
Algebraic & Geometric Topology 8 (2008) 1667–1690 1667

Examples of non-rigid CAT(0) groups
from the category of knot groups

CHRISTOPHER PAUL MOONEY

C Croke and B Kleiner have constructed an example of a CAT(0) group with more than
one visual boundary. J Wilson has proven that this same group has uncountably many
distinct boundaries. In this article we prove that the knot group of any connected sum
of two non-trivial torus knots also has uncountably many distinct CAT(0) boundaries.

57M07, 20F65

1 Introduction

The CAT(0) condition is a geometric notion of nonpositive curvature similar to the
definition of Gromov ı–hyperbolicity. A proper geodesic space X is called CAT(0) if
it has the property that geodesic triangles in X are “no fatter” than geodesic triangles
in Euclidean space (a precise definition is given by M R Bridson and A Haefliger in
[4, Chapter II.1]). The visual or ideal boundary of X , denoted @X , is the collection
of endpoints of geodesic rays emanating from a chosen basepoint endowed with the
cone topology. It is well-known that @X is well-defined and independent of choice
of basepoint and that X [ @X is a Z–set compactification for X . A group G is
called CAT(0) if it acts geometrically (ie properly discontinuously and cocompactly by
isometries) on some CAT(0) space X . In this setup we call X a CAT(0) G –space and
@X a CAT(0) boundary of G . We say that a CAT(0) group G is rigid if it has only
one topologically distinct boundary.

It is well-known that if G is negatively curved (acts geometrically on a Gromov ı–
hyperbolic space) or if G is free abelian then G is rigid. Apart from this little is known
concerning rigidity of groups. P L Bowers and K Ruane showed that if G splits as
the product of a negatively curved group with a free abelian group then G is rigid [3].
Ruane proved later in [9] that if G splits as a product of two negatively curved groups
then G is rigid. T Hosaka has extended this work to show that in fact it suffices to know
that G splits as a product of rigid groups [7]. Another condition which guarantees
rigidity is knowing that G acts on a CAT(0) space with isolated flats which was proven
by C Hruska in [8].
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Not all CAT(0) groups are rigid, however: C Croke and B Kleiner constructed in [5]
an example of a non-rigid CAT(0) group G . Specifically, they showed that G acts on
two different CAT(0) spaces whose boundaries admit no homeomorphism. J Wilson
proved in [11] that this same group has uncountably many boundaries.

In this article we exhibit an infinite family of non-rigid knot groups. It is a Corollary
of Thurston’s hyperbolization theorem [10] for Haken 3–manifolds that every knot is
either a torus knot, a hyperbolic knot or a satellite knot. It follows from Hruska’s result
[8] that hyperbolic knot groups are rigid. Furthermore, using a result of T Bedenikovic,
A Delgado and M Timm [2] and the Bowers–Ruane result from [3] we can prove that
torus knot groups are rigid (see Proposition 4.5). The following theorem gives us an
infinite family of non-rigid satellite knots.

Theorem 1 The knot group G of any connected sum of two non-trivial torus knots
has uncountably many CAT(0) boundaries.

Specifically, we will prove that given any such knot group G , there is a natural
construction of a family of CAT(0) G –spaces which is analogous to the construction
used by Croke and Kleiner in [5]. Even though each space here will have a similar
but significantly different structure from the spaces constructed in [5] (see Section
4.3), we will show that on the level of boundaries they have the same basic properties.
Interestingly enough, it turns out that the proof given in [5] will not work in this
situation. In order to get any results we will require the work of Wilson [11]. This is
discussed in more detail at the end of Section 2.

As a final comment on the statement of Theorem 1, there is a stronger notion of
rigidity than the definition we use here. Sometimes a CAT(0) group is said to be
rigid if every G–equivariant quasi-isometry between two CAT(0) spaces extends to
a homeomorphism of the boundaries. For us such a group will be called strongly
rigid. Negatively curved groups are strongly rigid, for instance. The fact that these
two notions of rigidity are distinct is due to Bowers and Ruane who exhibit in [3] an
example of a group which is rigid (that is, weakly rigid) but not strongly rigid.

In [6] Croke and Kleiner found necessary and sufficient conditions for determining
when the fundamental group of a 3–dimensional graph manifold is strongly rigid. Since
the groups we are considering fall under this category, our result is slightly stronger
than theirs for this particular class of groups. We prove that the knot group of any
connected sum of two non-trivial torus knots is not even weakly rigid.
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2 Croke and Kleiner’s original construction

Before diving into the proof of Theorem 1, we quickly sketch the proof of the main
theorem of [5]. Let G DGCK be the group given by the presentation:

ha; b; c; d jab D ba; bc D cb; cd D dci :

Croke and Kleiner construct CAT(0) G–spaces X such that each X is covered by a
collection of closed convex subspaces called blocks. The visual boundary @B of every
block B is the suspension of a Cantor set. The suspension points are called poles. If
two blocks B0 and B1 intersect, then B0 is said to neighbor B1 and their intersection
is a Euclidean plane called a wall. They then prove five statements for each X .

Theorem A [5, Section 1.4] The nerve N of the collection of blocks is a tree.

Theorem B [5, Lemma 3] Let B0 and B1 be blocks and D be the distance between
the corresponding vertices in N . Then the following hold.

(1) If D D 1, then @B0\ @B1 D @W where W is the wall B0\B1 .

(2) If D D 2, then @B0 \ @B1 is the set of poles of B 1
2

where B 1
2

intersects B0

and B1 .

(3) If D > 2, then @B0\ @B1 D∅.

A local path component of a point in a space is a path component of an open neighbor-
hood of that point.

Theorem C [5, Lemma 4] Let B be a block and � 2 @B not be a pole of any
neighboring block. Then � has a local path component which stays in @B .

Theorem D [5, Corollary 8] The union of block boundaries in @X is the unique
dense safe path component of @X .

The definition of safe path will be given in Section 5.3. For now it suffices to understand
that Theorem D gives a way to topologically distinguish the union of block boundaries
in @X . With these theorems in hand it is not hard to prove that given two constructions
X1 and X2 , any homeomorphism @X1! @X2 takes poles to poles, block boundaries
to block boundaries and wall boundaries to wall boundaries. The last piece of the
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puzzle is Theorem E. Given 0< � � �=2, we can construct X� in such a way that the
minimum Tits distance between poles is � . For a block B , we denote by …B the set
of poles of neighboring blocks.

Theorem E [5, Lemma 9] (also [11, Proposition 2.2]) For a block B , the union of
boundaries of walls of B is dense in @B and …B is precisely the set of points of @B
which are a Tits distance of � from a pole of B .

With these five theorems in hand we get the main result of [5].

Theorem CK Let B be a block and L be a suspension arc of @B . Then
ˇ̌
L\…B

ˇ̌
D1

iff � D �=2. Therefore GCK has at least two distinct boundaries.

In [11] Wilson uses these five theorems to prove a stronger result.

Theorem W If �1 ¤ �2 , then @X�1
6� @X�2

. Therefore GCK has uncountably many
distinct boundaries.

In this article we consider the knot group G DGK of any connected sum K of torus
knots. We produce for G an analogous family of CAT(0) spaces which have a similar
structure to those constructed in [5]. Specifically, we have blocks, walls and poles for
these spaces as well and for each 0 < � < �=2 we can construct X� such that the
minimum Tits distance between two poles is � . This done, we show that we have the
appropriate analogues to Theorem A–Theorem E.

Now if we had X�=2 , then Theorem A–Theorem E would be enough to guarantee that
G has at least two boundaries. Thus we would not need the arguments found in [11]
to prove that G is not rigid. However, as we will see in Proposition 4.4 there is no
“natural” construction which will yield X�=2 . Therefore in order to prove that G is not
rigid we really need to apply the work of [11].

3 Block structures on CAT(0) spaces

We begin by observing that the work in [5, Sections 1.4–5] does not depend on the
specific construction used in in [5]. The same observations apply if we replace their
definition of a block with the following one.

Definition 3.1 Let X be a CAT(0) space and B be a collection of closed convex
subspaces covering X . We call B a block structure on X and its elements blocks if B
satisfies the following three properties.
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(1) Every block intersects at least two other blocks.

(2) Every block has a .C/ or .�/ parity such that two blocks intersect only if they
have opposite parity.

(3) There is an � > 0 such that two blocks intersect iff their �–neighborhoods
intersect.

The nerve of a collection C of sets is the (abstract) simplicial complex with vertex set
fvBjB 2 Cg such that a simplex fvB1

; : : : ; vBn
g is included whenever

Tn
iD1 Bi ¤∅.

In exactly the same way as in [5] the nerve N of the collection of blocks is a tree, and
we can define the itinerary of a geodesic. A geodesic ˛ is said to enter a block if it
passes through a point which is not in any other block. The itinerary of ˛ is defined to
be the list ŒB1;B2; : : : � where Bi is the i th block that ˛ enters. This list is denoted by
Itin˛ . The following lemma follows in the same way as [5, Lemma 2], which simply
uses the fact that a block B is convex and that its topological frontier is covered by the
collection of blocks corresponding to the link in N of the vertex vB .

Lemma 3.1 If Itin˛ D ŒB1;B2; : : : �, then ŒvB1
; vB2

; : : : � is a geodesic in N .

We may also talk about the itinerary between two blocks. If ŒvB1
; : : : ; vBn

� is the geo-
desic edge path in N connecting two vertices vB0

0
and vB0

1
, then we call ŒB1; : : : ;Bn�

the itinerary between B0
0

and B0
1

and write:

ItinŒB00;B
0
1�D ŒB1; : : : ;Bn�:

The two notions of itineraries are related as follows: The itinerary of a geodesic segment
˛ is the shortest itinerary ItinŒB0

0
;B0

1
� for which ˛ begins in B0

0
and ends in B0

1
. Note

also that the same observations which gave us Lemma 3.1 also provide this next lemma.

Lemma 3.2 Let B0
0

and B0
1

be blocks, write ItinŒB0
0
;B0

1
�D ŒB1; : : : ;Bn�, and let ˛

be a geodesic beginning in B0
0

and ending in B0
1

. Then the following hold.

(1) ˛ enters Bk for every 1< k < n.

(2) ˛ passes through Bk \BkC1 for every 1� k < n.

(3)
Sn

kD1 Bk is convex.

We call a geodesic ray rational if its itinerary is finite and irrational if its itinerary is
infinite. A point of @X is called irrational if it is the endpoint of an irrational geodesic
ray; otherwise we call it rational. We denote the set of rational points of @X by RX

and the set of irrational points by IX .
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Lemma 3.3 Let ˛ be an irrational geodesic ray. Then for any block B0

lim
t!1

d
�
˛.t/;B0

�
D1:

Proof Write Itin˛ D ŒB1;B2; : : : �. Since N is a tree we can find M > 1 such that
for every m � M , ItinŒB0;Bm� 3 BM . For m � M choose a time tm such that
˛.tm/ 2 Bm . Then:

lim
t!1

d
�
˛.t/;B0

�
� lim

t!1
d
�
˛.t/;BM

�
D lim

m!1
d
�
˛.tm/;BM

�
� lim

m!1
d
�
Bm;BM

�
:

Hence it suffices to prove the following claim.

Claim Let � be given as in condition (3) of Definition 3.1. Then whenever
d.vB; vB0/� 2k , we have d.B;B0/� 2k� .

Note that whenever d.vB; vB0/ D 2 then we have d.B;B0/ � 2� because the �–
neighborhoods of B and B0 do not overlap. Assume ItinŒB;B0�D ŒB0;B1; : : : ;Bn�

where n � 2k . Then for any x 2 B and x0 2 B0 the geodesic Œx;x0� passes through
B2i for 0� i � k at some point zi . So

d.x;x0/D

k�1X
iD0

d.zi ; ziC1/� 2k�:

Corollary 3.1

(1) RX is the union of block boundaries in @X and IX is its complement.

(2) If � 2 IX , then every geodesic ray going out to � is irrational.

(3) If � 2 IX and ˛ and ˇ are geodesic rays going out to � , then the itineraries of
˛ and ˇ eventually coincide.

A geodesic space is said to have the geodesic extension property if every geodesic
segment can be extended to a geodesic line. As is true with the original Croke–Kleiner
construction, the blocks we construct will satisfy the geodesic extension property.

Lemma 3.4 If blocks have the geodesic extension property, then RX is dense.

Proof Let ˛ be an irrational geodesic ray and write Itin˛ D ŒB1;B2; : : : �. For each
n� 1 let tn be a time at which ˛.tn/ 2Bn . Then every ray ˛jŒ0;tn� can be extended to
a geodesic ray ˛n which does not leave the block Bn . Then ˛n! ˛ .
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We end this section with a definition which will simplify the proof of Theorem D 0 later.
Given a space Y we call a surjective map �W IX ! Y an irrational map if it satisfies
the property that �.a/D �.b/ iff whenever ˛ and ˇ are geodesic rays going out to a

and b respectively then Itin˛ and Itinˇ eventually coincide. The obvious candidate
for such a map is the function �W IX ! @N which takes a to the boundary point in
@N determined by the itinerary of a ray going out to a. This function is well-defined
by Corollary 3.1(3). All we need to know is that � is continuous, which amounts to
proving the following lemma.

Lemma 3.5 Let .˛n/ be a sequence of irrational rays with common basepoint con-
verging to another irrational ray ˛ . Then for every B 2 Itin˛ we have B 2 Itin˛n for
large enough n.

Proof Write Itin˛D ŒB1;B2; : : : � and choose k � 1. Then BkC1 is a neighborhood
of ˛.t/ for some time t , which means that for large enough n ˛n.t/ 2 BkC1 . Since
˛njŒ0;t � begins in B1 and ends in BkC1 , Lemma 3.2(1) tells us that it must enter
Bk .

Corollary 3.2 The natural map �W IX! @N determined by itineraries is an irrational
map.

4 CAT(0) knot groups

4.1 Preliminary definitions

Before we begin discussing knot groups we present some standard terminology con-
cerning CAT(0) groups. Greater detail is given by Bridson and Haefliger [4, Chapter
II.6]. Let h be an isometry of a CAT(0) space Z . If there is a geodesic line L such
that h restricts to a non-trivial translation of L, then L is called an axis of h. For a
point z 2L the sequence .hnz/1

nD1
converges in Z [ @Z to one of the two boundary

points of L; we call that boundary point h1 . In fact, given any z 2Z the sequence
.hnz/ converges to the same point h1 .

The minset of an element g 2G , written Min g , is the subspace of Z where the map
z 7! d.z;gz/ achieves its minimum. If there is an element h0 in the center of G , then
Min h0 is the union of axes of h0 and Min h0 splits as a CAT(0) product Z0 �R. In
this structure, the axes of h0 are the geodesic lines fzg �R.

There are two notions of angles in CAT(0) spaces. The first is the Alexandrov angle.
Given two geodesics (segments or rays) ˛ and ˇ with the same initial point p , the
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Alexandrov angle between them is the angle between their initial velocities (see [4,
Definition I.1.12]) and is denoted by †p.˛; ˇ/, or †p.a; b/ if a and b are points on
˛ and ˇ other than p .

The other notion of an angle is the Tits angle. Given two points � and � in the boundary
of a CAT(0) space Z the Tits angle or Tits distance between them is defined by

†Tits.�; �/D sup
n
†p

��!p�;�!p��ˇ̌̌p 2Z
o
;

where �!p� and
�!
p� denote the geodesic rays emanating from p going out to � and �

respectively. In the Euclidean plane the two notions agree: that is, for any point p and
geodesic rays ˛ and ˇ emanating from p we have:

†p.˛; ˇ/D†Tits
�
˛.1/; ˇ.1/

�
:

In fact, when either angle is less than � , this equation holds precisely when the convex
hull of the union of the two rays is a flat sector [4, Corollary II.9.9].

Finally, the following terminology will be convenient when talking about CAT(0)
spaces which split as a product � �R where � is a tree. For vertices v 2 � we refer
to the lines fvg �R as vertical lines. For a geodesic edge path � � � we refer to the
subspace � �R as a vertical strip.

4.2 Knot groups of torus knots

A torus knot is a knot which lives in a torus. Specifically, given a relatively prime pair
.p; q/ we let K DKp;q be an imbedding S1 ,! T 2 � S3 which wraps the circle p

times around one direction of T 2 and q times around the other. It follows from the
Van Kampen theorem that the fundamental group G of the complement S3 �K is
presented by: ˝

a; b
ˇ̌
ap
D bq

˛
:

The center of this group is generated by the element ap D bq , which we will denote by
� . Another important group element is the element which represents a meridianal loop
in S3 around K , which we will call ! . By making appropriate choices, we can get

! D bnam where n;m solve the equation mqC np D 1:

As in [4, Example II.11.15(2)], we construct a nonpositively curved K.G; 1/. Beginning
with a flat rectangle RD Œ0; ˛�� Œ0; ˇ� of arbitrary dimensions ˛; ˇ > 0, we form the
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quotient space R!R=� where � is generated by the following three relations:

.0; t/� .0; t Cˇ=p/;

.˛; t/� .˛; t Cˇ=q/ and

.t; 0/� .t; ˇ/:

This space is nonpositively curved by [4, Corollary II.11.19]. We denote it by Y . Note
that we get the same result if we use the following construction. Starting with an
annulus we glue the two boundary circles to two disjoint circles. One of the attaching
maps wraps the circle p times around itself; the other wraps the circle q times around
itself. Figure 1 shows these two ways to draw Y for the trefoil knot. We observe that
Y can be realized topologically as a 2–dimensional spine of the complement of K .
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.0;ˇ/ .˛;ˇ/

.˛;2ˇ=3/

.˛;ˇ=3/

.˛;0/.0;0/

.0;ˇ=2/

�2 �3

S1 � Œ0; 1�

Figure 1: Y for the Trefoil Knot

By the Cartan–Hadamard Theorem (proven by S B Alexander and R L Bishop in [1]),
the universal cover pW Y ! Y is CAT(0). This CAT(0) G–space splits the product
�p;q �R where �p;q denotes the .p; q/–biregular tree 1. This is the Bass–Serre tree
for the obvious structure as a free product with amalgamation:

G D hai �h�i hbi :

The action of G on Y is described as follows. The fundamental chamber is a lift R of
R. The isometry � is a vertical translation by a distance of ˇ (Min � D Y ). The axis
of a is a vertical line containing one side of R. The isometry a is a rotation about this
axis followed by a vertical translation by ˇ=p . Similarly, the isometry b is a rotation
about its axis followed by a vertical translation by ˇ=q . The action of G on Y is

1By “.p; q/–biregular” we mean the infinite tree whose vertices alternate in valence between p and q .
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shown in Figure 2. In the picture va is the fixed point in �p;q of a and vb is the fixed
point in �p;q of b . We choose as our preferred basepoint a point x0 in the axis of a.
Also we coordinatize Y D �p;q �R so that the coordinates of x0 are .va; 0/ and �
translates in the positive direction of R.
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.......

..........................
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.............................. ..............
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....................
..........

......................
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..............................

......................
........

R

a�1R

b2R

�R

x0
!x0

va vb
avb

bva

b2va

�2;3

�2;3 �R

b�1R

aR

y0

Figure 2: Y in the case p D 2 , q D 3

Proposition 4.1 The geodesic Œx0; !x0� is the hypotenuse of a right triangle with
sides of length 2˛ and ˇ=pq .
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Proof Denote the translation vector of a group element g 2G in the R–coordinate
by �.g/ so that the following hold:

�.�/D ˇ;

�.a/D ˇ=p and

�.b/D ˇ=q:

Recalling that n and m satisfy the equation mqC np D 1, we compute:

�.!/D n�.b/Cm�.a/

D
nˇ

q
C

mˇ

p

D
ˇ

pq
:

So the coordinates of !x0 in terms of the splitting are:

!x0 D

�
bnva;

ˇ

pq

�
:

Given g2G consider the conjugate element !gDg!g�1 . Then Min!g is a Euclidean
plane of the form L�R where L is the (unique) axis of !g in �p;q . We call these
Euclidean planes walls because they will play the same role as the walls described in
Section 2. The geodesic lines L will be called wall shadows.

Lemma 4.1 The number of wall shadows containing a given vertex is equal to the
valence of the vertex. The number of wall shadows containing a given edge is 2.

Proof We begin by proving that the number of wall shadows containing a p–valent
vertex is p . Since G acts transitively on the collection of p–valent vertices it suffices
to prove this for va . Let L be a wall shadow containing va , say the axis of !h .
Then L D hL0 where L0 is the axis of ! . Since h�1va 2 L0 there is a k such
that !kh�1va D va ; that is, !kh�1 fixes va and is therefore a power of a, say
!kh�1 D a�i . Then hD ai!k and

!h
D !ai

:

There are exactly p conjugate elements of this form giving us p wall shadows con-
taining the vertex va . A similar argument works for q–valent vertices.

We now prove the second statement of the lemma. Since G acts transitively on the
collection of edges, every edge is contained in the same number of wall shadows. Call
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this number � . Consider the number N of pairs .e;L/ where e is an edge of the star
of va which is contained in the wall shadow L. On one hand since every wall shadow
hits two edges of the star of va , we have N D 2p . On the other hand since every edge
is contained in � wall shadows, we have N D �p . So � D 2.

Lemma 4.2 The intersection of two wall shadows is at most two edges. In fact, two
wall shadows can contain more than one edge only when p or q is 2.

Proof It suffices to prove the following claim.

Claim Let v be any vertex and L and L0 be two wall shadows containing v . Then L

and L0 share two edges of the star of v iff the valence of v is 2.

By translating the picture we may assume that vD vb or va . Since the argument is the
same either way, we will assume v D vb . Certainly if q D 2 then L and L0 have to
share both edges in the star of vb . For the converse, assume L\L0 contains two edges
in the star of vb . Without loss of generality assume one of the edges is Œva; vb �. Then
one of the wall shadows is the axis of ! and the other is the axis of !b�n

D ambn .
Say that L is the former and L0 is the latter. The two vertices in the link of vb hit by
L are va and bnva . The two vertices in the link of vb hit by L0 are va and b�nva .
So L and L0 share two edges in the star of vb only if bnva D b�nva which happens
precisely when qj2n. Since q and n are relatively prime this is the same as saying
that q D 2. This proves the claim.

Roughly speaking the above lemma tells us that wall shadows bifurcate at odd–valent
vertices. Translated into the language of walls this means several things.

Fact 4.1 If e is an edge of �p;q , then the vertical strip e�R is contained in exactly
two walls.

Fact 4.2 If v is a p–valent [q–valent] vertex of �p;q , then the vertical line v�R is
contained in exactly p [q ] walls.

Fact 4.3 Let W and W 0 be walls. Then W \W 0 is either empty, a vertical line or a
vertical strip.

Let 0 denote the axis of ! containing the point x0 and  denote its image in Y . This
is a local geodesic loop in Y representing ! . The G –translates of 0 are called joint
lines, for reasons which will become apparent in the next section.
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Proposition 4.2 Joint lines do not intersect.

Proof Suppose two joint lines intersect at a point z . Without loss of generality we
may assume that one of the joint lines is 0 and that z 2R. Call the other joint line
 . Now if z is in the axis of a, then  D ak0 for some k . But this means that
z D akz , which is impossible. A similar argument shows that z cannot be in the axis
of b . Therefore z is in the open vertical strip .va; vb/�R and  D �kb�n0 for some
k . If y0 is the point at which 0 hits the axis of b , then

z D Œx0;y0�\ Œx
0
0;y
0
0�;

where y0
0
D �kb�ny0 and x0

0
D �kamx0 . Let r W Y !R denote the projection onto

the R–coordinate so that r.x0/ D 0 and r.y0/ D ˇ=2pq . A computation gives
r.x0

0
/D r.y0

0
/Cˇ=2pq . Therefore:

0< r.x00/�
ˇ

pq
:

But r.x0
0
/D iˇ=q for some integer i , which gives us a contradiction.

Since the axes of a group element are contained in that element’s minset, the following
is true.

Fact 4.4 Two joint lines are parallel iff they are contained in the same wall.

Here we are using the word “parallel” in the strong Euclidean sense; that is, when we
say two lines are parallel we mean that their convex hull is a flat strip. The proof of
this next proposition is an immediate consequence of Proposition 4.1.

Proposition 4.3 We can choose the dimensions ˛ and ˇ of R so that  has length 1
and

†Tits.!
1; �1/D†x0

.!x0; �x0/D �

for any 0< � < �=2 we choose. This done, joint lines form angle � with vertical lines.

We close this section with two propositions. The first is recorded to demonstrate the
need for Wilson’s work [11] as noted at the end of Section 2. The second shows that
knot groups of Torus knots are rigid, a fact noted in the introduction.

Proposition 4.4 It is impossible to construct a CAT(0) G –space Y in such a way that

†Tits.!
1; �1/D �=2:
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Proof Suppose Y is a CAT(0) G –space. Without loss of generality we may assume
Y DMin � and splits as Y D � 0 �R. Then we can define � as in Proposition 4.1 and
compute:

�.!/D n�.b/Cm�.a/

D
�.�/

pq

¤ 0:

Choosing x0 2Min! , we have:

†Tits.!
1; �1/D†x0

.!x0; �x0/ <
�

2
:

Proposition 4.5 G is rigid.

Proof By a result of Bedenikovic, Delgado and Timm [2, Lemma 4.2], we know that
Y has a nontrivial self-cover. By [2, Theorem 5.2], it has a finite cover S1 �G! Y

where G is a finite graph. Therefore G contains the group F �Z as a finite index
subgroup for some finitely generated free group F .

Thus if we are given any CAT(0) G –space Y , the induced action of F �Z on Y as a
subgroup is cocompact and hence geometric. Therefore any CAT(0) boundary of G is
also a boundary of F �Z. Applying the result of Bowers and Ruane [3], we get that
every boundary of G is homeomorphic to the suspension of a cantor set.

4.3 Knot groups of connected sums of torus knots

Take two relatively prime pairs .p˙; q˙/ and form the corresponding torus knots
K˙ � S3 . Denote the fundamental group of the complement of K˙ by G˙ and let
!˙ 2G˙ denote the group element representing a meridianal loop as in Section 4.2.
Let K be a connected sum K�#KC and set

G D �1.S
3
�K/DG� �Z GC;

where Z ,! G˙ is given by 1 7! !˙ . Fixing � 2 .0; �=2/, form the K.G˙; 1/

prescribed in the previous section and call it Y ˙ . Construct it so that the local geodesic
˙ � Y ˙ corresponding to the group element !˙ has length 1, and in the universal
covers Y˙ of Y ˙ joint lines form angle � with vertical lines. Glue Y � to Y C along
an isometry � Š C to form a nonpositively curved K.G; 1/ which we call X . Let
pW X !X be the universal covering projection. Then X is a CAT(0) G –space. Since
G˙ both inject into G , the path components of p�1.Y ˙/ are isometric copies of Y˙ .
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We call these path components natural blocks. It is easy to see that the collection of
natural blocks gives us a block structure on X in the sense of Section 3. Thus the
nerve N of the collection of natural blocks is a tree and we may talk about the itinerary
between two natural blocks or the itinerary of a geodesic. We call an itinerary in terms
of natural blocks a natural itinerary and use the notation ItinN .

Now this “natural block structure” is different from the block structure of Croke and
Kleiner’s construction in [5]. Here natural blocks do not intersect at walls (Euclidean
planes) but at joint lines. We will see, however, that the boundary of our construction
has the same essential structure as the boundary in [5]. To prove this we will need to
introduce another type of block.

Definition 4.1 Given a joint line  we define the joint block of  to be the convex
hull of all joint lines X which are parallel to  . This done, we define a “new nerve”bN with the following properties.

(1) Vertices bvB correspond to blocks B of X (joint and natural).

(2) An edge ŒbvB1
;bvB2

� is included whenever B1\B2 is a wall.

When (2) holds we will say that B1 neighbors B2 .

A word of warning: When we call bN a “nerve” we do not mean it in the same sense as
used in Section 3. We mean here that it is the correct analogue of the previous notion
of a nerve in this context. In [5] at most two blocks could intersect simultaneously and
then their intersection was precisely a wall. Here there are many intersections which are
not being recorded; for example, every point is in at least three blocks, possibly more.
This fact will cause some difficulty for us in Section 5.2 when we need to redefine
itineraries of terms of bN .

5 The main theorem

In order to apply the strategies of Croke and Kleiner [5] and Wilson [11], will need
to prove that if we take the collection of all blocks, both joint and natural, together
with this “new nerve” bN , then Theorem A–Theorem E from Section 2 remain valid.
Restated in this context the theorems will be labeled Theorem A 0–Theorem E 0 .
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5.1 Joint blocks

If ŒB1; : : : ;Bn� is a natural itinerary, then we call the list of joint lines

1 D B1\B2

2 D B2\B3

:::

n�1 D Bn�1\Bn

the list of joint lines between B1 and Bn . If  and  0 are two joint lines, then it is easy
to see that every geodesic which begins on  and ends on  0 has the same itinerary. If
that itinerary is ŒB1; : : : ;Bn�, and 1; : : : ; n�1 is the list of joint lines between B1

and Bn , then we also call 1; : : : ; n�1 the the list of joint lines between  and  0 .

Lemma 5.1 (The joint line lemma) Let  and  0 be parallel joint lines. Then every
joint line between  and  0 is also parallel to  and  0 .

Proof Parameterize ;  0W R!X to have unit speed and let 0 be a joint line between
 and  0 . Then every geodesic which begins on  and ends on  0 must pass through
0 (Lemma 3.2(2)). In particular, for k 2 Z the geodesic Œ .k/;  0.k/� intersects 0

at some point zk . Since k 0 , d. .k/;  0.k// is constant and zk remains asymptotic
to  and  0 as k!˙1. It follows that 0 is indeed parallel to these.

Proposition 5.1 Let BJ be the joint block of a joint line 0 . Then the following hold.

(1) BJ Š �
4 �R where �4 is the 4–valent tree.

(2) The joint lines parallel to 0 are precisely the vertical lines in BJ .

(3) If a joint line  � BJ , then k0 .

Proof Let D0D 0 , and for each n> 0, let Dn denote the union of Dn�1 along with
all walls intersecting Dn�1 at a joint line. In addition, we define D1 D

S1
iD0 Di .

Since two nonintersecting lines in a common Euclidean plane must be parallel, we
see that Dn splits as T n �R where each T n is a tree, constructed as follows: We
begin with T 0 , which is just a point. T 1 is the union of two lines glued together at a
single point z0 . To form T 2 , we glue four new lines to T 1 at four points z1; : : : ; z4

in the four components of T 1� z0 . To form T 3 , we glue twelve new lines to T 2 at
twelve points in the twelve unbounded components of T 2�fz1; : : : ; z4g, and so on.
The limit �4 of this increasing sequence of trees is an infinite 4–valent tree. Thus
we get D1 D �4 �R. Furthermore, we see from the construction that the joint lines
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in D1 are precisely the vertical lines, and that all of these are parallel to 0 . So the
proposition will follow if we show that D1 D BJ .

Certainly D1 is the convex hull of the collection of joint lines parallel to 0 which
are contained in D1 . What we need to know is that all joint lines parallel to 0

are contained in D1 . We prove this here: Let  be a joint line parallel to 0 , and
1; : : : ; n�1 be the list of joint lines between 0 and  . Since 1k0 and these two
are in a common natural block, it follows that they are in a common wall and that
1 �D1 . In general, since ikiC1 and these two joint lines are in a common natural
block, they are in a common wall and therefore iC1 �DiC1 . So n�1 �Dn�1 and
 �Dn .

Remark 5.1 This proposition corresponds to the group theoretic fact that the stabilizer
of a joint block is ŒZ�Z��Z. For example, if 0 is the joint line containing x0 then
the stabilizer of BJ is Œh��i � h�Ci�� h!i where ! translates BJ in the R–direction
and h��i � h�Ci acts geometrically on �4 . Here < �˙ > denote the centers of G˙ .

Two distinct blocks neighbor each other iff one is joint, the other is natural, and the
two share a joint line. For a joint block BJ let C.BJ / denote the collection of natural
blocks which neighbor BJ and N .BJ / denote the full subgraph of N spanned by the
vertices fvBN

jBN 2 C.BJ /g.

Lemma 5.2 Let BJ and B0
J

be distinct joint blocks. The following hold.

(1) If ŒvBN
; vB0

N
� is an edge of N .BJ /, then the joint line BN \B0

N
is in BJ .

(2) If BN ;B
0
N
2 C.BJ /, then ItinN ŒBN ;B

0
N
�� C.BJ /.

(3)
ˇ̌
C.BJ /\ C.B0

J
/
ˇ̌
� 1.

Proof

(1) Let  and  0 be joint lines of BN and B0
N

which are in BJ . Since BN \B0
N
D

0 is a joint line, 0 is the only joint line between  and  0 . It follows from
the joint line lemma that 0 is parallel to  and  0 and must therefore also be
in BJ .

(2) Again, let  and  0 be joint lines of BN and B0
N

which are in BJ , and write
ItinN ŒBN ;B

0
N
�D ŒB1; : : : ;Bk �. Then for 1� i < k , the joint line lemma tells

us that the joint lines Bi \BiC1 are all in BJ . So for 1 � i � k , every Bi

shares a joint line with BJ .

(3) Suppose jC.BJ / \ C.B0
J
/j > 1. Since N .BJ / and N .B0

J
/ are convex,

N .BJ / \ N .B0
J
/ must contain an edge ŒvBN

; vB0
N
�; by (1), the joint line

BN \B0
N

is in both BJ and B0
J

, which is a contradiction.
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5.2 Itineraries in cN
Our goal here is to show that bN is a tree (Theorem A 0 ) and to define itineraries in
terms of bN .

Lemma 5.3 Let ŒbvB1
; : : : ;bvBn

� be an edge path in bN with no backtracking such that
B1 and Bn are natural blocks. Then

ItinN ŒB1;Bn�D ItinN ŒB1;B3�[ ItinN ŒB3;B5�[

� � � [ ItinN ŒBn�4;Bn�2�[ ItinN ŒBn�2;Bn�;

where
ItinN ŒBi�1;BiC1�� C.Bi/;

for even 1< i < n.

Proof We prove this by induction on n. When nD 1, there is nothing to show, and
when nD 3, we simply note that N .B2/ is convex. Assume n� 5, and let � denote
the geodesic edge path in N from vB1

to vBn�2
; since Bn�4¤Bn�2 , the last edge of

� is in N .Bn�3/ (by induction). It follows that �\N .Bn�1/D fvBn�2
g. Hence, if

�0 is the geodesic edge path from vBn�2
to vBn

, then since �0 �N .Bn�1/, the edge
path �[ �0 has no backtracking and must be the geodesic edge path in N between
vB1

and vBn
.

Theorem A 0 bN is a tree.

Proof It follows from Lemma 5.2(3) that bN has no squares. Thus, any non-nullhomo-
topic loop in bN must have length at least 6. Suppose ŒbvB1

; : : : ;bvBn
� is such a loop

with no backtracking where B1 D Bn is natural. Then by the previous lemma, the
first edge in the geodesic edge path in N from vB1

to vB3
is in both N .B2/ and

N .Bn�1/, giving us a contradiction.

Proposition 5.2 Suppose ŒbvB1
; : : : ;bvBn

� is a geodesic edge path in bN and ˛ is a
geodesic segment which begins in B1 and ends in Bn . Then then ˛ is covered by the
collection of blocks fBkg

n
kD1

and passes through every block Bk and wall Bk\BkC1 .

Proof First of all, assume B1 and Bn are both natural blocks and use Lemma 5.3 to
write:

ItinN ˛ � ItinN ŒB1;Bn�

D ItinN ŒB1;B3�[ � � � [ ItinN ŒBn�2;Bn�:
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So for every odd 1 < k < n, ˛ passes through the block Bk . Let k�2 denote the
joint line at which ˛ leaves the natural block Bk�2 and k�1 denote the joint line
at which ˛ enters the natural block Bk . The fact that ItinN ŒBk�2;Bk � � C.Bk�1/

tells us that k�2; k�1 � Bk�1 . For every 1 � k < n, let tk be the time such that
˛.tk/ 2 k . Since k � Bk \BkC1 , we see that ˛ hits every such wall. Furthermore,


�
Œtk ; tkC1�

�
� Bk ;

because Bk is convex. This shows that ˛ �
Sn

kD1 Bk .

Now consider the more general case. If B1 is joint and Bn is natural, choose a natural
block B0 containing the initial point of ˛ . This time Lemma 5.3 gives us:

ItinN ˛ � ItinN ŒB0;Bn�

D ItinN ŒB0;B2�[ ItinN ŒB2;B4� � � � [ ItinN ŒBn�2;Bn�:

As before, since ˛ enters B2 at a joint line of B1 , we get that ˛ passes through the
wall B1 \B2 and because blocks are convex, we get that ˛ �

Sn
kD1 Bk . Similar

arguments work if B1 is natural and Bn is joint, or if both B1 and Bn are joint.

We now know that given a geodesic segment (or ray) ˛ there is a (possibly infinite)
geodesic edge path ŒbvB1

; : : : ;bvBn
� such that ˛ �

Sn
kD1 Bk . We define the bN –

itinerary of ˛ to be the list ŒB1; : : : ;Bn� where ŒbvB1
; : : : ;bvBn

� is the shortest such
edge path. We may also write Itin bN ŒB0

0
;B0

1
�D ŒB1; : : : ;Bn� when ŒbvB1

; : : : ;bvBn
� is

the geodesic edge path in bN from bvB0
0

to bvB0
1

.

There is some danger of confusion here since every geodesic in X has two itineraries:
one in terms of N and the other in terms of bN . We already have a notion of rational
and irrational rays in terms of N –itineraries. We denote the set of points which are
“rational with respect to N ” by RNX and the set of points which are “irrational with
respect to N ” by INX . However, in this section we will call a geodesic ray rational
if its bN –itinerary is finite and irrational if its bN –itinerary is infinite. The endpoint of
a rational ray is called a rational point and the endpoint of an irrational ray is called an
irrational point. To emphasize that by “rational” and “irrational” we mean in terms ofbN , we will denote the set of rational points of @X by R bN X and the set of irrational
points of @X by I bN X .

Proposition 5.3 If ˛ and ˇ are two irrational geodesic rays whose bN –itineraries
eventually coincide, then their N –itineraries are also infinite and also eventually
coincide.
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Proof Suppose we have two irrational geodesic rays ˛ and ˇ whose itineraries
eventually coincide. Write

Itin bN ˛ D ŒB1;B2; : : : �

and:
Itin bN ˇ D ŒB01;B

0
2; : : : �:

Then there are m; n> 2 such that BmCi D B0nCi for i � 0. Choose m and n so that
Bm D B0n is a natural block. The fact that m; n > 2 guarantees that ˛ and ˇ do not
begin in this block; hence Bm 2 ItinN ˛\ ItinN ˇ . In fact, BmC2i 2 ItinN ˛\ ItinN ˇ
for every i � 0. Therefore ItinN ˛\ ItinN ˇ contains the infinite sequence of blocks
fBm;BmC1;BmC2; : : : g.

Corollary 5.1 (1) I bN X � INX .

(2) RNX �R bN X .

Remark 5.2 The above inclusions are strict. A geodesic ray which stays in the same
joint block but does not stay in any wall will have an infinite N –itinerary but finitebN –itinerary.

5.3 The boundary of X

We do not yet know that R bN X is precisely the union of block boundaries. For this
we need to know Lemma 3.3 in the new context. The proof is the same except that we
replace the claim with the following lemma.

Lemma 5.4 There is a ı > 0 such that for natural blocks B and B0 if dbN .bvB;bvB0/�

4k then d.B;B0/�kı .

Proof Let ı be the minimum positive distance between joint lines in X . Let B and
B0 be natural blocks, ItinN ŒB;B0�D ŒB0; : : : ;Bn� where n� 4k , x 2B and x0 2B0 .
Then the geodesic Œx;x0� passes through every block B4i for 0� i � k at some point
zi . Furthermore, for 0 � i < k the geodesic Œzi ; ziC1� enters the block B4iC2 at a
joint line of the joint block B4iC1 and leaves at a joint line of the block B4iC3 . Thus
we have

d.x;x0/�

k�1X
iD0

d.zi ; ziC1/� kı:

Corollary 5.2 R bN X is the union of block boundaries and I bN X is its complement.
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Since every block B splits as ��R for some tree � (one of �4 , �p�;q� or �pC;qC ),
it follows that @B is the suspension of a cantor set. As mentioned in Section 2, the
suspension points are called poles and the set of poles is denoted PB .

Theorem B 0 Let B0 and B1 be blocks and D be the distance between the corre-
sponding vertices in bN .

(1) If D D 1, then @B0\ @B1 D @W where W is the wall B0\B1 .

(2) If D D 2, then @B0\ @B1 D PB1=2 where B1=2 neighbors both B0 and B1 .

(3) If D > 2, then @B0\ @B1 D∅.

Proof (1) If D D 1, then B0\B1 is a wall W . That @W � @B0\ @B1 is obvious.
The reverse inclusion follows by the same sort of argument as was used in the joint line
lemma: If ˛0 � B0 and ˛1 � B1 are asymptotic geodesic rays, then every geodesic
from ˛0 to ˛1 intersects the wall W . Thus we can get a sequence of points in W

which remain asymptotic to ˛0 and ˛1 .

(2) If D D 2, then there is one vertex between bvB0
and bvB1

; call it bvB1=2
. We will

show that
PB1=2 � @B0\ @B1 � @W0\ @W1 � PB1=2;

where Wi D B1=2 \Bi for i D 0; 1. The first inclusion is just the fact that vertical
lines of B1=2 can be found in W0 and W1 , and the second is the same argument as in
(1). For the third inclusion, suppose ˛0 �W0 and ˛1 �W1 are asymptotic geodesic
rays and let ˛0 and ˛1 be the projections of ˛0 and ˛1 onto the �–coordinate of
B1=2 D � �R. If ˛0 and ˛1 are not constant, then since they are asymptotic they
must have infinitely many vertices of � in common. In this case W0 \W1 shares a
half-plane, contradicting the fact that W0\W1 is at most a vertical strip. So ˛0 and
˛1 are constant and ˛0 and ˛1 go to a pole of B1=2 .

Finally we show (3) by contradiction: Suppose � 2 @B0 \ @B1 and write
Itin bN ŒB0;B1�D ŒB1; : : : ;Bn� where nDDC1 by hypothesis. By the same argument
as in (1) we actually have that � 2 @Bi for every 1 � i � n. By (2) it follows that
� 2 PBi for every 1 < i < n. But PB2 \PB3 D ∅ because †Tits.PB2;PB3/ D � ,
giving us a contradiction!

Theorem C 0 Let B be a block and � 2 @B not be a pole of any neighboring block.
Then � has a local path component which stays in @B .

Proof The proof is the same as the proof of Theorem C with one minor exception. It
could be that a geodesic ray may exit a wall W via a joint line  of another wall. But
by Fact 4.3, W \  is compact in this case. So this exception causes no problems.
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As in [5] we call � 2 @X a vertex if there is a local path component V of � and a local
path component V 0 of an actual pole �0 and a homeomorphism .V; �/� .V 0; �0/. A
point of @X is a vertex iff it has a local path component homeomorphic to the open
cone on the cantor set via a homeomorphism which takes � to the cone point. A path
in @X is called safe if it passes through vertices at only finitely many times. Since
R bN X is just the union of block boundaries (Corollary 5.2), Theorem C 0 tells us that
the only vertices in R bN X are poles.

Theorem D 0 R bN X is the unique dense safe path component of @X .

Proof The proof that R bN X is a safe path component is exactly the same as the
proof of [5, Lemma 6]. The fact that R bN X is dense follows from Lemma 3.4 and
the fact that R bN X � RNX . Now the other safe path components are contained
in the path components of I bN X . Recall that Corollary 3.2 provided us with a map
�W INX ! @N which is “irrational with respect to N ”. By Proposition 5.2 we know
that the restriction b� of � to I bN X is “irrational with respect to bN ”. Since b� takes

safe path components to points and no point of im b� is dense in im b� it follows that
no safe path component of I bN X is dense in I bN X .

Theorem E 0 Let B be a block.

(1) The union of boundaries of walls of B is dense in @B .

(2) The closure of the set of poles of neighboring blocks is the same as the set of
points of @B which are a Tits distance of � from a pole of B .

Proof Let ˛ be any geodesic ray in B D � �R and ˛ be its projection onto the � –
coordinate. Let ˛.t1/; ˛.t2/; : : : be the sequence of non-bivalent vertices through which
˛ passes. Then for every n� 1 there is a wall Wn such that ˛.Œ0; tn�/\Wn D ˛.tn/.
Thus we may bifurcate ˛ at ˛.tn/ to get a (probably new) ray ˛n which agrees with ˛
up to time tn and then stays in Wn . This proves (1).

For (2) assume that in the above setup we have †Tits.˛.1/; �/D � where � is a pole
of B . This means that ˛ hits vertical lines of B at an angle of � . Since ˛ enters the
wall Wn at time tn we have two choices for ˛n . For one of these choices we will have
˛n.Œtn;1// parallel to the non-vertical lines in Wn . Then ˛n.1/ will be a pole of a
neighboring block.

Theorem 1 The knot group G of any connected sum of two non-trivial torus knots
has uncountably many CAT(0) boundaries.
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Proof We sketch here the key argument of [11]. For 0 < � < �=2 construct X� as
above. Now suppose we have 0<�1; �2<�=2 and a homeomorphism hW @X�1

!@X�2
.

Since h takes vertices to vertices it follows from Theorem D 0 that it takes R bN X�1
to

R bN X�2
. From here it is not hard to see that h takes poles to poles, block boundaries

to block boundaries and wall boundaries to wall boundaries. Let W1 be a wall in X�1

and W2 be the wall of X�2
such that h.@W1/D @W2 . Using Theorem E 0 and a proof

by induction we find sequence of points .zk/
1
kD0
� @W1 such that

†Tits.zk ; zkC1/D �1

and †Tits
�
h.zk/; h.zkC1/

�
D �2:

If �1 is a rational multiple of � , then fzkg is a finite set and we can use a counting
argument to prove that �1 D �2 . If �1 is not a rational multiple of � , then fzkg is
a dense subset of @W1 and the same argument no longer works. Wilson’s solution
is to use the sequences .zk/ and .h.zk// to define two nonstandard orderings of the
natural numbers denoted �1 and �2 such that �1 is equivalent to �2 . She then uses
a technical argument to show that this fact implies that �1 D �2 .
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