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Organizing volumes of right-angled hyperbolic polyhedra

TAIYO INOUE

This article defines a pair of combinatorial operations on the combinatorial structure of
compact right-angled hyperbolic polyhedra in dimension three called decomposition
and edge surgery. It is shown that these operations simplify the combinatorics of
such a polyhedron, while keeping it within the class of right-angled objects, until
it is a disjoint union of Löbell polyhedra, a class of polyhedra which generalizes
the dodecahedron. Furthermore, these combinatorial operations are shown to have
geometric realizations which are volume decreasing. This allows for an organization
of the volumes of right-angled hyperbolic polyhedra and allows, in particular, the
determination of the polyhedra with smallest and second smallest volumes.

51M10, 57M50; 52B99

1 Introduction

Three-dimensional right-angled hyperbolic compact polyhedra are a well-understood
family of hyperbolic objects. A complete classification of them is provided by Andreev’s
Theorem [3] (see also Roeder, Hubbard and Dunbar [11]), which characterizes when a
combinatorial polyhedron admits a geometric realization in H3 with a given nonobtuse
dihedral angle specified at each edge. A simple corollary of this result is a complete
characterization of combinatorial types of right-angled hyperbolic polyhedra by means
of a small set of conditions on the combinatorics.

Nonetheless, the problem of determining the volume of a given right-angled hyperbolic
polyhedra remains difficult. This article will attempt to organize these volumes.

By Mostow rigidity, the hyperbolic structure of a three dimensional right-angled
hyperbolic polyhedron is unique and is determined by the combinatorial structure of
the polyhedron. In particular, volume is a combinatorial invariant for those polyhedra
which admit a right-angled hyperbolic realization.

Following this spirit, volumes of these polyhedra will be organized according to a
combinatorial process which, at each step, reduces the complexity of the polyhedron.
The two combinatorial operations used in this process are called decomposition and
edge surgery. The former is a splitting of the polyhedron under certain conditions,
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while the latter is the deletion of a particular edge. These operations, when applied
to sufficiently complicated polyhedra, reduce the complexity of the polyhedron until,
after enough applications, the resulting object is a finite disjoint union of polyhedra
from an infinite family of exceptional polyhedra, namely the Löbell polyhedra. This
family of polyhedra have the property that these operations cannot be applied to them
and their geometry, in particular their volume, is very well understood.

It will be shown that for polyhedra not of Löbell type, either the polyhedron is decom-
posable or there exists an edge for which edge surgery can be performed. Therefore,
every such polyhedron will eventually be transformed into a family of Löbell ones via
an iteration of this process.

These combinatorial operations will then be studied from a geometric point of view.
Decomposition bears a strong resemblance to the decomposition of hyperbolic Haken
manifolds along incompressible subsurfaces. In particular, after passing to a manifold
cover of a particular sort constructed in Section 5, this is precisely what decomposition
is. As such, the result of Agol, Dunfield, Storm and Thurston [1], which gives a
description of the effect of Haken decomposition on volumes, can be applied to show
that decomposition of right-angled hyperbolic polyhedra is not volume increasing.

Next, it will be shown that the geometric realization of edge surgery is to “unbend”
the polyhedron along the edge that is surgered. This means that the polyhedron is
deformed so that the dihedral angle measure along this edge increases from �=2 to
� while the dihedral angle measure of every other edge is constant and equal to �=2.
The main sticking point with this is that this deformation passes through obtuse-angled
polyhedra which is not the purview of Andreev’s theorem. However, results of Rivin
and Hodgson [8] generalizing Andreev’s theorem will imply that this deformation
exists. Then by means of the Schläfli differential formula, it will be shown that the
geometric realization of this operation is volume decreasing.

Putting these things together gives chains of inequalities of volumes of right-angled
hyperbolic polyhedra determined by the decompositions and edge surgeries used to
go from an initial polyhedron to a disjoint union of Löbell polyhedra. Since every
right-angled hyperbolic polyhedron which is not of Löbell type can be reduced in this
way, a method for organizing volumes of right-angled hyperbolic polyhedra is obtained.
This is summarized in the following theorem, which is the main result of this article:

Theorem 9.1 Let P0 be a compact right-angled hyperbolic polyhedron. Then there ex-
ists a sequence of disjoint unions of right-angled hyperbolic polyhedra P1;P2; : : : ;Pk

such that for i D 1; : : : ; k , Pi is gotten from Pi�1 by either a decomposition or edge
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surgery, and Pk is a set of Löbell polyhedra. Furthermore,

vol.P0/� vol.P1/� vol.P2/� � � � � vol.Pk/:

As the volumes of Löbell polyhedra can be explicitly calculated, the right-angled
hyperbolic polyhedra of smallest and second smallest volumes can be identified easily:

Corollary 9.2 The compact right-angled hyperbolic polyhedron of smallest volume is
L.5/ (a dodecahedron) and the second smallest is L.6/ where L.n/ denotes the n–th
Löbell polyhedron.

In fact, if one had an oracle to inform them about the precise volume of a given
polyhedron, then this result would provide an algorithm terminating in finite time
to determine the ordering of volumes in the sense that the right-angled hyperbolic
polyhedron of n–th smallest volume would be identifiable.

It should be noted that this article deals exclusively with compact right-angled hyperbolic
polyhedra. Their ideal siblings, those right-angled hyperbolic polyhedra which have
vertices lying on the ideal boundary of H3 , are not covered. There are examples of ideal
right-angled polyhedra whose volumes are smaller than that of the smallest compact
right-angled hyperbolic polyhedron. For example, the right-angled ideal octahedron,
all of whose vertices are ideal, has volume strictly smaller than that of the right-angled
dodecahedron.

Furthermore, at the present moment, analogous questions about four dimensional and
higher dimensional right-angled hyperbolic polyhedra are largely a mystery and cannot
be dealt with using the techniques of this article. Indeed, there is no technology which
rivals the power of Andreev’s theorem to even begin constructing examples of such
objects in dimension 4 and higher.

Acknowledgments This article is essentially identical to my Ph.D dissertation super-
vised by Rob Kirby and Alan Reid filed at U.C. Berkeley in 2007. I am grateful to
them for inspiration, knowledge and support. I thank the referee for her/his comments
as well, as well as the journal’s editors.

2 Definitions and notation

The setting for this article is H3 . More generally, Hn is the unique simply connected
Riemannian manifold of dimension n with constant sectional curvatures equal to �1.
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If F is a totally geodesic 2–plane in H3 then a hyperbolic half-space HF is a closed
subset of H3 bounded by H . Similarly, if g is a geodesic in H2 , then a hyperbolic
half-plane is a closed subset of H2 bounded by g .

A hyperbolic polyhedron is a nonempty compact convex transverse intersection of a
finite number of hyperbolic half-spaces. For any hyperbolic polyhedron P , there will
be a unique minimal set of hyperbolic half spaces whose intersection is P . It will be
assumed that this minimal set will always be the one defining P .

If HF is a hyperbolic half-space defining P , a face of P is the intersection of F with
P . The 2–plane F is said to be the plane supporting the face. As F is itself isometric
to the hyperbolic plane, it is evident that a face is itself isometric to a hyperbolic
polygon, that is a nonempty convex compact transverse intersection of a finite number
of hyperbolic half-planes. By abusing notation, the face supported by F will often be
denoted by the same letter F .

If P is a hyperbolic polyhedron, then an edge is a nonempty intersection of two distinct
faces of P containing more than one point. A vertex is a nonempty intersection of
three or more distinct faces of P .

A combinatorial polyhedron is a 3–ball whose boundary sphere is equipped with a cell
structure whose 0–cells, 1–cells and 2–cells will also be called vertices, edges and faces
respectively, and which can be realized as a convex polyhedron. By Steinitz’s theorem,
such objects are exactly those whose 1–skeletons are simple and 3–connected graphs.
A hyperbolic polyhedron has a natural description as a combinatorial polyhedron.
Passage between the combinatorial perspective and the geometric one will often be
done without mention.

Let c be a simple closed curve on @P which intersects transversely the interior of
exactly k distinct edges. Such a curve is called a k –circuit. A k –circuit is a prismatic
k –circuit if the endpoints of all the edges which c intersects are distinct. Often
the distinction between a k –circuit c and the edges it intersects will be blurry, if not
completely nonexistent. See Figure 1 for examples of prismatic circuits in combinatorial
polyhedra.

Let e be an edge of P given by the intersection of a pair of distinct faces F and G

which are supported by planes also denoted F and G . Then the interior dihedral angle
(often simply the dihedral angle) at e is the dihedral angle formed by the planes F

and G in the interior of P . Note that because P is a convex set, the interior dihedral
angle of an edge always has measure strictly smaller than � . The exterior dihedral
angle at e is the dihedral angle formed by F and G in the exterior of P which is the
supplement of the interior dihedral angle.
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Figure 1: This is the 1–skeleton of a polyhedron with prismatic circuits. The
dashed curve is a prismatic 4–circuit and the dotted curves are prismatic
5–circuits.

3 Right-angled hyperbolic polyhedra

The primary objects of study in this article are right-angled hyperbolic polyhedra which
are hyperbolic polyhedra all of whose dihedral angles have measure equal to �=2. A
hyperbolic polyhedron all of whose dihedral angles have measure less than or equal to
�=2 is said to be nonobtuse. When one restricts attention to this class, there are more
constraints placed on the combinatorics of the polyhedron than just Steinitz’s Theorem.
A set of necessary and sufficient conditions for the existence of a nonobtuse hyperbolic
polyhedron is described by Andreev’s Theorem [3]:

Andreev’s Theorem A combinatorial polyhedron P which is not isomorphic to a
tetrahedron or a triangular prism has a geometric realization in H3 with interior dihedral
angle measures 0< �i � �=2 at edge ei if and only if:

(1) The 1–skeleton of P is trivalent.

(2) If ei ; ej ; ek are distinct edges which meet at a vertex, then �i C �j C �k > � .

(3) If ei ; ej ; ek form a prismatic 3–circuit, then �i C �j C �k < � .

(4) If ei ; ej ; ek ; el form a prismatic 4–circuit, then �i C �j C �k C �l < 2� .

This geometric realization is unique up to isometry of H3 .

Andreev’s original statement and proof of this result in 1970 [3] contains a flaw in one
of its combinatorial arguments. A corrected proof is presented in Roeder, Hubbard
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and Dunbar’s paper [11]. Andreev’s theorem was also proved independently as a
consequence of Rivin and Hodgson’s generalization [8]. Details of this can be found in
Hodgson’s article [7].

The prismatic circuit conditions in Andreev’s Theorem can be thought of as a cone
manifold translation of the concepts “irreducible” and “atoroidal”. For example, a
prismatic 3–circuit implies the existence of a topologically embedded triangle in P

whose vertices lie on the edges of the circuit. If the dihedral angle measures of these
edges add up to more � , then geometrically this triangle is positively curved and so
can be thought of as the analogue of an embedded 2–sphere in a three manifold. That
the 3–circuit is prismatic is what implies the “incompressibility” of the triangle. If the
dihedral angle measures add up to � exactly, then the embedded triangle is flat, and
so can be thought of as the analogue of an incompressible torus. A similar discussion
works for prismatic 4–circuits. Similarly, the second condition is a cone manifold
version of the “spherical link” condition for manifolds.

Note that for prismatic k –circuits with k � 5, an embedded polygon whose vertices
lie on these edges is geometrically negatively curved if the polyhedron is nonobtuse.
However, this might fail to be the case without the nonobtuse condition. Thus, the
classification of hyperbolic polyhedra without the nonobtuse restriction is necessarily
more subtle. I Rivin and C Hodgson have accomplished this generalization which will
be discussed later.

By requiring that all dihedral angle measures be �=2, Andreev’s classification of
right-angled hyperbolic polyhedra becomes purely combinatorial. In fact, the following
classification of right-angled hyperbolic polyhedra was done by A Pogorelov in 1967
[10] before Andreev’s work:

Corollary 3.1 A combinatorial polyhedron P has a geometric realization in H3 as a
right-angled hyperbolic polyhedron if and only if:

(1) The 1–skeleton of P is trivalent.

(2) There are no prismatic 3 or 4–circuits.

This geometric realization is unique up to isometry.

The geometry of a face of a right-angled polyhedron is described by the following
theorem:

Theorem 3.2 If P is a right-angled hyperbolic polyhedron, then all of its faces are
right-angled hyperbolic polygons.
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Proof Let F be a face of P and v a vertex of F . Then link.v/ is a right-angled
spherical triangle. Such a triangle is unique up to isometry on the round unit sphere
and has edge lengths �=2. These edge lengths are precisely the angles in the faces
containing v at v . Therefore, in particular, the angle of F at v is �=2.

This fact, combined with the well-known classification of right-angled hyperbolic
polygons which states, in particular, that right-angled hyperbolic k –gons exist for
k � 5, (see, for example, Costa and Martı́nez [6]) implies that each face of a right-
angled hyperbolic polyhedron has at least 5 edges. However, it should be noted that
requiring all faces to have at least five edges is not a sufficient replacement for the
prismatic circuit conditions in Andreev’s characterization of right-angled polyhedra
(Corollary 3.1). Figure 1 shows an example of a combinatorial polyhedron with trivalent
1–skeleton, all of whose faces have at least five edges, but which possesses a prismatic
4–circuit and therefore cannot be realized as a right-angled hyperbolic polyhedron.

It should also be remarked that the above result generalizes to higher dimensions. That
is, if P is a right-angled polytope in Hn , then any lower dimensional face of P is
isometric to a right-angled hyperbolic polytope of the appropriate dimension. However,
it has been shown that compact right-angled hyperbolic polytopes in Hn only exist
for n� 4 [2] (although higher dimensional ideal right-angled hyperbolic polytopes do
exist).

Here are some combinatorial consequences of the above conditions on the structure of
right-angled hyperbolic polyhedra which will be of use later:

Lemma 3.3 Every right-angled hyperbolic polyhedron P has at least 12 pentagonal
faces. If a right-angled hyperbolic polyhedron contains only pentagonal faces, then
it is a dodecahedron. In particular, the dodecahedron is the right-angled hyperbolic
polyhedron with the smallest number of faces.

Proof Let F.P / denote the set of faces of P and E.F / denote the number of edges
which the face F contains. Let v , e and f denote the number of vertices, edges and
faces of P . Let

c.P /D
X

F2F.P/

E.F /� 5:

Note that c.P / is also equal to 2e� 5f .

By Euler’s formula, v� eC f D 2. By trivalence of the 1–skeleton of P , e D 3v=2.
Therefore f � e=3D 2, or f � 2eC 5f D 12, so f � c.P /D 12.
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Let k denote the number of pentagonal faces of P . Then c.P /� f �k as each face of
P which is not a pentagon contributes at least 1 to c.P /. Therefore, 12Df �c.P /�k

which proves the first claim.

Suppose P contains only pentagonal faces. Then c.P / D 0, so f D 12. It is easy
to see that the only polyhedron which has 12 faces which are all pentagons is the
dodecahedron.

Lemma 3.4 If A and B are a pair of distinct faces in a right-angled hyperbolic
polyhedron P which share a vertex, then they are adjacent in an edge which contains
this vertex.

Proof Suppose A is not adjacent to B in an edge containing the vertex they share.
Then there are at least 4 edges emanating from this vertex which contradicts the
trivalence of P .

Lemma 3.5 If A, B , and C are pairwise adjacent faces of right-angled hyperbolic
polyhedron P , then they all share a vertex.

Proof Let aDA\B , bDB\C , cDC \A. Suppose no two of a, b and c share an
endpoint. Then these three edges form a prismatic 3–circuit which is a contradiction.

Suppose then that two of a; b; c share an endpoint v , for example a and b . Then
A and C share the vertex v which implies that they are adjacent in an edge which
contains this vertex. This edge must be c since a pair of faces in a polyhedron can
intersect in at most one edge. Therefore, A, B and C share a vertex.

Lemma 3.6 Suppose P is a right-angled hyperbolic polyhedron and A and C are
nonadjacent faces both adjacent to a face B . If D ¤ B is also adjacent to both A and
C , then D is also adjacent to B .

Proof Suppose for a contradiction that D is not adjacent to B . Consider the cycle of
faces A, B , C , D . Let e1 DA\B , e2 D B \C , e3 D C \D , and e4 DD\A.

Suppose e1 and e2 share an endpoint. Then A and C share a vertex and therefore, by
the above proposition, are adjacent which is a contradiction. A similar argument shows
ei and ej share no endpoints for i ¤ j .

Therefore, these edges form a prismatic 4–circuit which is a contradiction.
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4 Examples of right-angled hyperbolic polyhedra

This section will describe an important family of right-angled hyperbolic polyhedra,
and will describe operations for producing new examples from given ones.

Löbell Polyhedra A pentagonal flower, denoted Ln for n � 5, is a combinatorial
2–complex consisting of an n–gon F surrounded by n pentagons p1; : : : ;pn with
indices ordered cyclically such that pi is adjacent to F , pi�1 and piC1 . In the case
when nD 5, a pentagonal flower L5 is called a dodecahedral flower.

Let Ln
1

and Ln
2

be a pair of pentagonal flowers. Let L.n/ be the polyhedron whose
boundary is obtained by gluing Ln

1
to Ln

2
along their S1 boundary in the only way

which produces a cellular decomposition of the sphere with trivalent 1–skeleton. This
family of combinatorial polyhedra evidently has no prismatic 3 or 4–circuits and
so each has a geometric realization as a right-angled hyperbolic polyhedron. For a
geometric construction of these polyhedra in H3 ; see Vesnin [12]. These polyhedra
L.n/ are called Löbell polyhedra. In particular, L.5/ is isomorphic to a dodecahedron.

The first example of a closed orientable hyperbolic 3–manifold was constructed by
F Löbell by gluing the faces of eight copies of L.6/. This construction is an example
of a more general procedure which produces eightfold manifold covers of right-angled
hyperbolic polyhedra which will be described in detail below.

Löbell polyhedra are fairly well understood. In particular, their symmetry allows for
an explicit computation of their volumes. This was carried out by A Vesnin [12] whose
result will be recorded in the following:

Theorem 4.1 For n� 5,

vol.L.n//D
n

2

�
2ƒ.�n/Cƒ

�
�nC

�

n

�
Cƒ

�
�n�

�

n

�
�ƒ

�
2�n�

�

2

��
�n D

�

2
� arccos

�
1

2 cos.�
n
/

�
where

and ƒW R!R is the Lobachevskii function

ƒ.z/D� intz0 log j2 sin.t/j dt:

Theorem 4.2 vol.L.n// is an increasing function of n.
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Proof Let v.x/ denote the function:

v.x/D
x

2

�
2ƒ.�x/Cƒ

�
�xC

�

x

�
Cƒ

�
�x �

�

x

�
�ƒ

�
2�x �

�

2

��
�x D

�

2
� arccos

 
1

2 cos
�
�
x

�! :where

The result will be shown by proving that v is an increasing function for x � 5.

Here are a smattering of estimates which will be of use and which are stated without
their elementary proofs:

Lemma 4.3 For x � 5,

(1) �=6< �x < �=4.

(2) ��=6< 2�x ��=2< 0.

(3) �=6< �xC�=x < �=2.

(4) � 0x < 0.

(5) ƒ is increasing on .��=6; �=6/ and decreasing on .�=6; 5�=6/.

(6) ƒ0 is decreasing on .0; �=2/.

Let g.x/D 2ƒ.�x/Cƒ
�
�xC

�

x

�
Cƒ

�
�x �

�

x

�
�ƒ

�
2�x �

�

2

�
so that v.x/D .x=2/.g.x//. The function v will be shown to be increasing for x � 5

by showing that g is increasing on this interval.

Now calculate g0.x/:

g0.x/D 2ƒ0.�x/.�
0
x/Cƒ

0
�
�xC

�

x

� �
� 0x �

�

x2

�
Cƒ0

�
�x �

�

x

� �
� 0xC

�

x2

�
�ƒ0

�
2�x �

�

2

�
.2� 0x/

�ƒ0
�
�xC

�

x

� �
� 0x �

�

x2

�
Cƒ0

�
�x �

�

x

� �
� 0xC

�

x2

�
�ƒ0

�
2�x �

�

2

�
.2� 0x/

> ƒ0
�
�x �

�

x

� �
� 0x �

�

x2

�
Cƒ0

�
�x �

�

x

� �
� 0xC

�

x2

�
�ƒ0

�
2�x �

�

2

�
.2� 0x/

D 2ƒ0
�
�x �

�

x

�
� 0x �ƒ

0
�
2�x �

�

2

�
.2� 0x/
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D 2� 0x

�
ƒ0
�
�x �

�

x

�
�ƒ0

�
2�x �

�

2

��
> 2� 0x

�
ƒ0
�
�x �

�

x

��
> 0:

The first inequality follows from statements (1), (4) and (5) of the Lemma which imply
ƒ0.�x/�

0
x is positive. The second inequality follows from statement (4) and (6) of the

Lemma. The third inequality follows from statement (4) which implies that 2� 0x is
negative, and statements (2) and (5) which imply ƒ0 .2�x ��=2/ is positive. The final
inequality follows from (4), (1) and (5).

This computation implies that g , and therefore v , is an increasing function for x � 5.
Therefore, vol.L.n//D v.n/ is an increasing function for n� 5. This ends the proof
of Theorem 4.2.

For reference, the first few values of vol.L.n// as computed by Mathematica are
recorded in Table 1.

n vol.L.n// n vol.L.n//
5 4.306... 13 15.822...
6 6.023... 14 17.140...
7 7.563... 15 18.452...
8 9.019... 16 19.758...
9 10.426... 17 21.059...

10 11.801... 18 22.356...
11 13.156... 19 23.651...
12 14.494... 20 24.943...

Table 1: The volumes of the first sixteen Löbell polyhedra

Doubling Given a right-angled polyhedron P and a face F of P , a new right angled
polyhedron called the double of P across F or simply a double dP can be constructed
as follows. Let rF be the reflection of H3 across the plane supporting the face F .
Then dP is defined to be P [ rF .P /. Note that the edges of F disappear in dP , in
the sense that the dihedral angle along these geodesic segments in dP has measure � .

Composition Let P1 and P2 be a pair of combinatorial polyhedra. Suppose that
F1 is a face of P1 that is combinatorially isomorphic to a face F2 of P2 , which just
means they have the same number of edges. A new combinatorial polyhedron P can
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be defined by choosing an isomorphism between F1 and F2 , identifying P1 and P2

along Fi using this isomorphism, deleting the interiors of the edges corresponding to
Fi , and demoting the endpoints of these edges to nonvertices. This new polyhedron is
called a composition of P1 and P2 . Note that this composition has a distinguished
prismatic k –circuit made up of the edges whose interiors were deleted where k is the
number of edges of Fi .

Theorem 4.4 The composition P of a pair of right-angled hyperbolic polyhedra P1

and P2 is also a right-angled hyperbolic polyhedron.

Proof It must be shown that P has trivalent 1–skeleton and contains no prismatic
3 or 4–circuits. That P has trivalent 1–skeleton is clear. Let F1 � P1 and F2 � P2

be the faces being identified in the formation of P and let c denote the distinguished
prismatic k –circuit of P . Suppose P contains a prismatic 3 or 4–circuit d . If d can
be made to completely miss c by an isotopy that does not change the set of edges that
d intersects, then evidently one of P1 or P2 contains a prismatic 3 or 4–circuit, a
contradiction.

So then d must intersect c , and it must do so in two distinct faces as d and c are
simple closed curves on S2 . This curve d in the composition P determines an arc
in either P1 or P2 whose endpoints lie on c . Furthermore, this arc intersects at most
3 or 4 edges of Pi , two of which are edges of Fi . Closing this arc by adding a line
segment in the face Fi � Pi joining the endpoints of this arc, produces a prismatic 2–,
3– or 4–circuit in Pi . This is a contradiction.

Define decomposition to be the operation inverse to composition. That is, decomposition
splits a polyhedron P along some prismatic k –circuit into a pair of polyhedra P1 and
P2 each of which admit a right-angled hyperbolic structure. A right-angled hyperbolic
polyhedron which admits a decomposition is decomposable.

A necessary condition for a polyhedron P to be decomposable is that it have a prismatic
k –circuit c with k � 5 such that if F is a face of P which c intersects, then, in F ,
the curve c bounds combinatorial polygons on either side which have at least 5 edges.
In this case, c will be said to have no flats. However, this condition is not sufficient for
decomposability as there is no guarantee that the resulting combinatorial polyhedra P1

and P2 obtained by splitting P along c admit a right-angled hyperbolic structure. In
particular, the polyhedra P1 and P2 may contain prismatic 3 or 4–circuits. However,
if k D 5, then the necessary condition is sufficient:

Theorem 4.5 Suppose c is a prismatic 5–circuit of a right-angled hyperbolic polyhe-
dron P with no flats. Then the polyhedron P is decomposable along c .
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Proof Denote the combinatorial polyhedra obtained by splitting P along c by P1

and P2 . It must be shown that these polyhedra admit right-angled hyperbolic structures.
It suffices to show this for just one of the two.

It is obvious that P1 has trivalent 1–skeleton.

For the purposes of establishing a contradiction, suppose d is a prismatic 3 or 4–circuit
of P1 . Let F1 be the pentagonal face of P1 produced by splitting P along c . If
d does not intersect F1 , then the curve d persists in the composition P which is a
contradiction as it implies that P has a prismatic 3 or 4–circuit.

So suppose d intersects the pentagon F1 in a pair of edges d1 and d2 . These edges
must be disjoint in F1 , and since F1 is a pentagon, there must be an edge e of F1

adjacent to both d1 and d2 . For i D 1; 2, let ei denote the edges of P1 sharing an
endpoint with both e and di . These edges ei both belong to some face of P1 called E .

Via an isotopy, the circuit d can be pushed across the edge e to form a new circuit yd
so that instead of intersecting F1 , it intersects E , now in the edges ei . Let Di denote
the face of P1 which is adjacent to E in the edge ei . Note that the faces Di and E

and the curve yd are disjoint from the face F1 , and so persist in P . By abusing of
notation, label all edges and faces and curves in P by their given labels in P1 .

Suppose d is a prismatic 3–circuit in P1 . Then yd is a 3–circuit in P which intersects
the three faces D1 , E and D2 . Therefore, these faces are pairwise adjacent. Thus by
Lemma 3.5, these faces all share a vertex in P . This implies e1 and e2 share a vertex,
which implies that the edges e , e1 , and e2 of P1 form a triangle. This contradicts the
hypothesis on c .

Suppose d is a prismatic 4–circuit in P1 . Then yd is a 4–circuit in P which intersects
the three faces D1 , E and D2 as well as some fourth face G which is adjacent to each
Di . Therefore, by Lemma 3.6, G must be adjacent to E . This implies that the edges
e , e1 , e2 and G \E of P1 form a quadrilateral. This contradicts the hypothesis on c .

Therefore, P1 contains no prismatic 3 or 4–circuits and has trivalent 1–skeleton which
implies, by Andreev’s theorem, that it admits a right-angled hyperbolic structure.

Because there is a nontrivial moduli space of right-angled polygons [6], this com-
binatorial composition of polyhedra is not as simple to understand in the geometric
setting as the doubling process described above. The difficulty is that F1 and F2

may be nonisometric in the geometric realizations of P1 and P2 and therefore the
composition’s geometric realization is not simply P1 glued to P2 . However, doubles
are a special case of this welding operation where the combinatorics and the geometry
agree.
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5 Manifold covers

In this section, manifold covers of right-angled hyperbolic polyhedra, viewed as hyper-
bolic Coxeter orbifolds, are constructed.

If P is a right-angled hyperbolic polyhedron, let the reflection group of P, denoted
�P , be the group generated by reflections in the planes supporting the faces of P .
Then evidently �P is a discrete group of isometries, and H3=�P D P , giving P the
structure of a Coxeter orbifold.

A group presentation for �P is a simple matter to write down. Let F1; : : : ;Fk be the
faces of P listed in no particular order, and let ri denote the reflection in the plane
supporting the face Fi . Then

�P D hr1; : : : ; rk j r
2
i D 1; .rirj /

2
D 1 if Fi is adjacent to Fj i:

This presentation will be called the standard presentation of �P .

The following theorem was originally proved by Mednykh and Vesnin [9]. The proof
contained herein is only slightly modified from their original argument.

Theorem 5.1 Every right-angled hyperbolic polyhedron PDH3=�P has an eightfold
manifold cover.

Proof Let P be a right-angled hyperbolic polyhedron and �P be its reflection group.
Let gW �P ! Z=2Z be the group homomorphism which gives the mod 2 length of a
word in �P . Here the group presentation for �P given above is used. Let GP be the
kernel of this homomorphism.

This group GP determines a double cover of P which is easy to visualize. Take two
copies of P and identify each face of one copy to the corresponding face of the other
copy. The resulting geometric object is a hyperbolic orbifold which is topologically S3

with a one dimensional singular set which is isomorphic as a graph to the 1–skeleton
of P . As P has right angles, the cone angle around each edge of this singular set is � .

A Wirtinger type presentation then gives a presentation for GP . A loop around an
edge in the singular set corresponding to an edge in P which is contained by the faces
Fi and Fj gives the generator of GP given by aij D rirj . By the relations of �P ,
aij D aji . Note that aij is a composition of reflections in orthogonal planes and so
is a rotation of � about the geodesic which supports the edge Fi \Fj . In particular,
there are relations a2

ij D 1. Further relations are given by vertices so that if Fi , Fj

and Fk are distinct faces sharing a vertex, then aij ajk D aik .
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To find a torsion free subgroup of GP that has index four, some facts about colorings
of the faces and edges of P will need to be collected. Suppose the faces of P are
colored by the four elements of the group .Z=2Z/2 with the usual condition that if
two faces are adjacent, they are colored differently. Such a face coloring is guaranteed
by the four color theorem proved by Appel and Haken [4]. Then each edge of P can
be colored by the sum of the colors of the faces which contain the edge. Note that each
edge is then colored by one of the three nonzero elements of .Z=2Z/2 . Note also that
the sum of two distinct nonzero elements of .Z=2Z/2 is the third nonzero element.

Lemma 5.2 This is an edge 3–coloring of the 1–skeleton of P . That is, no two edges
which are colored the same share an endpoint.

Proof Suppose that two edges e1 and e2 share a vertex v . By trivalence, there is
a unique edge d which also has vertex v which is not e1 or e2 . Let A be the face
containing e1 and e2 , B the face containing e2 and d , and C the face containing d

and e1 . Let LF denote the color of the face F given by the face coloring. Then the
color of the edge e1 is LACLC while the color of e2 is LACLB . Since LB ¤LC ,
these colors are different.

Let C denote this coloring of P . Define a homomorphism hW GP ! .Z=2Z/2 which
sends the generator aij to the coloring of the edge shared by the faces Fi and Fj . That
this assignment of images for generators of GP extends to a group homomorphism
follows from the comments above. Let H.P;C / denote the kernel of h.

Lemma 5.3 H.P;C / is torsion free.

Proof The proof of this result is an induction argument on the length of a freely
reduced word in the generators aij . If w is such a word, let l.w/ denote its length.
Let eij denote the edge of P corresponding to the generator aij . The proof will show
that if w is in H.P;C / and is not the identity element, then w is a hyperbolic screw
translation, or a loxodromic isometry in the vernacular. These isometries have infinite
order, and also have the property that the composition of two such is again loxodromic.

First note that if l.w/D 1, then w cannot be in H.P;C / . Suppose then that l.w/D 2,
say w D aij amn . If w is in H.P;C / , then h.aij /D h.amn/. Therefore, as w is freely
reduced, eij and emn do not share any vertices. Let g denote the geodesic which
intersects eij and emn orthogonally. Then the isometry w D aij amn is loxodromic
and its translation axis is g . Therefore, in particular, w cannot have finite order.

Suppose l.w/D 3 with h.w/D 0, say wD abc . Note that h.a/, h.b/ and h.c/ must
all be different nonzero elements of .Z=2Z/2 . Furthermore, note that if the edges
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associated to the generators a and b share a vertex, then w can be reduced in the
group to an equivalent word of length 2, and thus is loxodromic. So assume these
edges are disjoint. Then, ab is a loxodromic isometry and so w is the composition of
a loxodromic isometry with the rotation c and is therefore loxodromic.

Now assume, for the purposes of induction, that if l.w/� d for d � 3 with w 2HP ,
then w is loxodromic and so does not have finite order. Let w be a freely reduced
word of length d C 1 with h.w/D 0. Let x be the prefix of w of length bl.w/=2c
where b� c denotes the floor function. Furthermore, let y be the freely reduced word
representing x�1w so that w D xy . Note that since l.w/� 4, the lengths of both x

and y are at least 2.

Suppose first that h.x/D 0. Then evidently, h.y/D 0 and so x and y are words whose
lengths are shorter than that of w and live in H.P;C / . Therefore, by the induction
hypothesis, x and y are loxodromic, and so w , their composition, is also loxodromic.

Suppose then that h.x/¤ 0. Let aij be the first letter of the word y and z the freely
reduced word representing a�1

ij y . If h.x/D h.aij /, then h.xaij /D 0 and so h.z/D 0.
Therefore, induction says that xaij and z are loxodromic as they are strictly shorter
than w , and so w D xaij z D xy , their composition, is also loxodromic.

Finally, suppose h.x/¤ 0 but h.x/¤ h.aij /. Let eik and ekj be edges of P which
both share the same endpoint with eij and let aik and akj denote the corresponding
generators of GP . Note that one of aik or akj must be colored by the color h.x/.
Suppose without loss of generality that h.aik/D h.x/. Then, in the word w , replace
the first letter aij in y by aikakj . Note that since d C 1D l.w/� 4, the words xaik

and akj z both have length smaller than d C 1 and at least 2. Then, by construction,
h.xaik/D 0 and so h.akj z/D 0 and therefore both these words are loxodromic by
the induction hypothesis. Thus their composition xaikakj z D xaij z D xy D w is
loxodromic. Note that the words xaik and akj z may not be freely reduced. However,
since free reduction only reduces length, the induction hypothesis still applies.

This ends the proof of Lemma 5.3.

Therefore, H.P;C / is a subgroup of index 4 in GP which has index 2 in �P , and so
H.P;C / is a torsion free subgroup of index 8 in �P . This proves Theorem 5.1.

Suppose F is some face of P . Let �.P;F / be the group generated by reflections in the
planes supporting each face of P except F . This is a subgroup of index 2 in �P . Let
HF denote the closed connected subset of H3 which contains P and is bounded by
the planes supporting F and its images under the action of �.P;F / . Then the group
�.P;F / acts on HF with quotient HF=�.P;F / D P . The orbifold structure on P
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can be thought of as mirroring every face of P except F . The face F is the totally
geodesic boundary of this orbifold structure on P .

Restricting the homomorphism g which computes the mod 2 length of a word gives
a map �.P;F /! Z=2Z. The kernel of this map will be denoted G.P;F / . This group
acts on HF and the quotient orbifold can be visualized in the following way. Take
two copies of P , and identify each face of one copy of P to the corresponding face
in the other copy, but do not perform this identification if the face is F . Then the
resulting space is topologically a 3–ball B3 . The orbifold singularities are a graph
isomorphic to the 1–skeleton of P with the edges contained in the face F removed.
The resulting graph has some number of 1–valent vertices which live on the boundary
of the 3–ball. In fact, in the hyperbolic metric, the boundary of the 3–ball is a totally
geodesic hyperbolic 2–orbifold. The edges in the singularity graph all have cone angle
� as do the cone points on the boundary corresponding to the 1–valent vertices.

As above, a Wirtinger type presentation gives a presentation for G.P;F / where each
edge of P but not in F gives a generator of order 2, and additional relations given by
the vertices. In fact, it is evident from the presentations that G.P;F / DGP \�.P;F /:

Let the faces of P other than F be colored by elements of .Z=2Z/2 , and the edges of
P other than those of F be colored by the sum of the colors which contain the edge
as above. Call this coloring C . Let h be the homomorphism hW G.P;F /! .Z=2Z/2

sending a generator to the color of its corresponding edge. Let H.P;C;F / be the kernel
of h, a subgroup of index 8 of �.P;F / .

Theorem 5.4 H.P;C;F / is torsion free.

Proof The proof is essentially the same as that of Lemma 5.3.

Let M.P;C;F / denote the hyperbolic manifold with geodesic boundary HF=H.P;C;F /

for some choice of coloring C of P nF . This is an eightfold cover of the hyperbolic
orbifold with geodesic boundary HF=�.P;F / .

6 Decomposition

Let P1 and P2 be a pair of right-angled hyperbolic polyhedra and F1 � P1 , F2 � P2

a pair of faces which are isomorphic k –gons for some choice of isomorphism. Let
P denote the composition of P1 and P2 along these faces using this isomorphism
as described in Section 4. The polyhedron P has a distinguished prismatic k –circuit
c which, as a simple closed curve, consists of the edges of F1 and F2 that were
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identified and whose interiors were deleted in the formation of the composition P . Let
C1; : : : ;Ck denote the faces of P which this prismatic k –circuit c intersects. This
curve c bounds in P an embedded topological k –gon which will be denoted F .

For i D 1; 2, let �i W Pi ! P denote the topological embedding induced by the
composition in the obvious way. This map sends faces of Pi which are not adjacent to
Fi to faces of P by cellular isomorphisms, sends faces of Pi adjacent to Fi into Cj

for some j , and sends the face Fi to the suborbifold F .

In �.Pi ;Fi / , the subgroup generated by reflections in the faces adjacent to Fi (or indeed
any face of Pi ) is itself a reflection group of a right-angled polygon. Let this group be
denoted �Fi

. Then, the isomorphism which identifies F1 with F2 in the formation
of the composition P induces a group isomorphism between �F1

and �F2
. Let G

denote the isomorphism class of these groups.

Theorem 6.1 If P is the composition of P1 and P2 along the faces F1 � P1 and
F2 � P2 , then �P is isomorphic to the free product with amalgamation

�P Š �.P1;F1/ �G �.P2;F2/:

Proof Suppose that F1 and F2 are polygons with k edges. Let fsj g and ftj g denote
the generators of �.P1;F1/ and �.P2;F2/ respectively, which correspond to reflections
in the planes supporting each face of Pi except Fi . Index these generators in such
a way that fs1; : : : ; skg and ft1; : : : tkg correspond to the faces of P1 and P2 (resp.)
which are adjacent to F1 and F2 (resp.). Furthermore, index in such a way that for
each j D 1; : : : k , sj and tj correspond to faces adjacent to F1 and F2 (resp.) which
are mapped into the face Cj in P under the embeddings �i of Pi into P .

Then a presentation for the free product with amalgamation �.P1;F1/ �G �.P2;F2/ is
given by a generating set S D fsj g [ ftj g with relations R given by three types of
words:

(1) .sj /
2 and .tj /2 for all j .

(2) .sisj /
2 and .ti tj /2 if the corresponding faces in P1 and P2 (resp.) are adjacent.

(3) sj D tj for j D 1; : : : k .

Define a homomorphism  from �.P1;F1/ �G �.P2;F2/ to �P in the following way. If
u 2 S corresponds to a face U � Pi , then send u to the generator of �P given by the
reflection in the face of P containing the image of U under �i . That this assignment
of generators extends to a homomorphism is obvious using the standard presentation
for �P .
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To show that  is an isomorphism, an inverse map will be defined. Let frig denote the
generators of �P in the standard presentation with r1; : : : ; rk denoting the reflections
in the faces C1; : : : ;Ck respectively. Send a generator rj with j > k to the generator
of the amalgam which was sent to rj under  , and send rj with 1< j < k , to sj D tj .
This map of generators extends to a homomorphism which is inverse to  .

For i D 1; 2, let ji W �.Pi ;Fi / ,! �P denote the natural inclusions. These homomor-
phisms are induced by the embeddings �i . Similarly, the natural inclusion kW G ,!�P

is induced by the embedding of F into P . Note that F is isomorphic in the category
of orbifolds to the quotient of the plane supporting Fi by the action of �Fi

ŠG for
either i D 1 or i D 2. In particular, because k is injective, it is natural to think of this
embedded suborbifold as being incompressible in P .

Consider the manifold M.P;C / DH3=H.P;C / which is an eightfold cover of the orb-
ifold P DH3=�P . Denote the covering projection by � . Let † denote the closed
surface embedded in M.P;C / which covers the embedded suborbifold F � P . Then
the fundamental group of each component of † is isomorphic to G \H.P;C / and †
is incompressible in M.P;C / . That is, M.P;C / is Haken.

Consider the manifold M.P;C / �N .†/ obtained by splitting M.P;C / along † by
removing a tubular neighborhood N .†/. Since † covers the separating suborbifold
F � P , the surface † is separating in M.P;C / . Therefore, M.P;C /�N .†/ is a pair
of manifolds M1 and M2 with boundary homeomorphic to †. Furthermore, since F

splits P into two parts given by �i.Pi/ for i D 1; 2, restricting the covering map �
to Mi is itself a covering map over �i.Pi/ and, in particular, is an eightfold covering
map. It is the eightfold covering map corresponding to the group H.Pi ;Ci ;Fi / where
Ci is the coloring of Pi nFi gotten by restricting the coloring C of P to the image of
the embedding �i .

Therefore, by rigidity, Mi is homeomorphic to M.Pi ;Ci ;Fi / D HFi
=H.Pi ;Ci ;Fi / . In

English, this says that Mi is homeomorphic to an eightfold orbifold cover of the
polyhedron Pi . All of this will be recorded in the following theorem:

Theorem 6.2 The manifold M.P;C / is a Haken manifold with a separating incom-
pressible surface †. Splitting M.P;C / along † produces a pair of manifolds Mi ,
i D 1; 2 with

Mi ŠM.Pi ;Ci ;Fi / DHFi
=H.Pi ;Ci ;Fi /:

The following result, proved by Agol, Storm and Thurston [1], gives a description of
the effect of decomposition on volumes.
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Theorem 6.3 If M is a closed hyperbolic Haken 3–manifold and † � M is an
incompressible surface, then

vol.M /�
1

2
V3jjD.M �N .†//jj

where V3 denotes the volume of the regular ideal tetrahedron, jj� jj denotes the Gromov
norm, and D.� / denotes manifold doubling.

If M � N .†/ admits a hyperbolic structure with totally geodesic boundary, then
the double D.M � †/ is a disjoint union of closed hyperbolic manifolds and so
the simplicial volume V3jjD.M �N .†//jj coincides with the hyperbolic volume
vol.D.M �N .†//D 2 vol.M �N .†//. Therefore the above theorem implies that
vol.M /� vol.M �N .†//.

In the particular case of the manifold M.P;C / which when split along its incom-
pressible surface † produces the manifolds M1 and M2 , Theorem 6.3 implies that
vol.M.P;C //� vol.M1/Cvol.M2/. Since M.P;C / , M1 and M2 are eightfold covers
of the polyhedra P , P1 and P2 respectively, the following result follows immediately:

Theorem 6.4 If P is a right-angled hyperbolic polyhedron which is the composition
of right-angled hyperbolic polyhedra P1 and P2 , then

vol.P /� vol.P1/C vol.P2/:

7 Edge surgery

This section will be devoted to defining and studying a simple combinatorial operation
on right-angled polyhedra called edge surgery. This operation together with decompo-
sition will simplify any given right-angled hyperbolic polyhedron into a set of Löbell
polyhedra. First, some definitions:

Two distinct faces F1 and F2 of P are said to be edge connected if they are nonadjacent
and there exists an edge e of P connecting a vertex of F1 to a vertex of F2 . Such an
edge e is said to edge connect F1 and F2 . Note that since P has trivalent 1–skeleton,
every edge of P edge connects a unique pair of faces.

A face F of P is called large if it is has 6 or more edges. An edge e is called good if
it edge connects two large faces. A good edge is called very good if it is not a part of
any prismatic 5–circuit.

If e is an edge of P , call the combinatorial operation of deleting the interior e and
demoting its endpoints to nonvertices edge surgery along e (see Figure 2). Call the line
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c

a b

d

c � 1

aC b� 4

d � 1

Figure 2: Edge surgery. Here, the faces labelled c and d are edge connected.
The labels a , b , c , d also represent the number of edges of the corresponding
face, and this figure shows the effect of edge surgery on combinatorics.

segment in P1 that was removed the trace of the edge e and the vertices that were
demoted the traces of the vertices.

Theorem 7.1 If a right-angled hyperbolic polyhedron P0 has a very good edge e and
P1 is the result of edge surgery along e , then P1 is also a right-angled hyperbolic
polyhedron.

Proof The conditions outlined by Andreev’s characterization of right-angled hyper-
bolic polyhedra must be checked. That is, it must be shown that P1 has trivalent
1–skeleton and no prismatic 3 or 4–circuits.

It is clear that P1 has trivalent 1–skeleton as the edge that is deleted has its endpoints
demoted to nonvertices while all other vertices of P0 are left unaffected.

Suppose for the purposes of establishing a contradiction that P1 contains a prismatic 3

or 4–circuit c . If necessary, perturb c slightly so that it does not intersect the traces
of the endpoints of e . Let F denote the face of P1 containing the trace of e . If c

does not intersect the face F at all, then it is clear that P0 contains a prismatic 3 or
4–circuit which is a contradiction. So suppose c intersects F . Then c intersects the
boundary of the polygon F in exactly two edges d1 and d2 .

If d1 or d2 is an edge which contains the trace of an endpoint of e , then via an isotopy,
c can be made to intersect d1 and d2 on the same side of the trace of e and then
further pushed by an isotopy to miss the trace of e completely. Therefore the curve c

also determines a prismatic 3 or 4–circuit in P0 which is a contradiction as P0 is a
right angled hyperbolic polyhedron. A similar argument shows that d1 and d2 cannot
be edges which lie on the same side of the trace of e .

Suppose then that d1 and d2 do not contain the trace of a vertex of e and are on
opposite sides of the trace of e . Via an isotopy, c can be made to intersect the trace
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of e in exactly 1 point. Then c , being a prismatic 3 or 4–circuit in P1 , determines a
prismatic 4 or 5–circuit (resp.) in P0 of which e is a member. This is a contradiction
as P0 cannot have a prismatic 4–circuit and e is very good.

Theorem 7.2 Let P be a right-angled hyperbolic polyhedron which is not of Löbell
type. Then either it has a good edge or it is decomposable. If P does not have a good
edge, then P is decomposable into a pair of right-angled polyhedra, one of which is a
dodecahedron.

Proof Let X be a maximal connected subset of @P which contains only large faces.
Topologically, X is a subsurface of @P Š S2 and therefore is homeomorphic to a
sphere with k disks removed. By Lemma 3.3, P must have at least 12 pentagons and
if P is not a dodecahedron, then it must have some number of faces which are not
pentagons. Thus X ¤∅ and k � 1. Let D1;D2; : : : ;Dk denote the disks of @P nX

and label their boundaries @Di D Si .

Note that the Si are combinatorially polygons, and by maximality in the way X was
defined, every edge of Si is an edge of a pentagon lying in the disk Di . Let S and D

denote some fixed boundary/disk pair. Suppose that Q is a pentagon with at least one
edge belonging to S . The proof breaks down into many cases.

Case A Suppose first all 5 edges of Q lie on S . Then evidently D DQ. As every
face in X is large, any edge of Q is a good edge.

Case B Suppose 4 edges of Q lie on S . If the edges of Q are labelled cyclicly by
ei ; i D 1; 2; : : : 5, then without loss of generality assume e1; : : : ; e4 lie on S . Then it
is evident that e2 and e3 are both good edges.

Case C Suppose 3 edges of Q lie on S . Again, label the edges of Q cyclicly by ei .
Suppose that these three edges are adjacent, without loss of generality, say, e1; e2; e3

lie on S . Then it is evident that e2 is a good edge. But there is another possibility.
It could be that, say, e1 , e2 , and e4 lie on S . In this case, both e3 and e5 are good
edges.

Case D Suppose then that every pentagon with an edge lying on S meets S in one
or two edges. If Q is a pentagon with exactly two nonadjacent edges lying on S , then
the edge of Q which is adjacent to both of them must be good. Thus, suppose that
every pentagon with exactly two edges lying on S does so in a pair of adjacent edges.
Call a pentagon inward if it intersects S in one edge and outward if in two adjacent
edges. This case breaks down into a number of subcases:

Case D.1 Suppose that all pentagons lying on S are inward. Then X is a single large
face of P as every edge emanating from a vertex of X passes into the interior of D .
Then X along with the faces adjacent to X form a pentagonal flower.
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If X is edge connected to some other large face in the interior of D , then a good edge
exists. So suppose then X is edge connected only to pentagons. These pentagons can
be arranged along the boundary of the pentagonal flower in only one way so that P

must be the Löbell polyhedron L.n/ where n is the number of edges of X . This is a
contradiction.

Case D.2 Suppose that some pentagons lying on S are inward and some are outward.
The proof breaks down into even more subcases depending on the number of consecutive
outward pentagons incident to S :

Case D.2.1 Suppose there is a set of three consecutive outward pentagons A, B ,
and C with B adjacent to both A and C . Then there is a face G adjacent to these
pentagons lying in D . If G is large, then any edge which is the intersection of two of
these pentagons is good.

So suppose instead that G is a pentagon. Then G is adjacent to A, B , C , and two
other faces H1 and H2 which are adjacent to A and C respectively. Each Hi shares a
vertex with A or C lying on S and, therefore, must themselves lie on S and so must
be pentagons. Note also that H1 and H2 are adjacent as they are each adjacent to G

in edges which are adjacent.

Suppose H1 is an inward pentagon. Label the edge of H1 lying on S by e1 . Label
the edge of H1 adjacent to e1 but which is not incident to A by f1 . Then there is
a pentagon J which is adjacent to H1 in f1 (J cannot be adjacent to A as A is
outward). Note that the edge g1 of J which shares exactly one endpoint with both e1

and f1 must lie on S . Note also that J is adjacent to H2 in some edge f2 since f1

contains a vertex of H2 . So H2 is inward and if e2 denotes the edge of H2 lying on
S , then e2 and f2 are adjacent. Note that the edge g2 of J which shares exactly one
endpoint with both e2 and f2 must lie on S . Thus g1 and g2 are nonadjacent edges
in J which lie on S and so J is neither inward nor outward. This is a contradiction
which shows that H1 is outward. A similar argument applies for H2 .

So H1 and H2 must both be outward. Thus every pentagon lying on S is outward,
which is a contradiction.

Case D.2.2 Suppose there is a set of exactly two consecutive outward pentagons, call
them A1 and A2 . Let B1 and B2 be the inward pentagons lying on S adjacent to A1

and A2 respectively. Let C1 and C2 be the pentagons lying on S adjacent to B1 and
B2 respectively.

There is a face G which is adjacent to all four of A1 , A2 , B1 , B2 . If G is large, then
the edge A1\A2 is a good edge (as are B1\A1 and A2\B2 ).
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So suppose G is a pentagon. Then there is an edge of G which edge connects B1 to
B2 . Let H be the face adjacent to G through this edge. Then note that H is adjacent
to B1 and B2 and in particular, is edge connected to a large face in X by the edges
C1\B1 and B2\C2 . Therefore, if H is large, then these edges are good.

So suppose H is a pentagon. Then H is adjacent to G , B1 , B2 , C1 and C2 . In
particular, C1 and C2 are adjacent pentagons. An argument almost exactly like the
one given in Case D.2.1, which showed that a pair of pentagons were outward, shows,
in this case, that C1 and C2 are outward pentagons.

X

c1 a1 a2 c2

C1 B1 A1 A2 B2 C2

G

H

Figure 3: Case D.2.2 of Theorem 7.2. The dashed lines in this figure are identified.

Therefore, there are six pentagons lying on S , four of which are outward. Consider
the four edges in X which emanate from vertices of these outward pentagons. The
claim is that these edges form a prismatic 4–circuit. Label the edges emanating from
Ai by ai and the edges emanating from Ci by ci . See Figure 3.

Note that a1 and a2 cannot share an endpoint as this would imply that the face in
X adjacent to A1 and A2 is a quadrilateral. Similarly, c1 and c2 do not share an
endpoint.

If ai and ci share an endpoint, then the face in X of which they are both edges is a
pentagon which is a contradiction since X was assumed to consist only of large faces.

Suppose a1 and c2 share an endpoint v . By trivalence, there is another edge d

emanating from v . Note that this edge d cannot be a2 as a1 and a2 cannot share
endpoints by the above argument. Call the face in X for which a1 and a2 are edges
M and the face for which a2 and c2 are edges N . Then M and N are adjacent
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via the edge a2 , but also intersect in at least v which is disjoint from a2 . This is a
contradiction. A similar argument shows that a2 and c1 cannot share an endpoint.

Therefore, a1 , a2 , c1 , and c2 form a prismatic 4–circuit which is a contradiction.

Case D.2.3 Suppose that every outward pentagon lying on S is adjacent to a pair of
inward pentagons lying on S , one on each side. Let A be such an outward pentagon,
and let B1 and B2 be the inward pentagons adjacent to A. Let C1 and C2 be the
pentagons lying on S adjacent to B1 and B2 respectively (but are not A).

There is an edge of A which edge connects B1 and B2 . Call the face adjacent to A in
this edge G . Note that the edges A\B1 and A\B2 edge connect G to a large face
in X . Therefore, if G is large then these edges are good.

So suppose G is a pentagon. Then G is adjacent to A, B1 and B2 . Let H1 and
H2 denote the remaining two faces adjacent to G with H1 adjacent to B1 and H2

adjacent to B2 . Note that for i D 1; 2 the edge Bi \Ci edge connects Hi to some
large face in X . Thus if either H1 or H2 is large, then P has a good edge.

So suppose both H1 and H2 are pentagons. Let D denote the face which is adjacent
to each of C1 , C2 , H1 and H2 . See Figure 4. The remainder of this case breaks down
into further subcases depending on the nature of the pentagons C1 and C2 .

X

C1 B1
A

B2 C2

G

H1 H2

D

Figure 4: Case D.2.3 of Theorem 7.2
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Case D.2.3.1 Suppose C1 and C2 are both outward pentagons. Then C1 and C2 are
nonadjacent since, by assumption, each outward pentagon is adjacent to two inward
pentagons. In particular, the face D is in fact an inward pentagon lying on S .

Therefore S has exactly six pentagons lying on it, exactly three of which are outward
pointing. Consider the three edges of X emanating from vertices of these outward
pointing pentagons. If any two of these edges share an endpoint, then these are edges
of a pentagon lying in X which is a contradiction. Therefore, these three edges have
distinct endpoints. It is evident then that they form a prismatic 3–circuit in P which is
a contradiction.

Case D.2.3.2 Suppose C1 and C2 are both inward pentagons. Then the faces C1 and
C2 cannot be adjacent. For, if they were, then the single face in X which is adjacent
to C1 , C2 , B1 , B2 and A would be adjacent to itself in the edge emanating from the
vertex of A lying on S .

Therefore there is at least one more pentagon E adjacent to, say, C1 . Suppose E is
outward and adjacent to C2 . Let e denote the edge emanating from E into X . Let
a denote the edge emanating from A into X . If aD e , then X contains a pentagon
which is a contradiction. If a and e share an endpoint, then there is a pair of faces in
X which intersect in both a and e which is again a contradiction.

Thus either E is inward or there are more pentagons lying on S . Thus the face D

which is adjacent to E , C1 , C2 , H1 and H2 must have at least 6 edges and so is large.
Since the edge C1\E edge connects F to a face in X , this edge is good.

Case D.2.3.3 Suppose exactly one of C1 and C2 is outward. Without loss of generality,
suppose C1 is outward and C2 is inward. Then C1 and C2 cannot be adjacent since if
they were, the faces C1 , C2 , H1 and D would all share a vertex which contradicts
trivalence. So there is another inward pentagon adjacent to C1 . This pentagon must
be D by trivalence. The edge of D which lies on S edge connects C1 and C2 and is
incident to the edge shared by D and C2 . This contradicts the assumption that C2 is
inward.

Case D.3 Suppose all pentagons lying on S are outward. Then D is a pentagonal
flower Ln . Recall this means that D looks like an n–gon surrounded on all sides by
a pentagon. If n � 6, then the edges which are intersections of adjacent pentagonal
petals of Ln are good edges as they edge connect the n–gon in D to a face in X .

So suppose that n D 5 so that D is a dodecahedral flower. Let G1; : : : ;G5 denote
the ring of large faces in X indexed cyclically, each of which are adjacent to a pair
of pentagons in D . Let ci denote the edge Gi \GiC1 . Then there is a simple closed
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curve c which lies entirely in the union of the Gi which intersects each ci transversely.
This curve c is a prismatic 5–circuit.

On the side of c which contains D , c bounds a pentagon in each Gi . Since each
Gi is large, in each Gi , c bounds a polygon on the other side which has at least 5
edges. Therefore, by Theorem 4.5, P is decomposable along c . The component of the
decomposition which contains D is a dodecahedron.

This concludes the proof of Theorem 7.2.

Theorem 7.3 If P a right-angled hyperbolic polyhedron not of Löbell type, then
either it has a very good edge or it is decomposable.

Proof Suppose P is not decomposable. By Theorem 7.2, P has a good edge. The
only way for this edge to fail to be a very good edge is if it is a member of some prismatic
5–circuit in P . Some facts about prismatic 5–circuits will need to be collected.

Suppose c D fe1; : : : ; e5g is a prismatic 5–circuit with indices taken cyclicly. Recall
that this means that there is a simple closed curve c in @P which intersects the 1–
skeleton of P exactly in ei and does so transversely, and furthermore all vertices of
these edges are distinct. Then ei and eiC1 are edges contained in some face which
will be denoted Fi . This ring of faces fFig of P is called the set of faces the prismatic
5–circuit c intersects. See Figure 5.

e1 e2 e3 e4 e5 e1

F1 F2 F3 F4 F5 c

r1 r2
d

Figure 5: A prismatic 5–circuit and the faces it intersects. As usual, identify
the dashed lines. The edge d is a flat of the prismatic circuit c , while edges
r1 and r2 form a roof of c .

Lemma 7.4 Fi ¤ Fj for i ¤ j .

Proof Suppose for contradiction that Fi D Fj and without loss of generality suppose
i D 1. By transversality when c intersects an edge of F1 , it must immediately leave
F1 , therefore j ¤ 2; 5. Suppose then j D 3 or j D 4. By turning the labelling around
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only the case when j D 3 needs to be checked. In this case, F2 intersects F1 D F3 in
edges e1 and e2 which are distinct. This is a contradiction.

Call a prismatic 5–circuit trivial if every edge has exactly an endpoint belonging to a
fixed pentagonal face and nontrivial if otherwise. Note that none of the edges belonging
to a trivial prismatic 5–circuit can possibly be good.

Call an edge d of Fi a flat of the prismatic 5–circuit c if d and c \Fi are opposite
edges of some combinatorial quadrilateral in Fi . For example, the edge d in Figure 5
is a flat of the prismatic circuit c .

Lemma 7.5 A nontrivial prismatic 5–circuit c in a right-angled hyperbolic polyhedron
cannot have five adjacent flats on the same side of c .

Proof By trivalence, there must be a single face adjacent to all these flats. Evidently,
this face must be a pentagon and the prismatic 5–circuit must be trivial.

Lemma 7.6 A nontrivial prismatic 5–circuit c in a right-angled hyperbolic polyhedron
cannot have four adjacent flats on the same side of c .

Proof Without loss of generality, suppose for a contradiction that F1; : : :F4 have
flat edges on the same side of c . There is a face G which is adjacent to each of
F1; : : :F4 . Note that F5 cannot have a flat on the same side of c as the other flats by
the nontriviality of c . Then G intersects F5 in at least two edges, which contradicts
the combinatorics of a polyhedron.

Lemma 7.7 A nontrivial prismatic 5–circuit c in a right-angled hyperbolic polyhedron
cannot have three adjacent flats on the same side of c .

Proof Without loss of generality, suppose for a contradiction that F1;F2;F3 have
flat edges on the same side of c . There is a face G which is adjacent to each of these.
By trivalence, G also intersects each of F4 and F5 . Consider the sequence of three
edges di given by

d1 DG \F5; d2 DG \F4; d3 D F4\F5:

Note that neither d1 nor d2 can share an endpoint with d3 since this would imply four
adjacent flats.

Suppose d1 and d2 share an endpoint so that G is a pentagon. Let q be the edge
which shares an endpoint with d1 and d2 but is not d1 nor d2 . By the above, q cannot
be d3 either. However, q is an edge of both F4 and F5 which implies these faces
intersect in at least two edges which is a contradiction.

Therefore d1 , d2 , and d3 form a prismatic 3–circuit which is a contradiction.

Algebraic & Geometric Topology, Volume 8 (2008)



Organizing volumes of right-angled hyperbolic polyhedra 1551

Lemma 7.8 A nontrivial prismatic 5–circuit c in a right-angled hyperbolic polyhedron
cannot have adjacent flats on the same side of c .

Proof Without loss of generality, suppose F1 and F2 have flat edges of the same side
of c . Then there is a face G which is adjacent to both F1 and F2 . By trivalence, G is
also adjacent to F5 and F3 . Consider the sequence of four edges di :

d1 D F5\G; d2 DG \F3; d3 D F3\F4; d4 D F4\F5:

See Figure 6.

Note that d3 and d4 are contained in the prismatic 5–circuit c and therefore must
have distinct endpoints. Note also that d1 and d2 have distinct endpoints since the
face G must have at least 5 vertices.

e1 e2 e3 e4 e5 e1

F1 F2 F3 F4 F5 c

G
d2

d3 d4

d1

Figure 6: Lemma 7.8

Suppose d1 and d3 share an endpoint. Since d3 is an edge of F3 and F4 , by trivalence
and the property of polyhedra that every edge belong to exactly two faces, d1 must
also be an edge of F3 or F4 . But d1 is an edge of the faces G and F5 . The latter, by
the above lemma, cannot be F3 or F4 . Evidently, G is not F3 and cannot be F4 since
this would imply that d2 D d3 D e3 and therefore e2 and e3 share an endpoint. This
is a contradiction and so d1 and d3 are disjoint. A similar argument by a relabelling
of edges shows d2 and d4 share no endpoints.

Suppose d1 and d4 share an endpoint. Then d1 is a flat of the face F5 and so there are
three adjacent flats which, by the above lemma, is a contradiction. A similar argument
shows d2 and d3 cannot share an endpoint.

Therefore, d1; d2; d3; d4 all have distinct endpoints and therefore form a prismatic
4–circuit in P , which is a contradiction.

For a prismatic k –circuit c , define a roof of c to be a pair of edges r1 and r2 in a
particular face F which c intersects such that the three segments r1; r2 , and F \ c
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together bound a combinatorial pentagon in F . For example, the edges r1 and r2 in
Figure 5 form a roof of the prismatic circuit c .

Lemma 7.9 A prismatic 5–circuit c in a right-angled hyperbolic polyhedron cannot
have a pair of flats on the same side of c separated by a single roof.

Proof For the purposes of establishing a contradiction, and without loss of generality,
suppose F1 and F3 contain flat edges on the same side of c , and F2 contains a roof of
c separating these flats. Then adjacent to each of F1 and F3 along their flats are faces
G1 and G3 which are themselves both adjacent to F2 by Lemma 3.4 as they evidently
share a vertex with it. Note also that G1 is adjacent to F5 and G3 is adjacent to F4

for similar reasons.

Let g1 D G1 \F2 and g3 D G3 \F2 . These edges g1 and g3 evidently form the
roof of c contained in F2 , and therefore are adjacent. Therefore, G1 and G3 are
themselves adjacent, again, by Lemma 3.4.

Consider then a curve which passes through the edges

d1 DG1\F5; d2 DG1\G3; d3 DG3\F4; d4 D F4\F5:

If d1 shares an endpoint with d4 , then d1 is a flat of the face F5 . This implies c has
a pair of adjacent flats on the same side which is a contradiction to Lemma 7.8. A
similar argument shows d3 and d4 do not share an endpoint.

Furthermore, d1 and d2 cannot share endpoints as the face G1 must have at least five
edges. Similarly, d2 and d3 cannot share endpoints.

If d1 and d3 share an endpoint, then F4 and F5 are adjacent in some edge other than
e5 D d4 . This is a contradiction. Similarly, if d2 and d4 share an endpoint, then G1

and F5 intersect in a vertex not in d1 as d2 and d1 were shown to be disjoint. This is
also a contradiction.

Therefore, d1; d2; d3; d4 all have distinct endpoints and so form a prismatic 4–circuit
which is a contradiction. This proves Lemma 7.9.

Lemma 7.10 If a flat e of a prismatic 5–circuit c is a good edge, then it cannot be a
part of a prismatic 5–circuit and so is very good.

Proof For the purposes of establishing a contradiction, suppose that e is an edge of a
prismatic 5–circuit d . Label the edges of c by fcig, the edges of d by fdig, the faces
that c intersects fFig and the faces that d intersects fGig. Without loss of generality,
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suppose e is an edge of F1 , suppose G1 D F1 and suppose G2 is the face adjacent to
G1 in e .

Note that since e is a flat of c , it edge connects F5 and F2 . Since e is a good edge,
F5 and F2 are large faces.

Sublemma 7.11 Either G3 or G4 is either F3 or F4 .

Proof Consider the simple closed curves c and d . These curves intersect in the
face F1 DG1 since the edge e is a flat of c , which means d must intersect a pair of
edges which lie on opposite sides of c , one of which is e . Note that an isotopy can be
performed so that all intersections between c and d occur in the interiors of faces of
P and within any face, c and d intersect at most once. Since @P is topologically S2 ,
these curves must intersect at least twice. This implies that some Gi is equal to some
Fj for i; j ¤ 1.

G5 cannot be F2 or F5 since G1\F2D c1 and G1\F5D c5 both share an endpoint
with e . Also G5 cannot be F3 or F4 . For example, if G5 is F3 , then F1 D G1 is
adjacent to F3 DG5 in an edge which either shares a vertex with c2 or does not. In
the former case, F1 , F2 and F3 for pairwise adjacent faces and so must share a vertex
which contradicts c being a prismatic 5–circuit. In the latter case, c1 , c2 and F1\F3

form a prismatic 3–circuit which is also a contradiction. A similar proof shows G5

cannot be F4 . Therefore, G5 is not Fi for any i .

As e DG2\F1 is a flat of c , G2 cannot be F2 or F5 . G2 also cannot be F3 or F4 .
For if, for example, G2 was F3 , then F1 , F2 , and F3 would be pairwise adjacent faces
and so must share a vertex which contradicts c being a prismatic 5–circuit. Therefore,
G5 is not Fi for any i .

Note also G3 cannot be F5 or F2 as this would imply that G1 , G2 and G3 are pairwise
adjacent faces and thus must share a vertex which contradicts d being a prismatic
5–circuit. Similarly G4 cannot be F5 or F2 .

Therefore, G3 or G4 is F3 or F4 . This concludes the proof of the sublemma.

Suppose first that G3 is F3 . Note that as G2 and F2 are distinct faces which share
a vertex, namely e \ c1 , by Lemma 3.4 G2 and F2 are adjacent. Furthermore, by
definition, G3 D F3 is adjacent to F2 and G2 , and so these three faces all share a
vertex. Therefore the edge G2\F2 has endpoints e\ c1 and an endpoint of c2 and
is thus a flat of c . But this implies c has a two adjacent flats on the same side which
contradicts Lemma 7.8.

A similar argument shows G3 cannot be F4 .
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Suppose next that G4 is F3 . Then G5 is adjacent to both G1 D F1 and G4 D F3 .
Furthermore F2 is adjacent to F1 and F3 , and, as the proof of the above sublemma
shows, G5 is not F2 . Therefore, by Lemma 3.6, G5 and F2 are adjacent.

Now consider G3 . This face is adjacent to G2 and G4 D F3 . Furthermore F2 is also
adjacent to G2 and G4 , and, as the proof of the above sublemma shows, G3 is not F2 .
Therefore, again by Lemma 3.6, G3 and F2 are adjacent.

Therefore, for each i , Gi , F2 , and GiC1 and pairwise adjacent and thus share a vertex.
This evidently implies F2 must be a pentagon. This is a contradiction as e was assumed
to be a good edge. Therefore G4 cannot be F3 .

A similar argument shows G4 cannot be F4 .

Therefore, the good flat e must be a very good edge. This concludes the proof of
Lemma 7.10.

An obvious result which will be used often is the following:

Lemma 7.12 Suppose Fi is a pentagon. Then c has a flat which is an edge of this
pentagon. Furthermore, c has a roof formed by a pair of adjacent edges of this pentagon.

Proof The curve c intersects two nonadjacent edges of Fi . The remaining three edges
must be distributed so that exactly two are on one side of c and one on the other side.
The former two edges are a roof and the latter edge is a flat.

At last, returning to the proof of Theorem 7.3, suppose that P has a good edge e which
is a member of a prismatic 5–circuit c . Then c cannot be a trivial prismatic circuit.

The proof of Theorem 7.3 now breaks up into six cases with possibly some subcases
depending on the number of large faces the prismatic 5–circuit c intersects. All but
one of these cases either produces a contradiction to the combinatorial facts about
prismatic 5–circuits collected above, or produces a very good edge via Lemma 7.10.
The remaining case implies that P is decomposable.

As usual, let Fi be the face that contains both the edges ci and ciC1 .

Case A Suppose no Fi is large. Then, by Lemma 7.12 c has five flats, one for each
pentagon Fi . There is no possible arrangement of these pentagons for which there are
no adjacent pairs of flats on the same side of c . This is a contradiction to Lemma 7.8.

Case B Suppose exactly one of Fi is large. Then by Lemma 7.12, each of these
pentagons have an edge which is a flat of c on one side, and a roof of c on the other.
Because there cannot be adjacent flats on the same side of c , there is only way for the

Algebraic & Geometric Topology, Volume 8 (2008)



Organizing volumes of right-angled hyperbolic polyhedra 1555

pentagons to be arranged up to isomorphism. That is with flats “alternating” on either
side of c . Then on either side of c , there is a flat, then roof, then flat, then roof coming
from the edges of the string of four pentagons. This contradicts Lemma 7.9.

Case C Suppose exactly two of the Fi are large. Then either the three pentagons
are arranged in a row, or they are not. If they are not, then there is a pentagon whose
neighbors are the large faces in fFig. These faces are edge connected by the flat of the
pentagon described by Lemma 7.12 and therefore is a very good edge by Lemma 7.10.

Suppose then that the three pentagons are arranged in a row. Then since each pentagon
has a flat on one side of c and a roof on the other by Lemma 7.12, either there are two
adjacent flats on the same side of c which contradicts Lemma 7.8, or there is a flat,
then roof, then flat on the same side of c which contradicts Lemma 7.9.

Case D Suppose exactly three of the Fi are large. Then either the two pentagons are
adjacent or they are not. Each case will be treated separately:

Case D.1 If they are not adjacent, then the flat edge of a pentagon described by Lemma
7.12 edge connects two large faces and so, by Lemma 7.10, is very good.

Case D.2 Suppose the two pentagons are adjacent. Without loss of generality, suppose
F2 and F3 are the pentagons. Then F1 and F4 are large faces. Make a choice of side
of c by choosing the side which contains the flat of the pentagon F2 . Let nc denote
the number of edges of F1 and F4 contained entirely in this chosen side of c . Note
that this number nc must be at least 2 as c is prismatic.

Suppose nc D 2; 3. Then one of F1 or F4 contains a flat of c on the chosen side.
If F1 is the culprit, then c has a pair of adjacent flats on the chosen side which
contradicts Lemma 7.8. If F4 is the culprit, then since F3 must contain a roof of c on
the chosen side, there is a contradiction to Lemma 7.9. Thus nc � 4 and, in particular,
the contribution from each of F1 and F4 to nc must be at least two edges.

Label the face of P adjacent to F2 through the edge which is a flat of c by G . Then
G is adjacent to both F1 and F3 . Note also that G is edge connected to the face F4

by an edge of F3 . Call this edge g . Consider the curve d which passes through the
edges:

d1 D F1\F5; d2 D F1\G; d3 DG \F3; d4 D F3\F4; d5 D F4\F5:

This curve d forms a prismatic 5–circuit. Furthermore, the edge g is a flat of d . Thus,
if G is a large face, then g is a good edge which is also a flat of a prismatic 5–circuit
and so is very good by Lemma 7.10.
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So suppose G is a pentagon. Then the prismatic 5–circuit d satisfies the conditions of
Case D.2 and furthermore, by choosing the side of d which contains the flat g one
has nd D nc � 1 with the contribution of F1 to nd being one less than that to nc . See
Figure 7.

e1
e2 e3 e4 e5 e1

F1 F2 F3 F4 F5 c

d

G

g

Figure 7: Case D.2 of Theorem 7.3. The prismatic 5–circuit c has ncD5 . As
G is a pentagon here, the prismatic circuit d contradicts Lemma 7.9.

Now an argument by induction on these numbers n can proceed. At each step, either a
very good edge is exhibited, or a new prismatic 5–circuit is produced with smaller n.
If n gets too small, that is nD 3, or the contribution from the faces F1 or F4 to n is
too small, that is a single edge, then the above argument gives a contradiction.

Case E Suppose exactly four of the Fi are large. Without loss of generality, suppose
F1 is a pentagon. Then by Lemma 7.12, F1 has an edge f which is a flat of c . As
it edge connects F5 with F2 which are large faces, this edge f is good. By Lemma
7.10, this edge is very good.

Case F Suppose all Fi are large. Then either c has a flat or it doesn’t. If c has a
flat, then this flat evidently edge connects two large faces Fj and FjC2 , and thus by
Lemma 7.10, is very good. If, on the other hand, c does not have a flat, then P is
decomposable by Theorem 4.5, which is a contradiction.

This concludes the proof of Theorem 7.3.

8 Geometric realization of edge surgery

Edge surgery as defined is a purely combinatorial operation. It does, however, have
a geometric realization as a cone manifold deformation. Intuitively, an edge surgery
looks like “unbending” along the edge until the supporting planes of the faces adjacent
to the edge coincide. That is, the dihedral angle of the edge being surgered will increase
from �=2 to � while all other edges retain their right-angles.
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This section will be devoted to showing that this deformation is a path through the
space of hyperbolic polyhedra which begins and ends at right-angled polyhedra. By
use of the Schläfli differential formula, it will be shown that the volume of the initial
right-angled polyhedron is greater than that of the final right-angled polyhedron.

To prove this deformation is through hyperbolic polyhedra, a generalization of Andreev’s
Theorem that accounts for obtuse angled hyperbolic polyhedra will be required. I Rivin
in his thesis accomplished such a generalization. This result is communicated by a
paper of Rivin and Hodgson [8].

Let P �H3 be a hyperbolic polyhedron, not necessarily nonobtuse angled. Define
the spherical polar v� of a vertex v of P by associating to each vertex v the set of
outward unit normal vectors to planes which are incident to v but are disjoint from the
interior of P (the support planes to P at v ). Then v� is a spherical polygon whose
edge lengths are the exterior dihedral angle measures of edges incident to v in P . It
follows that the interior angle measures of v� are the complementary angle measures
of the face angles of P at v .

Define the spherical polar P� of P to be the piecewise spherical metric space con-
structed by gluing spherical polygons v� and w� associated to a pair of vertices v and
w of P exactly when v and w are connected by an edge. Note that this metric space
P� is topologically S2 and is combinatorially dual to the cell structure of P (or, more
precisely, the boundary of P ). However, P� will often not be isometric to S2 .

To illustrate this point by way of example, suppose P is a right-angled polyhedron.
Then the spherical polar of each vertex of P is a right-angled triangle in S2 . Since
every face of P has at least 5 edges, around every vertex in P� are 5 or more of these
right-angled triangles, and in particular, the sum of the angles around such a vertex
is greater than 2� . Thus the vertices of P� are singularities in the spherical metric.
They represent accumulations of negative curvature.

Such singular points where the curvature is not 1 are called cone singularities. The
cone angle of such a singularity is the sum of the angles around the singularity, or more
intrinsically, the length of the link of the singularity viewed as a piecewise circular
metric space. A cone angle of 2� corresponds to a nonsingular point.

I Rivin’s generalization of Andreev’s Theorem [8] characterizes those metric spaces
homeomorphic to S2 which arise as polars of hyperbolic polyhedra:

Theorem 8.1 A metric space Q homeomorphic to S2 is the spherical polar of a
compact convex polyhedron P in H3 if and only if each of the following conditions
hold:
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(1) Q is piecewise spherical with constant curvature 1 away from a finite collection
of cone points ci .

(2) The cone angles at the points ci are greater than 2� .

(3) The lengths of closed geodesics are all greater than 2� .

The metric space Q determines the polyhedron P completely up to isometry.

The word “geodesic” in the statement of condition (3) will be taken to mean a locally
distance minimizing path/loop. A geodesic in a piecewise spherical metric space is
made up of arcs of great circles in cells such that at any point along the path of the
geodesic, the angle subtended has measure greater than or equal to � on either side.

Suppose that P0 is a right-angled hyperbolic polyhedron with a very good edge e .
Think of P0 combinatorially as the underlying combinatorial polyhedron, together
with a labelling of each edge by the dihedral angle measure in its geometric realization.
In this case, each edge of P0 is labelled by �=2.

For each t 2 Œ0; 1/, let Pt denote the combinatorial polyhedron isomorphic to the
combinatorial polyhedron underlying P0 , every edge other than e labelled by �=2,
and the edge e labelled by �t D .1� t/.�=2/C t� . Let P1 denote the combinatorial
polyhedron obtained by edge surgery of P0 along the edge e with each edge labelled
by �=2.

Theorem 8.2 Each Pt has a geometric realization as a hyperbolic polyhedron.

Proof By Theorem 7.1 and assumption, P0 and P1 have geometric realizations as
hyperbolic polyhedra (in fact, they are right-angled). So assume t lies in the open
interval .0; 1/, so that Pt is combinatorially isomorphic to P0 .

Let Qt denote the piecewise spherical metric space constructed in the following way.
For each vertex v of Pt , construct a spherical triangle whose edge lengths are the
complementary angle measures of the dihedral angle measures of the edges of Pt

incident to v . Identify the edges of two such triangles if and only if their associated
vertices are connected by an edge of Pt . Then Qt is evidently a metric space which is
homeomorphic to S2 . It will be shown that Qt satisfies the conditions of Theorem 8.1
implying that Qt is the spherical polar of a hyperbolic polyhedron. The theorem will
be proved when it is shown that the hyperbolic polyhedron in question is in fact the
geometric realization of Pt by controlling for the combinatorics of the spherical cell
division of Qt .

To show condition (1) of Theorem 8.1 holds for Qt , note that the singular points of
Qt correspond to the faces of Pt since every other point lies in the interior of a face
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or the interior of an edge where two triangles meet. These points have curvature 1.
Since Pt has only finitely many faces, there are only finitely many cone points, thus
demonstrating the first condition.

The cone angle of a singular point ci is the sum of the angle measures at ci of the
spherical triangles incident to ci . Suppose Fi is the face of Pt corresponding to ci . If
Fi is disjoint from the edge e � Pt , then each triangle incident to ci is isometric to a
right-angled spherical triangle. As Fi has at least k � 5 edges, the cone angle at ci is
k.�=2/ > 2� .

Suppose that Fi contains the edge e and let k � 5 be the number of edges of Fi .
Then ci is incident to k � 2 right-angled triangles, and two triangles whose lengths
are �=2, �=2, and � � �t . A bit of elementary spherical geometry reveals that such a
triangle has interior angle measures equal to the length of the edge opposite the angle.
Therefore, these two triangles are incident to ci in right angles, and so the cone angle
around ci is k.�=2/ > 2� .

Suppose that Fi contains a single vertex of e . Then e edge connects Fi to some other
face of Pt , and thus, by assumption, is very good. This implies that the face Fi is large
and so has k � 6 edges. Thus ci , has k � 6 triangles incident to it. All of the triangles
incident to ci except one are right-angled. The exceptional triangle is isometric to the
sort of triangle described above whose lengths are �=2, �=2, and ���t . This triangle
is incident to ci in the non–right angle, and therefore the cone angle of this point is
given by .k � 1/.�=2/C� � �t > 2� . This shows condition (2).

Denote the edge of Qt which is dual to e � Pt by e� . This edge e� is contained in a
pair of triangles T1 and T2 isometric to the ones described above with edge lengths
�=2, �=2, and � � �t . Let Bt denote the spherical bigon which is the union of these
two triangles. Note that the two edges of Bt both have length � which meet at two
points at an angle whose measure is � � �t . Denote the endpoints of e� by w1 and
w2 and denote the vertices of Bt which are not endpoints of e� by v1 and v2 . See
Figure 8.

Note that if a point in Bt is distance d from v1 , then it is distance � � d from
v2 . Therefore, Bt is foliated by arcs of circles of radius d from the point v1 where
d 2 Œ0; ��, and the leaf space of this foliation is isometric to the interval Œ0; ��.

Note also that as t approaches 1, the bigon Bt �Qt degenerates into a line segment
B1 isometric to Œ0; ��.

Fix t 2 .0; 1/ and let xf W Bt ! Œ0; ��Š B1 denote the projection onto the leaf space.
Let f W Qt ! Q1 be the continuous map which when restricted to any cell of Qt

which does not belong to Bt realizes the natural correspondence of cells by an isometry,
and which when restricted to Bt , is the map xf .
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v1 T1 e� � � �t T2 v2

w1

w2

�=2 �=2

�=2 �=2

Figure 8: The bigon Bt in the spherical dual of Pt

Lemma 8.3 This map f is distance nonincreasing and is a local isometry when
restricted to Qt nBt . In particular, it is an isometry when restricted to the star of any
vertex of Qt not contained in the bigon Bt .

Proof Let x and y be a pair of points of Qt and let  be a geodesic segment
connecting them whose length is the distance between them. If  does not intersect the
bigon Bt , then f . / is a geodesic segment in Q1 and so dt .x;y/D d1.f .x/; f .y//

where dt and d1 denote the metrics in Qt and Q1 respectively.

So suppose the geodesic segment  intersects the bigon Bt , and let � D  \ Bt .
Denote the endpoints of � in Bt by a and b . Then f . / is a broken geodesic with
a segment given by f .�/ lying on the interval B1 D Œ0; �� with endpoints given by
f .a/; f .b/ 2 Œ0; ��.

Without loss of generality, assume that f .a/ � f .b/. Then the length of f .�/ is
f .a/�f .b/. Since f is a local isometry outside of Bt , to prove the lemma it will be
shown that the length of � in Qt , denoted l.�/, is greater than or equal to f .a/�f .b/.

If f .a/�f .b/ > l.�/, then in Bt , the path � concatenated with the geodesic segment
connecting b to v1 , running along the boundary, of Bt has endpoints a and v1 and
has length l.�/Cf .b/ which is strictly less than f .a/. However, the distance between
a and v1 is given by f .a/. This is a contradiction.

If v is a vertex of Qt , let st.v/ denote the star of v . Let ost.v/ denote the open star
of v , which is the interior of st.v/. The following well-known and important lemma
gives an estimate on the length of a geodesic arc contained in st.v/. For a proof, see
Charney and Davis [5].
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Lemma 8.4 Suppose Q is a piecewise spherical metric space which is the spherical
polar of a nonobtuse hyperbolic polyhedron. Let v be a vertex of Q and  a geodesic
segment in st.v/ joining two points of @ st.v/ such that  \ ost.v/ ¤ ∅. Then the
length of  is at least � .

Let  now denote a closed geodesic in Qt . If  does not intersect int.Bt /, then f . /
is a closed geodesic in Q1 and so therefore has length greater than 2� by Rivin’s
Theorem 8.1 as Q1 is the spherical polar of the right-angled hyperbolic polyhedron
P1 . Therefore, the length of  is also greater than 2� by Lemma 8.3.

So suppose  intersects int.Bt /. It is clear that  cannot be completely contained in
Bt . Let i �  denote the closure of a component of  \ int.Bt /.

Fixing notation, let T1 be the triangle in Bt with vertices v1 , w1 , and w2 , and T2

the triangle with vertices v2 , w1 and w2 .

Suppose first that i contains v1 or v2 . Then a bit of elementary spherical geometry
implies that i contains the other vertex v2 or v1 and that the length of i is � . Let X

and Y denote the right-angled triangles  enters after leaving Bt through v1 and v2

respectively. Then the lengths of both  \X and  \Y are �=2. Note that if X and
Y are adjacent in Qt , then the polyhedron Pt contains a prismatic 4–circuit which is
a contradiction. Therefore, X and Y are not adjacent, and so the length of  is larger
than 2� .

Suppose once and for all that i misses v1 and v2 . If i misses e� , then it is completely
contained in one of the triangles T1 or T2 . Without loss of generality, suppose i �T1 .
Let X and Y denote the right angled triangles adjacent to T1 . let x and y denote the
vertices of X and Y respectively which are not contained in T1 . Then  evidently
intersects ost.x/ and ost.y/. Denote the closure of the component of ost.x/ \ 
which is adjacent to i by x and define y similarly. Then f .x/�Q1 is a geodesic
segment contained in st.f .x// by Lemma 8.3 which intersects ost.f .x// and therefore,
by Lemma 8.4 has length at least � . Therefore x also has length at least � . A similar
argument shows y has length at least � as well. Note that ost.x/\ ost.y/D∅ since
if not, then Pt would contain a prismatic 3 or 4–circuit. Since i has nonzero length,
 must have length larger than 2� .

Suppose that i intersects int.e�/ transversely. Let X and Y denote the right-angled
triangles adjacent to each of T1 and T2 respectively which contain the endpoints of i .
A bit of simple spherical geometry shows that X and Y must lie on opposite sides
of Bt in the sense that if X contains w1 say, then Y contains w2 . Let x and y

denote the vertices of X and Y respectively which are not contained in T1 and T2
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respectively. Then  evidently intersects ost.x/ and ost.y/. By an argument similar
to the one above, this implies that the length of  is larger than 2� .

Suppose i contains the edge e� . Then f . / is a closed geodesic in Q1 and therefore
must have length larger than 2� . Thus by Lemma 8.3,  must also have length larger
than 2� .

Finally, suppose that i intersects e� exactly in one of its endpoints w1 or w2 , and
without loss of generality, suppose w1 2 i . Then i is contained in either T1 or T2 ,
so suppose also without loss of generality that i � T1 . Let X denote the right-angled
triangle adjacent to T1 which contains the vertices w2 and v1 and let x denote the
remaining vertex of X . Then  evidently intersects ost.x/. Let Y denote the right-
angled triangle other than T1 that contains the vertex w1 and intersects  . Then Y is
contained in the star of some vertex which is not vi or wi . Denote this vertex by y .
So  intersects both ost.x/ and ost.y/ and by an argument similar to the one above,
 has length larger than 2� .

This shows that Qt satisfies condition (3) of Theorem 8.1 and thus is the spherical
polar of some hyperbolic polyhedron. However, it is too hasty to conclude that this
polyhedron is the geometric realization of Pt as it is possible that there is more than
one cell decomposition of Qt which satisfy the conditions of being a spherical polar
of a hyperbolic polyhedron.

To prove that this cannot be the case, denote by C the cell decomposition used to
construct Qt , and denote by D the cell decomposition of Qt as the spherical polar
of the hyperbolic polyhedron coming from Theorem 8.1. It will be shown that C DD .

D must satisfy the following three conditions:

(1) The vertex set is exactly the set of cone points.

(2) The edges must be geodesic arcs of length less than � .

(3) The interior face angles at each cone point must have measure less than � .

The first condition is clear from the construction of spherical polars. The second
condition is implied by the convexity of the hyperbolic polyhedron as edge lengths are
equal to complements of interior dihedral angle measures. The third condition is again
a consequence of convexity, but convexity of the faces of a hyperbolic polyhedron as
the face angles of a cone point have measures which are complementary to the face
angles of the polyhedron. Note that C satisfies these three conditions.

Note that if c is a cone point of Qt and if c is neither w1 nor w2 , then the only other
cone points at distance less than � to c are exactly distance �=2 away. By conditions
(1) and (2), these are the only possible endpoints of edges connecting c .

Algebraic & Geometric Topology, Volume 8 (2008)



Organizing volumes of right-angled hyperbolic polyhedra 1563

Suppose c is not vi or wi for i D 1; 2. If b is a cone point at distance �=2 from
c and if b and c are not connected by an edge in D , then there must exist a 2–cell
in D whose face angle at c has measure � or larger. This contradicts condition (3).
Therefore, in D , c must be connected to every other cone point distance �=2 away,
just as in C .

Consider next v1 . The above argument shows that any cone point of distance �=2
from v1 which is not w1 or w2 must be connected to v1 by an edge in D . If v1 and
w1 are not connected by an edge in D , then there must be a 2–cell in D whose face
angle at w1 has measure � , a contradiction to condition (3). This argument works just
as well to show that both v1 and v2 are connected to both w1 and w2 by edges in D .

So far, it has been shown that every edge in C with an endpoint other than w1 or w2

must also be in D . The only edge in C not accounted for is the one connecting w1

and w2 . This must be in D as well since if it were not, there would be a 2–cell in D
containing a face angle of measure � at both w1 and w2 — a contradiction. Therefore,
this edge is in D and so the edges of C are a subset of the edges of D .

Given conditions (1) and (2), the only other possible edges in D are those edges not in
C which connect w1 (or w2 ) to a cone point connected to w2 (or w1 ). However, it is
rather clear that such an edge would intersect an existing edge in D in an interior point
which is a contradiction to condition (1).

Therefore C DD and this proves Theorem 8.2.

The set of polyhedra Pt , t 2 Œ0; 1/ form a 1–parameter family of hyperbolic polyhedra
of fixed combinatorial type. Therefore, the following classical result of Schläfli is
applicable (see Alekseevskij, Vinberg and Solodovnikov [2] for a proof). It is often
referred to as Schläfli’s Differential Formula.

Theorem 8.5 If Pt is a 1–parameter family of polyhedra in Hn , n � 2, then the
derivative of the volume vol of Pt is given by:

d vol.Pt /

dt
D
�1

n� 1

X
F

vol.F /
d�F

dt

where the sum is taken over all codimension 2 faces of Pt and �F is the measure of
the dihedral angle of Pt at the face F .

This formula implies that as the dihedral angle measure of a hyperbolic polyhedron in
any dimension increases, the volume decreases. For the family Pt constructed above,
the dihedral angle along the very good edge e is increasing from �=2 to � . Therefore:
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Theorem 8.6 If P1 is a right-angled hyperbolic polyhedron gotten by edge surgery
along some very good edge of P0 , another right-angled hyperbolic polyhedron, then

vol.P0/ > vol.P1/:

9 Conclusion

Let P be a right-angled hyperbolic polyhedron. Then Theorem 7.3 implies that either
P is a Löbell polyhedron, it is decomposable, or it has a very good edge along which
edge surgery can be performed. A similar trichotomy holds for the polyhedron or
polyhedra which result after applying decomposition or edge surgery. Note that each of
these operations reduce the average number of faces of the polyhedra and so a process
of repeated application of them must terminate in a set of Löbell polyhedra after a
finite number of steps. Furthermore, by Theorem 6.4 and Theorem 8.6 the total volume
of polyhedra does not increase at each step. Therefore, the following result, the main
result of this article, follows:

Theorem 9.1 Let P0 be a compact right-angled hyperbolic polyhedron. Then there ex-
ists a sequence of disjoint unions of right-angled hyperbolic polyhedra P1;P2; : : : ;Pk

such that for i D 1; : : : ; k , Pi is gotten from Pi�1 by either a decomposition or edge
surgery, and Pk is a set of Löbell polyhedra. Furthermore,

vol.P0/� vol.P1/� vol.P2/� � � � � vol.Pk/:

With a blackbox or oracle which is able to compute volumes of right-angled polyhedra,
this result would enable one to completely order the volumes of such objects. In
particular, the following result is a simple corollary:

Corollary 9.2 The compact right-angled hyperbolic polyhedron of smallest volume is
L.5/ (a dodecahedron) and the second smallest is L.6/.

Proof By Theorem 4.2, the smallest Löbell polyhedron is L.5/ while the second
smallest is L.6/. Note that there is no polyhedron which results in L.5/ when an edge
surgery is performed as L.5/ has only pentagonal faces. Furthermore, it is obvious
that any composition of Löbell polyhedra will have volume larger than that of L.5/,
and so the first result follows.

The only possible polyhedron besides L.5/ whose volume is possibly not larger than
that of L.6/ is a composition of two copies of L.5/. However, the volume of such
an object is 2 vol.L.5// D 8:612::: > vol.L.6// D 6:023:::. This proves the second
result.
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