The curvature of contact structures on 3-manifolds

VLADIMIR KROUGLOV

We study the sectional curvature of plane distributions on 3-manifolds. We show that if a distribution is a contact structure it is easy to manipulate its curvature. As a corollary we obtain that for every transversally oriented contact structure on a closed 3-dimensional manifold, there is a metric such that the sectional curvature of the contact distribution is equal to -1. We also introduce the notion of Gaussian curvature of the plane distribution. For this notion of curvature we get similar results.

53D35; 53B21

1 Introduction

The problem of prescribing the curvatures of a manifold is one of the central problems in Riemannian geometry. That is, given a smooth function can it be realized as a scalar (Ricci or sectional) curvature of some Riemannian metric on a manifold. The solution of the Yamabe problem is the best known result in prescribing the scalar curvature on a manifold (cf Lee and Parker [4]). There are several results on prescribing the Ricci curvature of a manifold (cf for example Lohkamp [5]). It is natural to ask to what extent it is possible to prescribe the sectional curvature of the plane distribution on a 3-manifold. It turns out that this problem is closely connected with the contactness of the distribution. In fact we have the following:

Theorem A Let ξ be a transversally orientable contact structure on a closed orientable 3–manifold M. For any smooth strictly negative function f, there is a metric on M such that f is the sectional curvature of ξ .

If we impose more topological restrictions on the distribution we can obtain an even stronger result:

Theorem B Let ξ be a transversally orientable contact structure on M with Euler class zero. Then for any smooth function f, there is a metric on M such that f is a sectional curvature of ξ .

In [2], Chern and Hamilton studied a similar problem of prescribing the so-called Webster curvature W on a contact three-manifold. The main difference in their approach is that they restrict the class of metrics to the metrics which are adapted to a contact structure, while we deal with the class of all metrics. They prove that in their class one can either find a metric with the constant negative Webster curvature or a metric with strictly positive Webster curvature.

It is a well-known problem whether a foliation on a 3-dimensional manifold admits a simultaneous uniformization of all its leaves. The Reeb stability theorem asserts that on a compact orientable 3-manifold the only foliation with the leaves having positive Gaussian curvature is the foliation of $M = S^2 \times S^1$ by spheres. It is known (see Candel [1]) that if M is atoroidal and aspherical and the foliation is taut, then there is a metric on M such that all leaves have constant negative Gaussian curvature -1. In the case of contact structures we ask a similar question. For this we have to introduce the notion of Gaussian curvature of the plane distribution.

We define the Gaussian curvature of the plane distribution as the sum $K_G(\xi) = K(\xi) + K_e(\xi)$ of the sectional and the extrinsic curvatures of the distribution. In the case of integrable ξ this equation is nothing but the Gauss equation.

Definition 1.1 Let ξ be a plane distribution on M. We say that ξ admits a uniformization if there is a metric on M such that the Gaussian curvature of ξ is constant.

It turns out that unlike the case of foliations, every transversally orientable contact structure on a closed 3–manifold admits a uniformization. We have the following:

Theorem C Let ξ be a transversally orientable contact structure on a closed orientable 3–manifold M. For any smooth strictly negative function f, there is a metric on M such that f is the Gaussian curvature of ξ .

This paper is organized as follows. In Section 2 we recall basic facts about the geometry of plane distributions. In Section 3 we prove the main technical lemma. Section 4 is devoted to the proof of Theorem A and Theorem B. We prove Theorem C in Section 5.

Acknowledgment I would like to thank Patrick Massot for pointing out Corollary 3.6. This led to a much stronger and natural formulation of Theorem B.

2 Basic definitions and notation

Throughout this paper M will be a closed orientable 3-manifold. A distribution on M is a two dimensional subbundle of the tangent bundle of M. That is, at each point p

in M there is a plane ξ_p in the tangent space $T_p M$. A distribution is called integrable, if there is a foliation on M which is tangent to it. The following Frobenius theorem gives necessary and sufficient conditions for ξ to be integrable.

Theorem 2.1 Let ξ be a distribution on M. Then ξ is integrable if and only if for any two sections S and T of ξ its Lie bracket belongs to ξ .

Definition 2.2 A distribution ξ is called a contact structure if for any linearly independent sections *S* and *T* of ξ and for any $p \in M$ the Lie bracket [S, T] at *p* does not belong to ξ_p .

A distribution ξ is called transversally oriented if there is a globally defined 1-form α such that $\xi = \text{Ker}(\alpha)$. This is equivalent to say that there exists a globally defined vector field *n* which is transverse to ξ . It is an easy consequence of Frobenius Theorem that ξ is a contact structure if and only if

$$\alpha \wedge d\alpha \neq 0.$$

Fix some orientation on M. A contact structure is said to be positive (resp. negative) if the orientation induced by $\alpha \wedge d\alpha$ coincides (resp. is opposite to) the orientation on M.

A contact structure ξ is called overtwisted, if there is an embedded disk such that $TD|_{\partial D} = \xi|_{\partial D}$. If ξ is not overtwisted, it is called tight.

The Euler class $e(\xi) \in H^2(M, \mathbb{Z})$ of a plane distribution is the Euler class of the bundle $\xi \to M$. It is known that if ξ is a 2-dimensional plane distribution on M with vanishing Euler class then ξ is trivial. Recall, that a framing of M is the presentation of the tangent bundle of M as a product $TM \simeq M \times \mathbb{R}^3$. A framing on M consists of three linearly independent vector fields. It is known that every closed orientable 3-manifold admits a framing.

A bi-contact structure on M is a pair (ξ, η) of transverse contact structures which define opposite orientation on M.

Assume that M is a Riemannian manifold with the metric $\langle \cdot, \cdot \rangle$ and the Levi-Civita connection ∇ . Let n be a local unit vector field orthogonal to ξ . We are now going to define the second fundamental form of ξ . The definition is due to Reinhart [7].

Definition 2.3 The second fundamental form of ξ is a symmetric bilinear form, which is defined in the following way:

$$B(S,T) = \frac{1}{2} \langle \nabla_S T + \nabla_T S, n \rangle$$

for all sections S and T of ξ .

Remark 2.4 If ξ is integrable, then *B* restricted to the leaf of ξ agrees with the second fundamental form of the leaf.

Let S and T be two linearly independent sections of ξ .

Definition 2.5 We call the function

$$K_e(\xi) = \frac{B(S,S)B(T,T) - B(S,T)^2}{\langle S,S \rangle \langle T,T \rangle - \langle S,T \rangle^2}$$

an extrinsic curvature of ξ .

It is easy to verify that $K_e(\xi)$ depends only on ξ , not on the actual choice of S, T and n.

Definition 2.6 Consider the function $K(\xi)$ which assigns to a point $p \in M$ the sectional curvature of the plane ξ_p . We call this function the sectional curvature of ξ .

Definition 2.7 We call the sum $K_G(\xi) = K(\xi) + K_e(\xi)$ the Gaussian curvature of ξ .

Let S, T and U be the local sections of TM. Recall the Koszul formula for the Levi-Civita connection of $\langle \cdot, \cdot \rangle$:

$$\begin{split} 2\langle \nabla_S T, U \rangle &= S \langle T, U \rangle + T \langle U, S \rangle - U \langle S, T \rangle \\ &+ \langle [S, T], U \rangle - \langle [S, U], T \rangle - \langle [T, U], S \rangle \end{split}$$

3 The deformation of metric

In this section we will give the proof of the main technical results we will need throughout the paper.

Let ξ be a transversally orientable plane distribution on a 3-dimensional Riemannian manifold $(M, \langle \cdot, \cdot \rangle)$. Fix a unit normal vector field *n*. Suppose *a* is a strictly positive smooth function on *M*. A stretching of $\langle \cdot, \cdot \rangle$ along *n* by the function *a* is the following Riemannian metric on *M*:

$$\langle \cdot, \cdot \rangle_a = a \langle \cdot, \cdot \rangle |_n \oplus \langle \cdot, \cdot \rangle |_{\xi}$$

Our aim is to calculate the sectional curvature of ξ in the stretched metric in terms of the initial metric.

Consider an open subset $U \subset M$ such that $\xi|_U$ is a trivial fibration. Let X and Y be a pair of orthonormal sections of $\xi|_U$. The triple (X, Y, n) is an orthonormal framing on U with respect to $\langle \cdot, \cdot \rangle$.

In the stretched metric this frame is orthogonal, vector fields X and Y are unit and the length of n is equal to \sqrt{a} . Denote by ∇ the Levi-Civita connection of $\langle \cdot, \cdot \rangle_a$.

Lemma 3.1 The sectional curvature of ξ with respect to $\langle \cdot, \cdot \rangle_a$ can be calculated by the following formula:

$$K(\xi) = -\frac{3}{4}a\langle [X, Y], n \rangle^{2} + P + \frac{1}{a}Q$$

where

$$P = X\langle [X, Y], Y \rangle - Y\langle [X, Y], X \rangle - \langle [X, Y], X \rangle^2 - \langle [X, Y], Y \rangle^2 + \frac{1}{2}\langle [X, Y], n \rangle (-\langle [n, Y], X \rangle + \langle [n, X], Y \rangle)) Q = \frac{1}{4}(\langle [X, n], Y \rangle + \langle [Y, n], X \rangle)^2 - \langle [Y, n], Y \rangle \langle [X, n], X \rangle$$

and

Proof Since X and Y are unit, the sectional curvature of ξ is calculated by the formula:

$$K(\xi) = \langle R(X,Y)Y,X\rangle_a = \langle \nabla_X \nabla_Y Y,X\rangle_a - \langle \nabla_Y \nabla_X Y,X\rangle_a - \langle \nabla_{[X,Y]}Y,X\rangle_a$$

The first summand can be rewritten:

$$\langle \nabla_X \nabla_Y Y, X \rangle_a = X \langle \nabla_Y Y, X \rangle_a - \langle \nabla_Y Y, \nabla_X X \rangle_a$$

Apply the Koszul formula to $X \langle \nabla_Y Y, X \rangle_a$. We get:

$$\begin{split} X \langle \nabla_Y Y, X \rangle_a &= \frac{1}{2} X (2Y \langle Y, X \rangle_a - X \langle Y, Y \rangle_a + \langle [Y, Y], X \rangle_a - 2 \langle [Y, X], Y \rangle_a) \\ &= -X \langle [Y, X], Y \rangle_a = -X \langle [Y, X], Y \rangle \end{split}$$

Decompose the vector field $\nabla_Y Y$ with respect to the frame $(X, Y, n/\sqrt{a})$ orthonormal in the stretched metric $\langle \cdot, \cdot \rangle_a$:

$$\nabla_Y Y = \langle \nabla_Y Y, \frac{n}{\sqrt{a}} \rangle_a \frac{n}{\sqrt{a}} + \langle \nabla_Y Y, Y \rangle_a Y + \langle \nabla_Y Y, X \rangle_a X$$

Substituting these expressions into $\langle \nabla_X \nabla_Y Y, X \rangle_a$, we obtain:

$$\langle \nabla_X \nabla_Y Y, X \rangle_a = -X \langle [Y, X], Y \rangle - \left\langle \langle \nabla_Y Y, n \rangle_a \frac{n}{a} + \langle \nabla_Y Y, Y \rangle_a Y \right. \\ \left. + \left\langle \nabla_Y Y, X \right\rangle_a X, \nabla_X X \right\rangle_a$$

Vladimir Krouglov

Since X and Y are of unit length this reduces to:

$$\langle \nabla_X \nabla_Y Y, X \rangle_a = -X \langle [Y, X], Y \rangle - \frac{1}{a} \langle \nabla_Y Y, n \rangle_a \langle \nabla_X X, n \rangle_a$$

Apply the Koszul formula to the term $\langle \nabla_Y Y, n \rangle_a \langle \nabla_X X, n \rangle_a$. Finally, we have:

$$\langle \nabla_X \nabla_Y Y, X \rangle_a = -X \langle [Y, X], Y \rangle - \frac{1}{a} \langle [Y, n], Y \rangle_a \langle [X, n], X \rangle_a$$
$$= -X \langle [Y, X], Y \rangle - \frac{1}{a} \langle [Y, n], Y \rangle \langle [X, n], X \rangle$$

The second summand is equal to:

$$-\langle \nabla_Y \nabla_X Y, X \rangle_a = -Y \langle \nabla_X Y, X \rangle_a + \langle \nabla_X Y, \nabla_Y X \rangle_a$$

= $Y \langle Y, \nabla_X X \rangle_a + \langle \langle \nabla_X Y, n \rangle_a \frac{n}{a} + \langle \nabla_X Y, Y \rangle_a Y$
+ $\langle \nabla_X Y, X \rangle_a X, \nabla_Y X \rangle_a$
= $-Y \langle [X, Y], X \rangle_a + \frac{1}{a} \langle \nabla_X Y, n \rangle_a \langle \nabla_Y X, n \rangle_a$

Write the equations for the terms $\langle \nabla_X Y, n \rangle_a$ and $\langle \nabla_Y X, n \rangle_a$:

$$\begin{aligned} 2\langle \nabla_X Y, n \rangle_a &= \langle [X, Y], n \rangle_a - \langle [X, n], Y \rangle_a - \langle [Y, n], X \rangle_a \\ &= a\langle [X, Y], n \rangle - \langle [X, n], Y \rangle - \langle [Y, n], X \rangle \\ 2\langle \nabla_Y X, n \rangle_a &= \langle [Y, X], n \rangle_a - \langle [Y, n], X \rangle_a - \langle [X, n], Y \rangle_a \\ &= a\langle [Y, X], n \rangle - \langle [Y, n], X \rangle - \langle [X, n], Y \rangle \end{aligned}$$

Inserting the above equations into the second summand we have:

$$-\langle \nabla_Y \nabla_X Y, X \rangle_a = -Y \langle [X, Y], X \rangle_a + \frac{1}{4a} \left(-a \langle [X, Y], n \rangle + \langle [X, n], Y \rangle + \langle [Y, n], X \rangle \right) \\ \cdot \left(-a \langle [Y, X], n \rangle + \langle [Y, n], X \rangle + \langle [X, n], Y \rangle \right)$$

The last summand is:

$$-\langle \nabla_{[X,Y]}Y, X \rangle_{a} = -\langle \nabla_{\langle [X,Y],n \rangle n + \langle [X,Y],X \rangle X + \langle [X,Y],Y \rangle Y}Y, X \rangle_{a}$$
$$= -\langle [X,Y],n \rangle \langle \nabla_{n}Y, X \rangle_{a} - \langle [X,Y], X \rangle \langle \nabla_{X}Y, X \rangle_{a}$$
$$- \langle [X,Y], Y \rangle \langle \nabla_{Y}Y, X \rangle_{a}$$

The term $\langle \nabla_n Y, X \rangle_a$ is equal to

$$\langle \nabla_n Y, X \rangle_a = -\frac{1}{2} \Big(- \langle [n, Y], X \rangle_a + \langle [n, X], Y \rangle_a + \langle [Y, X], n \rangle_a \Big)$$
$$= -\frac{1}{2} \Big(- \langle [n, Y], X \rangle + \langle [n, X], Y \rangle + a \langle [Y, X], n \rangle \Big)$$

which gives us:

$$\begin{split} -\langle \nabla_{[X,Y]}Y, X \rangle_a &= -\langle [X,Y], n \rangle \langle \nabla_n Y, X \rangle_a - \langle [X,Y], X \rangle \langle \nabla_X Y, X \rangle_a \\ &- \langle [X,Y], Y \rangle \langle \nabla_Y Y, X \rangle_a \\ &= \frac{1}{2} \langle [X,Y], n \rangle \big(- \langle [n,Y], X \rangle + \langle [n,X], Y \rangle + a \langle [Y,X], n \rangle \big) \\ &- \langle [X,Y], X \rangle^2 - \langle [X,Y], Y \rangle^2 \end{split}$$

Summing this up, the sectional curvature of ξ is equal to:

$$\begin{split} K(\xi) &= -X \langle [Y, X], Y \rangle - \frac{1}{a} \langle [Y, n], Y \rangle \langle [X, n], X \rangle \\ &- \left(Y \langle [X, Y], X \rangle - \frac{1}{4a} \left(-a \langle [X, Y], n \rangle + \langle [X, n], Y \rangle + \langle [Y, n], X \rangle \right) \right. \\ &\left. \cdot \left(-a \langle [Y, X], n \rangle + \langle [Y, n], X \rangle + \langle [X, n], Y \rangle \right) \right) \right. \\ &\left. - \left(- \frac{1}{2} \langle [X, Y], n \rangle \left(- \langle [n, Y], X \rangle + \langle [n, X], Y \rangle + a \langle [Y, X], n \rangle \right) \right. \\ &\left. + \langle [X, Y], X \rangle^2 + \langle [X, Y], Y \rangle^2 \right) \end{split}$$

It is straightforward to verify that this gives us the desired expression.

Lemma 3.2 The extrinsic curvature $K_e(\xi)$ with respect to $\langle \cdot, \cdot \rangle_a$ can be calculated by the following formula:

$$K_{e}(\xi) = \frac{1}{a} \Big(\langle [X, n], X \rangle \langle [Y, n], Y \rangle - \frac{1}{4} \big(\langle [X, n], Y \rangle + \langle [Y, n], X \rangle \big)^{2} \Big)$$

Proof Since X and Y are unit vectors, the extrinsic curvature is given by:

$$K_e(\xi) = B(X, X)B(Y, Y) - B(X, Y)^2$$

By the definition of B, the extrinsic curvature is equal to:

$$K_e(\xi) = \langle \nabla_X X, \frac{n}{\sqrt{a}} \rangle_a \langle \nabla_Y Y, \frac{n}{\sqrt{a}} \rangle_a - \frac{1}{4} \langle \nabla_X Y + \nabla_Y X, \frac{n}{\sqrt{a}} \rangle_a^2$$

Apply the Koszul formula to

$$\langle \nabla_X X, \frac{n}{\sqrt{a}} \rangle_a, \quad \langle \nabla_Y Y, \frac{n}{\sqrt{a}} \rangle_a \quad \text{and} \quad \langle \nabla_X Y + \nabla_Y X, \frac{n}{\sqrt{a}} \rangle_a$$

to obtain:

$$\begin{split} K_{e}(\xi) &= \frac{1}{a} \Big(\langle [X, n], X \rangle_{a} \langle [Y, n], Y \rangle_{a} - \frac{1}{4} \Big(\frac{1}{2} \langle [X, Y], n \rangle_{a} - \frac{1}{2} \langle [X, n], Y \rangle_{a} \\ &- \frac{1}{2} \langle [Y, n], X \rangle_{a} - \frac{1}{2} \langle [X, Y], n \rangle_{a} - \frac{1}{2} \langle [Y, n], X \rangle_{a} - \frac{1}{2} \langle [X, n], Y \rangle_{a} \Big)^{2} \Big) \\ &= \frac{1}{a} \Big(\langle [X, n], X \rangle \langle [Y, n], Y \rangle - \frac{1}{4} \big(\langle [X, n], Y \rangle + \langle [Y, n], X \rangle \big)^{2} \Big) \end{split}$$

Summing the extrinsic curvature of ξ with the sectional curvature gives us the Gaussian curvature of the plane distribution ξ .

Lemma 3.3 The Gaussian curvature $K_G(\xi)$ can be calculated by the formula:

$$\begin{split} K_G(\xi) &= K(\xi) + K_e(\xi) \\ &= -\frac{3}{4}a\langle [X,Y],n\rangle^2 + \left(X\langle [X,Y],Y\rangle - Y\langle [X,Y],X\rangle \\ &- \langle [X,Y],X\rangle^2 - \langle [X,Y],Y\rangle^2 \right) \\ &+ \frac{1}{2}\langle [X,Y],n\rangle \left(- \langle [n,Y],X\rangle + \langle [n,X],Y\rangle \right) \end{split}$$

Remark 3.4 If ξ is integrable then $\langle [X, Y], n \rangle = 0$ and

$$K_G(\xi) = X\langle [X, Y], Y \rangle - Y \langle [X, Y], X \rangle - \langle [X, Y], X \rangle^2 - \langle [X, Y], Y \rangle^2$$

is nothing else as the expression of the Gaussian curvature of the leaves of ξ written in the local frame tangent to the leaves.

Lemma 3.5 Let (X, Y, n) be a framing on M. Assume that distribution spanned by n and Y is a contact structure. Then there is a metric on M such that extrinsic curvature of the distribution spanned by X and Y is strictly less than zero.

Proof Fix a metric $\langle \cdot, \cdot \rangle$ such that the framing is orthonormal. Let ξ be a distribution spanned by vector fields X and Y. Stretch the metric along X by a constant factor λ^2 and along Y by a constant factor $1/\lambda^2$. Let's denote this metric by $\langle \cdot, \cdot \rangle_{\lambda}$. Calculate

the extrinsic curvature of ξ with respect to this metric:

$$\begin{split} K_{e}(\eta) &= \langle [n, X], X \rangle_{\lambda} \langle [n, Y], Y \rangle_{\lambda} - \frac{1}{4} \left(\langle [n, X], Y \rangle_{\lambda} + \langle [n, Y], X \rangle_{\lambda} \right)^{2} \\ &= \lambda^{2} \langle [n, X], X \rangle_{\lambda^{2}}^{1} \langle [n, Y], Y \rangle - \frac{1}{4} \left(\frac{1}{\lambda^{2}} \langle [n, X], Y \rangle + \lambda^{2} \langle [n, Y], X \rangle \right)^{2} \\ &= \langle [n, X], X \rangle \langle [n, Y], Y \rangle - \frac{1}{4} \left(\frac{1}{\lambda^{2}} \langle [n, X], Y \rangle + \lambda^{2} \langle [n, Y], X \rangle \right)^{2} \\ &= \langle [n, X], X \rangle \langle [n, Y], Y \rangle - \frac{1}{4} \langle [n, X], Y \rangle^{2} - \frac{1}{2} \langle [n, X], Y \rangle \langle [n, Y], X \rangle \\ &- \frac{\lambda^{4}}{4} \langle [n, Y], X \rangle^{2} \end{split}$$

Since M is compact there is a positive constant C such that:

$$\left| \langle [n, X], X \rangle \langle [n, Y], Y \rangle - \frac{1}{2} \langle [n, X], Y \rangle \langle [n, Y], X \rangle \right| < C$$

We assumed that distribution spanned by vector fields n and Y is a contact structure. The form $\alpha(*) = \langle *, X \rangle$ is a contact form of this distribution, so $\langle [n, Y], X \rangle = \alpha([n, Y]) \neq 0$. Since M is compact there is an ε such that:

$$\left| \langle [n, Y], X \right| > \varepsilon$$

 $K_{e}(\eta) < C - \frac{\lambda^{4} \varepsilon^{2}}{4}$

This means that

This expression is strictly negative for some sufficiently large λ .

Corollary 3.6 Assume that ξ is a transversally orientable contact structure with the Euler class zero on M. Then there is a metric on M such that the extrinsic curvature of ξ is a strictly negative function.

Proof Let *n* be a vector field on *M* transverse to ξ . Since $e(\xi) = 0$, the distribution ξ is trivial and has two nowhere zero sections, say *X* and *Y*.

Choose some positive number ε and consider a distribution η spanned by the vector fields X and $Y + \varepsilon n$. It is obvious that for all ε the distribution η is transverse to ξ and is a contact structure for some sufficiently small ε . Therefore, we can apply Lemma 3.5 to the framing $(X, Y, Y + \varepsilon n)$ to get a desired metric.

4 Prescribing the sectional curvature of ξ

Theorem A Let ξ be a transversally orientable contact structure on a closed orientable 3–manifold M. For any smooth strictly negative function f, there is a metric on M such that f is the sectional curvature of ξ .

Proof Since ξ is transversally orientable, there is a globally defined vector field n which is transverse to ξ . Fix some Riemannian metric $\langle \cdot, \cdot \rangle$ on M such that n is a unit normal vector field. Consider a finite cover of M by the open sets U_{α} such that for each α there is an open set U'_{α} for which $\overline{U}_{\alpha} \subset U'_{\alpha}$ and $\xi|_{U'_{\alpha}}$ is a trivial fibration.

In each U'_{α} choose an orthonormal framing $(X_{\alpha}, Y_{\alpha}, n|_{U'_{\alpha}})$. Consider the stretching $\langle \cdot, \cdot \rangle_a$ of $\langle \cdot, \cdot \rangle$ along *n* by a positive function *a*.

According to Lemma 3.1 the sectional curvature $K(\xi)$ on U'_{α} can be rewritten in the following way:

$$K(\xi) = -\frac{3}{4}a\langle [X_{\alpha}, Y_{\alpha}], n \rangle^{2} + P_{\alpha} + \frac{1}{a}Q_{\alpha}$$

where P_{α} and Q_{α} are functions on U'_{α} independent of a.

Since ξ is a contact structure and U_{α} has a compact closure, $\langle [X_{\alpha}, Y_{\alpha}], n \rangle^2$ is bounded below by some positive constant ε and the functions P_{α} and Q_{α} are bounded from above. Therefore there is a sufficiently large D_{α} such that the equation

$$-\frac{3}{4}a\langle [X_{\alpha}, Y_{\alpha}], n \rangle^{2} + P_{\alpha} + \frac{1}{a}Q_{\alpha} = fD_{\alpha}$$

has a strictly positive solution $a_{\alpha}(D_{\alpha})$. Notice, that for any $D > D_{\alpha}$ this equation still has a positive solution $a_{\alpha}(D)$. Let $D_0 = \max_{\alpha} \{D_{\alpha}\}$. Solve the equation above for D_0 in each chart U_{α} . Let $a_{\alpha} = a_{\alpha}(D_0)$.

We claim that a_{α} constructed this way does not depend on the choice of the orthonormal framing $(X_{\alpha}, Y_{\alpha}, n|_{U_{\alpha}})$. Let $(X'_{\alpha}, Y'_{\alpha}, n|_{U_{\alpha}})$ be any other orthonormal framing on $\xi|_{U_{\alpha}}$. This defines a map

$$\phi_{\alpha}: U_{\alpha} \to O(2)$$

which maps a point $p \in U_{\alpha}$ to the transition matrix $\phi_{\alpha}(p)$ between two framings $(X'_{\alpha}, Y'_{\alpha})$ and (X_{α}, Y_{α}) on ξ . We have

$$\langle [X'_{\alpha}, Y'_{\alpha}], n \rangle^{2} = (d\eta (X'_{\alpha}, Y'_{\alpha}))^{2} = (d\eta (\phi_{\alpha} X_{\alpha}, \phi_{\alpha} Y_{\alpha}))^{2} = \det \phi^{2}_{\alpha} (d\eta (X_{\alpha}, Y_{\alpha}))^{2}$$
$$= \det \phi^{2}_{\alpha} \langle [X_{\alpha}, Y_{\alpha}], n \rangle^{2} = \langle [X_{\alpha}, Y_{\alpha}], n \rangle^{2},$$

where η is a 1-form defined by $\eta(*) = \langle *, n \rangle$. Therefore, $\langle [X_{\alpha}, Y_{\alpha}], n \rangle^2$ is independent of the choice of orthonormal framing. The expression $(1/a)Q_{\alpha} = -K_e(\xi)$ also does

not depend on the choice of the trivialization. Finally the sectional curvature $K(\xi)$ is independent of the framing. It is obvious that the right hand side of

$$P_{\alpha} = K(\xi) - \frac{1}{a}Q_{\alpha} + \frac{3}{4}a\langle [X_{\alpha}, Y_{\alpha}], n \rangle^{2}$$

does not depend on the choice of framing, so does P_{α} .

Therefore, the functions a_{α} agree on the overlaps and define a global function a on M. The sectional curvature of ξ in the metric $\langle \cdot, \cdot \rangle_a$ is fD_0 . Consider the metric $\langle \cdot, \cdot \rangle_0 = (1/D_0) \langle \cdot, \cdot \rangle_a$. It is easy to calculate, that the sectional curvature of ξ in this metric is equal to f.

Corollary 4.1 For any transversally orientable contact structure on a closed orientable 3-manifold, there is a metric on M, such that the sectional curvature of ξ in this metric is equal to -1.

Theorem B Let ξ be a transversally orientable contact structure on M with Euler class zero. Then for any smooth function f, there is a metric on M such that f is a sectional curvature of ξ .

Proof Since the Euler class of ξ is zero, there is a contact structure η , which is transverse to ξ . According to the Corollary 3.6, there is a metric $\langle \cdot, \cdot \rangle$ in which the extrinsic curvature of ξ is a strictly negative function. Let *n* be a unit normal vector field with respect to this metric.

Consider the stretching of $\langle \cdot, \cdot \rangle$ along *n* by a positive function *a*. According to Lemma 3.1, we have to find *a* to satisfy the equation

$$-\frac{3}{4}a\langle [X,Y],n\rangle^2 + P - \frac{1}{4a}K_e(\xi) = f$$

where P is a function on M which is independent of a.

But since $-K_e(\xi) > 0$ this equation always has a strictly positive solution *a*. This completes the proof of the theorem.

Remark 4.2 In the proof of Theorem B it is crucial that ξ is a contact structure. At points where $\langle [X, Y], n \rangle = 0$ the equation may not have any positive solutions.

Example 4.3 (Propeller construction [6]) Consider the following pair of contact structures on \mathbb{T}^3 :

$$\xi = \operatorname{Ker}(\alpha = \cos z \, dx - \sin z \, dy + dz)$$
$$\eta = \operatorname{Ker}(\beta = \cos z \, dx + \sin z \, dy)$$

It is easy to verify, that ξ is transverse to η and we get a bi-contact structure. From Theorem B, there is a metric on \mathbb{T}^3 such that ξ has a positive sectional curvature. This is an example of a tight contact structure of positive sectional curvature.

Example 4.4 (Overtwisted contact structures of positive sectional curvature) Let ξ be any contact structure with the Euler class zero on M. It is known (see Geiges [3]) that if we apply a full Lutz twist to this contact structure, the resulting contact structure is overtwisted and has Euler class zero. From Theorem B, it has a positive sectional curvature for some choice of metric on M.

5 Uniformization of contact structures on 3-manifolds

The same technique as in Theorem A can be applied to the Gaussian curvature of contact structures on three-manifolds.

Theorem C Let ξ be a transversally orientable contact structure on a closed orientable 3–manifold M. For any smooth strictly negative function f, there is a metric on M such that f is the Gaussian curvature of ξ .

Proof Same as Theorem A. The only difference is that in the present case the equation which needs to be solved in each trivializing chart is:

$$K_G(\xi) = -\frac{3}{4}a\langle [X_\alpha, Y_\alpha], n \rangle^2 + P_\alpha = fD_0 \qquad \Box$$

Corollary 5.1 (Uniformization of contact structures) For every transversally orientable contact structure ξ on M, there is a metric such that $K_G(\xi) = -1$.

Example 5.2 (Contact structure with $K_G(\xi) = 1$) Consider the unit sphere $S^3 \subset \mathbb{C}^2$ with a bi-invariant metric. The standard contact structure on S^3 is defined as the kernel of the 1-form

$$\alpha = \sum_{i=1}^{2} (x_i dy_i - y_i dx_i),$$

restricted from \mathbb{C}^2 to S^3 . This contact structure is orthogonal to a left-invariant vector field and therefore is left-invariant. Let (X, Y) be a pair of orthonormal left-invariant sections of ξ . Since the metric is bi-invariant,

$$\nabla_S T = \frac{1}{2}[S, T]$$

for any left-invariant vector fields on S^3 . Therefore the second fundamental form of ξ vanishes and $K_G(\xi) = K(\xi) = 1$.

References

- A Candel, Uniformization of surface laminations, Ann. Sci. École Norm. Sup. (4) 26 (1993) 489–516 MR1235439
- S S Chern, R S Hamilton, On Riemannian metrics adapted to three-dimensional contact manifolds, from: "Workshop (Bonn, 1984)", Lecture Notes in Math. 1111, Springer, Berlin (1985) 279–308 MR797427 With an appendix by A Weinstein
- [3] **H Geiges**, *Contact geometry*, from: "Handbook of differential geometry. Vol. II", Elsevier/North-Holland, Amsterdam (2006) 315–382 MR2194671
- [4] JM Lee, TH Parker, *The Yamabe problem*, Bull. Amer. Math. Soc. (N.S.) 17 (1987) 37–91 MR888880
- [5] J Lohkamp, *Metrics of negative Ricci curvature*, Ann. of Math. (2) 140 (1994) 655–683 MR1307899
- [6] Y Mitsumatsu, Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier (Grenoble) 45 (1995) 1407–1421 MR1370752
- B L Reinhart, *The second fundamental form of a plane field*, J. Differential Geom. 12 (1977) 619–627 (1978) MR512930

Department of Geometry, Institute for Low Temperature Physics and Engineering 47 Lenin Ave, Kharkov 61103, Ukraine

vkrouglov@gmail.com

Received: 4 February 2008 Revised: 24 July 2008