A class function on the mapping class group of an orientable surface and the Meyer cocycle

MASATOSHI SATO

In this paper we define a \mathbf{QP}^1 -valued class function on the mapping class group $\mathcal{M}_{g,2}$ of a surface $\Sigma_{g,2}$ of genus g with two boundary components. Let E be a $\Sigma_{g,2}$ -bundle over a pair of pants P. Gluing to E the product of an annulus and P along the boundaries of each fiber, we obtain a closed surface bundle over P. We have another closed surface bundle by gluing to E the product of P and two disks.

The sign of our class function cobounds the 2–cocycle on $\mathcal{M}_{g,2}$ defined by the difference of the signature of these two surface bundles over P.

57N13, 55R40; 57M07

1 Introduction

Let $\Sigma_{g,r}$ be a compact oriented surface of genus g with r boundary components. The mapping class group $\mathcal{M}_{g,r}$ is $\pi_0 \text{Diff}_+(\Sigma_{g,r}, \partial \Sigma_{g,r})$ where $\text{Diff}_+(\Sigma_{g,r}, \partial \Sigma_{g,r})$ is the group of orientation preserving diffeomorphisms of $\Sigma_{g,r}$ which restrict to the identity on the boundary $\partial \Sigma_{g,r}$. We simply denote $\Sigma_g := \Sigma_{g,0}$ and $\mathcal{M}_g := \mathcal{M}_{g,0}$. Harer [4] proved that

 $H^2(\mathcal{M}_{g,r}; \mathbf{Z}) \cong \mathbf{Z} \quad g \ge 3, \ r \ge 0,$

see also Korkmaz and Stipsicz [8].

Meyer [9] defined a cocycle $\tau_g \in Z^2(\mathcal{M}_g; \mathbb{Z})$ $(g \ge 0)$ called the Meyer cocycle which represents four times generator of the second cohomology class when $g \ge 3$. Let D_1 , D_2 , and D_3 be mutually disjoint disks in S^2 , and Int D_i the interior of D_i for i = 1, 2, 3. We denote by $P := S^2 - \coprod_{i=1}^3$ Int D_i the pair of pants, and $\alpha, \beta, \gamma \in \pi_1(P)$ be the homotopy classes as shown in Figure 1. We consider a $\Sigma_{g,r}$ -bundle $E_{g,r}^{\varphi,\psi}$ on the pair of pants P which has monodromies $\varphi, \psi, (\psi\varphi)^{-1} \in \mathcal{M}_{g,r}$ along $\alpha, \beta, \gamma \in \pi_1(P)$. The diffeomorphism type of $E_{g,r}^{\varphi,\psi}$ does not depend on the choice of representatives in the mapping classes φ and ψ . Since $E_{g,r}^{\varphi,\psi}$ is the oriented fiber

Published: 8 October 2008



Figure 1

bundle, it has the canonical orientation comes from that of $\Sigma_{g,r}$ and P. The Meyer cocycle is defined by

$$\begin{aligned} \tau_g: \ \mathcal{M}_g \ \times \ \mathcal{M}_g \ \to \ \mathbf{Z} \ , \\ (\varphi \ , \ \psi \) \ \mapsto \ \mathrm{Sign} \ E_g^{\varphi, \psi} \end{aligned}$$

where Sign $E_g^{\varphi,\psi}$ is the signature of the compact oriented 4-manifold $E_g^{\varphi,\psi}$. For k > 0, it is known as Novikov additivity that when two compact oriented 4k-manifolds are glued by an orientation reversing diffeomorphism of their boundaries, the signature of their union is the sum of their signature. When a pants decomposition of a closed oriented 2-manifold is given, the signature of a Σ_g -bundle on the 2-manifold is the sum of the signature of the Σ_g -bundles restricted to each pair of pants. Therefore, it is important to study the Meyer cocycle to calculate the signature of compact 4-manifolds. For g = 1, 2 the Meyer cocycle τ_g is a coboundary, and the cobounding function of this cocycle is calculated by several authors, for instance, Meyer [9], Atiyah [1], Kasagawa [6] and Iida [5]. The Meyer cocycle is not a coboundary if genus $g \ge 3$, but the cocycle can be a coboundary when it is restricted to some subgroups. For example, on the subgroup called the hyperelliptic mapping class group, the cobounding function is calculated by Endo [2] and Morifuji [11].

Let *I* be the unit interval $[0, 1] \subset \mathbb{R}$. By sewing a pair of disks onto the surface $\Sigma_{g,2}$ along the boundary, we have Σ_g . For $h \in \text{Diff}_+(\Sigma_{g,2}, \partial \Sigma_{g,2})$, if we extend *h* by the identity on the pair of disks, we have a self-diffeomorphism of Σ_g . We denote it by $h \cup id_{\prod_{i=1}^2 D^2}$. By sewing an annulus $S^1 \times I$ onto the surface $\Sigma_{g,2}$ along the boundary, we have Σ_{g+1} . In the same way, if we extend $h \in \text{Diff}_+(\Sigma_{g,2}, \partial \Sigma_{g,2})$ by the identity on the annulus, we have a self-diffeomorphism $h \cup id_{S^1 \times I}$.

1649

Define the induced homomorphism on the mapping class group by

$$\begin{array}{rcl} \theta \colon & \mathcal{M}_{g,2} \to & \mathcal{M}_g \\ & & [h] & \mapsto & [h \cup i \, d_{\coprod_{i=1}^2 D^2}] \end{array}$$

and

$$\begin{array}{rcl} \eta & \mathcal{M}_{g,2} \to & \mathcal{M}_{g+1,0}. \\ & [h] & \mapsto & [h \cup i d_{S^1 \times I}]. \end{array}$$

Harer [3; 4] shows that θ and η induce an isomorphism on the second homology classes when genus $g \ge 5$, so that $\tilde{\tau}_g = \eta^* \tau_{g+1} - \theta^* \tau_g$ is a coboundary. Powell [12] proved that the first homology group $H_1(\mathcal{M}_{g,r}; \mathbb{Z})$ is trivial for $g \ge 3$ and $r \ge 0$, so by the universal coefficient theorem, it follows that the cobounding function of $\tilde{\tau}_g$ is unique.

In this paper we define a \mathbf{QP}^1 -valued class function m on the mapping class group $\mathcal{M}_{g,2}$ in an explicit way by using information of the first homology group of a mapping torus of $[h] \in \mathcal{M}_{g,2}$. For $[p:q] \in \mathbf{QP}^1$, we define the sign of [p:q] by sign $([p:q]) := \operatorname{sign}(pq)$. We prove that the sign of the function m cobounds the cocycle $\tilde{\tau}_g = \eta^* \tau_{g+1} - \theta^* \tau_g$. In particular, it turns out that the cocycle $\tilde{\tau}_g$ is coboundary for any $g \ge 0$.

This function makes a little bit easy to evaluate the Meyer cocycle on the subgroups consists of mapping classes that fix a curve on the surface. For example, consider the case g = 1, 2. We denote by ϕ_1 and ϕ_2 the cobounding functions of τ_1 and τ_2 . Since $H_1(\mathcal{M}_{g,2}; \mathbf{Q}) = 0$, the equation $\eta^* \tau_{g+1} = \theta^* \tau_g + \delta m$ means $\eta^* \phi_{g+1} = \theta^* \phi_g + m$ for g = 1, 2. In particular, the function ϕ_1 is described explicitly in Meyer [9]. Therefore, our function *m* helps to describe the cobounding function of the Meyer cocycle for genus 2 and 3 on the subgroup.

In Section 2, we construct a class function *m*, prove some properties of this function, and calculate the image of the function. In Section 3, we prove that the sign of this function cobounds the difference $\tilde{\tau}_g = \eta^* \tau_{g+1} - \theta^* \tau_g$. By the definition of the Meyer cocycle τ_g , $\tilde{\tau}_g(\varphi, \psi)$ is just the difference $\operatorname{Sign} E_{g+1}^{\eta(\varphi),\eta(\psi)} - \operatorname{Sign} E_g^{\theta(\varphi),\theta(\psi)}$, so that we calculate the difference by using the sign of the function *m*. Moreover we compute the other differences of signature $\operatorname{Sign} (E_{g,2}^{\varphi,\psi}) - \operatorname{Sign} (E_g^{\theta(\varphi),\theta(\psi)})$ and $\operatorname{Sign} (E_{g+1}^{\eta(\varphi),\eta(\psi)}) - \operatorname{Sign} (E_{g,2}^{\varphi,\psi})$ by the function *m*.

2 Class function $m: \mathcal{M}_{g,2} \to \mathbb{Q}\mathbb{P}^1$

In this section we define the class function on the mapping class group $\mathcal{M}_{g,2}$ stated in the introduction and describe some properties of the function including the nontriviality.

Masatoshi Sato

For [p:q], $[r:s] \in \mathbf{QP}^1$, we define an addition in \mathbf{QP}^1 by

$$[p:q] + [r:s] = \begin{cases} [pr:ps+qr], & \text{if } [p:q] \neq [0:1] \text{ or } [r:s] \neq [0:1] \\ [0:1], & \text{if } [p:q] = [r:s] = [0:1]. \end{cases}$$

The projective line \mathbf{QP}^1 forms an additive monoid under this operation with [1 : 0] the zero element.

In this section, all (co)homology groups are with \mathbf{Q} coefficients.

2.1 Construction of the class function

Before constructing the function, we prepare a fact about homology groups of compact 3-manifolds. Let Y be a compact oriented connected 3-manifold with boundary ∂Y and $i: \partial Y \hookrightarrow Y$ the inclusion map. Consider the commutative diagram

$$\begin{array}{cccc} H^{1}(Y) & \stackrel{i^{*}}{\longrightarrow} & H^{1}(\partial Y) & \stackrel{\delta^{*}}{\longrightarrow} & H^{2}(Y, \partial Y) \\ & & & & \downarrow \cap [Y] & & & \downarrow \cap [Y] \\ H_{2}(Y, \partial Y) & \stackrel{\partial_{*}}{\longrightarrow} & H_{1}(\partial Y) & \stackrel{i_{*}}{\longrightarrow} & H_{1}(Y), \end{array}$$

where the upper and lower rows are the exact sequences of a pair $(Y, \partial Y)$, and the vertical maps are the cap products with the (relative) fundamental classes of Y and ∂Y . By the diagram and Poincaré Duality, it follows that the image of i^* is just its own annihilator with respect to the cup product of $H^1(\partial Y)$

$$\operatorname{Im} i^* = \operatorname{Ann} (\operatorname{Im} i^*).$$

In particular, we have

dim Ker
$$i_*$$
 = dim Im $i^* = \frac{1}{2}$ dim $H_1(\partial Y)$.

We define the mapping torus of $\varphi = [h] \in \mathcal{M}_{g,r}$ by

$$X^{\varphi} := \Sigma_{g,r} \times I / \sim, \quad (x,1) \sim (h(x),0),$$

and $\pi: X^{\varphi} \to I/\partial I = S^1$ by the projection $\pi([x, t]) = [t]$, where $[x, t] \in X^{\varphi}$ is the equivalent class of $(x, t) \in \Sigma_{g,r} \times I$, and $[t] \in I/\partial I = S^1$ the equivalent class of $t \in I$.

The diffeomorphism type of the mapping torus X^{φ} does not depend on the choice of the representative h. We fix the orientation on X^{φ} given by the product orientation on $\Sigma_{g,r} \times I$. Let $i_{\varphi} : \partial X^{\varphi} \hookrightarrow X^{\varphi}$ be the inclusion map. In this subsection we denote $\Sigma := \Sigma_{g,2}$, and if we fix $\varphi \in \mathcal{M}_{g,2}$, then we write simply $X := X^{\varphi}$ and $i := i_{\varphi}$. Let S_1 and S_2 be the two boundary components of Σ , and $[S_k]$ (k = 1, 2) the image

under the inclusion homomorphism $H_1(S_k) \to H_1(\Sigma)$ of the fundamental homology class.

We consider Σ as a subspace of X by the embedding $\iota: \Sigma \hookrightarrow X$ by $x \mapsto [x, 0]$. We choose points $p_1 \in S_1$, $p_2 \in S_2$, and $p \in S^1$, and orientation-preserving homeomorphisms $\iota_1: S^1 \to S_1$ and $\iota_2: S^1 \to S_2$. We define singular chains $f_k: I \to (S_1 \amalg S_2) \times S^1 = \partial X$ (k = 1, 2, 3, 4) by

$$f_1(t) = (\iota_1(t), p), f_2(t) = (\iota_2(t), p), f_3(t) = (p_1, t) \text{ and } f_4(t) = (p_2, t) \text{ respectively.}$$

Let $e_k \in H_1(\partial X)$ be the homology class of f_k (k = 1, 2, 3, 4). Then the set $\{e_1, e_2, e_3, e_4\}$ forms a basis for $H_1(\partial X)$, and the intersection number

$$e_i \cdot e_j = \begin{cases} 1 & \text{if } j = i+2\\ 0 & \text{otherwise,} \end{cases}$$

for i = 1, 2 and j = 3, 4. Now we describe the kernel of the homomorphism $i_*: H_1(\partial X) \to H_1(X)$. Since e_1 and e_2 lie in the kernel of $(\pi|_{\partial X})_*$ and $\pi_*(e_3) = \pi_*(e_4) = [S^1] \in H_1(S^1)$, we have

Ker
$$i_* \subset$$
 Ker $(\pi_*i_*) = \mathbf{Q}e_1 \oplus \mathbf{Q}e_2 \oplus \mathbf{Q}(e_3 - e_4).$

By the definition of the map f_k , $(i \circ f_k)_*[S^1] = \iota_*[S_k]$, and so $i_*(e_1 + e_2) = \iota_*([S_1] + [S_2]) \in H_1(X)$. Since $S_1 \cup S_2$ is the boundary of Σ , we have $[S_1] + [S_2] = 0 \in H_1(\Sigma)$. Hence

$$\mathbf{Q}(e_1+e_2) \subset \operatorname{Ker} i_*.$$

As we saw at the beginning of this subsection, dim Ker $i_* = \frac{1}{2} \dim H_1(\partial X) = 2$. It follows that Ker $i_* = \mathbf{Q}(e_1 + e_2) \oplus \mathbf{Q}(p(e_3 - e_4) + qe_1)$ for some $p, q \in \mathbf{Q}$. Now we can define a class function.

Definition 2.1 For $\varphi \in \mathcal{M}_{g,2}$, we take $p, q \in \mathbf{Q}$ such that Ker $i_{\varphi*} = \mathbf{Q}(e_1 + e_2) \oplus \mathbf{Q}(p(e_3 - e_4) + qe_1)$.

We define $m: \mathcal{M}_{g,2} \to \mathbf{QP}^1$ by $m(\varphi) = [p:q]$.

Lemma 2.2 For $\varphi, \psi \in \mathcal{M}_{g,2}$,

$$m(\psi\varphi\psi^{-1}) = m(\varphi).$$

Proof Define $\Psi: X^{\varphi} \to X^{\psi \varphi \psi^{-1}}$ by $\Psi(x,t) = (\psi(x),t)$. Then Ψ maps e_i as defined in $H_1(X^{\varphi})$ to the corresponding e_i as defined in $H_1(X^{\psi \varphi \psi^{-1}})$, and the

following diagram commutes

$$\begin{array}{ccc} H_1(\partial X^{\varphi}) & \xrightarrow{i_{\varphi \ast}} & H_1(X^{\varphi}) \\ & & \downarrow^{\Psi_{\ast}} & & \downarrow^{\Psi_{\ast}} \\ H_1(\partial X^{\psi \varphi \psi^{-1}}) & \xrightarrow{i_{\psi \varphi \psi^{-1} \ast}} & H_1(X^{\psi \varphi \psi^{-1}}). \end{array}$$

As we see from the diagram, Ψ_* gives the natural isomorphism between the kernels $\operatorname{Ker}(H_1(\partial X^{\varphi}) \to H_1(X^{\varphi}))$ and $\operatorname{Ker}(H_1(\partial X^{\psi \varphi \psi^{-1}}) \to H_1(X^{\psi \varphi \psi^{-1}}))$. Hence we have $m(\psi \varphi \psi^{-1}) = m(\varphi)$.

2.2 Some properties and the nontriviality of the class function

By the Serre spectral sequence of the Σ -bundle $\pi: X \to S^1$, we have the exact sequence

$$0 \longrightarrow \operatorname{Coker} (\varphi_* - 1) \xrightarrow{\iota_*} H_1(X) \xrightarrow{\pi_*} H_1(S^1) \longrightarrow 0,$$

where Coker $(\varphi_* - 1)$ is the cokernel of the homomorphism $\varphi_* - 1$: $H_1(\Sigma) \to H_1(\Sigma)$.

Then we have a unique homomorphism j_{φ} : $\mathbf{Q}e_1 \oplus \mathbf{Q}e_2 \oplus \mathbf{Q}(e_3 - e_4) \rightarrow \text{Coker}(\varphi_* - 1)$ such that the diagram with exact rows

$$0 \longrightarrow \mathbf{Q}e_1 \oplus \mathbf{Q}e_2 \oplus \mathbf{Q}(e_3 - e_4) \longrightarrow H_1(\partial X) \xrightarrow{\pi_*} H_1(S^1) \longrightarrow 0$$
$$\downarrow^{j_{\varphi}} \qquad \qquad \downarrow^{i_*} \qquad \parallel$$
$$0 \longrightarrow \operatorname{Coker}(\varphi_* - 1) \xrightarrow{\iota_*} H_1(X) \xrightarrow{\pi_*} H_1(S^1) \longrightarrow 0$$

commutes. By the diagram, we have

Ker
$$i_* =$$
 Ker j_{φ} and
 $j_{\varphi}(e_1) = -j_{\varphi}(e_2) = [S_1] \in$ Coker $(\varphi_* - 1)$.

Now we introduce a cochain $\omega_l \in C^1(\mathcal{M}_{g,2}; H_1(\Sigma))$ defined by Kawazumi [7]. On the fiber $\Sigma = \pi^{-1}(0) \subset X$, pick a path l such that $l(0) \in S_2$ and $l(1) \in S_1$. Define ω_l by

$$\omega_l(\varphi) := [\varphi(l) - l] \in H_1(\Sigma).$$

Then we have the following lemma.

Lemma 2.3

$$j_{\varphi}(e_3 - e_4) = [\omega_l(\varphi)] \in \operatorname{Coker}(\varphi_* - 1).$$

Proof Define a 2-chain $L: I \times I \to X$ by L(s,t) = [l(s),t]. Its boundary is given by $-i_*(e_3) + \varphi(l) + i_*(e_4) - l \in B_1(X)$. Hence,

$$i_*(e_3 - e_4) = \iota_*([\varphi(l) - l]) \in H_1(X)$$

Since ι_* is injective, the lemma follows.

From the lemma, we see the homology class $[\omega_l(\varphi)] \in \text{Coker}(\varphi_* - 1)$ is independent of the choice of the path *l*. If $\omega_l(\varphi) = 0$, then $j_{\varphi}(e_3 - e_4) = 0$.

Remark 2.4 If there exists a path l from a point in S_2 to a point in S_1 which has no common point with the support of a representative of $\varphi \in \mathcal{M}_{g,2}$, then $m(\varphi) = [1:0]$. In particular, m(id) = [1:0], the zero element of the monoid **QP**¹.

Define the subgroups $\mathcal{I}' := \text{Ker} (\mathcal{M}_{g,2} \to \text{Aut} (H_1(\Sigma_{g,2}; \mathbb{Z})) \text{ and } \mathcal{I} := \text{Ker} (\mathcal{M}_{g,2} \to \text{Aut} (H_1(\Sigma_{g,2}, \partial \Sigma_{g,2}; \mathbb{Z})))$. For $\varphi \in \mathcal{I}'$, $m(\varphi) = [p:q]$ means $p(\varphi(l) - l) + qe_1 = 0 \in H_1(\Sigma_{g,2}; \mathbb{Z})$. This shows that *m* is homomorphic on \mathcal{I}' . For $\varphi \in \mathcal{I}$, $\omega(\varphi) = 0 \in H_1(\Sigma_{g,2}; \mathbb{Z})$. This shows that $m(\varphi) = [1:0]$ for all $\varphi \in \mathcal{I}$.

Remark 2.5 The restriction of m on \mathcal{I} is trivial, and the restriction of m on \mathcal{I}' is a nontrivial monoid homomorphism.

At the beginning of this section, we defined the commutative monoid structure on \mathbf{QP}^1 . So integral multiples of $m(\varphi)$ are well-defined.

Proposition 2.6 If $\varphi \in \mathcal{M}_{g,2}$ and $k \in \mathbb{Z}$, then

$$m(\varphi^k) = km(\varphi).$$

Proof The proposition is trivial for k = 0 and k = 1. Assume $k \ge 2$.

Let $m(\varphi) = [p:q]$. By the definition of j_{φ} , $pj_{\varphi}(e_3 - e_4) = -q[S_1] \in \text{Coker}(\varphi_* - 1)$. Hence, there exists $v \in H_1(\Sigma)$ such that

$$p[\varphi(l) - l] = -q[S_1] + (\varphi_* - 1)v \in H_1(\Sigma).$$

Apply φ^i (i = 0, 1, ..., k - 1) to the both sides of the equation and sum over *i*. Then

$$\sum_{i=0}^{k-1} p[\varphi^{i+1}(l) - \varphi^{i}(l)] = \sum_{i=0}^{k-1} \{-q[S_1] + (\varphi^{i+1}_*(v) - \varphi^{i}_*(v))\},\$$

that is

$$p[\varphi^{k}(l) - l] = -kq[S_{1}] + (\varphi^{k}_{*} - 1)v.$$

Algebraic & Geometric Topology, Volume 8 (2008)

Hence, $m(\varphi^k) = [p:kq] = km(\varphi)$ for $k \ge 0$. By applying φ^{-1} to the equation $p[\varphi(l) - l] = -q[S_1] + (\varphi_* - 1)v$, we have $p[\varphi^{-1}(l) - l] = q[S_1] + (\varphi_*^{-1} - 1)v \in H_1(\Sigma).$

Hence, $m(\varphi^{-1}) = [p:-q] = -m(\varphi)$. Since $m(\varphi^{-k}) = -m(\varphi^k) = -km(\varphi)$ for k > 0, the proposition follows for the case k < 0.

Now we compute the image of the function m. In particular, we see that m is nontrivial.

Proposition 2.7 For $g \ge 1$, *m* is surjective. For g = 0, Im $(m) = [1 : \mathbb{Z}]$.

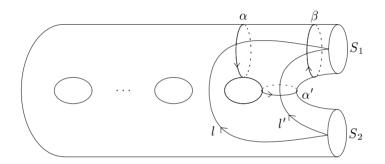


Figure 2

Proof Suppose $g \ge 1$. We choose oriented simple closed curves α , α' , and β and paths l and l' as shown in Figure 2. We denote the Dehn twists along a simple closed curve $C \subset \Sigma$ by t_C , and the homology class of C by [C]. Then $[\alpha] + [\alpha'] + [\beta] = 0 \in H_1(\Sigma)$ since they bound a 2-chain. For $p \in \mathbb{Z}$, if we denote $\varphi := t_{\alpha}^p t_{\alpha'} t_{\beta}^{-1}$, then

$$j_{\varphi}((p+1)(e_{3}-e_{4})) = \omega_{l}(\varphi) + p\omega_{l'}(\varphi)$$

= $[(t_{\alpha}^{p}t_{\alpha'}t_{\beta}^{-1})(l) - l] + p[(t_{\alpha}^{p}t_{\alpha'}t_{\beta}^{-1})(l') - l']$
= $p([\alpha] + [\alpha'] + [\beta]) + [\beta] = [\beta] = [S_{1}].$

Hence, $j_{\varphi}((p+1)(e_3 - e_4) - e_1) = 0$, so that

$$m(\varphi) = [p+1:-1].$$

By Proposition 2.6, we have

$$m(\varphi^{-q}) = -q[p+1:-1] = \begin{cases} [p+1:q], & \text{if } p \neq -1\\ [0:1], & \text{if } p = -1. \end{cases} \quad (q \in \mathbb{Z})$$

Since p and q can run over all integers, we see m is surjective for $g \ge 1$. For g = 0, $\mathcal{M}_{0,2}$ is the infinite cyclic group generated by t_{β} . Since $m(t_{\beta}^{-q}) = [1:q]$, we have $\operatorname{Im}(m) = [1:\mathbf{Z}]$.

3 The difference of two Meyer cocycles $\eta^* \tau_{g+1}$ and $\theta^* \tau_g$

In this section (co)homology groups are with Z coefficient unless specified.

Let $g \ge 0$ be a positive integer. In the introduction, we defined the homomorphisms $\eta: \mathcal{M}_{g,2} \to \mathcal{M}_{g+1,0}$ and $\theta: \mathcal{M}_{g,2} \to \mathcal{M}_g$ to be the induced maps by sewing a pair of disks and by sewing an annulus onto the surface $\Sigma_{g,2}$ along their boundaries respectively. We denote the Meyer cocycle on the mapping class group of genus g closed orientable surface \mathcal{M}_g by $\tau_g \in Z^2(\mathcal{M}_g)$ and define $\tilde{\tau}_g \in Z^2(\mathcal{M}_{g,2})$ to be the difference between the Meyer cocycles

$$\widetilde{\tau}_g := \eta^* \tau_{g+1} - \theta^* \tau_g.$$

Let $P := S^2 - \coprod_{i=1}^3 D^2$. In this section, we prove the main theorem and calculate the changes of signature associated with sewing a pair of trivial disk bundles $P \times \coprod_{i=1}^2 D^2$ and sewing a trivial annulus bundles $P \times (S^1 \times I)$ onto $\Sigma_{g,2}$ -bundle on the pair of pants P along their boundaries. To state the main theorem, we define the sign of $[p:q] \in \mathbf{QP}^1$ by

sign ([p:q]) := sign (pq) =
$$\begin{cases} 1 & \text{if } pq > 0, \\ 0 & \text{if } pq = 0, \\ -1 & \text{if } pq < 0. \end{cases}$$

Theorem 3.1 For $\varphi, \psi \in \mathcal{M}_{g,2}$, we define

$$\widetilde{\phi}_g(\varphi) := \operatorname{sign}(m(\varphi)).$$

Then $\tilde{\phi}_g$ cobounds the difference $\tilde{\tau}_g$ between the Meyer cocycles $\eta^* \tau_{g+1}$ and $\theta^* \tau_g$

$$\begin{aligned} \widetilde{\tau}_g(\varphi, \psi) &= \delta \widetilde{\phi}_g(\varphi, \psi) \\ &= \operatorname{sign}\left(m(\varphi)\right) + \operatorname{sign}\left(m(\psi)\right) + \operatorname{sign}\left(m((\varphi\psi)^{-1})\right). \end{aligned}$$

Remark 3.2 Let k be an integer. By Lemma 2.2 and Proposition 2.6, ϕ_g has the properties

$$\widetilde{\phi}_g(\psi \varphi \psi^{-1}) = \widetilde{\phi}_g(\varphi)$$
 and
 $\widetilde{\phi}_g(\varphi^k) = \operatorname{sign}(k)\widetilde{\phi}_g(\varphi)$

for any $g \ge 0$.

3.1 Proof of Main Theorem

In this subsection we prove Theorem 3.1.

In the introduction, we defined compact oriented 4-manifold $E_{g,r}^{\varphi,\psi}$ as a $\Sigma_{g,r}$ -bundle on the pair of pants P which has monodromies φ , ψ , and $(\psi\varphi)^{-1} \in \mathcal{M}_{g,r}$ along α , β , and $\gamma \in \pi_1(P)$ respectively, and in Section 2.1, we defined compact oriented 3-manifold $X_{g,r}^{\varphi}$ by the mapping torus of $\Sigma_{g,r} \times I / \sim$ where $(x, 1) \sim (h(x), 0)$ for $\varphi = [h] \in \mathcal{M}_{g,r}$.

Gluing to $E_{g,2}^{\eta(\varphi),\eta(\psi)}$ the trivial annulus bundle on *P* along the boundaries of each fiber, we obtain

$$E_{g+1}^{\eta(\varphi),\eta(\psi)} = E_{g,2}^{\varphi,\psi} \cup (-S^1 \times I \times P).$$

Similarly, glue to $X_{g,2}^{\eta(\varphi)}$ the trivial annulus bundle on S^1 . Then we have

$$X_{g+1}^{\eta(\varphi)} = X_{g,2}^{\varphi} \cup (-S^1 \times I \times S^1).$$

Define

$$\begin{array}{rcl} G: & \partial D^2 \times I \ \rightarrow \ \{1\} \times S^1 \times I. \\ & (x,t) \ \mapsto \ (1,x,\frac{1+t}{3}). \end{array}$$

By the map G, we can glue $D^2 \times I$ to $I \times S^1 \times I$ as shown in Figure 3.

 $\begin{array}{c} 0\times S^1\times I\\ 1\times S^1\times I\\ \hline\\ D^2\times I\\ \hline\\ I\times S^1\times I\end{array}$

Figure 3: Gluing map G

Glue $D^2 \times I \times P$ to $I \times E_{g+1}^{\eta(\varphi),\eta(\psi)} = (I \times E_{g,2}^{\varphi,\psi}) \cup (-I \times S^1 \times I \times P)$ with the gluing map $G \times id_P$: $\partial D^2 \times I \times P \to \{1\} \times S^1 \times I \times P$. In the same way, glue $D^2 \times I \times S^1$

to $I \times X_{g+1}^{\eta(\varphi)} = (I \times X_{g,2}^{\varphi}) \cup (-I \times S^1 \times I \times S^1)$ with $G \times i d_{S^1} \partial D^2 \times I \times S^1 \rightarrow \{1\} \times S^1 \times I \times S^1$. Namely, we construct two manifolds

$$\widetilde{E}^{\varphi,\psi} := (I \times E_{g+1}^{\eta(\varphi),\eta(\psi)}) \cup_{G \times id_P} (D^2 \times I \times P)$$

and

$$\widetilde{X}^{\varphi} := (I \times X_{g+1}^{\eta(\varphi)}) \cup_{G \times id_{S^1}} (D^2 \times I \times S^1).$$

Fix the orientations of these manifolds induced from the product orientations of $I \times E_{g+1}^{\eta(\varphi),\eta(\psi)}$ and $I \times X_{g+1}^{\eta(\varphi)}$. To prove main theorem, it suffices to prove Lemma 3.3 and Lemma 3.4 below.

Lemma 3.3

$$(\eta^* \tau_{g+1} - \theta^* \tau_g)(\varphi, \psi) = \operatorname{Sign} \widetilde{X}^{\varphi} + \operatorname{Sign} \widetilde{X}^{\psi} + \operatorname{Sign} \widetilde{X}^{(\varphi\psi)^{-1}} \text{ for } \varphi, \psi \in \mathcal{M}_{g,2}, g \ge 0.$$

Lemma 3.4

Sign
$$X^{\varphi} = \operatorname{sign}(m(\varphi))$$
 for $\varphi \in \mathcal{M}_{g,2}, g \ge 0$.

Proof of Lemma 3.3 Note that

$$\widetilde{X}^{\varphi} = \widetilde{E}^{\varphi, \psi}|_{\partial D_1}.$$

Then we can see

$$\begin{split} \partial \widetilde{E}^{\varphi,\psi} &= (\widetilde{E}^{\varphi,\psi}|_{\partial D_1} \cup \widetilde{E}^{\varphi,\psi}|_{\partial D_2} \cup \widetilde{E}^{\varphi,\psi}|_{\partial D_3}) \cup E_g^{\theta(\varphi),\theta(\psi)} \cup -E_{g+1}^{\eta(\varphi),\eta(\psi)} \\ &= (\widetilde{X}^{\varphi} \cup \widetilde{X}^{\psi} \cup \widetilde{X}^{(\psi\varphi)^{-1}}) \cup E_g^{\theta(\varphi),\theta(\psi)} \cup -E_{g+1}^{\eta(\varphi),\eta(\psi)}. \end{split}$$

Since the Signature is a bordism invariant (for example, see Milnor and Stasheff [10, Lemma 17.3]), we have Sign $\partial \tilde{E}^{\varphi, \psi} = 0$. By Novikov Additivity, we see that

$$\operatorname{Sign}\left(E_{g+1}^{\eta(\varphi),\eta(\psi)}\right) - \operatorname{Sign}\left(E_{g}^{\theta(\varphi),\theta(\psi)}\right) = \operatorname{Sign}\tilde{X}^{\varphi} + \operatorname{Sign}\tilde{X}^{\psi} + \operatorname{Sign}\tilde{X}^{(\psi\varphi)^{-1}}$$

Notice that $\widetilde{X}^{(\psi\varphi)^{-1}}$ is diffeomorphic to $\widetilde{X}^{(\varphi\psi)^{-1}}$, so that Sign $\widetilde{X}^{(\psi\varphi)^{-1}} =$ Sign $\widetilde{X}^{(\varphi\psi)^{-1}}$. By the definition of the Meyer cocycle, we have

Sign
$$(E_{g+1}^{\eta(\varphi),\eta(\psi)}) = \eta^* \tau_{g+1}(\varphi,\psi)$$
, and Sign $(E_g^{\theta(\varphi),\theta(\psi)}) = \theta^* \tau_g(\varphi,\psi)$.

Define $\tilde{\phi}(\varphi) = \text{Sign}(\tilde{X}^{\varphi})$; then we have $\delta \tilde{\phi} = \eta^* \tau_{g+1} - \theta^* \tau_g$. We get the cobounding function $\tilde{\phi}$.

Proof of Lemma 3.4 Write simply $X := X_{g+1}^{\eta(\varphi)}$, $X' := X_{g,2}^{\varphi}$, and $Y := \tilde{X}^{\varphi} = (I \times X) \cup_{G \times id_{S^1}} (D^2 \times I \times S^1)$.

For i = 0, 1, define

$$j_i: X \to I \times X \hookrightarrow Y,$$
$$x \mapsto (i, x)$$

where $I \times X \hookrightarrow Y$ is a natural embedding. We will prove there is a exact sequence

$$H_2(X') \xrightarrow{j_{0*}=j_{1*}} H_2(Y) \longrightarrow \operatorname{Ker} (H_1(\partial X') \to H_1(X')) \longrightarrow 0.$$

Define the submanifolds $Y_1 := I \times X'$ and $Y_2 := Y - \text{Int } Y_1 = (-I \times S^1 \times I \times S^1) \cup_{G \times S^1} (D^2 \times I \times S^1)$. Then we see that

$$Y_1 \simeq X', Y_2 \simeq S^1, Y_1 \cap Y_2 \simeq \partial X' = (S_1 \amalg S_2) \times S^1.$$

By the Meyer-Vietoris exact sequence, we have the exact sequence

Denote the map $H_1(\partial X') \to H_1(X') \oplus H_1(S^1)$ in the above diagram by h. the projection $H_1(\partial X') \to H_1(S^1)$ to the second entry of h is the composite of inclusion homomorphism $H_1(\partial X') \to H_1(X')$ and $\pi_*: H_1(X') \to H_1(S^1)$. Therefore,

$$\operatorname{Ker}\left(H_1(\partial X') \to H_1(X') \oplus H_1(S^1)\right) = \operatorname{Ker}\left(H_1(\partial X') \to H_1(X')\right).$$

So the sequence is exact.

Next, we will construct the splitting

$$H_2(Y; \mathbf{Q}) = j_{i*}H_2(X'; \mathbf{Q}) \oplus \operatorname{Ker} (H_1(\partial X'; \mathbf{Q}) \to H_1(X'; \mathbf{Q})).$$

Note that there exist $p, q \in \mathbf{Q}$ such that

$$\operatorname{Ker}\left(H_1(\partial X'; \mathbf{Q}) \to H_1(X'; \mathbf{Q})\right) = \mathbf{Q}(e_1 + e_2) \oplus \mathbf{Q}\{p(e_3 - e_4) + qe_1\}$$

as in Section 2. To construct the splitting, we choose elements of inverse images of $e_1 + e_2$, $p(e_3 - e_4) + qe_1$ under $H_2(Y) \to H_1(\partial X')$. Define $\iota_Y \colon \Sigma_{g+1} \to Y$ by

$$\begin{array}{rcl} \Sigma_{g+1} \rightarrow & X \rightarrow & I \times X & \hookrightarrow & Y. \\ x & \mapsto & (x,0) & \mapsto & (0,x,0). \end{array}$$

By the Meyer-Vietoris exact sequence as above, we have

$$H_2(Y) \to H_1(Y_1 \cap Y_2) \to H_1(\partial X'),$$

$$H_{Y*}[\Sigma_{g+1}] \mapsto \partial_* \iota_{Y*}[\Sigma_{g+1}] \mapsto e_1 + e_2$$

so we choose $\iota_{Y*}[\Sigma_{g+1}]$ as an element of the inverse image of $e_1 + e_2$.

Next, we choose an element of the inverse image of $p(e_3-e_4)+qe_1$. Since $p(e_3-e_4)+qe_1 \in \text{Ker}(H_1(\partial X'; \mathbf{Q}) \to H_1(X'; \mathbf{Q}))$, there exists a singular 2-chain $s \in C_2(X'; \mathbf{Q})$ such that

$$\partial s = p(f_3 - f_4) + qf_1 \in B_1(X'; \mathbf{Q}).$$

For i = 0, 1, define $s'_{0i}: I \times S^1 \to I \times S^1 \times I \times S^1 \hookrightarrow Y_2$ by $s'_{0i}(t, u) = (i, 0, t, u)$. Then we see that

$$[\partial s'_{0i}] = [j_i f_3 - j_i f_4] \in H_1(Y_1 \cap Y_2; \mathbf{Q}).$$

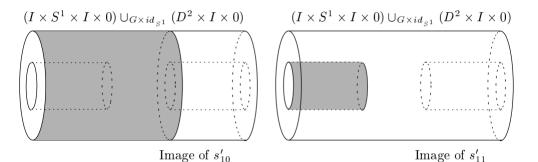


Figure 4: Images of s'_{10} and $s'_{11} \subset Y_2$.

Define $s'_{1i}: D^2 \to Y_2 = (-I \times S^1 \times I \times S^1) \cup_{G \times S^1} (D^2 \times I \times S^1) \subset Y$ as shown in Figure 4 by

$$s_{10}'(x) = \begin{cases} (6x, 1, 0) &\in D^2 \times I \times S^1 & (||x|| \le \frac{1}{6}), \\ (2 - 6||x||, \frac{x}{||x||}, \frac{2}{3}, 0) &\in I \times S^1 \times I \times S^1 & (\frac{1}{6} \le ||x|| \le \frac{1}{3}) \\ (0, \frac{x}{||x||}, 1 - ||x||, 0) &\in I \times S^1 \times I \times S^1 & (\frac{1}{3} \le ||x|| \le 1) \end{cases}$$

$$s_{11}'(x) = \begin{cases} (\frac{3}{2}x, 0, 0) &\in D^2 \times I \times S^1 & (||x|| \le \frac{2}{3}), \\ (1, \frac{x}{||x||}, 1 - ||x||, 0) &\in I \times S^1 \times I \times S^1 & (\frac{2}{3} \le ||x|| \le 1). \end{cases}$$

Then, we have $[\partial s'_{1i}] = [j_i f_1] \in H_1(Y_1 \cap Y_2; \mathbf{Q}).$

The chain $s'_i := ps'_{0i} + qs'_{1i}$ satisfies

$$[\partial s'_i] = [j_i(p(f_3 - f_4) + qf_1)] \in H_1(Y_1 \cap Y_2; \mathbf{Q}),$$

so that we have $[\partial(j_i s - s'_i)] = 0 \in H_1(Y_1 \cap Y_2; \mathbf{Q}).$

We see

$$\begin{array}{rcl} H_2(Y; \mathbf{Q}) &\to& H_1(Y_1 \cap Y_2; \mathbf{Q}) \to& H_1(\partial X'; \mathbf{Q}), \\ [j_i s - s_i'] &\mapsto& \partial_* [j_i s - s_i'] &\mapsto& p(e_3 - e_4) + q e_1 \end{array}$$

so that we can choose $[j_i s - s'_i]$ as an element of the inverse image of $p(e_3 - e_4) + qe_1$.

Now we calculate the intersection form of $H_2(Y; \mathbf{Q})$. Define the subspace $X_1'' = j_1(X) \cup_{G \times id_{S^1}} (D^2 \times 0 \times S^1) \subset Y$. Then we see that X_1'' is a deformation retract of Y. Hence, every element of $H_2(Y; \mathbf{Q})$ is represented by a cycle in X_1'' . Therefore, a homology class is included in the annihilator of intersection form in $H_2(Y; \mathbf{Q})$ if it is represented by a cycle which has no common point with X_1'' . We see

$$j_0(X') \cap X_1'' = \emptyset$$
 and $\iota_Y(\Sigma_{g+1}) \cap X_1'' = \emptyset$,

so that the preimage of $\mathbf{Q}(e_1 + e_2)$ and $j_{0*}H_2(X'; \mathbf{Q})$ are included in the annihilator of intersection form in $H_2(Y; \mathbf{Q})$.

To describe the signature of Y, it suffices to calculate the self-intersection number of $[j_i s - s'_i] = p(e_3 - e_4) + qe_1$. The cycle $j_i s - s'_i$ satisfies

$$\operatorname{Im} (j_0 s) \cap (\operatorname{Im} (j_1 s) \cup \operatorname{Im} (s'_{01}) \cup \operatorname{Im} (s'_{11})) = \emptyset$$

$$\operatorname{Im} (s'_{00}) \cap (\operatorname{Im} (j_1 s) \cup \operatorname{Im} (s'_{01}) \cup \operatorname{Im} (s'_{11})) = \emptyset$$

$$\operatorname{Im} (s'_{10}) \cap (\operatorname{Im} (j_1 s) \cup \operatorname{Im} (s'_{11})) = \emptyset,$$

so that

$$(j_0s - s'_0) \cdot (j_1s - s'_1) = (j_0s - (ps'_{00} + qs'_{10})) \cdot (j_1s - (ps'_{01} + qs'_{11}))$$

= $qs'_{10} \cdot ps'_{01}$.

If necessary, perturb the chain s'_{01} . Then we see that s'_{01} and s'_{10} intersect only once positively. Hence, we have $\text{Sign}(Y) = \text{sign}(pq) = \text{sign}(m(\varphi))$. \Box

3.2 Wall's non-additivity formula

In the introduction, we stated the Novikov additivity of Signature. Wall derives a formula from this additivity in a more general case, when two compact oriented smooth 4k-manifolds are glued along common submanifolds of their boundaries. We will give the specific case of his formula for k = 1.

Let Z be a closed oriented smooth 2-manifold, X_- , X_0 , X_+ compact oriented smooth 3-manifolds with the boundaries $\partial X_- = \partial X_0 = \partial X_+ = Z$, and Y_- , Y_+ compact oriented smooth 4-manifolds with the boundaries $\partial Y_- = X_- \cup_Z (-X_0)$, $\partial Y_+ = X_0 \cup_Z (-X_+)$. Here we denote by $M \cup_B (-N)$ the union of two manifolds M and N glued by orientation reversing diffeomorphism of their common boundaries $\partial M = \partial N = B$. Let $Y = Y_- \cup_{X_0} Y_+$ be the union of Y_- and Y_+ glued along submanifolds X_0 of their boundaries. Suppose Y is oriented by the induced orientation of Y_- and Y_+ .

Write $V = H_1(Z; \mathbf{R})$; let A, B, and C be the kernels of the maps on first homology induce by the inclusions of Z in X_- , X_0 and X_+ respectively.

We define

$$W := \frac{B \cap (C+A)}{(B \cap C) + (B \cap A)},$$

and a bilinear form Ψ by

$$\begin{split} \Psi : & W \times W \to \mathbf{R}. \\ & (b \ , \ b') \mapsto b \cdot c'. \end{split}$$

Here c' is an element of C such that there exists an element $a' \in A$ such that a' + b' + c' = 0, and $b \cdot c'$ denotes the intersection product of b and c'. It is known that Ψ is independent of the choice of c' and well-defined on W. Denote the signature of the bilinear form Ψ by Sign (V; BCA) and the signature of the compact oriented 4-manifold M by Sign M. We are now ready to state the formula.

Theorem 3.5 (Wall [13]) Sign $Y = \text{Sign } Y_{-} + \text{Sign } Y_{+} - \text{Sign } (V; BCA)$.

3.3 The differences Sign E_g – Sign $E_{g,2}$ and Sign E_{g+1} – Sign $E_{g,2}$

In this subsection, we calculate the difference of signature associated with sewing the trivial Disk bundles onto the $\Sigma_{g,2}$ -bundle.

In the introduction, we defined $E_{g,r}^{\varphi,\psi}$ as a oriented $\Sigma_{g,r}$ -bundle on P which has monodromies $\varphi, \psi, (\psi\varphi)^{-1} \in \mathcal{M}_{g,r}$ along $\alpha, \beta, \gamma \in \pi_1(P)$. If we fix $\varphi, \psi \in \mathcal{M}_{g,2}$, we denote simply

$$E_{g,2} := E_{g,2}^{\varphi,\psi}, \ E_g := E_g^{\theta(\varphi),\theta(\psi)}, \ \text{and} \ E_{g+1} := E_{g+1}^{\eta(\varphi),\eta(\psi)} \ (g \ge 0).$$

Proposition 3.6 Sign (E_g) – Sign $(E_{g,2})$ = –sign $(m(\varphi) + m(\psi) + m((\varphi\psi)^{-1}))$ for $g \ge 0$.

Proof E_g is the union of $E_{g,2}$ and $E_D := (D^2 \amalg D^2) \times P$ glued along their boundaries. Using Non-additivity formula Theorem 3.5, we calculate Sign (E_g) – Sign $(E_{g,2})$.

Define Y_- , Y_+ , X_- , X_0 , X_+ , and Z by

$$Y_{-} := (\coprod_{j=1}^{2} D^{2}) \times P, \quad Y_{+} := E_{g,2},$$

$$X_{-} := (\coprod_{j=1}^{2} D^{2}) \times \partial P, \quad X_{+} := E_{g,2}|_{\partial P}, \quad X_{0} := (\coprod_{j=1}^{2} \partial D^{2}) \times P,$$

and $Z := (\coprod_{j=1}^{2} \partial D^{2}) \times \partial P,$ respectively.

Here, by the notation stated in Section 2.1,

$$X_{+} = E_{g,2}|_{\partial P} \cong X^{\varphi} \amalg X^{\psi} \amalg X^{(\psi\varphi)^{-1}}, \quad Z \cong \partial X^{\varphi} \amalg \partial X^{\psi} \amalg \partial X^{(\psi\varphi)^{-1}}$$

Define V, A, B, and C as stated in Section 3.1.

Since $X^{\varphi} = X^{\psi} = X^{(\psi\varphi)^{-1}} = S^1 \times S^1$, we can choose the bases of $H_1(\partial X^{\varphi}; \mathbf{R})$, $H_1(\partial X^{\psi}; \mathbf{R})$, and $H_1(\partial X^{(\psi\varphi)^{-1}}; \mathbf{R})$ as stated in Section 2.1. Denote their bases by $\{e_{11}, e_{12}, e_{13}, e_{14}\}, \{e_{21}, e_{22}, e_{23}, e_{24}\}, \text{ and } \{e_{31}, e_{32}, e_{33}, e_{34}\}$ respectively.

Since $Z = \partial X^{\varphi} \amalg \partial X^{\psi} \amalg \partial X^{(\psi\varphi)^{-1}}$, we think of e_{ij} as an element of $H_1(Z; \mathbf{R})$.

Denote $m(\varphi) = [a_1 : b_1]$, $m(\psi) = [a_2 : b_2]$, and $m((\psi \varphi)^{-1}) = [a_3 : b_3]$ respectively. Then we have

$$V = H_1(Z, \mathbf{R}) = \bigoplus_{i=1}^{3} \bigoplus_{j=1}^{4} \mathbf{R}e_{ij},$$

$$A = \mathbf{R}e_{11} \oplus \mathbf{R}e_{21} \oplus \mathbf{R}e_{31} \oplus \mathbf{R}e_{12} \oplus \mathbf{R}e_{22} \oplus \mathbf{R}e_{32},$$

$$B = \mathbf{R}(e_{11} - e_{21}) \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{22}) \oplus \mathbf{R}(e_{12} - e_{32})$$

$$\oplus \mathbf{R}(e_{13} + e_{23} + e_{33}) \oplus \mathbf{R}(e_{14} + e_{24} + e_{34}),$$

$$C = \bigoplus_{i=1}^{3} \begin{cases} \mathbf{R}(e_{i1} + e_{i2}) \oplus \mathbf{R}(e_{i3} - e_{i4} + m_i e_{i1}) & \text{if } a_i \neq 0 \\ \mathbf{R}e_{i1} \oplus \mathbf{R}e_{i2} & \text{if } a_i = 0. \end{cases}$$

Here we denote $m_i := \frac{b_i}{a_i}$. Hence,

$$B \cap A = \mathbf{R}(e_{11} - e_{21}) \oplus \mathbf{R}(e_{12} - e_{22}) \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}),$$

$$B \cap C = \begin{cases} \mathbf{R}(e_{11} - e_{21} + e_{12} - e_{22}) \oplus \mathbf{R}(e_{11} - e_{31} + e_{12} - e_{32}) \oplus \\ \mathbf{R}(e_{13} + e_{23} + e_{33} - e_{14} - e_{24} - e_{34} + m_1e_{11} + m_2e_{21} + m_3e_{31}) \\ \text{if } a_i \neq 0 \text{ for } i = 1, 2, 3 \text{ and } m_1 + m_2 + m_3 = 0, \\ \mathbf{R}(e_{11} - e_{21} + e_{12} - e_{22}) \oplus \mathbf{R}(e_{11} - e_{31} + e_{12} - e_{32}) \\ \text{if } a_i \neq 0 \text{ for } i = 1, 2, 3 \text{ and } m_1 + m_2 + m_3 \neq 0, \\ \mathbf{R}(e_{11} - e_{21} + e_{12} - e_{22}) \oplus \mathbf{R}(e_{11} - e_{31} + e_{12} - e_{32}) \\ \text{if } a_1 = 0, a_2 \neq 0, a_3 \neq 0, \\ \mathbf{R}(e_{11} - e_{21}) \oplus \mathbf{R}(e_{12} - e_{22}) \oplus \mathbf{R}(e_{11} - e_{31} + e_{12} - e_{32}) \\ \text{if } a_1 = a_2 = 0, a_3 \neq 0, \\ \mathbf{R}(e_{11} - e_{21}) \oplus \mathbf{R}(e_{12} - e_{22}) \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \text{if } a_i = 0 \text{ for } i = 1, 2, 3, \end{cases} \\ B \cap (C + A) = \begin{cases} \mathbf{R}(e_{11} - e_{21}) \oplus \mathbf{R}(e_{12} - e_{22}) \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{13} + e_{23} + e_{33} - e_{14} - e_{24} - e_{34}) \\ \text{if } a_i \neq 0 \text{ for } i = 1, 2, 3, \end{cases} \\ B \cap (C + A) = \begin{cases} \mathbf{R}(e_{11} - e_{21}) \oplus \mathbf{R}(e_{12} - e_{22}) \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{13} + e_{23} + e_{33} - e_{14} - e_{24} - e_{34}) \\ \text{if } a_i \neq 0 \text{ for } i = 1, 2, 3, \end{cases} \end{cases}$$

By computing the signature of Ψ , we have

Sign (V; BCA) =
$$\begin{cases} sign (m_1 + m_2 + m_3) & \text{if } a_i \neq 0 \text{ for } i = 1, 2, 3, \\ 0 & \text{otherwise.} \end{cases}$$

For example, consider the case when $a_i \neq 0$ for i = 1, 2, 3 and $m_1 + m_2 + m_3 \neq 0$. Then, the space W is generated by the element represented by

$$b := e_{13} + e_{23} + e_{33} - e_{14} - e_{24} - e_{34} \in B \cap (C + A).$$

Choose the elements

$$a := m_1 e_{11} + m_2 e_{21} + m_3 e_{31} \in A \text{ and } c := -\sum_{i=1}^3 (e_{i3} - e_{i4} + m_i e_{i1}) \in C.$$

Then we see that a + b + c = 0 and obtain $\Psi(b, b) = b \cdot c = m_1 + m_2 + m_3$. This shows that Sign (*V*; *BCA*) = sign ($m_1 + m_2 + m_3$). The other cases follow in similar ways.

Hence, we obtain

$$\operatorname{Sign}(V; BCA) = \operatorname{sign}(m(\varphi) + m(\psi) + m((\varphi\psi)^{-1})).$$

Masatoshi Sato

By the non-additivity formula, we have

$$\operatorname{Sign}(E_g) = \operatorname{Sign}(E_D) + \operatorname{Sign}(E_{g,2}) - \operatorname{Sign}(V; BCA).$$

Since E_D is a trivial bundle $(D^2 \amalg D^2) \times P$, we have $\text{Sign}(E_D) = 0$.

This completes the proof of the proposition.

By Theorem 3.1 and Proposition 3.6, we can calculate the difference of signature $\text{Sign}(E_g) - \text{Sign}(E_{g,2})$.

Corollary 3.7 For $g \ge 0$,

$$\operatorname{Sign} (E_{g+1}) - \operatorname{Sign} (E_{g,2}) = \operatorname{sign} (m(\varphi)) + \operatorname{sign} (m(\psi)) + \operatorname{sign} (m((\varphi\psi)^{-1})) - \operatorname{sign} (m(\varphi) + m(\psi) + m((\varphi\psi)^{-1})).$$

References

- M Atiyah, *The logarithm of the Dedekind η-function*, Math. Ann. 278 (1987) 335–380 MR909232
- [2] **H Endo**, *Meyer's signature cocycle and hyperelliptic fibrations*, Math. Ann. 316 (2000) 237–257 MR1741270
- [3] JL Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983) 221–239 MR700769
- [4] JL Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985) 215–249 MR786348
- [5] S Iida, Adiabatic limit of η-invariants and the Meyer function of genus two, Master's thesis, University of Tokyo (2004)
- [6] R Kasagawa, On a function on the mapping class group of a surface of genus 2, Topology Appl. 102 (2000) 219–237 MR1745445
- [7] N Kawazumi, A generalization of the Morita–Mumford classes to extended mapping class groups for surfaces, Invent. Math. 131 (1998) 137–149 MR1489896
- [8] M Korkmaz, A I Stipsicz, The second homology groups of mapping class groups of oriented surfaces, Math. Proc. Cambridge Philos. Soc. 134 (2003) 479–489 MR1981213
- [9] W Meyer, Die Signatur von Flächenbündeln, Math. Ann. 201 (1973) 239–264 MR0331382
- [10] J W Milnor, J D Stasheff, Characteristic classes, Annals of Mathematics Studies 76, Princeton University Press (1974) MR0440554
- T Morifuji, On Meyer's function of hyperelliptic mapping class groups, J. Math. Soc. Japan 55 (2003) 117–129 MR1939188

П

- [12] J Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978) 347–350 MR0494115
- [13] CTC Wall, Non-additivity of the signature, Invent. Math. 7 (1969) 269–274 MR0246311

Graduate School of Mathematical Sciences, The University of Tokyo 3-8-1 Komaba Meguro-ku, Tokyo, 153-8914, Japan

sato@ms.u-tokyo.ac.jp

Received: 20 February 2008 Revised: 30 May 2008