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A remarkable DGmodule model for configuration spaces

PASCAL LAMBRECHTS

DON STANLEY

Let M be a simply connected closed manifold and consider the (ordered) configu-
ration space F.M; k/ of k points in M . In this paper we construct a commutative
differential graded algebra which is a potential candidate for a model of the rational
homotopy type of F.M; k/ . We prove that our model it is at least a †k –equivariant
differential graded model.

We also study Lefschetz duality at the level of cochains and describe equivariant
models of the complement of a union of polyhedra in a closed manifold.

55P62, 55R80

1 Introduction

Let M be a closed simply connected triangulable manifold of dimension m. The
(ordered) configuration space of k points in M is the space

F.M; k/ WD f.x1; � � � ;xk/ 2M k
W xi 6D xj for i 6D j g:

An interesting problem is whether the homotopy type of that configuration space
depends only on the homotopy type of M . Longoni and Salvatore [15] have discovered
an example of two homotopy equivalent manifolds whose configuration spaces of two
points are not homotopy equivalent. Their examples are not simply connected. By
contrast, a general position argument implies that for a 2–connected closed manifold the
configuration space of two points depends only on the homotopy type of the manifold.
More generally we have proved in [13] that the rational homotopy type of F.M; 2/

depends only on the rational homotopy type of M , under the 2–connectivity hypothesis,
and we have build an explicit model (in the sense of Sullivan) of that configuration
space out of a model of M .

The goal of the present paper is to exhibit a promising candidate for the model of the
rational homotopy type of the F.M; k/. To explain this, first recall the Sullivan functor

APLW Top! CDGA
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1192 Pascal Lambrechts and Don Stanley

where CDGA is the category of commutative differential graded algebras. The main
feature of this functor is that the rational homotopy type of a simply connected space of
finite type, X , is encoded in any CDGA quasi-isomorphic to APL.X /. Such a CDGA
is called a CDGA–model of X .

In [12] we have proved that any simply connected manifold M admits a CDGA model,
.A; d/, such that A is a Poincaré duality algebra of dimension mD dim M . We can
then define a diagonal class

� WD
X
�

.�1/deg.a�/a�˝ a�� 2A˝A

where fa�g is a basis of A and fa�
�
g is the Poincaré dual basis. In the present paper

we describe a CDGA

(1–1) F.A; k/ WD

 
A˝k ˝E.gij W 1� i < j � k/

.Arnold and symmetry relations/
; d.gij /D �

�
ij .�/

!

where E.gij / is an exterior algebra on
�
k
2

�
generators gij of degree m� 1, ��i .a/D

1˝i�1˝ a˝ 1˝k�i 2A˝k and ��ij .a˝ b/D ��i .a/ ��
�
j .b/ (see Definition 3.4 for a

complete definition.)

When k D 2, F.A; 2/ is weakly equivalent to the CDGA–model of F.M; 2/ built in
[13, Theorem 5.6], and when M is a complex projective variety then F.H�.M IQ/I k/
is equivalent to the Fulton–MacPherson–Kriz CDGA–model of F.M; k/ built in [8]
and [11]. We are not able to prove in general that for k� 3, F.A; k/ is a CDGA–model
of F.M; k/ but at least we can prove that it is an equivariant DGmodule model of
it. More precisely the inclusion F.M; k/ ,!M k and Kunneth quasi-isomorphism
induce an APL.M /˝k –module structure on APL.F.M; k//. Suppose given quasi-
isomorphisms of CDGA, A

'
 R

'
!APL.M /. Our main result (Theorem 10.1) states

that APL.F.M; k// and F.A; k/ are weakly equivalent R˝k –DGmodules, even †k –
equivariantly where †k is the symmetric group on k letters acting by permutation of
the factors.

Our proof goes through an “equivariant cochain-level Lefschetz duality theorem for a
system of subpolyhedra in a closed manifold.” In more detail, classical Lefschetz duality
determines H�.W XX / from the map H�.X /!H�.W / when X is a subpolyhedron
of a closed oriented manifold W . In [14] we studied Lefschetz duality at the level of
models instead of homology. In this paper we generalize this further by considering X

as a union of a finite family of subpolyhedra fXe ,!W ge2E . The idea is that Lefschetz
duality gives a weak equivalence between C �.W X

S
e2E Xe/ and the mapping cone

of the dual of the map C �.W /! C �.
S

e2E Xe/. On the other hand a generalized
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Mayer–Vietoris theorem gives a weak equivalence between C �.
S

e2E Xe/ and a chain
complex built out of the chain complexes C �.

T
e2
 Xe/ for nonempty subsets 
 �E .

When a discrete group G acts on the manifold W preserving in a certain sense the
system fXe ,!W ge2E , all these weak equivalences can be chosen to be equivariant.

This generalized Lefschetz duality can be applied to the system of partial diagonals
�ij Df.x1; � � � ;xk/2M k W xi D xj g so that F.M; k/DM kX

S
1�i<j�k �ij . This

approach was already taken by Bendersky and Gitler in [2]. The difference with their
paper is that we apply Lefschetz duality at the level of models in order to get a model
of F.M; k/ instead of a model of the pair .M k ;

S
1�i<j�k �ij / as they do. Also we

carefully study the action of the symmetric group on that model.

The model (1–1) also gives rise to a spectral sequence by filtering by the length in the
variables gij . This spectral sequence coincides with the two spectral sequences studied
by Félix and Thomas [7]. In particular, as Félix and Thomas show in that paper, this
spectral sequence does not always collapse when k � 4. Also the fixed point CDGA,
F.A; k/†k , is a DGmodule model of the unordered configuration space, and Félix and
Tanré proved in [6] that the associated spectral sequence does collapse.

In the Section 11 we explain how our approach could be useful to the study of other
complement spaces, such as complements of unions of projective subspaces in CP .n/.

Here is a plan of this paper. In Section 2 we recall some notation in particular for
the suspension and dual of DGmodules and for their mapping cones. In Section 3 we
construct in detail the CDGA F.A; k/ associated to a Poincaré duality CDGA A. In
Section 4 we introduce a variant yC � of the cochain algebra functor C � for which the
excision quasi-isomorphism is actually an isomorphism. In Section 5 we fix some
notation for the action of a discrete group on DGmodules. In Section 6 we establish an
equivariant cochain level Lefschetz duality theorem giving a model of the complement
W XX . In Section 7 we study, for a set of subpolyhedra fXe � W ge2E , cubical
diagrams like fsubsets 
 �Eg!fC �.

T
e2
 Xe/g and define their total cofibres which

will turn out to be models for the cochains on the complement of the union of polyhedra,
C �.W X

S
e2E Xe/. In Section 8 we put an action on the cubical diagrams and total

cofibres from the previous section. In Section 9 we finally establish the equivariant
cochain level Lefschetz duality for a system of polyhedra (Theorem 9.2). In Section 10
we apply the above theory to prove that F.A; k/ is an equivariant DGmodule model of
F.M; k/. The Section 11 is an informal discussion about other possible applications
of this approach.

Acknowledgments We thank Soren Illmann for discussions on simplicial actions. We
acknowledge support of the institute Mittag-Leffler where part of this research was
done during a common stay of the two authors.
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2 Notation

In this short section we recall some standard notation.

We fix a ground field k. We will consider noncommutative and commutative nonneg-
atively graded differential algebras, or DGA and CDGA for short. The degrees are
written as superscripts and the differential increases the degree. If R is a (C)DGA we
will consider also right differential graded modules over R (R–DGmodules for short –
see Félix, Halperin and Thomas [5] for the precise definitions).

The k –th suspension of an R–DGmodule M is the R–DGmodule skM defined by

� .skM /i DM iCk as vector spaces;

� .skx/ � r D sk.x � r/ for x 2M; r 2R;

� d.skx/D .�1/ksk.dx/ for x 2M .

Therefore deg.skx/D�kC deg.x/. We have a natural isomorphism skM ˝ slN Š

skCl.M ˝N / sending skx˝ sly to .�1/l deg.x/skCl.x˝y/.

The dual of a graded vector space V is the graded vector space #V defined by

.#V /k D Hom.V �k ;k/:

If M is a right R–DGmodule then #M inherits an obvious left R–DGmodule structure.
When R is a commutative DGA, we can turn #M into a right R–DGmodule structure
by the rule

� � r WD .�1/deg.�/�deg.r/r ��; for r 2R, � 2 #M .

We have canonical isomorphisms sk#M Š #skM for all k given by .skf /.skx/D

.�1/k deg.f /f .x/, and, under a finite type assumption, #M ˝#N Š #.M ˝N /, given
by .f ˝g/.x˝y/D .�1/deg.g/�deg.x/f .x/ �g.y/.

If f W .M; dM /! .N; dN / is a morphism of R–DGmodule, the mapping cone of f
is the R–DGmodule

C.f / WD .N f̊ sM; d/

defined by

� C.f /DN ˚ sM as R–module;

� d.y; sx/D .dN .y/Cf .x/;�s.dM .x/// for x 2M;y 2N .

Algebraic & Geometric Topology, Volume 8 (2008)
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3 The CDGA F.A; k/

An oriented Poincaré algebra of formal dimension m is a couple .A; !/ where A is a
graded commutative k–algebra and !W Am! k is a linear form such that each pairing
Ai ˝Am�i ! k; a˝ b 7! !.a:b/ is nondegenerate. When A is also equipped with
a differential that makes it a CDGA, the following definition, which comes from [13,
Definition 4.6] or [12, Definition 2.2], expresses the compatibility between the Poincaré
duality and the CDGA structures:

Definition 3.1 An oriented differential Poincaré duality algebra or oriented Poincaré
duality CDGA is a triple .A; d; !/ such that

(i) .A; d/ is a CDGA;

(ii) .A; !/ is an oriented Poincaré duality algebra of formal dimension m;

(iii) !.dA/D 0.

Note that when .A; !/ is a connected Poincaré algebra and .A; d/ is a CDGA such
that the class of maximal degree represents a nontrivial homology class then .A; d; !/
is a Poincaré duality CDGA, as proved in [13, Proposition 4.8]. The main result of
[12] states that any closed oriented simply connected manifold admits a CDGA–model
which is a connected Poincaré duality CDGA.

Let A be an oriented Poincaré duality CDGA of formal dimension m. Next we recall
the diagonal class � 2 .A˝A/m as defined in [13, Definition 4.4]. Let fa�g0���N

be a basis of A and
˚
a�
�

	
be its Poincaré dual basis with respect to the orientation, that

is !.a� � a��/D ı�� where ı�� is the Kronecker symbol. The diagonal class is

(3–1) � WD
X
�

.�1/deg.a�/a�˝ a�� 2A˝A:

It is proved in [13, Proposition 4.3, Proposition 4.11, and remark after Definition 4.4]
that � is a cocycle of degree m which is independent of the choice of the basis. When
A is connected this diagonal class is also, up to a scalar multiple, independent of the
choice of the orientation. See also Abrams [1], where it is explained how a Poincaré
duality algebra, as a Frobenius algebra, becomes a coalgebra, and hence the diagonal
class can also be seen as the coproduct of the orientation class.

Consider the CDGA A˝k DA˝� � �˝A. For 1� i � k we consider the CDGA maps

��i W A!A˝k ; a 7! 1˝ � � �˝ 1„ ƒ‚ …
i�1

˝a˝ 1˝ � � �˝ 1„ ƒ‚ …
k�i
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and for 1� i < j � k the maps

��ij W A˝A!A˝k ; a˝ b 7! 1˝ � � �˝ 1„ ƒ‚ …
i�1

˝a˝ 1˝ � � �˝ 1„ ƒ‚ …
j�i�1

˝b˝ 1˝ � � �˝ 1„ ƒ‚ …
k�j

;

that is ��ij .a˝ b/D ��i .a/ ��
�
j .b/.

Consider the relative Sullivan algebra [5, Section 14]�
A˝k

˝^.gij W 1� i < j � k/; d
�

with deg.gij / D m� 1 and d.gij / D �
�
ij .�/. Notice that d2 D 0 because � is a

cocycle. By convention we set

gji D .�1/mgij :

Let I be the ideal of A˝k ˝^.gij / generated by the following relations:

(i) the Arnold or three-terms relations

gij gjl Cgjlgli Cgligij for 1� i < j < l � kI

(ii) the symmetry relations�
��i .a/��

�
j .a/

�
gij for 1� i < j � k and a 2AI

(iii) g2
ij D 0 for 1� i < j � k .

Lemma 3.2 The ideal I generated by relations (i)–(iii) above is a differential ideal of
.A˝k ˝^.gij /; d/.

Proof One computes that�
d.gij �gil/

�
�gjl D

�
��ij .�/��

�
il.�/

�
�gjl

D

X
�

��i .a�/
�
��j .a

�
�/��

�
l .a
�
�/
�
gjl 2 I

and this easily implies that d
�
gij gjl Cgjlgli Cgligij

�
2 I .

Using Poincaré duality, it is straightforward to check that .1˝ a/ ��� .a˝ 1/ ��D 0

in A˝A (see [13, Lemma 4.5]). This implies that d
�
.��i .a/��

�
j .a//gij

�
2 I .

It remains to prove that d.g2
ij / 2 I . If m is even it is immediate by the Leibniz rule.

If m is odd we can choose a basis fa�g0���N of A such that a�
�
D aN�� , hence

�D
P.N�1/=2

�D0
.�1/ja�j.a�˝ aN��� aN��˝ a�/. From the symmetry relations (ii)

one deduces easily that for a; b 2 A we have ��ij .a˝ b � .�1/jajjbjb ˝ a/gij 2 I .
Therefore d.g2

ij /D 2��ij .�/gij 2 I .
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Remark 3.3 The hypothesis that A is a Poincaré duality CDGA is essential for making
I a differential ideal, hence for F.A; k/ below to be a CDGA.

Definition 3.4 Let .A; d/ be a Poincaré duality CDGA of formal dimension m. We
define the k –configuration CDGA as

F.A; k/ WD

 
A˝k ˝^.gij W 1� i < j � k/

I
; d.gij /D �

�
ij .�/

!
where gij , �, ��ij , and I are defined as above. We equip this CDGA with a left action
of the symmetric group †k on k letters generated by

(i) � �
�
��i .a/

�
D ��

�.i/
.a/ for 1� i � k; a 2A; and � 2†k ;

(ii) � �gij D g�.i/�.j/ for 1� i < j � k and � 2†k :

When A is connected, since the diagonal class is independent of the orientation (up to a
scalar multiple), the CDGA F.A; k/ does not depend on the choice of the orientation.

4 The cochain functor C � and excision isomorphisms

In this paper we will consider mainly the two following contravariant cochain functors:

� the singular cochain functor with coefficients in a field k,

S�.�Ik/W Top! k�DGA

where the algebra structure comes from the cup product defined through the
usual front face/back face formula;

� the Sullivan functor of piecewise polynomial forms with coefficients in a field k
of characteristic zero,

APL.�Ik/W Top! k�CDGA

as defined in [3] or [5, Section 10].

We will denote by C � either of the two functors S�.�Ik/ or APL.�Ik/. Notice that
an element ! 2 C �.X / is completely determined by its values h!; �i (which belong
to k when C � D S�.�Ik/ and to the CDGA .A�PL/deg.�/ defined in [5, Section 10
(c)] when C � DAPL ) on singular simplices � in the singular simplicial set S�.X /.

The functor C � extends to pairs of topological spaces by C �.X;A/W D ker.C �.X /!
C �.A//. If .X;A/ is a pair of topological spaces and if i W .X 0;A0/ � .X;A/ is a
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subpair such that X XX 0� int.A/ and A0DX 0\A then the excision theorem implies
that the restriction map

C �.i/W C �.X;A/
'
!C �.X 0;A0/

is a quasi-isomorphism. However C �.i/ is almost never an isomorphism. We show
now how we can replace C � by a quasi-isomorphic functor such that the morphism
induced by i is indeed an isomorphism, at least on suitable triangulated pairs. This will
be useful in our proof of Theorem 6.3 of equivariant cochain level Lefschetz duality.

Let K be the category of ordered simplicial complexes defined as follows. An (abstract)
simplicial complex is a collection of finite nonempty sets, called simplices, such that
every nonempty subset of a simplex is also a simplex [16, Section 3]. The union of
that collection is the set of vertices. An object of K is a simplicial complex with a
partial order on the vertices such that each simplex is linearly ordered. A morphism of
K is a simplicial map that preserves the order of the vertices. We denote by jKj the
geometric realization of an ordered simplicial complex K .

Our goal is to build a functor

yC �W K! k�.C/DGA

satisfying the two following properties:

(A) There is a natural quasi-isomorphism of (C)DGA C �.j � j/
'
! yC � .

(B) yC � satisfies the following strict excision statement:
Let .K;L/ be a pair of ordered simplicial complexes, let K0 �K be a subcom-
plex and set L0DL\K . If K0[LDK then the inclusion i W .K0;L0/� .K;L/

induces an isomorphism

yC �.i/W yC �.K;L/
Š
! yC �.K0;L0/

where yC � is extended to pairs by setting yC �.K;L/D ker. yC �.K/! yC �.L//.

We treat separately the cases S� and APL . Suppose first that C �DS� are the singular
cochains. Let sSets be the category of simplicial sets. To an ordered simplicial complex
K , one associates a simplicial set K� defined by

Kn D f.v0; : : : ; vn/ W fv0; : : : ; vng is a simplex of K and v0 � � � � � vng

and the faces and degeneracies are defined by forgetting or repeating a vertex; see
Curtis [4, Example (1.3)] or Weibel [17, Example 8.1.8]. We have a homeomorphism
jKj Š jK�j; see [17, Exercise 8.1.4].
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The normalized chain complex of the free simplicial abelian group ZŒK�� generated
by K� is isomorphic to the oriented chain complex of K as defined in [16, Section 5].
We denote it by N�.ZŒK��/ and we consider the dual cochain complex

yC �.K/ WD Hom.N�.ZŒK��/;k/

which becomes a k–DGA by defining a cup product through the usual front face/back
face formula as in [16, Section 49]. This defines a functor

yC �W K! k�DGA

and by [16, Theorem 49.1] we have a natural quasi-isomorphism of DGA

C �.jKj/D S�.jKjIk/ '! yC �.K/:

We check that yC � satisfies the strict excision statement. Notice that an element
� 2 yC �.K;L/ is determined by its values in k on the simplices of K . Suppose that
i W .K0;L0/ ,! .K;L/ is an inclusion of pairs of ordered simplicial complexes with
L0DK0\L and KDK0[L. We show that yC �.i/ is surjective. Let �0 2 yC �.K0;L0/.
Define � 2 yC �.K;L/ by �.�/D �0.�/ if � is a simplex in K0 and �.�/D 0 if � is a
simplex in L. This defines � coherently, since �0.�/D 0 when � 2K0\LDL0 , and
exhaustively because K DK0[L. Clearly yC �.i/.�/D �0 , hence yC �.i/ is surjective.
For the injectivity notice that if � 2 yC �.K;L/ is zero on each simplex of K0 then it is
zero everywhere since it is zero on L and K DK0[L. This proves that yC � satisfies
condition (B).

Suppose now that C � D APL is the functor of piecewise polynomial forms and let
S�.X / be the simplicial set of singular simplices of a topological space X . Recall
from [5, Section 10(c)] that APLW Top! CDGA actually factors through the functor
S�W Top! sSets by the way of another functor APLW sSets! CDGA. We define

yC �W K! CDGA ; K 7!APL.K�/:

For any ordered simplicial complex K , the natural weak equivalence K�
'
!S�.jK�j/

induces a quasi-isomorphism of CDGA

C �.jKj/DAPL.jKj/
def
D APL.S�.jKj//ŠAPL.S�.jK�j//

'
!APL.K�/

def
D yC �.K/:

An element � 2 yC �.K;L/ is determined by its values in A�PL on the nondegenerated
simplices of K� , hence on the genuine simplices of K . The proof that yC � satisfies
the strong excision isomorphism is analogous to the case C � D S�.�Ik/, the only
difference is that for the surjectivity one needs to make sure that the constructed cochain
� commutes with the boundaries and degeneracies, which is straightforward.

Algebraic & Geometric Topology, Volume 8 (2008)
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5 Group actions on DGmodules

Let G be a discrete group. Except when stated otherwise, we will suppose that any
action of a group is on the left and that G acts trivially on k. When G acts on two sets
we will assume that it acts on its product through the diagonal action. When G acts on
a set equipped with additional algebraic structure, we will assume that this action is
such that each map defining this structure is equivariant. In particular the action on a k–
module is linear, the action on a tensor product is diagonal, g �.v˝w/D .g �v/˝.g �w/,
the action on an algebra R is multiplicative, g �.r �r 0/D .g �r/ �.g �r 0/. If G acts on an
algebra, R, and on an R–module, M , then we assume that g � .r �x/D .g � r/ � .g �x/

for g 2G , r 2R, and x 2M . When G acts on a graded object we assume that the
action preserves the degree and for the action on a differential object .M; d/, that
the differential is equivariant, d.g �x/D g � .dx/. If G acts on a k–module V , then
the dual action of G on #V WD Hom.V;k/ is the action defined by the formula, for
� 2 #V , v 2 V , and g 2G ,

hg ��; vi D h�;g�1
� vi:

To emphasize these assumptions, if R is a k–DGA on which G is acting as above, we
will say that R is a G –k–DGA. Also if M is an R–DGmodule on which G is acting
then we will say that M is a G –R–DGmodule.

If f W M ! N is a morphism of G–R–DGmodule, iean equivariant map of R–
DGmodules, then its mapping cone Cf D N ˚ sM inherits a structure of G–R–
DGmodule by g � .y; sx/D .g �y; s.g �x// for x 2M and y 2N .

Let W be a topological space equipped with a left continuous action of the group
G and recall from Section 4 the functor C � which is either S�.�Ik/ or APL . As
we noticed at the beginning of that section, an element ! 2 C �.W / is completely
determined by its values h! ; �i (in k or in A�PL ) on simplices � 2 S�.W /. We define
an action of G on C �.W / by

(5–1) h.g �!/ ; �i D h! ; .g�1
� �/i for ! 2 C �.W /; � 2 S�.W /; g 2G:

Since the action of G on S�.W / commutes with taking front face and back face, one
checks that this induces a structure of G –k–DGA on S�.X Ik/. It is also straightfor-
ward to check that it endows APL.W / with a structure of G –CDGA.

If X �W is a subspace stable by G (that is, g �X �X for g 2G ) then C �.X / is also
a G –k–(C)DGA and the restriction map C �.W /! C �.X /, which is G –equivariant
and of DGA, endows C �.X / with a structure of G –C �.W /–DGmodule.

Suppose that W is the realization of an ordered simplicial complex, also denoted by W ,
and that the action of G respects that triangulation, ie is simplicial and preserves the
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order of vertices. Formulas (5–1) for simplices � of the simplicial complex W , defines
a structure of G –k–(C)DGA on the chain complex yC �.W / defined in Section 4. Also
if X is a subpolyhedron of W stable by the action of G then yC �.X / becomes a
G – yC �.W /–DGmodule.

6 Orientation twisted action and equivariant Lefschetz dual-
ity

Let W be a closed oriented connected manifold of dimension n on which G acts
continuously. We have an induced action on the top homology group Hn.W IZ/. This
determines a 1–dimensional representation over k through the homomorphism

(6–1) �W G! Z=2D fC1;�1g � k;g 7! �.g/

defined by the formula
g � ŒW �D �.g/ � ŒW �

where ŒW � 2Hn.W IZ/ is the orientation class. We call this the orientation represen-
tation.

Definition 6.1 Let G be a finite group acting continuously on a closed connected
oriented manifold W and let A be a G –R–DGmodule. The orientation-twisted action
of G on #A is defined by

hg ��; ai WD �.g/h�;g�1
� ai for g 2G; � 2 #A; a 2A;

where � is the orientation representation (6–1).

In particular if X �W is a G–invariant subspace of W we have an induced action
on C �.W / and C �.X /, and we can consider the orientation-twisted dual action on
#C �.W / and #C �.X /. The reason for introducing this twisted action is that it is the
correct one to make the Poincaré and Lefschetz duality quasi-isomorphisms equivariant
as we will see in Theorem 6.3. In order to prove that theorem we need the following
proposition. Recall the functor yC � from Section 4.

Proposition 6.2 Let K be an ordered simplicial complex whose realization W WD jKj

is a closed oriented connected manifold of dimension n. Let G be a finite group acting
on the left on K and let k be a field such that char.k/ does not divide jGj. Then there
exists a k–DGmodule morphism

�K W yC
�.K/! s�nk
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such that ��
K
W H n.W /

Š
!H n.s�nk/D k is an isomorphism and such that the C �.W /–

DGmodule morphism
ˆK W

yC �.K/
'
! s�n# yC �.K/;

defined by ˆK .˛/.ˇ/D �K .˛ �ˇ/, is G–equivariant when yC �.K/ is equipped with
the standard dual action of G and # yC �.K/ is equipped with the orientation-twisted
G –action.

Proof Since H n.W / Š k there exists a chain map �0
K
W yC �.K/! s�nk such that

�0
K
.�/ D 1 for some cocycle � representing the orientation class. Set �K .!/ WD

.1=jGj/
P

g2G �.g/ � �
0
W
.g � !/. One computes that �K .�/ D 1, so �K induces an

isomorphism in homology. One checks also that ˆK is G –equivariant. The fact that
ˆK is a quasi-isomorphism is a consequence of Poincaré duality.

We arrive to our cochain level equivariant Lefschetz duality theorem:

Theorem 6.3 Let W be an n–dimensional triangulated connected oriented closed
manifold. Let G be a finite group that acts simplicially on W . Let f W X ,! W

be a subpolyhedron stable by G . Let k be a field such that char.k/ does not divide
jGj. Let C � be the cochain algebra functor from Section 4. Then there exists a
chain of weak equivalences of G–C �.W /–DGmodules between C �.W XX / and
s�n

�
#C �.W /˚#C�.f / s#C �.X /

�
, where #C �.W / and #C �.X / are equipped with

the orientation-twisted dual G –action.

Proof As W is triangulated, it is homeomorphic to the realization of an abstract sim-
plicial complex. Replace this simplicial complex by its second barycentric subdivision.
The action of G is still simplicial. Moreover there is a natural structure of ordered
simplicial complex defined on the barycentric subdivision as follows. Denote by b.�/

the barycentre of a simplex � and order the vertices of the barycentric subdivision by
b.�/� b.�/ if and only if � � � .

For the rest of the proof, abusing notation, we will denote both the manifold itself and
the ordered simplicial complex associated to this second barycentric subdivisions by
the same letter W , and similarly for other subpolyhedra of W .

Let T be the closure of the star of X in the simplicial complex W . Since we have took
the second subdivision, T is a regular neighborhood of X , hence the inclusion i W X ,!

T is a G –equivariant homotopy equivalence. Since G preserves X it also preserves T

and the boundary @T . Denote by j W T ,!W , j0W .T; @T / ,! .W;W XT /, i W X ,!T

and i 0W W XT ,!W the simplicial G –equivariant inclusions.
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Consider the functor yC � defined on ordered simplicial complexes in Section 4. By the
strict excision property we have an isomorphism

yC �.j0/W yC
�.W;W XT /

Š
! yC �.T; @T /:

Recall the cochain morphism

�W W
yC �.W /

'
! s�nk

from Proposition 6.2 which induces the G–equivariant Poincaré duality quasi-iso-
morphism

ˆW W
yC �.W /

'
! s�n# yC �.W / ; ˛ 7! .ˆW .˛/W ˇ 7! �W .˛ˇ// :

Define �T as the composite

�T W
yC �.T; @T /

yC�.j0/
Š yC �.W;W XT /

�
! yC �.W /

�W
! s�nk:

This cochain map serves to define a cochain morphism

ˆT W C
�.T; @T /

'
! s�n#C �.T / ;  7! .ˆT . /W � 7! �T . �//

which is a G –C �.W /–DGmodule quasi-isomorphism.

Moreover, since �T is defined from �W , the following diagram of G–C �.W /–
DGmodules commutes:

0 // yC �.W;W XT /
� //

Š j�
0

��

yC �.W /
i0� //

' ˆW

��

yC �.W XT / // 0

yC �.T; @T /

' ˆT

��

s�n# yC �.T /
s�n#j� // s�n# yC �.W /

s�n# yC �.X /

' s�n#i�

OO

s�n#f � // s�n# yC �.W /:

Thus we have the following chain of quasi-isomorphisms of G –C �.W /–DGmodules:

s�n
�
# yC �.W /˚#f � s# yC �.X /

�
'
�! s�n

�
# yC �.W /˚#j� s# yC �.T /

�
'
 � yC �.W /˚� yC

�.W;W XT /
'
�! i 0�˚ 0 yC �.W XT /:
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The first and last terms of this zigzag of quasi-isomorphisms are respectively

s�n
�
#C �.W /˚#f � s#C �.X /

�
and C �.W XT /. This proves the theorem.

7 Cubical diagrams and their total cofibres

Let E be a finite set and let � D .2E/op be the category whose objects are subsets 
 of
E and a morphism 
! 
 0 is a reversed inclusion 
 � 
 0 . The “shape” of this category
is that of an jEj–dimensional cube with an initial object E and a final object ∅.

Definition 7.1 An E–cubical diagram in a category C is a covariant functor

N W �! C:

For 
 �E we denote by j
 j the cardinal of that subset. If e 2 
 we set 
Xe WD 
Xfeg.

Suppose a linear order � on E has been given. For e 2E and 
 2 � we define the
integer

pos.e W 
 / WD jfj 2 
 W j � egj:

In other words if 
 D fe1; : : : ; elg with e1 < � � �< el then pos.ei W 
 /D i .

Definition 7.2 Let R be a k–DGA. Let E be a finite set equipped with a linear
ordering. The total cofibre of an E–cubical diagram N W � ! R�DGmod of R–
DGmodules is the R–DGmodule

TotCof.N / WD
�M

2�

y
 �N .
 /;D
�

where, for 
 2 � , x 2N .
 /, r 2R,

� y
 is a variable of degree �j
 j;

� deg.y
 �x/D�j
 jC deg.x/;

� r � .y
 �x/D .�1/j
 j deg.r/y
 � .r �x/;

� D.y
 �x/D .�1/j
 jy
 � .d.x//C
P

e2
 y
Xe.�1/pos.eW
/N .
 ! 
 X e/.x/:

The notion of a total cofibre of a cubical diagram was first introduced by Goodwillie
in [9]. Actually it is a special case of the following more general definition; see
Hüttemann [10]. Let � be a poset and � 0 � � be a subposet and let X W �! C be a
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covariant functor in some Quillen model category. The total cofibre of X is defined as
the homotopy cofibre of the map

hocolim
 02� 0 X.
 0/! hocolim
2� X.
 /:

In our case C is the category R–DGmod, � D .2E/op and � 0 is � without its final
object ∅.

Notice that the definition of the total cofibre depends on the choice of a linear ordering
on E but is easy to check that two such linear ordering give isomorphic total cofibres.
(Hint: Use Lemma 8.2.)

We introduce the notion of an iterated mapping cone of a bounded chain complex in
R–DGmod, which extends the usual mapping cone of a chain map. Let

M� WD fMr

fr
�!Mr�1

fr�1
���! � � �

f2
�!M1

f1
�!M0g

where .Mi ; di/ and fi are objects and morphisms in R–DGmod, for some DGA R,
such that fifiC1 D 0. The iterated mapping cone of M� is defined as

C.M�/ WD
� rM

iD0

siMi ;D
�

with D.six/D .�1/isi.dix/C si�1fi.x/, for x 2Mi . It is straightforward to check
that D2 D 0. When r D 1 this is the usual mapping cone of the map f1W M1!M0 .

If N W � ! DGmod is an E–cubical diagram of DGmodules with jEj D r then we
can define a bounded complex of DGmodules

N� WD fNr

fr
�!Nr�1

fr�1
���! � � �

f2
�!N1

f1
�!N0g

Ni WD

M

2�;j
 jDi

N .
 /with

and, for x 2N .
 /�Ni ,

fi.x/ WD
X
e2


.�1/pos.eW
/N .
 ! 
 X e/.x/:

Then it is straightforward to check that N� is a complex of differential modules and
that the total cofibre of the cube N coincides with the iterated mapping cone of N� :

TotCof.N /Š C.N�/:
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8 G –action on a cubical diagram of R–DGmodules

Let E be a finite set equipped with an action of G . This induces a G–action on the
poset � D 2E that preserves the order (induced by reverse inclusions). Let N W �!

R�DGmod be an E–cubical diagram R–DGmodules, where R is a G –k–DGA.

By a G –action on N we mean the data of k–linear morphisms

N .g; 
 /W N .
 /!N .g � 
 /;

for each g 2G and 
 2 � such that

� (G –naturality) the following diagrams commute:

N .
 /

N .g;
 /

��

N .
!
 0/ // N .
 0/

N .g;
 0/

��
N .g � 
 /

N .g�
!g�
 0/

// N .g � 
 0/

� (associativity) N .g0;g � 
 /N .g; 
 /DN .g0g; 
 /;

� (unit) N .1; 
 /D id where 1 2G is the identity;

� (G –R–module) for x 2N .
 / and r 2R,

N .g; 
 /.r �x/D .g � r/ � .N .g; 
 /.x// :

For g 2 G , 
 2 � and x 2 N .
 / we simply write g � x for N .g; 
 /.x/ when
there is no possible confusion. Then the associativity and unit axioms are the usual
axioms .g0 �g/ �x D g0 � .g �x/ and 1 �x D x , and the G–R–module axioms means
that g � .r � x/ D .g � r/ � .g � x/. In particular the maps N .g; 
 / are not maps of
R–DGmodule.

Notice that if G acts on the E–cube N then in particular G acts on the R–DGmodule
N .∅/.

Suppose given such an E–cubical diagram N of R–DGmodules equipped with a
G–action as defined above. Fix a linear ordering on E . Our goal is to define a G–
action on the total cofibre TotCof.N / making it a G –R–DGmodule. Notice that the
“obvious” action g � .y
 �x/D yg�
 �N .g; 
 /.x/ for 
 2 � , g 2G and x 2N .
 / is
not the correct one because it does not make the differential equivariant.
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Definition 8.1 Let �W L Š
!L0 be an bijection between two finite linearly ordered set

of cardinality r � 0, not necessarily order-preserving. We define its signature, sgn.�/,
as the signature of the permutation in †r obtained as the composite

f1; � � � ; rg
 
�!L

�
�!!L0

 0

�! f1; � � � ; rg

where  and  0 are the unique order-preserving bijections.

If E is a linearly ordered finite set with an action of a finite group G then for all subset

 �E and all g 2G the restriction to 
 gives a bijection gj
 W 


Š
!g � 
; e 7! g � e ,

and we denote its signature by sgn.g W 
 /, where 
 and g � 
 are equipped with the
linear order induced by E .

Lemma 8.2 Let 
 2 � D .2E/op , let g 2G and let e 2 
 . Then

sgn.g W 
 / � sgn.g W 
 X e/D .�1/pos.eW
/
� .�1/pos.g�eWg�
/:

Proof Straightforward.

Define an action of G on the total cofibre, TotCof.N /, of Definition 7.2 by

g �y
 WD sgn.g W 
 / �yg�
(8–1)

inducing g � .y
 �x/ WD .g �y
 / � .g �x/D sgn.g W 
 / �yg�
 �N .g; 
 /.x/:

Proposition 8.3 The action defined above induces a G–R–DGmodule structure on
TotCof.N / such that the inclusion N .∅/ ,! TotCof.N / is G –equivariant.

Proof Use Lemma 8.2 to prove that the differential is equivariant.

9 Equivariant Lefschetz theorem for a system of subpolyhe-
dra

Let W be a triangulated space. Let E be a finite set and let

fjeW Xe ,!W ge2E

be a collection of subpolyhedra indexed by e 2E .

Recall from Section 7 the category � D .2E/op . For ∅ 6D 
 2 � set

X
 WD
\
e2


Xe

X∅ WDW:and set
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This defines a cubical diagram X�W �! Top ; 
 7! X
 , with the reversed inclusion

 � 
 0 sent to the inclusion X
 ,!X
 0 .

Each C �.X
 / is a right C �.W /–DGmodule, therefore its dual #C �.X
 / is a left
C �.W /–DGmodule. Moreover if 
 � 
 0 , the inclusion map X
 ,! X
 0 induces a
morphism

#C �.X
 /! #C �.X
 0/:

In other words we have an E–cubical diagram of C �.W /–DGmodules

#C �.X�/W �! C �.W /�DGmod ; 
 7! #C �.X
 /:

Fix a linear ordering on E and consider the total cofibre of #C �.X�/. The following
is a folklore fact:

Proposition 9.1 With the setting above, if W D
S

e2E Xe then the total cofibre
TotCof.#C �.X�// is acyclic.

Proof When jEj � 1 the proposition is trivial and for jEj D 2 it is exactly Mayer–
Vietoris theorem. We prove the general case by an induction on the cardinality of E .
Suppose that the proposition has been proved for jEj � k and let E DE0[fag with
jE0j D k . Set �0 D .2

E0/op , W0 D
S

e2E0
Xe , � D .2E/op , and W D

S
e2E Xe .

Consider the three systems of subpolyhedra fXege2E0
, fXege2E , and fXa\Xege2E0

.
The corresponding total cofibres of the associated diagrams, TotCof.f#C �.X
 /g
2�0

/,
TotCof.f#C �.X
 /g
2�/, and TotCof.f#C �.Xa \X
 /g
2�0

/, are obtained as the it-
erated mapping cones of the bounded chain complexes A0� , A� , and A00� defined as
follows: For r � 1, we have

A0r D
M


2�0;j
 jDr

#C �.X
 /;

Ar D

M

2�;j
 jDr

#C �.X
 /;

A00r D
M


2�0;j
 jDr

#C �.Xa\X
 /;

A00 D #C �.W0/;and

A0 D #C �.W /;

A000 D #C �.Xa\W0/:

For r � 2 we have obvious short exact sequences

(9–1) 0!A0r !Ar !A00r�1! 0
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as well as a short exact sequence

(9–2) 0!A01!A1! #C �.Xa/! 0:

Mayer–Vietoris theorem for W DW0[Xa implies that the commutative square

A00
0

//

q0

��

#C �.Xa/

q

��
A0

0 i
// A0

induces a quasi-isomorphism between the mapping cones of the two horizontal arrows
of this square

(9–3) q˚ sq0W #C �.Xa/˚ sA000
'
!A0˚i sA00:

The bulk of the proof is the study of the following commutative diagram of DGmodules:

(9–4) 0 //

��

A0
k

//

��

� � � // A0
2

//

��

A0
1

//

��

A0
0

i

��
AkC1

//

D

��

Ak
//

��

� � � // A2
//

��

A1
//

��

A0� _

��
A00

k
// A00

k�1
// � � � // A00

1

p // #C �.Xa/
q // A0˚i sA0

0

where portions of the horizontal lines are the chain complexes A0� , A� , and A00� , p is
the composite of the map A00

1
!A00

0
D #C �.Xa\W0/ with the map #C �.Xa\W0/!

#C �.Xa/ induced by the inclusion Xa\W0 ,!Xa , and the vertical arrows are short
exact sequences (9–1) and (9–2) except for the rightmost which is the obvious sequence
of the mapping cone of i W A0

0
!A0 .

For the sake of the proof we say that a bounded chain complex of DGmodules is
quasi-exact if its iterated mapping cone is acyclic. We need to prove that the middle
horizontal line of Diagram (9–4) is quasi-exact.

Each vertical sequence in (9–4) is quasi-exact because it is either a short exact sequence
or it is the sequence of a mapping cone. The top horizontal line A0� is quasi-exact
by the induction hypothesis applied to the system fXege2E0

. We claim that the
bottom horizontal line is also quasi-exact. Indeed by induction hypothesis A00� is quasi-
exact. Therefore the iterated mapping cone of the truncated bounded chain complex
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fA00
k
!� � �!A00

1
g is quasi-isomorphic to A00

0
. By (9–3) we deduce a quasi-isomorphism

#C �.Xa/˚ sC.fA00k ! � � � !A001g/
'
! A0˚i sA00

which implies the claim.

We can take the iterated mapping cone of each vertical sequences in Diagram (9–4) and
then take the iterated mapping cone of the horizontal chain complexes obtained from
these iterated mapping cones. We get an acyclic DGmodule because each term the
horizontal complex of iterated mapping cones is acyclic since the vertical sequences are
quasi-exact. Working in the opposite order we can first take the iterated mapping cones
of each of the three horizontal lines of Diagram (9–4), then take the iterated mapping
of the resulting chain complex of these three iterated mapping cones. This iterated
mapping cone is also acyclic because the result is independent on the order between the
horizontal and vertical directions. Moreover we have proved that the iterated mapping
cone of the top and the bottom horizontal lines are acyclic. Therefore the iterated
mapping cone of the middle horizontal line is also acyclic.

Suppose that W is an oriented connected closed manifold of dimension n. Let G be
a finite group acting continuously on W . Suppose that G also acts on the set E in
such a way that g � .Xe/DXg�e for g 2G and e 2E . This induces a G –action on the
E–cubical diagram N WD #C �.X�/ as follows. Recall the orientation representation �
of (6–1). For g 2G and 
 2 � define a morphism

(9–5) N .g; 
 /W #C �.X
 /! #C �.Xg�
 /

as the morphism induced through #C � by the continuous map gW X
!Xg�
 multiplied
by the sign �.g/. This G –action on the cube #C �.X�/ is called the orientation-twisted
action. It is straightforward to check that it defines an action of E–cube of C �.W /–
DGmodules.

Theorem 9.2 Let W be a triangulated oriented connected closed manifold of dimen-
sion n. Let E be a finite set and let

fjeW Xe ,!W ge2E

be a collection of subpolyhedra indexed by e 2 E . Let G be a finite group acting
continuously on the manifold W . Suppose that G also acts on the set E in such a way
that g � .Xe/D Xg�e for g 2 G and e 2 E . Let k be a field and assume that char.k/
does not divide jGj. Let C � be the algebra cochain functor of Section 4.

Consider the E–cubical diagram of C �.W /–DGmodules

#C �.X�/W � D .2
E/op

! C �.W /�DGmod
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defined above equipped with the orientation-twisted G –action (9–5) and consider the
induced action on its total cofibre as in Proposition 8.3.

Then there is a chain of weak equivalences of G –C �.W /–DGmodules between

(i) C �.W X
S

e2E Xe/;

(ii) s�nTotCof.#C �.X�//.

Proof We first construct a short sequence of E–cubical diagrams of G–C �.W /–
DGmodules

(9–6) 0 // N 0
� // N // N 00 // 0:

Set N .
 / WD #C �.X
 / with in particular N .∅/D #C �.W /. Define N 0 exactly as
N except that N 0.∅/D #C �.

S
e2E Xe/. The inclusion f W

S
e2E Xe ,!W induces

a map �.∅/W N 0.∅/!N .∅/ which combined with the identity maps, �.
 /D id for

 6D∅, gives a morphism of E–cubical diagram

�D f�.
 /g
2� W N
0
!N :

Let N 00 be the objectwise mapping cone of �, that is

N 00 WD fN .
 /˚�.
/ sN 0.
 /g
2� :

For 
 6D ∅, N 00.
 / is acyclic because it is the mapping cone of the identity map.
Therefore the total cofibre of N 00 is quasi-isomorphic to

N 00.∅/D #C �.W /˚#f � s#C �
� [

e2E

Xe

�
:

By Theorem 6.3, C �.W X
S

e2E Xe/ is weakly equivalent to s�nTotCof.N 00/, and
this weak equivalence is G –equivariant by Proposition 8.3.

On the other hand, since N 00 is the mapping cone of N 0 ! N , the short complex
of cubes of differential modules (9–6) induces a long exact sequence between the
homologies of these cubes. Therefore it also induces a long exact sequence between
the homology of their total cofibres. Moreover by Proposition 9.1 the total cofibre of
N 0 is acyclic, hence we deduce that s�nTotCof.N 00/ and s�nTotCof.N / are weakly
equivalent. We have shown above that the first one is weakly equivalent to (i), and the
second one is (ii).
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10 Models for configuration spaces

We come now to the proof of our main result.

Fix an integer k � 1 and let M be a closed oriented triangulated manifold of di-
mension m. Consider the action of the symmetric group †k on M k and on the
configuration space F.M; k/ by permutation of the factors. Let A D .A; d/ be a
connected Poincaré duality CDGA weakly equivalent to APL.M / and suppose given
quasi-isomorphisms of CDGA

APL.M / R
'oo ' // A

(recall that this exists by the main result of [12].) The inclusion F.M; k/ ,! M k

induces a structure of †k –APL.M
k/–DGmodules, hence of †k –R˝k –DGmodules,

on APL.F.M; k//. There is also an obvious structure of †k –R˝k –DGmodules on
the CDGA F.A; k/ of Definition 3.4.

Theorem 10.1 With the above setting, there is a weak equivalence of †k –R˝k –
DGmodules between APL.F.M; k// and F.A; k/.

The rest of the section is devoted to the proof of that theorem.

The triangulation of M induces a triangulation on the k –fold product W WD M k

compatible with the action of †k (Hint: Take the triangulation induced by the prismatic
decomposition of �p1 � � � � ��pk after fixing a linear order on the vertices of M .)

Switching two factors of M k induces a self-map of degree .�1/m . Therefore the
orientation representation associated to the action of †k on M k is given by, for
� 2†k ,

�.�/D .sgn.�//m:

Let E be the set
E WD f.i; j / W 1� i < j � kg

linearly ordered by the left lexicographic order. This can be considered as the set
of (nonoriented) edges on the set of vertices k D f1; � � � ; kg. Then the objects of
� D .2E/op can be interpreted as simple graphs (no loops, no double edges, no
orientations on the edges) with vertices in k .

Suppose given a graph 
 2 � and a permutation � 2†k . The lexicographic order on
E induces a linear order on 
 �E and � induces a bijection � W 
 Š! � � 
 . We can
consider its signature sgn.� W 
 / as in Definition 8.1, not to be confused with sgn.�/.
We denote by �0.
 / the set of connected components of the graph 
 . In other words
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�0.
 /D f
 .1/; � � � ; 
 .r/g is a partition of k such that two vertices i and j belongs
to the same set 
 .u/ if and only if they are connected by a path in 
 . We define a
linear order on �0.
 / by


 .u/� 
 .v/ ” min 
 .u/�min 
 .v/:

We denote by k
k WD j�0.
 /j the number of path components of 
 , not to be confused
with the number j
 j of edges in 
 . A permutation � 2 †k also induces a bijection
� W �0.
 /

Š
!�0.� � 
 / of ordered sets and we denote its signature by sgn.� W �0.
 //.

For .i; j / 2E set

X.i;j/ WD f.x1; � � � ;xk/ 2M k
jxi D xj g �W DM k

which defines a system of subpolyhedra fXe � M kge2E . The associated cubical
diagram as in Section 9 is the functor

�W �! Top; 
 !�.
 /D fx1; � � � ;xk/ 2M k
jxi D xj if .i; j / 2 
 g D

\
e2


Xe:

where the morphisms �.
 ! 
 0/ are the obvious inclusions �.
 / ,!�.
 0/.

We define another functor, M , naturally homeomorphic to �. For 
 2� , set �0.
 /D

f
 .1/; � � � ; 
 .r/g with 
 .u/ < 
 .v/ if 1 � u < v � r D k
k. Set M .
 / DM�k
k ,
the r –fold product of M . We have a homeomorphism

h.
 /W M .
 /!�.
 /; .y1; � � � ;yr /! .x1; � � � ;xk/

defined by xi D yu if i 2 
 .u/. It is easy to make M into a functor such that the
homeomorphism hW M Š� is natural.

By an iterated diagonal we mean a diagonal map M !M p;x 7! .x; � � � ;x/, for
p � 0. Each map

M .
 ! 
 0/W M�k
k
!M�k
 0k

is the composite of a product of k
k iterated diagonals followed by a permutation of
the k
 0k factors. These are uniquely determined by h.
 /.

Recall the Kunneth quasi-isomorphism

APL.M /˝r '
!APL.M

�r / ; a1˝ � � �˝ ar 7! pr�1.a1/ � : : : � pr�r .ar /:

Through this Kunneth quasi-isomorphism, diagonal maps correspond exactly to the
multiplication, and permutations of the factors of M�r correspond to permutations
(with a Koszul sign) of APL.M /˝r . Therefore for each 
 � 
 0 2 � there exists a
morphism, obtained as a graded signed permutation followed by iterated multiplications,

�.
 ! 
 0/W APL.M /˝k

0k
!APL.M /˝k
k
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making the following diagram commute:

APL.M /˝k
k

' Kunneth
��

APL.M /˝k

0k

�.
!
 0/oo

' Kunneth
��

APL.M .
 // APL.M .
 0//:
APL.M .
!
 0//

oo

In other words we have build a contravariant functor

�! CDGA ; 
 7!APL.M /˝k
k

with the morphisms �.
! 
 0/ obtained as a permutation followed by iterated multipli-
cation and it is naturally quasi-isomorphic to the contravariant functor APL.M /W �!

CDGA. Using the quasi-isomorphisms

APL.M / R
'oo ' // A

and considering similar composite of permutations and iterated multiplications on
iterated tensor products of A or R, we can build a contravariant functor

AW �! CDGA ; 
 7!A.
 /DA˝k
k

naturally weakly equivalent to APL.M /.

The duals of the above diagrams give E–cubical diagrams of R˝k –DGmodules. We
equip them with the orientation-twisted dual of the action of †k on the k –fold tensor
product by permutation of the factors with a Koszul sign. By Theorem 9.2 the .km/–th
suspension of the total cofibre of the cubical diagram #APL.�/ is equivariantly weakly
equivalent to

APL

�
M k
X

[
.i;j/2E

X.i;j/

�
DAPL.F.M; k//;

as †k –R˝k –DGmodules. Therefore APL.F.M; k// is quasi-isomorphic as †k –
R˝k –DGmodules to

(10–1) s�mkTotCof.#A/D s�mk
�M

2�

y
 � #.A˝k
k/
�
:

To finish the proof of Theorem 10.1 we will build a quasi-isomorphism of †k –R˝k –
DGmodules

ˆW s�mkTotCof.#A/! F.A; k/:

This is the content of the following series of lemma.
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First we introduce some notation and terminology.

We say that a graph 
 2 � is redundant if there exists an edge e 2 
 such that
k
 X ek D k
k.

For an edge e D .i; j / 2E with 1� i < j � k we set �.e/ WD ��ij .�/ 2A˝k where
� 2A˝A is the diagonal class of Equation (3–1).

For a graph 
 2 � , we set

g
 WD
Y
e2


ge 2 F.A; k/

where the product is taken in the lexicographic order of 
 � E and ge D gij is the
.m�1/–dimensional generator of F.A; k/. Notice that if 
 is a redundant graph then
g
 D 0 because of the Arnold relations and .gij /

2 D 0.

For the Poincaré duality algebra A with orientation form ! 2 #Am we denote by
ŒA� 2Am its fundamental class characterized by !.ŒA�/D 1. We have a unique degree
�m isomorphism of A–module � W A Š

! #A characterized by �.1/D ! . For r � 1 we
denote by �r 2 #.A˝r /rm the linear form characterized by �r .ŒA�˝ � � �˝ ŒA�/D 1.

The multiplication of the algebra A is denoted by multW A˝A!A.

Our first three lemmas aim to give an explicit formula for the differential D in the total
cofibre (10–1).

Lemma 10.2 .# mult/.�.1//D˙.� ˝ �/.�/ 2 #.A˝A/.

Proof Evaluate both sides on the basis fa�˝ a��g.

Lemma 10.3 Let 
 2 � , e 2 
 and set r D k
k. Then there exist signs �.
; e/ 2
f�1;C1g such that

.#A.
 ! 
 X e//.�r /D

(
�.
; e/�.e/ � �rC1 if k
 X ek> k
k,

�r otherwise.

Proof In the first case this map is the dual of a signed permutation of A˝rC1 followed
by a multiplication of two adjacent factors. An argument analogous to that of Lemma
10.2 by evaluation on a basis of A˝rC1 implies the formula.

In the second case, k
 X ek D k
k and A.
 ! 
 X e/ is the identity map.
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Lemma 10.4 Let 
 2 � be a nonredundant graph. Then the differential D in the total
cofibre (10–1) satisfies

D.s�mky
 �k
k/D .�1/mk
X
e2


s�mk.�1/pos.eW
/y
Xe�.e/�k
kC1:

Proof Use the formula of D in Definition 7.2 and Lemma 10.3.

The following lemma serves to define signs �.
 /D˙1 that appears in the definition of
ˆ in Lemma 10.6. The formula below is exactly the one needed to make ˆ commute
with the differential (see Lemma 10.10.)

Lemma 10.5 There exists a map �W �! f�1;C1g such that �.∅/D 1 and for each
nonredundant graph 
 2 � and e 2 


�.
 /D�.�1/m.pos.eW
/Ck
k/�.
; e/�.
 X e/:

Proof Set R.
; e/ WD �.�1/m.pos.eW
/Ck
k/�.
; e/ so that the equation of the state-
ment is �.
 / D R.
; e/ � �.
 X e/. For a nonredundant graph 
 we define �.
 / by
induction on j
 j using this equation but we need to prove that it is independent of
the choice of the edge e 2 
 . For this it is enough to show that if e1 and e2 are two
distinct edges in 
 then

R.
; e1/ �R.
 X e1; e2/DR.
; e2/ �R.
 X e2; e1/;

which is equivalent to

(10–2) �.
; e1/�.
 X e1; e2/D .�1/m�.
; e2/�.
 X e2; e1/:

Set r D k
k. Using Lemma 10.3 we compute

.#A.
 X e1! 
 X fe1; e2g// ..#A.
 ! 
 X e1// .�r //

D �.
; e1/�.e1/ ..#A.
 X e1! 
 X fe1; e2g// .�rC1//

D �.
; e1/�.e1/�.
 X e1; e2/�.e2/�rC2:

A similar computation gives

#A.
 X e2! 
 X fe1; e2g/ .#A.
 ! 
 X e2/.�r //

D �.
; e2/�.e2/�.
 X e2; e1/�.e1/�rC2:

Since #A is a functor, the last two expressions are equal and this implies Equation
(10–2) because �.e1/�.e2/D .�1/m�.e2/�.e1/.
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Lemma 10.6 There exists a unique A˝k –module map

ˆW s�mkTotCof.#A/! F.A; k/

such that for 
 2 � ,
ˆ.s�mky
 �k
k/D �.
 /g
 :

Proof The factor s�mky
 #A˝k
k is a free A˝k
k–module generated by s�mky
 �k
k .
Its A˝k –module structure is induced by an algebra map A˝k !A˝k
k obtained as
a permutation followed by iterated multiplications. The fact that ˆ.smky
 �k
k/ D

�.
 /g
 can be extended to a A˝k –module map is a consequence of the symmetry
relations ��i .a/gij D �

�
j .a/gij in F.A; k/.

Notice that if 
 is a redundant graph then ˆ.s�mky
 �k
k/D 0.

The three next lemmas establish the equivariance of ˆ.

Lemma 10.7 Let 
 2 � and � 2 †k . We have the following equation in the total
cofibre (10–1):

� � .s�mky
 � �k
k/D sgn.� W 
 / .sgn.�/sgn.� W �0.
 ///
m s�mky� �
 � �k� �
k:

Proof The factor sgn.� W 
 / is the sign coming from the action on y
 in the cubical
diagram as in Equation (8–1), sgn.�/m is the orientation-twisting, and sgn.� W �0.
 //

m

is the Koszul sign of the permutation A˝k
k
Š
!A˝k� �
k on an element of top degree.

For 1� p � k � 1 and for an edge e 2E or a graph 
 2 � we set

�p
e WD

(
.�1/m if e D .p;pC 1/,

C1 otherwise.
�p

 WD

(
.�1/m if .p;pC 1/ 2 
 ,

C1 otherwise.

Lemma 10.8 Let 1� p � k � 1, consider the transposition � D .p;pC 1/ 2†k , let

 2 � be a nonredundant graph and let e 2 
 . Then

�.
; e/�.� � 
; � � e/D �p
e .sgn.� W �0.
 // sgn.� W �0.
 X e///m I(10–3)

�.
 /�.� � 
 /D �p

 .�sgn.� W 
 / sgn.� W �0.
 ///

m
I(10–4)

� �g
 D �
p

 sgn.� W 
 /m�1 g� �
 :(10–5)
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Proof (10–3) Since the differential D on s�mkTotCof.#A/ is equivariant we have

�:D.s�mky
 � �k
k/DD.�:s�mky
 � �k
k/:

Develop both sides of this equation using Lemma 10.4 and Lemma 8.2. The sign �p
e

comes from the fact that � ��..p;pC 1//D .�1/m�..p;pC 1//.

(10–4) By induction on the number of edges j
 j using Lemmas 10.5 and 8.2 and the
previous formula. (Hint: in the induction choose the edge e 2 
 to be .p;pC1/ when
it belongs to 
 .)

(10–5) The sign �p

 comes from gpC1;p D .�1/mgp;pC1 and the other sign is the

Koszul sign of the rearrangement of the ge which are of degree m� 1.

Lemma 10.9 ˆ is †k –equivariant.

Proof It is enough to check the equivariance for transpositions � D .p;pC 1/ of
adjacent vertices applied to the generators s�mky
 � �k
k . If 
 is nonredundant it is a
computation using Lemma 10.7 and Lemma 10.8. If 
 is redundant then the same is
true for � � 
 and the images by ˆ of the corresponding generators are 0.

Lemma 10.10 ˆ commutes with the differentials.

Proof Since ˆ is an A˝k –module map between A˝k –DGmodules, it is enough to
check this on the generators s�mky
 ��k
k . For a nonredundant graph it is a computation
using Lemmas 10.4 and 10.5. To finish the proof we establish the following:

Claim If 
 is a redundant graph then ˆ.D.s�mky
 �k
k//D 0.

For the sake of the proof we define an l –cycle in a graph 
 as a subset of edges
f.i1; i2/; .i2; i3/; : : : ; .il�1; il/; .i1; il/g. A graph 
 is redundant if and only if it con-
tains some l –cycle, with l � 3, and then g
 D 0. Notice that when 
 contains more
than one cycle, in other words when 
 X e is still redundant for any edge e 2 
 , then
the claim is obvious. So from now on we suppose that 
 contains exactly one cycle.

The claim is easy for the graph 
123 WD f.1; 2/; .1; 3/; .2; 3/g using the Arnold relation
in F.A; k/ (hint: to compare the different signs �.
123 X e/, use (10–4) in Lemma
10.8.) By an induction on the number of edges one deduces the claim for any graph
containing 
123 and no other cycle. By the equivariance of ˆ this implies the result
for any graph containing a 3–cycle.

Finally one proves the result for any graph containing an l –cycle, for l � 4 by induction
on l . Indeed if 
 contains the l –cycle .1; 2/; � � � ; .l � 1; l/; .1; l/ then consider the
graph y
 WD 
 [f.1; 3/g. The terms of D.s�mkyy
 �ky
k/ contains one term indexed by

 and other terms indexed by a graph containing a cycle of length < l or more than
one cycle. Using that D2 D 0 and the inductive hypothesis one deduces the claim.
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Lemma 10.11 ˆ is a quasi-isomorphism.

Proof Let �0�� be the subset consisting of graphs of the form f.i1; j1/; : : : ; .il ; jl/g

with 1� i1 < � � �< il � k all distinct and is < js � k for s D 1; : : : ; l . Consider the
inclusion of chain complexes

�W s�mk
� M

2�0

y
 � #.A˝k
k/
�

,! s�mk
�M

2�

y
 � #.A˝k
k/
�
:

An argument completely analogous to that of [7, Proposition 2.4] (passing to the duals)
shows that � is a quasi-isomorphism. Since ˆ� is an isomorphism we deduce that ˆ is
a quasi-isomorphism.

11 More general complements and “all-or-nothing” transver-
sality

In summary the idea that we have applied above is that first we have build a DGmodule
model of

C �
�
W X

[
e2E

Xe

�
of the form of a total cofibre

s�nTotCof.
 7! #C �.X
 //D s�n
M

2�

y
#C �.X
 /:

This only requires a mixture of Lefschetz duality and a general Mayer–Vietoris principle.
The disadvantage of this model, which works for any system of subpolyhedra

fXe ,!W ge2E

is that this model has no clear CDGA structure, partly because there is no such algebra
structure on the duals #C �.X
 /.

In the case of the configuration space there was another model which (nonequivariantly
at least) is isomorphic to

s�n
M

2�0

Y
e2


geC �.X
 /

which admits a clearer algebra structure. To build this model we have applied Poincaré
duality at the cochain level for each of the submanifold X
 ,

s�ny
#C �.X
 /'
Y
e2


geC �.X
 /:
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For this to make sense we need first each of the X
 to be a closed manifold, but also
for all these Poincaré dualities at various formal dimensions to fit together to recover
the Lefschetz duality for C �.W X

S
e2E Xe/ we needed some sort of transversality.

In a sense it is exactly to recover this transversality that we had to restrict to a subset
�0 � � defined at the beginning of the proof of Lemma 10.11.

In fact this approach can be applied to more general space than configuration spaces.
Actually the main points that we here used is the fact that we had an oriented mani-
fold W together with a system of closed submanifolds X� WD fXe ,!W ge2E such
that the families of intersections f

T
e2
 Xeg
2� satisfies a certain “all-or-nothing”

transversality condition that we now explain.

In the case where X� is a total transverse system of submanifolds, by which we
mean that for any disjoint 
1; 
2 �E the submanifolds

T
e12
1

Xe1
and

T
e22
2

Xe2

intersects transversally, then using cochain-level Poincaré duality gives another model
of C �.W X

S
e2E Xe/ of the form�M


2�

g
 :C
�.X
 /;D

�
where deg.g
 /D codim.X
 /, and there is a natural CDGA structure on this when we
think to g
 as

Q
e2


ge . In other words in the case of a total transverse system we can
take �0 D � .

In the case of the configuration space we have EDf.i; j / W1� i <j �kg and the family
of diagonals X� WD fXij ,! M kg.i;j/2E is certainly not totally transverse, except
when k � 2. But it has another property which we call all-or-nothing transverse. By
this we mean that for any 
1; 
2 �E the submanifolds

T
e12
1

Xe1
and

T
e22
2

Xe2

either intersects transversally or one of them is included in the other. This is the case of
the system of diagonals in M k . Using that it is then always possible to find a subset
�0 � � such that C �.W X

S
e2E Xe/ has a model of the form� M

2�0

u
 :C
�.X
 /;D

�
where u
 D codim.X
 /, and again this comes with a natural CDGA structure on this.
Actually the subset �0 � � is characterized by the fact that if 
 2 �0 and 
 0 � 
 then

 0 2 �0 and, for e 62 
 , we have 
 [feg 2 �0 if and only if X 0


[feg
6DX
 . We do not

claim that it is a CDGA model in general, and finding suitable conditions for this to be
true is certainly an interesting but difficult problem.

This approach could be useful to the study of other complements, like systems of
projective subspaces in CP .n/ but we will not develop this further in this paper.
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