� .z
x0;y0
/

connects L.x0/ and L.y0/. Then �.L.x0/;L.y0//D 0 by (1), so L.x0/ and L.y0/

are in the same spinc structure.

Remark 3.4 Note that the spinc structure s0 is fixed under the action of �m . To
see this, if f W S3 ! R is a self-indexing Morse function for .S3;K/, its pullback
zf W †m.K/ ! R is �m –invariant. Using a Riemannian metric on †m.K/ that is

the pullback of a metric on S3 , the gradient Er zf is �m –invariant and projects onto
Erf , and the flowlines for zf are precisely the lifts of flowlines for f . If N is the
union of neighborhoods of flowlines through the points of x0 and w, where x0 is a
generator of bCFK.D/, then zN D ��1.N / is the union of neighborhoods of flowlines
through the points of L.x0/ and zw. By suitably modifying Er zf on zN , we may
obtain a �m –invariant vector field that determines szw.L.x0//D s0 .3 Now, if m is a
prime power, then this property uniquely characterizes s0 , for if s0

0
is another spinc

structure fixed under the action of �m , then the difference between s0 and s0
0

is a
class in H1.†m.K/IZ/ that is fixed by �m and hence equals zero. For more about the
significance of s0 , see Grigsby, Ruberman, and Strle [8].

Proposition 3.5 If xD zx1[ � � � [ zxm as in Lemma 3.1, then the Alexander grading of
x (computed with respect to a lift of a Seifert surface for K ) is equal to the average of
the Alexander gradings of x1; : : : ; xm .4 In particular, for any generator x0 of bCFK.D/,
we have A.x0/DA.L.x0//:

3In general, spinc structures can always be pulled back under a local diffeomorphism using the vector
field interpretation. Specifically, if F W M !N is a local diffeomorphism and � is a nonvanishing vector
field on N that determines a given spinc structure s 2 Spinc.N / , then F�.s/ 2 Spinc.M / is determined
by the vector field .F�/�1.�/ . The first Chern class is natural under this pullback.

4Note that we have specified a Seifert surface in order to define the Alexander grading. When m is a
prime power, however, †m.K/ is a rational homology sphere, so the Alexander grading does not depend
at all on the choice of Seifert surface.
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Proof We first consider the relative Alexander gradings. Let F � S3 be a Seifert sur-
face for K , and let zF be a lift of F to †m.K/. The translates zF ; �m. zF /; : : : ; �

m�1
m . zF /

are all Seifert surfaces for zK . The relative Alexander grading between two generators
does not depend on the choice of Seifert surface, so for generators x; y of bCFK. zD/,
we have

mA.x; y/D 
x;y � zF C 
x;y � �m. zF /C � � �C 
x;y � �
m�1
m . zF /;

where 
x;y is a 1–cycle connecting x and y as above. The projection ��.
x;y/ is a
1–cycle in S that goes from points of �.x/ to points of �.y/ along ˛ circles and from
points of �.y/ to points of �.xx/ along ˇ circles. Every intersection point of 
x;y with
one of the lifts of F corresponds to an intersection point of ��.
x;y/ with F , so


x;y � zF C 
x;y � �m. zF /C � � �C 
x;y � �
m�1
m . zF /D ��.
x;y/ �F:

The restriction of ��.
x;y/ to any ˛ or ˇ circle consists of m (possibly constant or
overlapping) arcs. By perhaps adding copies of the ˛ or ˇ circle, we can arrange that
these arcs connect a point of x1 with a point of y1 , a point of x2 with a point of y2 ,
and so on. In other words,

��.
x;y/� 
x1;y1
C � � �C 
xm;ym

modulo the ˛ and ˇ circles in D , whose intersection numbers with F are zero. We
have:

A.x; y/D
1

m
.
x1;y1

C : : : ;C
xm;ym
/ �F

D
1

m
.A.x1; y1/C � � �CA.xm; ym//:

Thus, the Alexander grading of a generator of bCFK. zD/ is given up to an additive
constant by the average Alexander grading of its parts.

To pin down the additive constant, note that the branched covering map � W †m.K/!

S3 extends to an unbranched covering map from the zero-surgery on zK to the zero-
surgery on K , �0W Y0. zK/!S3

0
.K/. Since this is a local diffeomorphism, it is possible

to pull back spinc structures. Let x0 be a generator of bCFK.D/ in Alexander grading
0, and let xDL.x0/. (The symmetry bHFK.S3;K; i/Š bHFK.S3;K;�i/ and the fact
that rank bHFK.S3;K/� det.K/� 1 .mod 2/ [15] imply that such bHFK.S3;K; 0/

has odd rank, so such a generator x0 always exists.) As in the discussion following
Lemma 3.3, we may find a nonvanishing vector field that determines szw.x/D s0 and is
�m –equivariant. The unique extension (up to isotopy) of this vector field to †m.K/0
can also be made �m –invariant, so it is the pullback of an extension to S3

0
of a vector

field determining sw.x0/. It follows that szw;zz.x/D ��0 .sw;z.x0//. Now, if �zF � Y0. zK/

Algebraic & Geometric Topology, Volume 8 (2008)



1172 Adam Simon Levine

is obtained by capping off zF in the zero-surgery, then �0�Œ
�zF � D Œ�F � in H2.S

0
3
IZ/.

We therefore have:

A.x/D
1

2

D
c1.szw;zz.x//; Œ

�zF �E
D

1

2

D
c1.�

�
0 .sw;z.x0///; Œ

�zF �E
D

1

2

D
c1.sw;z.x0//; �0�Œ

�zF �E
D

1

2

D
c1.sw;z.x0//; Œ�F �E

D 0DA.x0/:

Thus, the additive constant C must equal 0.

Remark 3.6 When K is a two-bridge knot and mD 2, Grigsby [7] shows that for a
specific diagram D , the map L is surjective and preserves the relative Maslov grading.
Therefore, for any two-bridge knot K , bHFK.†2.K/; zK; s0/Š bHFK.S3;K/, up to a
possible shift in the absolute Maslov grading. It may be possible to extend this result
to a wider class of knots, such as alternating knots. However, in general L is neither
surjective nor Maslov-grading-preserving.

Finally, we consider the regions in zD . First, note that the preimage of any region R in
D consists of either m distinct regions, each of which is projected diffeomorphically
onto R, or a single region. (In the former case, we say that R is evenly covered.) In
particular, when D is nice, each region of D that does not contain a basepoint is a
simply-connected polygon that misses the branch set, so it is evenly covered. Thus, we
obtain the following proposition.

Proposition 3.7 Let D be a nice Heegaard diagram for .S3;K/, and let zD be its
m–fold cyclic branched cover. Then zD is nice.

4 Grid diagrams and cyclic branched covers

Proof of Theorem 1.1 As described in Section 1, any oriented knot K � S3 can be
represented by means of a grid diagram. By drawing the grid diagram on a standardly
embedded torus in S3 , we may think of the grid diagram as a genus 1, multi-pointed
Heegaard diagram D D .T 2;˛;ˇ;w; z/ for the pair .S3;K/, where the ˛ circles are
the horizontal lines of the grid, the ˇ circles are the vertical lines, the w basepoints
are in the regions marked O , and the z basepoints are in the regions marked X .
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Note that the diagram D is nice, so the differential can be computed combinatorially as
described in Section 2. Specifically, the coefficient of y in @x is 1 if all but two of the
points of x and y agree and there is a rectangle embedded in the torus with points of x
as its lower-left and upper-right corners, points of y as its lower-right and upper-left
corners, and no basepoints or points of x in its interior, and 0 otherwise. Note that
there cannot be two such rectangles, or else K would be a split link.

A Seifert surface for K may be seen as follows. We may isotope K to lie entirely
within H˛ by letting the arcs of K \Hˇ fall onto the boundary torus. In fact, it
lies within a ball contained in H˛ since the knot projection in the grid diagram never
passes through the left edge of the grid. Take a Seifert surface F contained in this
ball, and then isotope F and K so that K returns to its original position. F then
intersects the Heegaard surface T 2 in n arcs, one connecting the two basepoints in
each column of the grid diagram, and it intersects Hˇ in strips that lie above these arcs.
The orientations of K and S3 imply that the positive side of a bicollar for F lies on
the right of one of these strips when the X is above the O and on the left when the O

is above the X .

If we construct †m.K/ by gluing together m copies of S3 � int F as in Section 3,
the Heegaard surfaces in each copy are connected exactly to each other as described
in Section 1 to form a surface zT . Hence, zD D . zT ; z̨; ž ; zw;zz/ is a Heegaard diagram
for .†m.K/; zK/ for which the results of Section 3 apply. In particular, it is a nice
Heegaard diagram.

It remains to show that the domains that count for the differential in bCFK. zD/ are
precisely the lifts of those that count for the differential in bCFK.D/, as was asserted
in Section 1. Since zD is a nice diagram with no bigons, any domain that counts for
the differential is an embedded rectangle R. The projection of R to D , �.R/, is an
immersed rectangle in zD whose edges are contained in at most two ˛ circles and two
ˇ circles. By lifting �.R/ to the universal cover of T 2 , we see that �.R/ cannot
intersect any ˛ or ˇ circle more than once, or else it would contain an entire column
or row of the grid diagram and hence a basepoint. Therefore, �.R/ is an embedded
rectangle that misses the basepoints, so it counts for the differential of bCFK.D/.

We shall now give a more explicit description of the generators of bCFK. zD/ and their
gradings in order to facilitate computation.

In the grid diagram D , we label the ˛ circles ˛0; : : : ; ˛n�1 from bottom to top and the
ˇ circles ˇ0; : : : ; ˇn�1 from left to right. Each ˛ circle intersects each ˇ circle exactly
once: ˇi \ j̨ D fxij g. Generators of bCFK.D/ then correspond to permutations of
the index set f0; : : : ; n� 1g via the correspondence � 7! .x0;�.0/; : : : ;xn�1;�.n�1//.
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For each grid point x , let w.x/ denote the winding number of the knot projection
around x . Let p1; : : : ;p8n (repetitions allowed) denote the vertices of the 2n squares
containing basepoints, and set

aD
1� n

2
C

1

8

8nX
iD1

w.pi/:

According to Manolescu, Ozsváth, and Sarkar [12], the Alexander grading of a generator
x of bCFK.D/ is given by the formula

(2) A.x/D a�
X
x2x

w.x/:

There is also a formula for the Maslov grading of a generator, but it is not relevant for
our purposes.

The generators of bCFK. zD/ can be described easily as follows. For any i D 0; : : : ; n�1

and j D 0; : : : ; n� 1, each lift of ˇi meets exactly one lift of j̨ . Specifically, let žkj
denote the lift of ǰ on the kth copy of D (for k D 0; : : : ;m� 1). Let z̨k

j denote

the lift of j̨ that intersects the leftmost edge of the kth grid diagram ( žk
0

). Let zxk
i;j

denote the lift of xi;j on the kth diagram. Define a map gW Z=n�Z=n�Z=m!Z=m

by g.i; j ; k/D k �w.xi;j / mod m. The lift of j̨ that meets a particular žki is given
by the following lemma.

Lemma 4.1 The point zxk
i;j is the intersection between žki and z̨g.i;j ;k/

j .

Proof We induct on i . For i D 0, we have w.x0;j / D 0, and by construction z̨k
j

meets žk
0

. For the induction step, let S be the segment of j̨ from xi;j to xiC1;j .
Note that w.xiC1;j / is equal to w.xi;j /C1 if S passes below the X and above the O

in its column, w.xi;j /� 1 if it passes above X and below O , and w.xi;j / otherwise.
Similarly, if zxk

i;j lies on z̨l
j , then by the previous discussion, zxk

iC1;j
lies on z̨l�1

j in

the first case, on z̨lC1
j in the second, and on z̨l

j in the third (upper indices modulo m).
This proves the induction step.

We may then identify the generators of bCFK. zD/ with the set of m–to-one maps

�W f0; : : : ; n� 1g � f0; : : : ;m� 1g ! f0; : : : ; n� 1g

such that for each j D 0; : : : ; n� 1, the function g.�; j ; �/ assumes all m possible
values on ��1.j /. In other words, if we shade the m lifts of each ˛ circle with
different colors as in Figure 1 and arrange the copies of D horizontally, a generator is a
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selection of mn grid points so each column contains one point and each row contains
m points, one of each color. It is not difficult to enumerate such maps algorithmically.

To split up the generators of bCFK. zD/ according to spinc structures, we simply need to
express �.x; y/ in terms of a Z–module presentation for H1.†m.K/IZ/. We obtain
such a presentation from the Heegaard decomposition of †m.K/: the generators ak

j

(0� j � n� 1, 0� k �m� 1) corresponding to the 1–handles dual to the ˛ circles
and relations corresponding to the 2–handles spanned by the ˇ circles. By Lemma 4.1,
the relations are

0D Œ žki �D

nX
jD1

a
g.i;j ;k/
j .0� i � n� 1; 0� k �m� 1/:

To express �.x; y/ in terms of this basis, one simply counts the number of times that a
representative 
x;y crosses the ˛ circles.

To compute the Alexander grading of a generator x, we decompose it as xDzx1[� � �[zxm

using Lemma 3.1 and then use Proposition 3.5 and (2) to write:

A.x/D
1

m
.A.x1/C � � �CA.xm//

D
1

m

mX
kD1

 
a�

X
x2xk

w.x/

!

D a�
1

m

mX
kD1

X
x2zxk

w.�.x//

D a�
1

m

X
x2x

w.�.x//:

Computing the relative Maslov grading between two generators in the same spinc

structure requires finding a domain D connecting them, which is simply a matter
of linear algebra, and then using the formula M.x/ �M.y/ D �.D/ � 2nw.D/.
The relative Maslov grading between generators in different spinc structures can be
computed similarly using the formula of Lee and Lipshitz [9]. Since all the basepoints
in the Heegaard diagrams used in this paper are contained in 4m–gonal regions, it is
not possible to compute the absolute Maslov gradings or the spectral sequence from
bHFK.†2.K/; zK/ to bHF.†2.K// combinatorially. However, when mD 2, the groups
bHF.†2.K//, or at least the correction terms d.†2.K/; s/, can in many instances be
computed via other means (Ozsváth and Szabó [16]). In such cases, it is often possible
to pin down the absolute Maslov gradings for bHFK.†2.K/; zK/. Specifically, the
relative Maslov Q–grading and the action of H1.†2.K// on Spinc.†2.K// usually
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provide enough information to match the groups bHFK.†2.K/; zK; s/ up with the
rational numbers d.†2.K/; s/ that are computed via some other means. If there is a
spinc structure s in which bHFK.†2.K/; zK; s/ has rank 1, then the absolute Maslov
grading of that group equals the corresponding d invariant, and the rest of the absolute
gradings are completely determined.

5 Results

The following tables list the ranks for bHFK.†2.K/; zKIZ=2/ by means of the Poincaré
polynomials:

ps.q; t/D
X
i;j

dimZ=2
bHFKj .†2.K/; zK; s; i IZ=2/t

iqj :

The Maslov Q–gradings are normalized so that in the canonical spinc structure s0 ,
the nonzero elements in Alexander grading g.K/ have Maslov grading g.K/. For
each knot, the first line gives ps0

.q; t/, and each subsequent line gives ps.q; t/ for
a pair of conjugate spinc structures. We identify spinc structures with elements of
H1.†2.K/IZ/, which is either a cyclic group or the sum of two cyclic groups, taking
s0 to 0. (Of course, the choice of basis for H1.†2.K/IZ/ is not canonical.) In each
spinc structure, most of the nonzero groups lie along a single diagonal; the terms
corresponding to the groups not on that diagonal are underlined.

These results were computed using a program written in C++ and Mathematica, based
on Baldwin and Gillam’s program [1] for computing bHFK.S3;K/. Most of the grid
diagrams were obtained using Marc Culler’s program Gridlink [2]. Using available
computer resources, it was possible to compute bHFK.†2.K/; zK/ for all the three-
bridge knots with up to eleven crossings and arc index � 9, and for many knots
with arc index 10. (Grigsby [6] has a much more efficient algorithm for computing
bHFK.†2.K/; zK/ when K is two-bridge, so we do not list those knots here.)

K H1.†2.K /IZ/ s
P

i;j dimZ=2 cHFKj .†2.K /; zK ; s; iIZ=2/t i qj

85 Z=21 0 q�3t�3C3q�2t�2C4q�1t�1C5C4qtC3q2t2Cq3t3

˙1 q5=21.q�2t�2C3q�1t�1C3C3qtCq2t2/

˙2 q20=21

˙3 q8=7

˙4 q17=21.q�1t�1C1Cqt/

˙5 q20=21

˙6 q4=7

˙7 q2=3.q�1t�1C3Cqt/

˙8 q5=21.q�2t�2C3q�1t�1C3C3qtCq2t2/

˙9 q2=7.q�2t�2C2q�1t�1C3C2qtCq2t2/

˙10 q17=21.q�1t�1C1Cqt/
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K H1.†2.K /IZ/ s
P

i;j dimZ=2 cHFKj .†2.K /; zK ; s; iIZ=2/t i qj

810 Z=27 0 q�3t�3C3q�2t�2C6q�1t�1C7C6qtC3q2t2Cq3t3

˙1 q7=27.q�2t�2C3q�1t�1C5C3qtCq2t2/

˙2 q1=27

˙3 q1=3

˙4 q4=27.q�1t�1C1Cqt/

˙5 q13=27

˙6 q1=3

˙7 q�8=27.q�1t�1C1Cqt/

˙8 q�11=27.q�2t�2Cq�1t�1C1CqtCq2t2/

˙9 q�1t�1C1Cqt

˙10 q25=27

˙11 q10=27.2q�1t�1C3C2qt/

˙12 q1=3.q�2t�2C2q�1t�1C3C2qtCq2t2/

˙13 q22=27.q�1t�1C1Cqt/

815 Z=33 0 3q�2t�2C8q�1t�1C11C8qtC3q2t2

˙1 q13=33.2q�1t�1C3C2qt/

˙2 q�14=33.q�2t�2Cq�1t�1C1CqtCq2t2/

˙3 q6=11

˙4 q10=33

˙5 q�5=33.q�1t�1C1Cqt/

˙6 q2=11

˙7 q10=33

˙8 q7=33.q�1t�1C1Cqt/

˙9 q10=11

˙10 q13=33.2q�1t�1C3C2qt/

˙11 q2=3

˙12 q�3=11.q�1t�1C1Cqt/

˙13 q�14=33.q�2t�2Cq�1t�1C1CqtCq2t2/

˙14 q7=33.q�1t�1C1Cqt/

˙15 q�4=11.q�2t�2C2q�1t�1C3C2qtCq2t2/

˙16 q�5=33.q�1t�1C1Cqt/

816 Z=35 0 q�3t�3C4q�2t�2C8q�1t�1C9C8qtC4q2t2Cq3t3

˙1 q16=35.q�1t�1C1Cqt/

˙2 q29=35

˙3 q4=35.q�1t�1C1Cqt/

˙4 q11=35.q�2t�2C3q�1t�1C5C3qtCq2t2/

˙5 q3=7.q�1t�1C3Cqt/

˙6 q16=35.q�1t�1C1Cqt/

˙7 q2=5.2q�1t�1C3C2qt/

˙8 q9=35

˙9 q1=35

˙10 q5=7

˙11 q11=35.q�2t�2C3q�1t�1C5C3qtCq2t2/

˙12 q29=35

˙13 q9=35

˙14 q3=5

˙15 q6=7.q�1t�1C1Cqt/

˙16 q1=35

˙17 q4=35.q�1t�1C1Cqt/
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K H1.†2.K /IZ/ s
P

i;j dimZ=2 cHFKj .†2.K /; zK ; s; iIZ=2/t i qj

817 Z=37 0 q�3t�3C4q�2t�2C8q�1t�1C11C8qtC4q2t2Cq3t3

˙1 q2=37

˙2 q8=37.q�1t�1C3Cqt/

˙3 q18=37

˙4 q�5=37.q�1t�1C1Cqt/

˙5 q13=37.q�2t�2C3q�1t�1C3C3qtCq2t2/

˙6 q�2=37

˙7 q�13=37.q�2t�2C3q�1t�1C3C3qtCq2t2/

˙8 q17=37.q�1t�1C1Cqt/

˙9 q14=37

˙10 q�22=37

˙11 q�17=37.q�1t�1C1Cqt/

˙12 q�8=37.q�1t�1C3Cqt/

˙13 q5=37.q�1t�1C1Cqt/

˙14 q22=37

˙15 q6=37

˙16 q�6=37

˙17 q�14=37

˙18 q�18=37

818 Z=3˚Z=15 .0;0/ q�3t�3C5q�2t�2C10q�1t�1C13C10qtC5q2t2Cq3t3

˙.0;1/ q7=15.q�1t�1C1Cqt/

˙.0;2/ q�2=15

˙.0;3/ q1=5.q�1t�1C1Cqt/

˙.0;4/ q7=15.q�1t�1C1Cqt/

˙.0;5/ q�2=3

˙.0;6/ q�1=5.q�1t�1C1Cqt/

˙.0;7/ q�2=15

˙.1;0/ q�2=3

˙.1;1/ q7=15.q�1t�1C1Cqt/

˙.1;2/ q�7=15.q�1t�1C1Cqt/

˙.1;3/ q�7=15.q�1t�1C1Cqt/

˙.1;4/ q7=15.q�1t�1C1Cqt/

˙.1;5/ q�2=3

˙.1;6/ q2=15

˙.1;7/ q�2=15

˙.1;8/ q�7=15.q�1t�1C1Cqt/

˙.1;9/ q2=15

˙.1;10/ q2=3

˙.1;11/ q2=15

˙.1;12/ q�7=15.q�1t�1C1Cqt/

˙.1;13/ q�2=15

˙.1;14/ q2=15

819 Z=3 0 q�3t�3Cq�2t�2CqCq2t2Cq3t3

˙1 q2=3.q�1t�1C1Cqt/

820 Z=9 0 q�2t�2C2q�1t�1C3C2qtCq2t2

˙1 q7=9.q�1t�1C1Cqt/

˙2 q1=9.q�1t�1C1Cqt/
˙3 1

˙4 q4=9

Algebraic & Geometric Topology, Volume 8 (2008)



Knot Floer homology in cyclic branched covers 1179

K H1.†2.K /IZ/ s
P

i;j dimZ=2 cHFKj .†2.K /; zK ; s; iIZ=2/t i qj

821 Z=15 1 q�2t�2C4q�1t�1C5C4qtCq2t2

˙1 q�2=15.q�1t�1C1Cqt/

˙2 q7=15

˙3 q�1=5.q�1t�1C3Cqt/

˙4 q�2=15.q�1t�1C1Cqt/

˙5 q�1=3

˙6 q1=5

˙7 q7=15

942 Z=7 0 q�2t�2C2q�1t�1C2CqC2qtCq2t2

˙1 q3=7

˙2 q5=7.q�1t�1C3Cqt/

˙3 q6=7.q�1t�1C1Cqt/

943 Z=13 0 q�3t�3C3q�2t�2C2q�1t�1C1C2qtC3q2t2Cq3t3

˙1 q10=13.q�1t�1C3Cqt/

˙2 q1=13.q�1t�1C1Cqt/

˙3 q12=13

˙4 q4=13.q�2t�2Cq�1t�1C1CqtCq2t2/

˙5 q16=13

˙6 q9=13.q�1t�1C1Cqt/

944 Z=17 0 q�2t�2C4q�1t�1C7C4qtCq2t2

˙1 q�8=17

˙2 q�15=17.q�1t�1C1Cqt/

˙3 q�4=17

˙4 q8=17

˙5 q4=17

˙6 q�16=17

˙7 q�1=17.q�1t�1C1Cqt/

˙8 q�2=17.q�1t�1C3Cqt/

945 Z=23 0 q�2t�2C6q�1t�1C9C6qtCq2t2

˙1 q�8=23.2q�1t�1C3C2qt/

˙2 q�9=23

˙3 q�3=23.q�1t�1C3Cqt/

˙4 q�13=23

˙5 q7=23

˙6 q11=23

˙7 q�1=23

˙8 q�6=23.q�1t�1C1Cqt/

˙9 q�4=23.2q�1t�1C3C2qt/

˙10 q�18=23.q�1t�1C1Cqt/

˙11 q�2=23.q�1t�1C1Cqt/

946 Z=3˚Z=3 .0;0/ 2q�1t�1C5C2qt

˙.0;1/ q�2=3.q�1t�1C3Cqt/
˙.1;0/ 1
˙.1;1/ 1

˙.1;2/ q�4=3
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K H1.†2.K /IZ/ s
P

i;j dimZ=2 cHFKj .†2.K /; zK ; s; iIZ=2/t i qj

947 Z=3˚Z=9 .0;0/ q�3t�3C4q�2t�2C6q�1t�1C5C6qtC4q2t2Cq3t3

˙.0;1/ q�1=9.q�1t�1C3Cqt/

˙.0;2/ q�4=9.q�1t�1C1Cqt/

˙.0;3/ q�1t�1C1Cqt

˙.0;4/ q�7=9

˙.1;0/ q�1=3

˙.1;1/ q�1=9.q�1t�1C3Cqt/

˙.1;2/ q�1=9.q�1t�1C3Cqt/

˙.1;3/ q�1=3

˙.1;4/ q�7=9

˙.1;5/ q�4=9.q�1t�1C1Cqt/

˙.1;6/ q�1=3

˙.1;7/ q�4=9.q�1t�1C1Cqt/

˙.1;8/ q�7=9

948 Z=3˚Z=9 .0;0/ q�2t�2C7q�1t�1C11C7qtCq2t2

˙.0;1/ q�4=9.q�1t�1C1Cqt/

˙.0;2/ q2=9.2q�1t�1C3C2qt/

˙.0;3/ q�1t�1C1Cqt

˙.0;4/ q�1=9

˙.1;0/ q1=3

˙.1;1/ q2=9.2q�1t�1C3C2qt/

˙.1;2/ q2=9.2q�1t�1C3C2qt/

˙.1;3/ q1=3

˙.1;4/ q�4=9.q�1t�1C1Cqt/

˙.1;5/ q�1=9

˙.1;6/ q1=3

˙.1;7/ q�1=9

˙.1;8/ q�4=9.q�1t�1C1Cqt/

949 Z=5˚Z=5 .0;0/ 3q�2t�2C6q�1t�1C7C6qtC3q2t2

˙.0;1/ q�2=5.q�2t�2Cq�1t�1C1CqtCq2t2/

˙.0;2/ q2=5

˙.1;0/ q�2=5.q�2t�2Cq�1t�1C1CqtCq2t2/

˙.1;1/ q�1=5.q�1t�1C1Cqt/

˙.1;2/ q1=5.2q�1t�1C3C2qt/

˙.1;3/ q1=5.2q�1t�1C3C2qt/

˙.1;4/ q�2=5.q�2t�2Cq�1t�1C1CqtCq2t2/

˙.2;0/ q2=5

˙.2;1/ q1=5.2q�1t�1C3C2qt/

˙.2;2/ q�1=5.q�1t�1C1Cqt/

˙.2;3/ q2=5

˙.2;4/ q�1=5.q�1t�1C1Cqt/

10124 f0g 0 q�4t�4Cq�3t�3C t�1CqCq2tCq3t3Cq4t4

10128 Z=11 0 2q�3t�3C3q�2t�2Cq�1t�1CqCqtC3q2t2C2q3t3

˙1 q8=11.2q�1t�1C3C2qt/

˙2 q10=11.q�1t�1C1Cqt/

˙3 q6=11.q�1t�1C1Cqt/

˙4 q�4=11.q�2t�2Cq�1t�1CqCqtCq2t2/

˙5 q2=11.q�1t�1C1Cqt/
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K H1.†2.K /IZ/ s
P

i;j dimZ=2 cHFKj .†2.K /; zK ; s; iIZ=2/t i qj

10129 Z=25 0 2q�2t�2C6q�1t�1C9C6qtC2q2t2

˙1 q�8=25.q�2t�2C2q�1t�1C3C2qtCq2t2/

˙2 q�7=25.q�1t�1C1Cqt/

˙3 q3=25.2q�1t�1C3C2qt/

˙4 q�3=25.q�1t�1C1Cqt/
˙5 1

˙6 q12=25

˙7 q8=25

˙8 q�12=25

˙9 q2=25.q�1t�1C3Cqt/
˙10 1

˙11 q7=25.q�1t�1C1Cqt/

˙12 q23=25.q�1t�1C1Cqt/

10130 Z=17 0 2q�2t�2C4q�1t�1C5C4qtC2q2t2

˙1 q4=17.q�2t�2C2q�1t�1C3C2qtCq2t2/

˙2 q16=17

˙3 q19=17.q�1t�1C1Cqt/

˙4 q13=17.2q�1t�1C3C2qt/

˙5 q15=17.q�1t�1C1Cqt/

˙6 q8=17

˙7 q9=17.q�1t�1C1Cqt/

˙8 q1=17.q�1t�1C1Cqt/

10131 Z=31 0 2q�2t�2C8q�1t�1C11C8qtC2q2t2

˙1 q�18=31.q�1t�1C1Cqt/

˙2 q�10=31.q�1t�1C1Cqt/

˙3 q�7=31.q�1t�1C3Cqt/

˙4 q�9=31

˙5 q15=31

˙6 q3=31

˙7 q�14=31.q�1t�1C1Cqt/

˙8 q�5=31.2q�1t�1C5C2qt/

˙9 q�1=31

˙10 q�2=31.q�1t�1C1Cqt/

˙11 q�8=31.q�2t�2C4q�1t�1C5C4qtCq2t2/

˙12 q�19=31.q�1t�1C3Cqt/

˙13 q�4=31.2q�1t�1C3C2qt/

˙14 q�25=31

˙15 q11=31

10132 Z=5 0 q�2t�2C .2q�1C1/t�1C .2Cq/C .2qCq2/tCq2t2

˙1 q2=5

˙2 q3=5.q�1t�1C1Cqt/

10133 Z=19 0 q�2t�2C5q�1t�1C7C5qtCq2t2

˙1 q�3=19

˙2 q�12=19.q�1t�1C1Cqt/

˙3 q�8=19.q�1t�1C1Cqt/

˙4 q9=19

˙5 q1=19

˙6 q�13=19.q�1t�1C3Cqt/

˙7 q5=19

˙8 q�2=19.2q�1t�1C3C2qt/

˙9 q�15=19
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K H1.†2.K /IZ/ s
P

i;j dimZ=2 cHFKj .†2.K /; zK ; s; iIZ=2/t i qj

10134 Z=23 0 2q�3t�3C4q�2t�2C4q�1t�1C3C4qtC4q2t2C2q3t3

˙1 q8=23.q�1t�1C1Cqt/

˙2 q9=23.q�2t�2Cq�1t�1C1CqtCq2t2/

˙3 q3=23.q�2t�2C2q�1t�1C3C2qtCq2t2/

˙4 q�10=23.q�3t�3Cq�2t�2CqCq2t2Cq3t3/

˙5 q16=23.q�1t�1C1Cqt/

˙6 q12=23.q�1t�1C1Cqt/

˙7 q1=23.q�2t�2Cq�1t�1C1CqtCq2t2/

˙8 q29=23

˙9 q4=23.q�1t�1C1Cqt/

˙10 q18=23.2q�1t�1C3C2qt/

˙11 q25=23

10135 Z=37 0 3q�2t�2C9q�1t�1C13C9qtC3q2t2

˙1 q14=37

˙2 q�18=37

˙3 q15=37.2q�1t�1C3C2qt/

˙4 q2=37

˙5 q17=37.q�1t�1C1Cqt/

˙6 q�14=37.q�2t�2C2q�1t�1C3C2qtCq2t2/

˙7 q�17=37.q�1t�1C1Cqt/

˙8 q8=37.q�2t�2C3q�1t�1C5C3qtCq2t2/

˙9 q�13=37.q�1t�1C1Cqt/

˙10 q�6=37

˙11 q29=37.q�1t�1C1Cqt/

˙12 q18=37

˙13 q�2=37

˙14 q6=37.q�2t�2C2q�1t�1C3C2qtCq2t2/

˙15 q5=37.2q�1t�1C3C2qt/

˙16 q�5=37.q�1t�1C1Cqt/

˙17 q13=37.q�1t�1C1Cqt/

˙18 q22=37

10136 Z=15 1 q�2t�2C4q�1t�1C6CqC4qtCq2t2

˙1 q7=15

˙2 q13=15.q�1t�1C3Cqt/

˙3 q1=5

˙4 q7=15

˙5 q2=3.q�1t�1C1Cqt/

˙6 q4=5.2q�1t�1C3C2qt/

˙7 q13=15.q�1t�1C3Cqt/

10139 Z=3 0 q�4t�4Cq�3t�3C2qt�1C3q2C2q3tCq3t3Cq4t4

˙1 q5=3.q�2t�2Cq�1t�1C1CqtCq2t2/

10140 Z=9 0 q�2t�2C2q�1t�1C3C2qtCq2t2

˙1 q11=9.q�1t�1C1Cqt/

˙2 q8=9

˙3 1

˙4 q5=9.q�1t�1C1Cqt/

10142 Z=15 0 q�3t�3C2q�2t�2C2q�1t�1C1C2qtC3q2t2C2q3t3

˙1 q1=15.q�2t�2Cq�1t�1C1CqtCq2t2/

˙2 q4=15.q�1t�1C1Cqt/

˙3 q�2=5.q�3t�3Cq�2t�2CqCq2t2Cq3t3/

˙1 q1=15.q�2t�2Cq�1t�1C1CqtCq2t2/

˙6 q2=3.2q�1t�1C3C2qt/

˙2 q7=5

˙2 q4=15.q�1t�1C1Cqt/
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10145 Z=3 0 q�2t�2C .q�1C2q/t�1CqC4q2C .qC2q3/tCq2t2

˙1 q4=3.2q�1t�1C3C2qt/

10147 Z=27 0 2q�2t�2C7q�1t�1C9C7qtC2q2t2

˙1 q7=27.q�1t�1C3Cqt/

˙2 q1=27

˙3 q1=3.2q�1t�1C5C2qt/

˙4 q4=27.q�2t�2C3q�1t�1C3C3qtCq2t2/

˙5 q13=27

˙6 q1=3

˙7 q19=27.q�1t�1C3Cqt/

˙8 q16=27.q�1t�1C1Cqt/

˙9 q�1t�1C1Cqt

˙10 q25=27

˙11 q37=27

˙12 q1=3

˙13 q22=27.2q�1t�1C3C2qt/

10158 Z=45 0 q�3t�3C4q�2t�2C10q�1t�1C15C10qtC4q2t2Cq3t3

˙1 q8=45.q�1t�1C3Cqt/

˙2 q�13=45.q�2t�2C3q�1t�1C3C3qtCq2t2/

˙3 q�2=5

˙4 q38=45

˙5 q4=9.q�1t�1C3Cqt/

˙6 q2=5

˙7 q�13=45.q�2t�2C3q�1t�1C3C3qtCq2t2/

˙8 q17=45.q�2t�2C3q�1t�1C3C3qtCq2t2/

˙9 q2=5.2q�1t�1C5C2qt/

˙10 q�2=9.2q�1t�1C5C2qt/

˙11 q�22=45

˙12 q�2=5

˙13 q2=45

˙14 q38=45

˙15 q�1t�1C3Cqt

˙16 q�22=45

˙17 q17=45.q�2t�2C3q�1t�1C3C3qtCq2t2/

˙18 q�2=5

˙19 q8=45.q�1t�1C3Cqt/

˙20 q1=9.q�1t�1C1Cqt/

˙21 q2=5

˙22 q2=45

10160 Z=21 0 q�3t�3C4q�2t�2C4q�1t�1C3C4qtC4q2t2Cq3t3

˙1 q1=21.q�1t�1C1Cqt/

˙2 q4=21.q�2t�2Cq�1t�1C1CqtCq2t2/

˙3 q3=7.q�1t�1C1Cqt/

˙4 q16=21

˙5 q4=21.q�2t�2Cq�1t�1C1CqtCq2t2/

˙6 q5=7.2q�1t�1C3C2qt/

˙7 q4=3

˙8 q1=21.q�1t�1C1Cqt/

˙9 q6=7.q�1t�1C3Cqt/

˙10 q16=21

10161 Z=5 0 q�3t�3C .q�2C1/t�2C2qt�1C3q2C2q3tC .q2Cq4/t2Cq3t3

˙1 q9=5.2q�1t�1C3C2qt/

˙2 q6=5.q�2t�2Cq�1t�1C1CqtCq2t2/
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K H1.†2.K /IZ/ s
P

i;j dimZ=2 cHFKj .†2.K /; zK ; s; iIZ=2/t i qj

10164 Z=45 0 3q�2t�2C11q�1t�1C17C11qtC3q2t2

˙1 q17=45.q�1t�1C1Cqt/

˙2 q�22=45

˙3 q2=5

˙4 q2=45

˙5 q4=9.q�1t�1C3Cqt/

˙6 q�2=5

˙7 q�2=45

˙8 q8=45.q�2t�2C3q�1t�1C5C3qtCq2t2/

˙9 q�2=5.q�2t�2C2q�1t�1C3C2qtCq2t2/

˙10 q�2=9

˙11 q�13=45.q�1t�1C1Cqt/

˙12 q2=5

˙13 q38=45

˙14 q2=45

˙15 q�1t�1C3Cqt

˙16 q�13=45.q�1t�1C1Cqt/

˙17 q8=45.q�2t�2C3q�1t�1C5C3qtCq2t2/

˙18 q2=5

˙19 q17=45.q�1t�1C1Cqt/

˙20 q1=9.2q�1t�1C3C2qt/

˙21 q�2=5

˙22 q38=45

11n12 Z=13 0 q�2t�2C .q�2C4q�1/t�1Cq�1C6C .1C4q/tCq2t2

˙1 q�2=13

˙2 q�8=13.q�1t�1C3Cqt/

˙3 q�18=13

˙4 q�6=13

˙5 q�11=13.2q�1t�1C3C2qt/

˙6 q�7=13.q�1t�1C1Cqt/

11n19 Z=5 0 q�3t�3C2q�2t�2C .q�1C1/t�1CqC .qCq2/tC2q2t2Cq3t3

˙1 q4=5.q�2t�2Cq�1t�1C1CqtCq2t2/

˙2 q6=5.q�1t�1C3Cqt/

11n20 Z=23 0 2q�2t�2C6q�1t�1C8CqC6qtC2q2t2

˙1 q17=23.q�1t�1C3Cqt/

˙2 q�1=23

˙3 q�8=23.q�2t�2C2q�1t�1C2CqC2qtCq2t2/

˙4 q19=23.2q�1t�1C5C2qt/

˙5 q11=23

˙6 q14=23.q�1t�1C1Cqt/

˙7 q5=23.q�1t�1C3Cqt/

˙8 q7=23

˙9 q20=23.2q�1t�1C3C2qt/

˙10 q21=23.q�1t�1C3Cqt/

˙11 q10=23.q�1t�1C1Cqt/

11n38 Z=3 0 q�2t�2C .2q�1C1/t�1C2C3qC .2qCq2/tCq2t2

˙1 q4=3.q�1t�1C1Cqt/

11n49 f0g 0 q�2t�2C .4q�3C2q�1/t�1C9q�2C2C .4q�1C2q/tCq2t2
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K H1.†2.K /IZ/ s
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11n95 Z=33 0 q�3t�3C5q�2t�2C7q�1t�1C7C7qtC5q2t2Cq3t3

˙1 q�13=33.q�1t�1C1Cqt/

˙2 q14=33

˙3 q5=11.q�1t�1C1Cqt/

˙4 q�10=33.q�2t�2Cq�1t�1C1CqtCq2t2/

˙5 q5=33.2q�1t�1C3C2qt/

˙6 q�2=11.q�2t�2Cq�1t�1C1CqtCq2t2/

˙7 q�10=33.q�2t�2Cq�1t�1C1CqtCq2t2/

˙8 q26=33

˙9 q1=11.q�1t�1C1Cqt/

˙10 q�13=33.q�1t�1C1Cqt/

˙11 q1=3.q�1t�1C1Cqt/

˙12 q3=11.2q�1t�1C3C2qt/

˙13 q14=33

˙14 q26=33

˙15 q4=11.q�1t�1C3Cqt/

˙16 q5=33.2q�1t�1C3C2qt/

11n102 Z=3 0 q�2t�2C .5q�1C2q/t�1C7C4q2C .5qC2q3/tCq2t2

˙1 q1=3.2q�1t�1C5C2qt/

11n116 f0g 0 q�2t�2C .4q�3C2q�1/t�1C9q�2C2C .4q�1C2q/tCq2t2

11n117 Z=35 0 3q�2t�2C9q�1t�1C11C9qtC3q2t2

˙1 q9=35.2q�1t�1C5C2qt/

˙2 q1=35

˙3 q11=35.q�1t�1C3Cqt/

˙4 q4=35.q�2t�2C3q�1t�1C3C3qtCq2t2/

˙5 q3=7.q�1t�1C3Cqt/

˙6 q9=35.2q�1t�1C5C2qt/

˙7 q�2=5.q�2t�2C2q�1t�1C2CqC2qtCq2t2/

˙8 q16=35.q�1t�1C1Cqt/

˙9 q29=35

˙10 q5=7.2q�1t�1C5C2qt/

˙11 q4=35.q�2t�2C3q�1t�1C3C3qtCq2t2/

˙12 q1=35

˙13 q16=35.q�1t�1C1Cqt/

˙14 q7=5

˙15 q6=7.2q�1t�1C3C2qt/

˙16 q29=35

˙17 q11=35.q�1t�1C3Cqt/

11n118 Z=21 0 q�3t�3C4q�2t�2C4q�1t�1C3C4qtC4q2t2Cq3t3

˙1 q5=21.q�1t�1C1Cqt/

˙2 q20=21

˙3 q1=7.2q�1t�1C3C2qt/

˙4 q�4=21.q�2t�2Cq�1t�1C1CqtCq2t2/

˙5 q20=21

˙6 q4=7

˙7 q�1=3.q�1t�1C1Cqt/

˙8 q5=21.q�1t�1C1Cqt/

˙9 q2=7.q�1t�1C3Cqt/

˙10 q�4=21.q�2t�2Cq�1t�1C1CqtCq2t2/
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K H1.†2.K /IZ/ s
P

i;j dimZ=2 cHFKj .†2.K /; zK ; s; iIZ=2/t i qj

11n122 Z=27 0 2q�2t�2C7q�1t�1C9C2qtC2q2t2

˙1 q13=27

˙2 q�2=27.2q�1t�1C3C2qt/

˙3 q1=3.2q�1t�1C5C2qt/

˙4 q�8=27.q�1t�1C1Cqt/

˙5 q1=27

˙6 q1=3

˙7 q�11=27

˙8 q�5=27.q�1t�1C3Cqt/

˙9 q�1t�1C1Cqt

˙10 q�23=27

˙11 q�20=27.q�2t�2C3q�1t�1C3C3qtCq2t2/

˙12 q1=3

˙13 q�17=27.q�1t�1C3Cqt/

11n138 Z=15 0 2q�2t�2C4q�1t�1C .q�1C4/C4qtC2q2t2

˙1 q�7=15

˙2 q�13=15.q�1t�1C3Cqt/

˙3 q�1=5..q�2C2q�1/t�1C .q�1C4/C .1C2q/t/

˙4 q�7=15

˙5 q�2=3.q�2t�2C3q�1t�1C3C3qtCq2t2/

˙6 q�9=5

˙7 q�13=15.q�1t�1C3Cqt/

11n139 Z=9 0 2q�1t�1C5C2qt

˙1 q�4=9

˙2 q�16=9

˙3 1

˙4 q�10=9.q�1t�1C3Cqt/

11n141 Z=21 0 5q�1t�1C11C5qt

˙1 q�10=21

˙2 q2=21.2q�1t�1C5C2qt/

˙3 q�2=7.2q�1t�1C5C2qt/

˙4 q8=21.q�1t�1C3Cqt/

˙5 q2=21.2q�1t�1C5C2qt/

˙6 q6=7

˙7 q2=3.2q�1t�1C5C2qt/

˙8 q�10=21

˙9 q10=7

˙10 q8=21.q�1t�1C3Cqt/

11n142 Z=33 0 q�2t�2C8q�1t�1C15C8qtCq2t2

˙1 q2=33.q�1t�1C3Cqt/

˙2 q8=33.2q�1t�1C5C2qt/

˙3 q6=11.q�1t�1C3Cqt/

˙4 q32=33

˙5 q�16=33

˙6 q2=11.q�1t�1C3Cqt/

˙7 q32=33

˙8 q�4=33

˙9 q10=11.q�1t�1C3Cqt/

˙10 q2=33.q�1t�1C3Cqt/

˙11 q4=3

˙12 q8=11.2q�1t�1C5C2qt/

˙13 q8=33.2q�1t�1C5C2qt/

˙14 q�4=33

˙15 q�4=11.2q�1t�1C5C2qt/

˙16 q�16=33
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11n143 Z=9 0 q�3t�3C .q�4C3q�2/t�2C .2q�3C3q�1/t�1C .2q�2C3/

C.2q�1C3q/tC .1C3q2/t2Cq3t3

˙1 q�10=9..q�1C1/t�1C .2Cq/C .1Cq2/t/

˙2 q�4=9

˙3 1

˙4 q�7=9.q�2t�2C3q�1t�1C3C3qtCq2t2/

11n145 Z=9 0 q�3t�3C .2q�2C1/t�2C .q�1C4q/t�1C7q2C .qC4q3/t

C.2q2C t4/t2Cq3t3

˙1 q10=9.q�2t�2C3q�1t�1C5C3qtCq2t2/

˙2 q22=9

˙3 q2

˙4 q16=9.q�2t�2C3q�1t�1C5C3qtCq2t2/

6 Observations

Grigsby [7] showed that when K � S3 is a two-bridge knot, the Heegaard Floer knot
homology of zK �†2.K/ in the canonical spinc structure is isomorphic as a bigraded
Z=2–vector space to that of K � S3 : ie, bHFK.†2.K/; zK; s0/ Š bHFK.S3;K/, up
to an overall shift in the Maslov grading. Our results suggest that the same is true
for a wider class of knots. Specifically, define the ı–grading on bHFK.Y;K; s/ as the
difference between the Alexander and Maslov gradings. We say that bHFK.Y;K; s/ is
thin if it is supported in a single ı–grading. We make the following conjecture.

Conjecture 6.1 Let K � S3 be a knot for which bHFK.S3;K/ is thin. Then

bHFK.†2.K/; zK; s0/Š bHFK.S3;K/

as bigraded groups, up to a possible shift in the absolute Maslov grading.

It is well-known (Ozsváth–Szabó [14] or Rasmussen [17]) that bHFK.S3;K/ is thin
whenever K is alternating (and hence for all two-bridge knots). More generally, let Q
be the smallest set of link types such that:

� The unknot is in Q.

� Suppose L admits a projection such that the two resolutions at some crossing,
L0 and L1 , are both in Q and satisfy det.L0/Cdet.L1/D det.L/. Then L is
in Q.

The links in Q are called quasi-alternating; for instance, any alternating link is quasi-
alternating. Manolescu and Ozsváth [11] that whenever L is quasi-alternating, both
bHFK.S3;L/ and the Khovanov homology of L are thin. Conjecture 6.1 would then

imply that bHFK.†2.K/; zK; s0/ is thin whenever K is quasi-alternating.
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Figure 2: To see that the knots 10134 (left) and 11n117 (right) are quasi-
alternating, resolve the marked crossings in the order indicated.

One may also ask under what conditions bHFK.†2.K/; zK; s/ is thin for spinc structures
s ¤ s0 . The knots 10134 and 11n117 both satisfy the hypothesis and conclusion of
Conjecture 6.1. Indeed, they are both quasi-alternating, as illustrated in Figure 2.
However, each one admits a spinc structure s on †2.K/ in which bHFK.S2.K/; zK; s/

is not thin. There are no known examples of alternating knots for which this phenomenon
occurs, though.

On the other hand, when bHFK.S3;K/ is not thin, the isomorphism between bHFK.S3;K/

and bHFK.†2.K/; zK; s0/ generally fails. A few patterns are worth mentioning. Note
that for the knots considered here, in each Alexander grading i , the total rank of
bHFK.†2.K/; zK; s0; i/ is at least that of bHFK.S3;K; i/, and the two ranks are con-

gruent modulo 2. Some examples in which the ranks fail to be equal are 11n49 , 11n102 ,
and 11n116 . Even when the total ranks of bHFK.†2.K/; zK; s0; i/ and bHFK.S3;K; i/

are the same for all i , the relative Maslov gradings can differ. A common pattern
is that the Maslov gradings of all the groups in one ı–grading of bHFK.S3;K/ are
shifted by a constant amount in bHFK.†2.K/; zK; s0/, such as with the knots 942 and
10161 , where the groups are shifted by 2 and 3, respectively. However, there are also
examples where the relative Maslov gradings in different Alexander gradings change
in different ways. For example, for 10145 , the total ranks of bHFK.S3;K; i/ and
bHFK.†2.K/; zK; s0; i/ are the same for each i , but bHFK.S3;K/ is supported in two
ı–gradings while bHFK.†2.K/;K; s0/ is supported in three.

Finally, note that the pretzel knots 820 D P .2; 3;�3/ and 10140 D P .4; 3;�3/ have
identical knot Floer homology but can be distinguished by bHFK.†2.K/; zK/. The
relative Maslov gradings between spinc structures are necessary in this case. For
another such example, see Grigsby [7].

Algebraic & Geometric Topology, Volume 8 (2008)



Knot Floer homology in cyclic branched covers 1189

References
[1] J A Baldwin, W D Gillam, Computations of Heegaard Floer knot homology arXiv:

math/0610167

[2] M Culler, Gridlink: a tool for knot theorists
www.math.uic.edu/~culler/gridlink/

[3] R Diestel, Graph theory, third edition, Graduate Texts in Mathematics 173, Springer,
Berlin (2005) MR2159259

[4] R H Fox, A quick trip through knot theory, from: “Topology of 3–manifolds and related
topics (Proc. The Univ. of Georgia Institute, 1961)”, Prentice–Hall, Englewood Cliffs,
N.J. (1962) 120–167 MR0140099

[5] C M Gordon, Some aspects of classical knot theory, from: “Knot theory (Proc. Sem.,
Plans-sur-Bex, 1977)”, Lecture Notes in Math. 685, Springer, Berlin (1978) 1–60
MR521730

[6] J E Grigsby, Combinatorial description of knot Floer homology of cyclic branched
covers arXiv:math/0610238

[7] J E Grigsby, Knot Floer homology in cyclic branched covers, Algebr. Geom. Topol. 6
(2006) 1355–1398 MR2253451

[8] J Grigsby, D Ruberman, S Strle, Knot concordance and Heegaard Floer homology
invariants in branched covers arXiv:math/0701460

[9] D A Lee, R Lipshitz, Covering spaces and Q–gradings on Heegaard Floer homology
arXiv:math/0608001

[10] R Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10
(2006) 955–1097 MR2240908
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[15] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004)
58–116 MR2065507

[16] P Ozsváth, Z Szabó, Knots with unknotting number one and Heegaard Floer homology,
Topology 44 (2005) 705–745 MR2136532

[17] J A Rasmussen, Floer homology of surgeries on two-bridge knots, Algebr. Geom.
Topol. 2 (2002) 757–789 MR1928176

Algebraic & Geometric Topology, Volume 8 (2008)

http://arxiv.org/abs/math/0610167
http://arxiv.org/abs/math/0610167
http://www.math.uic.edu/~culler/gridlink/
http://www.ams.org/mathscinet-getitem?mr=2159259
http://www.ams.org/mathscinet-getitem?mr=0140099
http://www.ams.org/mathscinet-getitem?mr=521730
http://arxiv.org/abs/math/0610238
http://dx.doi.org/10.2140/agt.2006.6.1355
http://www.ams.org/mathscinet-getitem?mr=2253451
http://arxiv.org/abs/math/0701460
http://arxiv.org/abs/math/0608001
http://dx.doi.org/10.2140/gt.2006.10.955
http://www.ams.org/mathscinet-getitem?mr=2240908
http://arxiv.org/abs/math/0708.3249v1
http://arxiv.org/abs/math/0607691
http://arxiv.org/abs/math/0610559
http://dx.doi.org/10.2140/gt.2003.7.225
http://www.ams.org/mathscinet-getitem?mr=1988285
http://dx.doi.org/10.1016/j.aim.2003.05.001
http://www.ams.org/mathscinet-getitem?mr=2065507
http://dx.doi.org/10.1016/j.top.2005.01.002
http://www.ams.org/mathscinet-getitem?mr=2136532
http://dx.doi.org/10.2140/agt.2002.2.757
http://www.ams.org/mathscinet-getitem?mr=1928176


1190 Adam Simon Levine

[18] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University
(2003) arXiv:math/0306378

[19] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Houston,
TX (1990) MR1277811

[20] S Sarkar, J Wang, A combinatorial description of some Heegaard Floer homologies
arXiv:math/0607777

Department of Mathematics, Columbia University
2990 Broadway, New York, NY 10027, USA

alevine@math.columbia.edu

Received: 9 December 2007 Revised: 4 March 2008

Algebraic & Geometric Topology, Volume 8 (2008)

http://arxiv.org/abs/math/0306378
http://www.ams.org/mathscinet-getitem?mr=1277811
http://arxiv.org/abs/math/0607777
mailto:alevine@math.columbia.edu

	1. Introduction
	2. Review of knot Floer homology
	3. Heegaard diagrams for cyclic branched covers of knots
	4. Grid diagrams and cyclic branched covers
	5. Results
	6. Observations
	References

