
Algebraic & Geometric Topology 8 (2008) 1567–1579 1567

The curvature of contact structures on 3–manifolds

VLADIMIR KROUGLOV

We study the sectional curvature of plane distributions on 3–manifolds. We show
that if a distribution is a contact structure it is easy to manipulate its curvature. As
a corollary we obtain that for every transversally oriented contact structure on a
closed 3–dimensional manifold, there is a metric such that the sectional curvature
of the contact distribution is equal to �1 . We also introduce the notion of Gaussian
curvature of the plane distribution. For this notion of curvature we get similar results.

53D35; 53B21

1 Introduction

The problem of prescribing the curvatures of a manifold is one of the central problems
in Riemannian geometry. That is, given a smooth function can it be realized as a scalar
(Ricci or sectional) curvature of some Riemannian metric on a manifold. The solution
of the Yamabe problem is the best known result in prescribing the scalar curvature on a
manifold (cf Lee and Parker [4]). There are several results on prescribing the Ricci
curvature of a manifold (cf for example Lohkamp [5]). It is natural to ask to what
extent it is possible to prescribe the sectional curvature of the plane distribution on a
3-manifold. It turns out that this problem is closely connected with the contactness of
the distribution. In fact we have the following:

Theorem A Let � be a transversally orientable contact structure on a closed orientable
3–manifold M . For any smooth strictly negative function f , there is a metric on M

such that f is the sectional curvature of � .

If we impose more topological restrictions on the distribution we can obtain an even
stronger result:

Theorem B Let � be a transversally orientable contact structure on M with Euler
class zero. Then for any smooth function f , there is a metric on M such that f is a
sectional curvature of � .
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In [2], Chern and Hamilton studied a similar problem of prescribing the so-called
Webster curvature W on a contact three-manifold. The main difference in their approach
is that they restrict the class of metrics to the metrics which are adapted to a contact
structure, while we deal with the class of all metrics. They prove that in their class one
can either find a metric with the constant negative Webster curvature or a metric with
strictly positive Webster curvature.

It is a well-known problem whether a foliation on a 3–dimensional manifold admits a
simultaneous uniformization of all its leaves. The Reeb stability theorem asserts that
on a compact orientable 3–manifold the only foliation with the leaves having positive
Gaussian curvature is the foliation of M D S2 � S1 by spheres. It is known (see
Candel [1]) that if M is atoroidal and aspherical and the foliation is taut, then there is
a metric on M such that all leaves have constant negative Gaussian curvature �1. In
the case of contact structures we ask a similar question. For this we have to introduce
the notion of Gaussian curvature of the plane distribution.

We define the Gaussian curvature of the plane distribution as the sum KG.�/ D

K.�/CKe.�/ of the sectional and the extrinsic curvatures of the distribution. In the
case of integrable � this equation is nothing but the Gauss equation.

Definition 1.1 Let � be a plane distribution on M . We say that � admits a uniformiza-
tion if there is a metric on M such that the Gaussian curvature of � is constant.

It turns out that unlike the case of foliations, every transversally orientable contact
structure on a closed 3–manifold admits a uniformization. We have the following:

Theorem C Let � be a transversally orientable contact structure on a closed orientable
3–manifold M . For any smooth strictly negative function f , there is a metric on M

such that f is the Gaussian curvature of � .

This paper is organized as follows. In Section 2 we recall basic facts about the geometry
of plane distributions. In Section 3 we prove the main technical lemma. Section 4 is
devoted to the proof of Theorem A and Theorem B. We prove Theorem C in Section 5.

Acknowledgment I would like to thank Patrick Massot for pointing out Corollary
3.6. This led to a much stronger and natural formulation of Theorem B.

2 Basic definitions and notation

Throughout this paper M will be a closed orientable 3–manifold. A distribution on M

is a two dimensional subbundle of the tangent bundle of M . That is, at each point p
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in M there is a plane �p in the tangent space TpM . A distribution is called integrable,
if there is a foliation on M which is tangent to it. The following Frobenius theorem
gives necessary and sufficient conditions for � to be integrable.

Theorem 2.1 Let � be a distribution on M . Then � is integrable if and only if for
any two sections S and T of � its Lie bracket belongs to � .

Definition 2.2 A distribution � is called a contact structure if for any linearly inde-
pendent sections S and T of � and for any p 2M the Lie bracket ŒS;T � at p does
not belong to �p .

A distribution � is called transversally oriented if there is a globally defined 1–form
˛ such that � D Ker.˛/. This is equivalent to say that there exists a globally defined
vector field n which is transverse to � . It is an easy consequence of Frobenius Theorem
that � is a contact structure if and only if

˛^ d˛ ¤ 0:

Fix some orientation on M . A contact structure is said to be positive (resp. negative) if
the orientation induced by ˛^d˛ coincides (resp. is opposite to) the orientation on M .

A contact structure � is called overtwisted, if there is an embedded disk such that
TDj@D D �j@D . If � is not overtwisted, it is called tight.

The Euler class e.�/ 2 H 2.M;Z/ of a plane distribution is the Euler class of the
bundle �!M . It is known that if � is a 2–dimensional plane distribution on M with
vanishing Euler class then � is trivial. Recall, that a framing of M is the presentation
of the tangent bundle of M as a product TM 'M �R3 . A framing on M consists
of three linearly independent vector fields. It is known that every closed orientable
3–manifold admits a framing.

A bi-contact structure on M is a pair .�; �/ of transverse contact structures which
define opposite orientation on M .

Assume that M is a Riemannian manifold with the metric h�; �i and the Levi-Civita
connection r . Let n be a local unit vector field orthogonal to � . We are now going to
define the second fundamental form of � . The definition is due to Reinhart [7].

Definition 2.3 The second fundamental form of � is a symmetric bilinear form, which
is defined in the following way:

B.S;T /D
1

2
hrST CrT S; ni

for all sections S and T of � .
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Remark 2.4 If � is integrable, then B restricted to the leaf of � agrees with the
second fundamental form of the leaf.

Let S and T be two linearly independent sections of � .

Definition 2.5 We call the function

Ke.�/D
B.S;S/B.T;T /�B.S;T /2

hS;SihT;T i � hS;T i2

an extrinsic curvature of � .

It is easy to verify that Ke.�/ depends only on � , not on the actual choice of S , T

and n.

Definition 2.6 Consider the function K.�/ which assigns to a point p 2 M the
sectional curvature of the plane �p . We call this function the sectional curvature of � .

Definition 2.7 We call the sum KG.�/DK.�/CKe.�/ the Gaussian curvature of � .

Let S , T and U be the local sections of TM . Recall the Koszul formula for the
Levi-Civita connection of h�; �i:

2hrST;U i D ShT;U iCT hU;Si �U hS;T i

C hŒS;T �;U i � hŒS;U �;T i � hŒT;U �;Si

3 The deformation of metric

In this section we will give the proof of the main technical results we will need
throughout the paper.

Let � be a transversally orientable plane distribution on a 3–dimensional Riemannian
manifold .M; h�; �i/. Fix a unit normal vector field n. Suppose a is a strictly positive
smooth function on M . A stretching of h�; �i along n by the function a is the following
Riemannian metric on M :

h�; �ia D ah�; �ijn˚h�; �ij�

Our aim is to calculate the sectional curvature of � in the stretched metric in terms of
the initial metric.
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Consider an open subset U �M such that �jU is a trivial fibration. Let X and Y be
a pair of orthonormal sections of �jU . The triple .X;Y; n/ is an orthonormal framing
on U with respect to h�; �i.

In the stretched metric this frame is orthogonal, vector fields X and Y are unit and the
length of n is equal to

p
a. Denote by r the Levi-Civita connection of h�; �ia .

Lemma 3.1 The sectional curvature of � with respect to h�; �ia can be calculated by
the following formula:

K.�/D�
3

4
ahŒX;Y �; ni2CP C

1

a
Q

P DX hŒX;Y �;Y i �Y hŒX;Y �;X i � hŒX;Y �;X i2� hŒX;Y �;Y i2where

C
1

2
hŒX;Y �; ni.�hŒn;Y �;X iC hŒn;X �;Y i//

QD
1

4
.hŒX; n�;Y iC hŒY; n�;X i/2� hŒY; n�;Y ihŒX; n�;X iand

Proof Since X and Y are unit, the sectional curvature of � is calculated by the
formula:

K.�/D hR.X;Y /Y;X ia D hrXrY Y;X ia� hrY rX Y;X ia� hrŒX ;Y �Y;X ia

The first summand can be rewritten:

hrXrY Y;X ia DX hrY Y;X ia� hrY Y;rX X ia

Apply the Koszul formula to X hrY Y;X ia . We get:

X hrY Y;X ia D
1

2
X.2Y hY;X ia�X hY;Y iaChŒY;Y �;X ia� 2hŒY;X �;Y ia/

D�X hŒY;X �;Y ia D�X hŒY;X �;Y i

Decompose the vector field rY Y with respect to the frame .X;Y; n=
p

a/ orthonormal
in the stretched metric h�; �ia :

rY Y D hrY Y;
n
p

a
ia

n
p

a
ChrY Y;Y iaY ChrY Y;X iaX

Substituting these expressions into hrXrY Y;X ia , we obtain:

hrXrY Y;X ia D�X hŒY;X �;Y i �
˝
hrY Y; nia

n

a
ChrY Y;Y iaY

ChrY Y;X iaX;rX X
˛
a
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Since X and Y are of unit length this reduces to:

hrXrY Y;X ia D�X hŒY;X �;Y i �
1

a
hrY Y; niahrX X; nia

Apply the Koszul formula to the term hrY Y; niahrX X; nia . Finally, we have:

hrXrY Y;X ia D�X hŒY;X �;Y i �
1

a
hŒY; n�;Y iahŒX; n�;X ia

D�X hŒY;X �;Y i �
1

a
hŒY; n�;Y ihŒX; n�;X i

The second summand is equal to:

�hrY rX Y;X ia D�Y hrX Y;X iaChrX Y;rY X ia

D Y hY;rX X iaC
˝
hrX Y; nia

n

a
ChrX Y;Y iaY

ChrX Y;X iaX;rY X
˛
a

D�Y hŒX;Y �;X iaC
1

a
hrX Y; niahrY X; nia

Write the equations for the terms hrX Y; nia and hrY X; nia :

2hrX Y; nia D hŒX;Y �; nia� hŒX; n�;Y ia� hŒY; n�;X ia

D ahŒX;Y �; ni � hŒX; n�;Y i � hŒY; n�;X i

2hrY X; nia D hŒY;X �; nia� hŒY; n�;X ia� hŒX; n�;Y ia

D ahŒY;X �; ni � hŒY; n�;X i � hŒX; n�;Y i

Inserting the above equations into the second summand we have:

�hrY rX Y;X iaD�Y hŒX;Y �;X iaC
1

4a

�
�ahŒX;Y �; niChŒX; n�;Y iChŒY; n�;X i

�
�
�
� ahŒY;X �; niC hŒY; n�;X iC hŒX; n�;Y i

�
The last summand is:

�hrŒX ;Y �Y;X ia D�hrhŒX ;Y �;ninChŒX ;Y �;X iX ChŒX ;Y �;Y iY Y;X ia

D�hŒX;Y �; nihrnY;X ia� hŒX;Y �;X ihrX Y;X ia

� hŒX;Y �;Y ihrY Y;X ia
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The term hrnY;X ia is equal to

hrnY;X ia D�
1

2

�
� hŒn;Y �;X iaChŒn;X �;Y iaChŒY;X �; nia

�
D�

1

2

�
� hŒn;Y �;X iC hŒn;X �;Y iC ahŒY;X �; ni

�
which gives us:

�hrŒX ;Y �Y;X ia D�hŒX;Y �; nihrnY;X ia� hŒX;Y �;X ihrX Y;X ia

� hŒX;Y �;Y ihrY Y;X ia

D
1

2
hŒX;Y �; ni

�
� hŒn;Y �;X iC hŒn;X �;Y iC ahŒY;X �; ni

�
� hŒX;Y �;X i2� hŒX;Y �;Y i2

Summing this up, the sectional curvature of � is equal to:

K.�/D�X hŒY;X �;Y i �
1

a
hŒY; n�;Y ihŒX; n�;X i

�

�
Y hŒX;Y �;X i �

1

4a

�
� ahŒX;Y �; niC hŒX; n�;Y iC hŒY; n�;X i

�
�
�
� ahŒY;X �; niC hŒY; n�;X iC hŒX; n�;Y i

��
�

�
�

1

2
hŒX;Y �; ni

�
� hŒn;Y �;X iC hŒn;X �;Y iC ahŒY;X �; ni

�
ChŒX;Y �;X i2ChŒX;Y �;Y i2

�
It is straightforward to verify that this gives us the desired expression.

Lemma 3.2 The extrinsic curvature Ke.�/ with respect to h�; �ia can be calculated by
the following formula:

Ke.�/D
1

a

�
hŒX; n�;X ihŒY; n�;Y i �

1

4

�
hŒX; n�;Y iC hŒY; n�;X i

�2�
Proof Since X and Y are unit vectors, the extrinsic curvature is given by:

Ke.�/D B.X;X /B.Y;Y /�B.X;Y /2

By the definition of B , the extrinsic curvature is equal to:

Ke.�/D hrX X;
n
p

a
iahrY Y;

n
p

a
ia�

1

4
hrX Y CrY X;

n
p

a
i
2
a
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Apply the Koszul formula to

hrX X;
n
p

a
ia; hrY Y;

n
p

a
ia and hrX Y CrY X;

n
p

a
ia

to obtain:

Ke.�/D
1

a

�
hŒX; n�;X iahŒY; n�;Y ia�

1

4

�1
2
hŒX;Y �; nia�

1

2
hŒX; n�;Y ia

�
1

2
hŒY; n�;X ia�

1

2
hŒX;Y �; nia�

1

2
hŒY; n�;X ia�

1

2
hŒX; n�;Y ia

�2�
D

1

a

�
hŒX; n�;X ihŒY; n�;Y i �

1

4

�
hŒX; n�;Y iC hŒY; n�;X i

�2�
Summing the extrinsic curvature of � with the sectional curvature gives us the Gaussian
curvature of the plane distribution � .

Lemma 3.3 The Gaussian curvature KG.�/ can be calculated by the formula:

KG.�/DK.�/CKe.�/

D�
3

4
ahŒX;Y �; ni2C

�
X hŒX;Y �;Y i �Y hŒX;Y �;X i

� hŒX;Y �;X i2� hŒX;Y �;Y i2
�

C
1

2
hŒX;Y �; ni

�
� hŒn;Y �;X iC hŒn;X �;Y i

�
Remark 3.4 If � is integrable then hŒX;Y �; ni D 0 and

KG.�/DX hŒX;Y �;Y i �Y hŒX;Y �;X i � hŒX;Y �;X i2� hŒX;Y �;Y i2

is nothing else as the expression of the Gaussian curvature of the leaves of � written in
the local frame tangent to the leaves.

Lemma 3.5 Let .X;Y; n/ be a framing on M . Assume that distribution spanned by n

and Y is a contact structure. Then there is a metric on M such that extrinsic curvature
of the distribution spanned by X and Y is strictly less than zero.

Proof Fix a metric h�; �i such that the framing is orthonormal. Let � be a distribution
spanned by vector fields X and Y . Stretch the metric along X by a constant factor �2

and along Y by a constant factor 1=�2 . Let’s denote this metric by h�; �i� . Calculate
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the extrinsic curvature of � with respect to this metric:

Ke.�/D hŒn;X �;X i�hŒn;Y �;Y i��
1

4

�
hŒn;X �;Y i�ChŒn;Y �;X i�

�2
D �2

hŒn;X �;X i
1

�2
hŒn;Y �;Y i �

1

4

� 1

�2
hŒn;X �;Y iC�2

hŒn;Y �;X i
�2

D hŒn;X �;X ihŒn;Y �;Y i �
1

4

� 1

�2
hŒn;X �;Y iC�2

hŒn;Y �;X i
�2

D hŒn;X �;X ihŒn;Y �;Y i �
1

4�4
hŒn;X �;Y i2�

1

2
hŒn;X �;Y ihŒn;Y �;X i

�
�4

4
hŒn;Y �;X i2

Since M is compact there is a positive constant C such that:ˇ̌̌
hŒn;X �;X ihŒn;Y �;Y i �

1

2
hŒn;X �;Y ihŒn;Y �;X i

ˇ̌̌
< C

We assumed that distribution spanned by vector fields n and Y is a contact structure.
The form ˛.�/ D h�;X i is a contact form of this distribution, so hŒn;Y �;X i D
˛.Œn;Y �/¤ 0. Since M is compact there is an " such that:ˇ̌

hŒn;Y �;X
ˇ̌
> "

Ke.�/ < C �
�4"2

4
:This means that

This expression is strictly negative for some sufficiently large �.

Corollary 3.6 Assume that � is a transversally orientable contact structure with the
Euler class zero on M . Then there is a metric on M such that the extrinsic curvature
of � is a strictly negative function.

Proof Let n be a vector field on M transverse to � . Since e.�/D 0, the distribution
� is trivial and has two nowhere zero sections, say X and Y .

Choose some positive number " and consider a distribution � spanned by the vector
fields X and Y C "n. It is obvious that for all " the distribution � is transverse to
� and is a contact structure for some sufficiently small ". Therefore, we can apply
Lemma 3.5 to the framing .X;Y;Y C "n/ to get a desired metric.
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4 Prescribing the sectional curvature of �

Theorem A Let � be a transversally orientable contact structure on a closed orientable
3–manifold M . For any smooth strictly negative function f , there is a metric on M

such that f is the sectional curvature of � .

Proof Since � is transversally orientable, there is a globally defined vector field n

which is transverse to � . Fix some Riemannian metric h�; �i on M such that n is a unit
normal vector field. Consider a finite cover of M by the open sets U˛ such that for
each ˛ there is an open set U 0

˛ for which xU˛ � U 0
˛ and �jU 0

˛
is a trivial fibration.

In each U 0
˛ choose an orthonormal framing .X˛;Y˛; njU 0

˛
/. Consider the stretching

h�; �ia of h�; �i along n by a positive function a.

According to Lemma 3.1 the sectional curvature K.�/ on U 0
˛ can be rewritten in the

following way:

K.�/D�
3

4
ahŒX˛;Y˛ �; ni

2
CP˛C

1

a
Q˛

where P˛ and Q˛ are functions on U 0
˛ independent of a.

Since � is a contact structure and U˛ has a compact closure, hŒX˛;Y˛ �; ni2 is bounded
below by some positive constant " and the functions P˛ and Q˛ are bounded from
above. Therefore there is a sufficiently large D˛ such that the equation

�
3

4
ahŒX˛;Y˛ �; ni

2
CP˛C

1

a
Q˛ D fD˛

has a strictly positive solution a˛.D˛/. Notice, that for any D >D˛ this equation still
has a positive solution a˛.D/. Let D0 D max˛fD˛g. Solve the equation above for
D0 in each chart U˛ . Let a˛ D a˛.D0/.

We claim that a˛ constructed this way does not depend on the choice of the orthonormal
framing .X˛;Y˛; njU˛

/. Let .X 0
˛;Y

0
˛; njU˛

/ be any other orthonormal framing on �jU˛
.

This defines a map
�˛W U˛!O.2/

which maps a point p 2 U˛ to the transition matrix �˛.p/ between two framings
.X 0
˛;Y

0
˛/ and .X˛;Y˛/ on � . We have

hŒX 0
˛;Y

0
˛ �; ni

2
D .d�.X 0

˛;Y
0
˛//

2
D .d�.�˛X˛; �˛Y˛//

2
D det�2

˛.d�.X˛;Y˛//
2

D det�2
˛hŒX˛;Y˛ �; ni

2
D hŒX˛;Y˛ �; ni

2;

where � is a 1–form defined by �.�/Dh�; ni. Therefore, hŒX˛;Y˛ �; ni2 is independent
of the choice of orthonormal framing. The expression .1=a/Q˛ D�Ke.�/ also does
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not depend on the choice of the trivialization. Finally the sectional curvature K.�/ is
independent of the framing. It is obvious that the right hand side of

P˛ DK.�/�
1

a
Q˛C

3

4
ahŒX˛;Y˛ �; ni

2

does not depend on the choice of framing, so does P˛ .

Therefore, the functions a˛ agree on the overlaps and define a global function a on
M . The sectional curvature of � in the metric h�; �ia is fD0 . Consider the metric
h�; �i0 D .1=D0/h�; �ia . It is easy to calculate, that the sectional curvature of � in this
metric is equal to f .

Corollary 4.1 For any transversally orientable contact structure on a closed orientable
3–manifold, there is a metric on M ,such that the sectional curvature of � in this metric
is equal to �1.

Theorem B Let � be a transversally orientable contact structure on M with Euler
class zero. Then for any smooth function f , there is a metric on M such that f is a
sectional curvature of � .

Proof Since the Euler class of � is zero, there is a contact structure �, which is
transverse to � . According to the Corollary 3.6, there is a metric h�; �i in which the
extrinsic curvature of � is a strictly negative function. Let n be a unit normal vector
field with respect to this metric.

Consider the stretching of h�; �i along n by a positive function a. According to Lemma
3.1, we have to find a to satisfy the equation

�
3

4
ahŒX;Y �; ni2CP �

1

4a
Ke.�/D f

where P is a function on M which is independent of a.

But since �Ke.�/ > 0 this equation always has a strictly positive solution a. This
completes the proof of the theorem.

Remark 4.2 In the proof of Theorem B it is crucial that � is a contact structure. At
points where hŒX;Y �; ni D 0 the equation may not have any positive solutions.

Example 4.3 (Propeller construction [6]) Consider the following pair of contact
structures on T3 :

� D Ker.˛ D cos zdx� sin zdyC dz/

�D Ker.ˇ D cos zdxC sin zdy/
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It is easy to verify, that � is transverse to � and we get a bi-contact structure. From
Theorem B, there is a metric on T3 such that � has a positive sectional curvature. This
is an example of a tight contact structure of positive sectional curvature.

Example 4.4 (Overtwisted contact structures of positive sectional curvature) Let �
be any contact structure with the Euler class zero on M . It is known (see Geiges [3])
that if we apply a full Lutz twist to this contact structure, the resulting contact structure
is overtwisted and has Euler class zero. From Theorem B, it has a positive sectional
curvature for some choice of metric on M .

5 Uniformization of contact structures on 3–manifolds

The same technique as in Theorem A can be applied to the Gaussian curvature of
contact structures on three-manifolds.

Theorem C Let � be a transversally orientable contact structure on a closed orientable
3–manifold M . For any smooth strictly negative function f , there is a metric on M

such that f is the Gaussian curvature of � .

Proof Same as Theorem A. The only difference is that in the present case the equation
which needs to be solved in each trivializing chart is:

KG.�/D�
3

4
ahŒX˛;Y˛ �; ni

2
CP˛ D fD0

Corollary 5.1 (Uniformization of contact structures) For every transversally ori-
entable contact structure � on M , there is a metric such that KG.�/D�1.

Example 5.2 (Contact structure with KG.�/D 1) Consider the unit sphere S3�C2

with a bi-invariant metric. The standard contact structure on S3 is defined as the kernel
of the 1–form

˛ D

2X
iD1

.xidyi �yidxi/;

restricted from C2 to S3 . This contact structure is orthogonal to a left-invariant vector
field and therefore is left-invariant. Let .X;Y / be a pair of orthonormal left-invariant
sections of � . Since the metric is bi-invariant,

rST D
1

2
ŒS;T �

for any left-invariant vector fields on S3 . Therefore the second fundamental form of �
vanishes and KG.�/DK.�/D 1:
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(1993) 489–516 MR1235439

[2] S S Chern, R S Hamilton, On Riemannian metrics adapted to three-dimensional con-
tact manifolds, from: “Workshop (Bonn, 1984)”, Lecture Notes in Math. 1111, Springer,
Berlin (1985) 279–308 MR797427 With an appendix by A Weinstein

[3] H Geiges, Contact geometry, from: “Handbook of differential geometry. Vol. II”,
Elsevier/North-Holland, Amsterdam (2006) 315–382 MR2194671

[4] J M Lee, T H Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987)
37–91 MR888880

[5] J Lohkamp, Metrics of negative Ricci curvature, Ann. of Math. .2/ 140 (1994) 655–
683 MR1307899

[6] Y Mitsumatsu, Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier
.Grenoble/ 45 (1995) 1407–1421 MR1370752

[7] B L Reinhart, The second fundamental form of a plane field, J. Differential Geom. 12
(1977) 619–627 (1978) MR512930

Department of Geometry, Institute for Low Temperature Physics and Engineering
47 Lenin Ave, Kharkov 61103, Ukraine

vkrouglov@gmail.com

Received: 4 February 2008 Revised: 24 July 2008

Algebraic & Geometric Topology, Volume 8 (2008)

http://www.numdam.org/item?id=ASENS_1993_4_26_4_489_0
http://www.ams.org/mathscinet-getitem?mr=1235439
http://www.ams.org/mathscinet-getitem?mr=797427
http://www.ams.org/mathscinet-getitem?mr=2194671
http://dx.doi.org/10.1090/S0273-0979-1987-15514-5
http://www.ams.org/mathscinet-getitem?mr=888880
http://dx.doi.org/10.2307/2118620
http://www.ams.org/mathscinet-getitem?mr=1307899
http://www.numdam.org/item?id=AIF_1995__45_5_1407_0
http://www.ams.org/mathscinet-getitem?mr=1370752
http://projecteuclid.org/getRecord?id=euclid.jdg/1214434230
http://www.ams.org/mathscinet-getitem?mr=512930
mailto:vkrouglov@gmail.com

	1. Introduction
	2. Basic definitions and notation
	3. The deformation of metric
	4. Prescribing the sectional curvature of xi
	5. Uniformization of contact structures on 3-manifolds
	References

