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The curvature of contact structures on 3—manifolds

VLADIMIR KROUGLOV

We study the sectional curvature of plane distributions on 3—manifolds. We show
that if a distribution is a contact structure it is easy to manipulate its curvature. As
a corollary we obtain that for every transversally oriented contact structure on a
closed 3—dimensional manifold, there is a metric such that the sectional curvature
of the contact distribution is equal to —1. We also introduce the notion of Gaussian
curvature of the plane distribution. For this notion of curvature we get similar results.

53D35; 53B21

1 Introduction

The problem of prescribing the curvatures of a manifold is one of the central problems
in Riemannian geometry. That is, given a smooth function can it be realized as a scalar
(Ricci or sectional) curvature of some Riemannian metric on a manifold. The solution
of the Yamabe problem is the best known result in prescribing the scalar curvature on a
manifold (cf Lee and Parker [4]). There are several results on prescribing the Ricci
curvature of a manifold (cf for example Lohkamp [5]). It is natural to ask to what
extent it is possible to prescribe the sectional curvature of the plane distribution on a
3-manifold. It turns out that this problem is closely connected with the contactness of
the distribution. In fact we have the following:

Theorem A Let & be a transversally orientable contact structure on a closed orientable
3—-manifold M . For any smooth strictly negative function f, there is a metric on M
such that f is the sectional curvature of & .

If we impose more topological restrictions on the distribution we can obtain an even
stronger result:

Theorem B Let & be a transversally orientable contact structure on M with Euler
class zero. Then for any smooth function f, there is a metric on M such that f is a
sectional curvature of £.
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In [2], Chern and Hamilton studied a similar problem of prescribing the so-called
Webster curvature W on a contact three-manifold. The main difference in their approach
is that they restrict the class of metrics to the metrics which are adapted to a contact
structure, while we deal with the class of all metrics. They prove that in their class one
can either find a metric with the constant negative Webster curvature or a metric with
strictly positive Webster curvature.

It is a well-known problem whether a foliation on a 3—dimensional manifold admits a
simultaneous uniformization of all its leaves. The Reeb stability theorem asserts that
on a compact orientable 3—manifold the only foliation with the leaves having positive
Gaussian curvature is the foliation of M = S? x S by spheres. It is known (see
Candel [1]) that if M is atoroidal and aspherical and the foliation is taut, then there is
a metric on M such that all leaves have constant negative Gaussian curvature —1. In
the case of contact structures we ask a similar question. For this we have to introduce
the notion of Gaussian curvature of the plane distribution.

We define the Gaussian curvature of the plane distribution as the sum Kg(§) =
K(&) 4+ K¢ (&) of the sectional and the extrinsic curvatures of the distribution. In the
case of integrable £ this equation is nothing but the Gauss equation.

Definition 1.1 Let & be a plane distribution on M . We say that £ admits a uniformiza-
tion if there is a metric on M such that the Gaussian curvature of £ is constant.

It turns out that unlike the case of foliations, every transversally orientable contact
structure on a closed 3—manifold admits a uniformization. We have the following:

Theorem C Let £ be a transversally orientable contact structure on a closed orientable
3-manifold M . For any smooth strictly negative function f, there is a metric on M
such that f is the Gaussian curvature of £.

This paper is organized as follows. In Section 2 we recall basic facts about the geometry
of plane distributions. In Section 3 we prove the main technical lemma. Section 4 is
devoted to the proof of Theorem A and Theorem B. We prove Theorem C in Section 5.

Acknowledgment [ would like to thank Patrick Massot for pointing out Corollary
3.6. This led to a much stronger and natural formulation of Theorem B.

2 Basic definitions and notation

Throughout this paper M will be a closed orientable 3—manifold. A distribution on M
is a two dimensional subbundle of the tangent bundle of M . That is, at each point p
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in M there is a plane &, in the tangent space 7, M . A distribution is called integrable,
if there is a foliation on M which is tangent to it. The following Frobenius theorem
gives necessary and sufficient conditions for £ to be integrable.

Theorem 2.1 Let & be a distribution on M . Then £ is integrable if and only if for
any two sections S and T of £ its Lie bracket belongs to & .

Definition 2.2 A distribution £ is called a contact structure if for any linearly inde-
pendent sections S and T of & and for any p € M the Lie bracket [S, T'] at p does
not belong to &,.

A distribution £ is called transversally oriented if there is a globally defined 1-form
a such that & = Ker(«). This is equivalent to say that there exists a globally defined
vector field #n which is transverse to £. It is an easy consequence of Frobenius Theorem
that £ is a contact structure if and only if

aAda #0.

Fix some orientation on M. A contact structure is said to be positive (resp. negative) if
the orientation induced by @ A da coincides (resp. is opposite to) the orientation on M .

A contact structure £ is called overtwisted, if there is an embedded disk such that
TD|sp = E&|gp . If € is not overtwisted, it is called tight.

The Euler class e(§) € H?(M,Z) of a plane distribution is the Euler class of the
bundle £ — M . It is known that if £ is a 2—dimensional plane distribution on M with
vanishing Euler class then £ is trivial. Recall, that a framing of M is the presentation
of the tangent bundle of M as a product TM ~ M x R3. A framing on M consists
of three linearly independent vector fields. It is known that every closed orientable
3—manifold admits a framing.

A bi-contact structure on M is a pair (£, n) of transverse contact structures which
define opposite orientation on M .

Assume that M is a Riemannian manifold with the metric (-, -) and the Levi-Civita
connection V. Let n be a local unit vector field orthogonal to £. We are now going to
define the second fundamental form of &. The definition is due to Reinhart [7].

Definition 2.3 The second fundamental form of & is a symmetric bilinear form, which
is defined in the following way:

1
B(S.T)={VsT + VrS.n)

for all sections S and T of &.
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Remark 2.4 If £ is integrable, then B restricted to the leaf of & agrees with the
second fundamental form of the leaf.

Let S and T be two linearly independent sections of &.

Definition 2.5 We call the function
B(S,S)B(T,T)— B(S,T)?

Ke(®) = (S, SWT,T)— (S, T)?

an extrinsic curvature of £.

It is easy to verify that K.(§) depends only on &, not on the actual choice of S, T
and n.

Definition 2.6 Consider the function K(£) which assigns to a point p € M the
sectional curvature of the plane &,. We call this function the sectional curvature of &.

Definition 2.7 We call the sum Kg(§) = K(§) + K (&) the Gaussian curvature of &.
Let S, T and U be the local sections of M . Recall the Koszul formula for the

Levi-Civita connection of (-,-):

2VsT.U)=S(T.U)+T(U,S)—U(S.T)
+({S. T U)=([S.U].T)—([T.U],S)

3 The deformation of metric

In this section we will give the proof of the main technical results we will need
throughout the paper.

Let £ be a transversally orientable plane distribution on a 3—dimensional Riemannian
manifold (M, (-,-)). Fix a unit normal vector field n. Suppose a is a strictly positive
smooth function on M . A stretching of (-, -} along # by the function « is the following
Riemannian metric on M :

(a=al.)n® (- )lE

Our aim is to calculate the sectional curvature of & in the stretched metric in terms of
the initial metric.
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Consider an open subset U C M such that |y is a trivial fibration. Let X and Y be
a pair of orthonormal sections of &|¢7. The triple (X, Y, n) is an orthonormal framing
on U with respect to {-,-).

In the stretched metric this frame is orthogonal, vector fields X and Y are unit and the

length of 7 is equal to /a. Denote by V the Levi-Civita connection of (-, -),.

Lemma 3.1 The sectional curvature of § with respect to (-, -), can be calculated by
the following formula:

K =—2allX, Y10 + P+ 0

where P=X(X,YL.Y)=-Y(X,Y],X)—(X.Y], X)>— (X, Y], Y)?

+ (X Y] n)(—([n. Y]. X) + ([n. X]. Y)))

1
2
and 0= i(([X, n), Y) +([Y.n], X))? = ([¥.n]. Y){[X. n], X)
Proof Since X and Y are unit, the sectional curvature of £ is calculated by the
formula:
K& =(RX. Y)Y, X)a=(VxVyY. X)a—(VyVx Y. X)a — (Vix.11Y. X)a
The first summand can be rewritten:
(VxVyY, X)a = X(VyY, X)a—(Vy Y, Vx X)q
Apply the Koszul formula to X (Vy Y, X),. We get:
X(VyY,X), = %X@Y(Y, X)a=X(Y.Y)a+ (Y. Y] X)a—2([Y, X1, V)a)
=—X([Y. X].Y)a =—X([Y, X].Y)

Decompose the vector field Vy Y with respect to the frame (X, Y, n/+/a) orthonormal
in the stretched metric (-, -)4:

VyY = (VyY, — +(VyY, V)oY + (VyY, X))o X

«/_«/_

Substituting these expressions into (Vy Vy Y, X),, we obtain:
(VxVyY, X)e=—X(Y.X].Y)—((VyY. g p +(VyY, Y)Y
+ (VY. X)X, Vx X),

Algebraic & Geometric Topology, Volume 8 (2008)



1572 Vladimir Krouglov

Since X and Y are of unit length this reduces to:
1
(VvaY1 X)a = _X<[Y9 X]’ Y) - E(VYY, n)a(VXX, n)a
Apply the Koszul formula to the term (Vy Y, n)4(Vx X, n),. Finally, we have:

(VX ¥y ¥, X)a = =X (Y. X}Y) =~ {[¥.n], V)l LX), X

= XY, X).¥) ~ (¥.n], Y)(IX. ] X)

The second summand is equal to:
—(VyVxY, X)a=-Y(VxY, X)a+(VxY,Vy X)q
n

+(VxY. X)oX.Vy X),

1
=-Y(X,Y].X)a+ E(VXY’ ma(Vy X,n)q
Write the equations for the terms (Vx Y, n), and (Vy X, n)g4:

2(VxY,n)a=(X.Y].n)g—([X.n].Y)a—([Y.n], X)a
= a([X’ Y]a }’l) - ([X’ I’l], Y) - ([Yv }’l], X)

2(VYX’ ”)a = ([Y? X]v n)ll - ([Y’ I’l], X)ll - ([Xv n]v Y)a
=a([Y, X].n) —([Y,n], X) — ([X.,n].Y)

Inserting the above equations into the second summand we have:

—(VyVxY, X)g ==Y (X, Y], X)s+ %(—a([X, Y], n)+([X.n],Y)+([Y,n], X))
The last summand is:

—(Vix.rY. X)a = —(Vix,y1mn+ (X, 71, ) X +(X, YY) Y Ys X)a
= _([X’ Y]vn)<vf’lY’ X)tl - ([Xv Y]’ X><VXY7 X)[l

— (X, Y].Y)(VyY X)q
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The term (V,Y, X'), is equal to

(V2. X)a = =5 (= (. Y1, Xa + (12 X1, Vo + (1V. X], 1))

= _%(_ ([n. Y], X) + ([n. X1.Y) +a([Y. X].n))

which gives us:
—(Vixr¥. X)a = —([X. Y].n)(VaY, X)a = ([X. Y] X}(Vx Y. X)4
—([X.Y].Y)(VyY. X),

= %([X, Y].n)(=(n. Y] X) + (In. X1.Y) +a([Y, X].n))
— (X, Y] X)? = (X, Y] Y)?

Summing this up, the sectional curvature of £ is equal to:
1
K@) =—X{[¥. X].Y) = —([¥.n]. Y){{X.n]. X)

- (Y([X’ Y]’X> _ﬁ(_a“X’ Y],I’l) + ([X,n], Y) + ([Y,I’l],X))

(= allY. X).n) + (Y], X) + ([X.n). 7))
— (= UYL (= (. Y1 X) + (i XL V) (1Y, X))
+{[X.Y]. X)2 + (X, Y] 7)?)

It is straightforward to verify that this gives us the desired expression. a

Lemma 3.2 The extrinsic curvature K, (£) with respect to (-, ), can be calculated by
the following formula:

Ke(®) = L({X.n]. X) (V). YY) — L (X1 Y) + (2], X))
a 4

Proof Since X and Y are unit vectors, the extrinsic curvature is given by:
Ke(€) = B(X. X)B(Y.Y) - B(X.Y)?

By the definition of B, the extrinsic curvature is equal to:

n

1
——(VxyY 4+ Vy X,
)a 4( xY +Vy NG

Ko(€) = (Vx X, ia>a<va, -z )2

Va Va
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Apply the Koszul formula to

n n n
(VXX’_>£I’ (VYY’_>a and (VXYJ’_VYX’_)Q

Ja Nz 7
to obtain:
Kel® = = (X} X)allY. . V)= 5 (G(X. Y= 5(Xon)
1 1 1 1
_ §<[Y, }’l]» X)a — E([X, Y], n)a — 5([Y, l’l], X)a _ 5([X, }’l], Y)a)z)
- é(“X ] X)([Y.n].Y) - %(([X, nlLY) + (I¥.n]. X))*)

Summing the extrinsic curvature of £ with the sectional curvature gives us the Gaussian
curvature of the plane distribution £. O

Lemma 3.3 The Gaussian curvature Kg(£) can be calculated by the formula:

Kg(§) = K(§) + Ke(§)
= ~2allX, YLn) + (X{X. Y]Y) Y (X, Y], X)
—(X.Y].X)?— ([X.Y].Y)?)

1

+ (X Y] n)(=([n. Y] X) + ([n. X]. Y))

o |

Remark 3.4 If £ is integrable then ([X, Y],n) = 0 and
KG(®) =X([X.Y1Y)=Y{IX.Y]. X)—(X.Y]. X)* = (X, Y].Y)?
is nothing else as the expression of the Gaussian curvature of the leaves of & written in

the local frame tangent to the leaves.

Lemma 3.5 Let (X, Y,n) be a framing on M . Assume that distribution spanned by n
and Y is a contact structure. Then there is a metric on M such that extrinsic curvature
of the distribution spanned by X and Y is strictly less than zero.

Proof Fix a metric (-, -) such that the framing is orthonormal. Let £ be a distribution
spanned by vector fields X and Y. Stretch the metric along X by a constant factor A2
and along Y by a constant factor 1/A2. Let’s denote this metric by (-,-); . Calculate
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the extrinsic curvature of & with respect to this metric:

Ken) = (pn. X1, X3 (00 Y1 = 5 (0 XL V)3 + (i, ¥), X3

= 22(n, X], X))%([n, YY) — %(%([n, X1.Y) +2%(n, Y], X))

= ({n, X)X Y1) = 5 (5 {ln, X0 Y) 4320, V), X))

= ([ X)X Y1) — gl XL Y)Y = 2 (1 X]Y) (. V), X)
A4 )
X

Since M is compact there is a positive constant C such that:
1
([}’l, X]’ X)([n’ Y]v Y) - E([n’ X]? Y)([n’ Y]’ X) <C
We assumed that distribution spanned by vector fields 7 and Y is a contact structure.

The form «(x) = (*, X) is a contact form of this distribution, so ([n, Y], X) =
a([n,Y]) # 0. Since M is compact there is an ¢ such that:

‘([n, Y],X! > ¢
A4e?
This means that K.(n) <C— 7
This expression is strictly negative for some sufficiently large A. a

Corollary 3.6 Assume that £ is a transversally orientable contact structure with the
Euler class zero on M . Then there is a metric on M such that the extrinsic curvature
of £ is a strictly negative function.

Proof Let n be a vector field on M transverse to £. Since e(§) = 0, the distribution
& is trivial and has two nowhere zero sections, say X and Y.

Choose some positive number ¢ and consider a distribution n spanned by the vector
fields X and Y + en. It is obvious that for all ¢ the distribution 7 is transverse to
& and is a contact structure for some sufficiently small ¢. Therefore, we can apply
Lemma 3.5 to the framing (X, Y,Y + en) to get a desired metric. O
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4 Prescribing the sectional curvature of &

Theorem A Let & be a transversally orientable contact structure on a closed orientable
3-manifold M . For any smooth strictly negative function f, there is a metric on M
such that f is the sectional curvature of & .

Proof Since £ is transversally orientable, there is a globally defined vector field n
which is transverse to £. Fix some Riemannian metric (-,-) on M such that » is a unit
normal vector field. Consider a finite cover of M by the open sets Uy such that for
each « there is an open set U}, for which Uy C U, and &gy is a trivial fibration.

In each Uy choose an orthonormal framing (X, Y. 7|y, ). Consider the stretching
(-,)q of (-,-) along n by a positive function a.

According to Lemma 3.1 the sectional curvature K(£) on U, can be rewritten in the
following way:

1
KE¢) = __a<[Xoc,Ya] ) +Pa+EQ¢x
where P, and Qg are functions on U} independent of a.

Since £ is a contact structure and U, has a compact closure, ([ X, Yy], 7)? is bounded
below by some positive constant ¢ and the functions P, and Q, are bounded from
above. Therefore there is a sufficiently large D, such that the equation

3 1
_Zaar, Y(x],n)2 + Py + ;Qa = fDa

has a strictly positive solution aq (Dy). Notice, that for any D > D, this equation still
has a positive solution aq (D). Let Dy = maxq{Dy}. Solve the equation above for
Dy in each chart Uy . Let ay = aq(Dy).

We claim that a4 constructed this way does not depend on the choice of the orthonormal
framing (X, Yo, 1|y, ). Let (X, Yy, n|y,) be any other orthonormal framing on &|g,, .
This defines a map

¢o: Uy — O(2)

which maps a point p € U, to the transition matrix ¢, (p) between two framings
(X}, Yy) and (Xg, Yy) on £. We have

([Xg. Yol.n)? = (dn(Xy,. Yg))* = (dn($o Xa. da Ya))* = detgg (dn(Xa, Yo))?
= detﬁbé (X, Yal, ”) = ([Xa, Ya]’n) )

where 7 is a 1 —-form defined by 7(x) = (*, n). Therefore, ([ Xy, Y], n)? is independent
of the choice of orthonormal framing. The expression (1/a) Q4 = —K(§) also does
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not depend on the choice of the trivialization. Finally the sectional curvature K(§) is
independent of the framing. It is obvious that the right hand side of

P = K(©) =+ 0a + Sa([Xa Vel )’

does not depend on the choice of framing, so does Py .

Therefore, the functions a, agree on the overlaps and define a global function a on
M . The sectional curvature of £ in the metric (-,-); is fDg. Consider the metric
(-,-Yo = (1/Dg){-, )q. It is easy to calculate, that the sectional curvature of & in this
metric is equal to f . O

Corollary 4.1 For any transversally orientable contact structure on a closed orientable
3 —manifold, there is a metric on M ,such that the sectional curvature of & in this metric
is equal to —1.

Theorem B Let £ be a transversally orientable contact structure on M with Euler
class zero. Then for any smooth function f, there is a metric on M such that f is a
sectional curvature of £.

Proof Since the Euler class of & is zero, there is a contact structure 7, which is
transverse to £. According to the Corollary 3.6, there is a metric (-,-) in which the
extrinsic curvature of £ is a strictly negative function. Let # be a unit normal vector
field with respect to this metric.

Consider the stretching of (-, -) along n by a positive function a. According to Lemma

3.1, we have to find a to satisfy the equation

1

—Za([X.Yn)? + P~ —Kc(§) = f
4 4a

where P is a function on M which is independent of a.

But since —K.(£) > 0 this equation always has a strictly positive solution a. This

completes the proof of the theorem. O

Remark 4.2 1In the proof of Theorem B it is crucial that £ is a contact structure. At
points where ([ X, Y], n) = 0 the equation may not have any positive solutions.

Example 4.3 (Propeller construction [6]) Consider the following pair of contact
structures on T'3:

& = Ker(e = cos zdx —sinzdy + dz)
n = Ker(f = cos zdx + sinzdy)
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It is easy to verify, that £ is transverse to 7 and we get a bi-contact structure. From
Theorem B, there is a metric on T3 such that £ has a positive sectional curvature. This
is an example of a tight contact structure of positive sectional curvature.

Example 4.4 (Overtwisted contact structures of positive sectional curvature) Let &
be any contact structure with the Euler class zero on M . It is known (see Geiges [3])
that if we apply a full Lutz twist to this contact structure, the resulting contact structure
is overtwisted and has Euler class zero. From Theorem B, it has a positive sectional
curvature for some choice of metric on M .

5 Uniformization of contact structures on 3—manifolds

The same technique as in Theorem A can be applied to the Gaussian curvature of
contact structures on three-manifolds.

Theorem C Let & be a transversally orientable contact structure on a closed orientable
3—manifold M . For any smooth strictly negative function f, there is a metric on M
such that f is the Gaussian curvature of & .

Proof Same as Theorem A. The only difference is that in the present case the equation
which needs to be solved in each trivializing chart is:

Ko(®) = —allXa. Yl + Pu = Do :

Corollary 5.1 (Uniformization of contact structures) For every transversally ori-
entable contact structure & on M , there is a metric such that Kg(§) = —1.

Example 5.2 (Contact structure with Kg(£) =1) Consider the unit sphere S3 C C2
with a bi-invariant metric. The standard contact structure on S?3 is defined as the kernel
of the 1-form

2
o= Z(Xidyi — yidx;),
i=1
restricted from C? to S3. This contact structure is orthogonal to a left-invariant vector
field and therefore is left-invariant. Let (X, Y') be a pair of orthonormal left-invariant
sections of &. Since the metric is bi-invariant,

VsT = ~[S,T]

1
2
for any left-invariant vector fields on S3. Therefore the second fundamental form of £
vanishes and Kg(§) = K(§) = 1.
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