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One-point reductions of finite spaces,
h–regular CW–complexes and collapsibility

JONATHAN ARIEL BARMAK

ELIAS GABRIEL MINIAN

We investigate one-point reduction methods of finite topological spaces. These
methods allow one to study homotopy theory of cell complexes by means of ele-
mentary moves of their finite models. We also introduce the notion of h–regular
CW–complex, generalizing the concept of regular CW–complex, and prove that the
h–regular CW–complexes, which are a sort of combinatorial-up-to-homotopy objects,
are modeled (up to homotopy) by their associated finite spaces. This is accomplished
by generalizing a classical result of McCord on simplicial complexes.

55U05, 55P15, 57Q05, 57Q10; 06A06, 52B70

1 Introduction

Two independent and foundational papers on finite spaces of 1966, by M C McCord and
R E Stong [9; 13], investigate the homotopy theory of finite spaces and their relationship
with polyhedra. McCord [9] associates to a finite simplicial complex K , the finite
T0 –space X .K/ which corresponds to the poset of simplices of K and proves that
there is a weak homotopy equivalence K!X .K/. Conversely, one can associate to a
given finite T0 –space X the simplicial complex K.X / of its non-empty chains and a
weak homotopy equivalence K.X /! X . In contrast to McCord’s approach, Stong
introduces a combinatorial method to describe the homotopy types of finite spaces.
He defines the notions of linear and colinear points, which we call down and up beat
points following Peter May’s terminology, and proves that two finite spaces have the
same homotopy type if and only if one of them can be obtained from the other by
adding or removing beat points. Recently a series of notes by Peter May [7; 8] caught
our attention to finite spaces. In his notes, May discusses various basic problems from
the perspective of finite spaces. It is evident, from McCord’s and Stong’s papers and
from May’s notes, that finite topological spaces can be used to develop new techniques,
based on their combinatorial and topological nature, to investigate homotopy theory
of polyhedra. A nice example of this is Stong’s paper of 1984 [14] where he restates
Quillen’s conjecture on the poset of non-trivial p–subgroups of a group [12] in terms
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of finite spaces. Also in this direction, we showed in [3] how to use finite spaces to
study simple homotopy types.

This article deals with one-point reductions. We investigate the cases in which removing
a particular point of the space does not affect its homotopy, weak homotopy or simple
homotopy type. Our starting point is [3, Theorem 3.10], which relates simplicial
collapses with collapses of finite spaces. More explicitly, we have proved in [3] that
a collapse X & Y between finite spaces induces a collapse K.X /&K.Y / between
their associated simplicial complexes and a simplicial collapse K & L induces a
collapse between the associated finite spaces. One advantage of working with finite
spaces is that the elementary collapses in this context are very simple to handle and
describe: they consist of removing a single point of the space, which is called a weak
point. The beat points introduced by Stong [13] and the weak points defined in [3]
constitute particular cases of one-point reductions. The main idea that is behind the
one-point reductions is the idea of an elementary move, which appears frequently in
mathematics. Tietze transformations and Whitehead’s theory on simple homotopy
types are two leading exponents of this concept. The results that we obtain allow one to
study homotopy theory of cell complexes by means of elementary moves of their finite
models. A finite model of a CW–complex K is a finite space which is weak homotopy
equivalent to K .

In this paper we introduce the notions of 
 –point and 
 –collapse which provide a
more general method of reduction. More precisely, we prove below the following

Proposition 3.10 If x 2 X is a 
 –point, the inclusion i W X X fxg ,! X is a weak
homotopy equivalence.

This also improves an old result which appears for example in Walker [15, Proposition
5.8]. Moreover, we prove that the converse of Proposition 3.10 also holds provided
x is neither maximal nor minimal (see Theorem 3.13). Therefore, the elementary

 –collapses describe almost all possible one-point reductions.

We also investigate collapsibility and 
 –collapsibility of the joins X ˚ Y of finite
spaces in terms of the collapsibility of X and Y . This sheds some light on the analogous
problem for simplicial joins.

In the last section of the paper we introduce the concept of h–regular CW–complex.
Recall that a CW–complex is called regular if the characteristic maps of its cells are
homeomorphisms. It is known that if K is a regular CW–complex, its face poset X .K/
is a finite model of K . For general CW–complexes the associated finite space X .K/
does not give relevant information about the topology of K . Regular CW–complexes
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can be thought of as combinatorial objects (in fact, they are in the middle way between
simplicial complexes and general CW–complexes). This suggests that one can extend
the class of combinatorial CW–complexes to a wider class of combinatorial-up-to-
homotopy CW–complexes that can be modeled, up to homotopy, by their associated
finite spaces. This leads to the notion of h–regular CW–complex. A CW–complex is
h–regular if all its closed cells are contractible subcomplexes. In particular, regular
complexes are h–regular.

We prove that if K is a finite h–regular complex, there is a weak homotopy equivalence
K! X .K/, generalizing McCord’s result for finite simplicial complexes (compare
with Björner [4]). The paper ends with the following result which relates collapses of
h–regular complexes with 
 –collapses.

Theorem 4.9 Let L be a subcomplex of an h–regular complex K . If K&L, then
X .K/&
 X .L/.

2 Preliminaries

In this section we recall the basic notions on finite spaces and their relationship with
finite posets and simplicial complexes. For more details, we refer the reader to [3; 7; 9;
13].

Given a T0 –topology � on a finite set X , we define for each x 2 X the (open) set
Ux as the intersection of all open sets containing x . Recall that a topological space
X is called T0 if for every pair of points in X there exists some open set containing
one and only one of them. The order associated to the T0 –topology � is given by
x � y if x 2 Uy . This application establishes a one-to-one correspondence between
T0 –topologies and order relations on the set X . Therefore we can regard finite T0 –
spaces as finite posets and vice versa. It is not hard to see that a function is continuous
if and only if it is order preserving. Moreover if f;gW X ! Y are two maps such that
f .x/� g.x/ for every x 2X , they are homotopic.

The order complex K.X / of a finite T0 –space X is the simplicial complex whose
simplices are the non-empty chains of X . It is also denoted �.X / by some authors.
There exists a weak homotopy equivalence from the geometric realization jK.X /j to
X , ie a map which induces isomorphisms in all homotopy groups [9].

Example 2.1 Consider the finite T0 –space X represented by the Hasse diagram
shown in Figure 1. The order complex of X is homeomorphic to the Möbius Strip.
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Figure 1: Hasse diagram of X .

a b c

Figure 2: K.X / is a triangulation of the Möbius Strip with twelve 2-simplices.

A map f W X!Y between finite T0 –spaces induces a simplicial map K.f /W K.X /!
K.Y / in the obvious way. Moreover, there is a commutative diagram

jK.X /j

��

jK.f /j// jK.Y /j

��
X

f // Y

Conversely one can associate a finite space (the face poset) X .K/ to each finite
simplicial complex K which is the poset of simplices of K ordered by inclusion. Since
K.X .K// D K0 is the barycentric subdivision of K , there exists a weak homotopy
equivalence jKj ! X .K/.

Let X be a finite T0 –space. A point x 2 X is a down beat point if the set yUx D

Ux X fxg of points smaller than x has a maximum, and it is an up beat point if the set
yFx D Fx Xfxg of points which are greater than x has a minimum. Here Fx denotes

the closure of fxg in X . If x is a beat point (down or up), X X fxg ,!X is a strong
deformation retract. Moreover, X is contractible(=dismantlable poset) if and only if
one can remove beat points one at the time to obtain a space of one point [13].
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Following [3], we say that a point x 2X is a weak point if yUx or yFx is contractible.
Note that this definition generalizes the definition of a beat point since any finite space
with maximum or minimum is contractible. In this case, the inclusion X X fxg ,!X

need not be a homotopy equivalence, but it is a weak homotopy equivalence. Note
that in the context of finite spaces, weak homotopy equivalences are not in general
homotopy equivalences. In fact, the essence of Quillen’s conjecture on the poset of
p–subgroups of a finite group lies precisely in the distinction between homotopy and
weak homotopy types [14].

The notion of weak point gives rise to the following notion of collapse for finite spaces.

Definition 2.2 If x 2 X is a weak point, we say that X collapses to X X fxg by
an elementary collapse. We denote this by X&e X X fxg. We say that X collapses
to Y (or Y expands to X ), and write X & Y , if there is a sequence of elementary
collapses which starts in X and ends in Y . The space X is collapsible if it collapses to
a point. Finally, X and Y are simply equivalent, denoted by X �&Y , if there exists a
sequence of collapses and expansions that starts in X and ends in Y .

In contrast to the classical situation, where a simple homotopy equivalence is a special
kind of homotopy equivalence, homotopy equivalent finite spaces are simply equivalent.
The relationship between collapses of finite spaces and simplicial complexes is given
by the following theorem.

Theorem 2.3

(a) Let X and Y be finite T0 –spaces. Then, X and Y are simply equivalent if and
only if K.X / and K.Y / have the same simple homotopy type. Moreover, if
X & Y then K.X /&K.Y /.

(b) Let K and L be finite simplicial complexes. Then, K and L are simple
homotopy equivalent if and only if X .K/ and X .L/ are simply equivalent.
Moreover, if K&L then X .K/& X .L/.

The proof of this theorem can be found in [3]. This result allows one to use finite spaces
to study problems of classical simple homotopy theory, such as the Andrews–Curtis
conjecture [1]. In this paper we give an alternative proof of the fact that a collapse of
finite spaces induces a collapse between the associated complexes.
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3 
 –points and reduction methods

In this section we delve deeper into the study of one-point reductions of finite spaces.
As we pointed out above, we investigate the cases in which removing a particular point
from a finite space does not affect its homotopy, weak homotopy or simple homotopy
type. These methods aim to give a description of the different notions of homotopy
types and understand the differences among them.

Recall that the simplicial join K �L of two simplicial complexes K and L is the
complex

K �LDK[L[f� [ � j � 2K; � 2Lg:

The cone aK of a simplicial complex K is the join of K with a vertex a …K . It is
well known that for finite simplicial complexes K and L, the geometric realization
jK �Lj is homeomorphic to the topological join jKj � jLj.

There is an analogous construction for finite spaces.

Definition 3.1 The (non-Hausdorff) join X ˚Y of two finite T0 –spaces X and Y

(also called ordinal sum) is the disjoint union X tY keeping the giving ordering within
X and Y and setting x � y for every x 2X and y 2 Y .

Special cases of joins are the non-Hausdorff cone C.X / D X ˚D0 and the non-
Hausdorff suspension S.X /DX ˚S0 of any finite T0 –space X . Here D0 denotes
the singleton (0–cell) and S0 the discrete space on two points (0–sphere).

Remark 3.2 K.X ˚Y /DK.X /�K.Y /.

Given a point x in a finite T0 –space X , the star Cx of x consists of the points which
are comparable with x , ie Cx D Ux [Fx . Note that Cx is always contractible since
1Cx
� f � g where f W Cx ! Cx is the map which is the identity on Fx and the

constant map x on Ux , and g is the constant map x . The link of x is the subspace
yCx D Cx X fxg. In case we need to specify the ambient space X , we will write yC X

x .
Note that yCx D

yUx˚
yFx .

Proposition 3.3 Let X and Y be finite T0 –spaces. Then X ˚ Y is contractible if
and only if X or Y is contractible.

Proof Assume X is contractible. Then there exists a sequence of spaces

X DXn © Xn�1 © : : :© X1 D fx1g

Algebraic & Geometric Topology, Volume 8 (2008)



One point reductions, h–regular CW–complexes and collapsibility 1769

with Xi D fx1;x2; : : : ;xig and such that xi is a beat point of Xi for every 2� i � n.
Then xi is a beat point of Xi˚Y for each 2� i � n and therefore, X˚Y deformation
retracts to fx1g ˚ Y which is contractible. Analogously, if Y is contractible, so is
X ˚Y .

Now suppose X ˚Y is contractible. Then there exists a sequence

X ˚Y DXn˚Yn © Xn�1˚Yn�1 © : : :© X1˚Y1 D fz1g

with Xi �X , Yi �Y , Xi˚Yi Dfz1; z2 : : : ; zig such that zi is a beat point of Xi˚Yi

for i � 2.

Let i � 2. If zi 2Xi , zi is a beat point of Xi unless it is a maximal point of Xi and
Yi has a minimum. In the same way, if zi 2 Yi , zi is a beat point of Yi or Xi has
a maximum. Therefore, for each 2 � i � n, either Xi�1 � Xi and Yi�1 � Yi are
deformation retracts (in fact, one inclusion is an identity and the other inclusion is strict),
or one of them, Xi or Yi , is contractible. This proves that X or Y is contractible.

Corollary 3.4 Let X be a finite T0 –space. Then x 2X is a weak point if and only if
its link yCx is contractible.

In [3] we proved that a collapse X & Y of finite spaces induces a simplicial collapse
K.X /&K.Y /. We exhibit here an alternative proof of this result, using Corollary 3.4
and the following easy lemma whose proof we omit.

Lemma 3.5 Let aK be a simplicial cone of a finite complex K . Then K is collapsible
if and only if aK&K .

We study first a particular case.

Theorem 3.6 If x is a beat point of a finite T0 –space X , then K.X /&K.X Xfxg/.
In particular, if X is contractible, K.X / is collapsible.

Proof Since x is a beat point, there exists x0 2X and subspaces Y;Z �X such that
yCx D Y ˚fx0g˚Z . Then the link lk.x/ of the vertex x in K.X / is collapsible, since
lk.x/ D K. yCx/ D x0K.Y ˚Z/. By the previous lemma, the star st.x/ D xlk.x/

collapses to lk.x/ D K.X X fxg/\ st.x/. Thus, K.X / D K.X X fxg/[ st.x/&

K.X X fxg/.

This result was originally proved in Osaki [11, Theorem 3.3] in a completely different
way. It can also be deduced from Kozlov [6, Theorem 3.1]. The advantage of our proof
is that it can be easily adapted to the general case.
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Theorem 3.7 If X & Y , then K.X /&K.Y /.

Proof We may assume that Y DX Xfxg, where x 2X is a weak point. By Corollary
3.4, yCx is contractible and then K. yCx/ is collapsible. Now the result follows as in the
proof of Theorem 3.6.

Note that if yCx is collapsible (but not necessarily contractible), we also have that
K.X /&K.X X fxg/.
It is known that if K and L are finite simplicial complexes and one of them is
collapsible, then K �L is also collapsible. As far as we know the converse of this
result is an open problem – see Welker [16, (4.1)]. In the setting of finite spaces, the
analogous result and its converse hold.

Proposition 3.8 Let X and Y be finite T0 –spaces. Then X ˚Y is collapsible if and
only if X or Y is collapsible.

Proof We proceed as in Proposition 3.3, replacing beat points by weak points and
deformation retractions by collapses. Note that if xi is a weak point of Xi , then xi is
also a weak point of Xi˚Y , since yC Xi˚Y

xi
D yC

Xi
xi
˚Y is contractible by Proposition

3.3.

On the other hand, if zi is a weak point of Xi ˚Yi and zi 2Xi , then by Proposition
3.3, zi is a weak point of Xi or Yi is contractible.

Corollary 3.4 motivates the following definition.

Definition 3.9 A point x of a finite T0 –space X is a 
 –point if yCx is homotopically
trivial (ie if all its homotopy groups are trivial).

Note that weak points are 
 –points. It is not difficult to see that both notions coincide
in spaces of height less than or equal to 3. This is because any space of height 2 is
contractible if and only if it is homotopically trivial. However, this is false for spaces
of height greater than 3.

Let x be a 
 –point of a finite T0 –space X . We will show that the inclusion X X

fxg ,!X is a weak homotopy equivalence. Note that since yUx and yFx need not be
homotopically trivial, we cannot proceed as we did in [3]. However, in this case, one
has the following pushout

jK. yCx/j
//

��

jK.Cx/j

��
jK.X X fxg/j // jK.X /j

Algebraic & Geometric Topology, Volume 8 (2008)



One point reductions, h–regular CW–complexes and collapsibility 1771

where jK. yCx/j ! jK.Cx/j is a homotopy equivalence and jK. yCx/j ! jK.X X fxg/j
satisfies the homotopy extension property. Therefore jK.X X fxg/j ! jK.X /j is a
homotopy equivalence. This proves the following proposition.

Proposition 3.10 If x 2 X is a 
 –point, the inclusion i W X X fxg ,! X is a weak
homotopy equivalence.

As we mentioned in the introduction, this result improves an old result which appears
for example in Walker’s Thesis [15, Proposition 5.8], which asserts, in the language
of finite spaces, that X X fxg ,!X is a weak homotopy equivalence provided yUx or
yFx is homotopically trivial. By Proposition 3.17 below, it is clear that a point x is a

 –point if yUx or yFx is homotopically trivial, but the converse is false.

We will show that the converse of Proposition 3.10 is true except maybe when the point
is maximal or minimal. First, we need some results.

Proposition 3.11 Let x be a point of a finite T0 –space X . The inclusion i W X X

fxg ,! X induces isomorphisms in all homology groups if and only if the subspace
yCx is acyclic.

Proof Apply the Mayer–Vietoris sequence to the triple .K.X /IK.Cx/;K.X Xfxg//.

Remark 3.12 If X and Y are non-empty finite T0 –spaces with n and m connected
components respectively, the fundamental group �1.X ˚ Y / is a free product of
.n� 1/.m� 1/ copies of Z. In particular if x 2 X is neither maximal nor minimal,
the fundamental group of yCx D

yUx˚
yFx is a free group.

Theorem 3.13 Let X be a finite T0 –space, and x 2 X a point which is neither
maximal nor minimal and such that X X fxg ,! X is a weak homotopy equivalence.
Then x is a 
 –point.

Proof If X Xfxg ,!X is a weak homotopy equivalence, yCx is acyclic by Proposition
3.11. Then �1. yCx/ is a perfect group and therefore trivial, by Remark 3.12. Now the
result follows from the Hurewicz Theorem.

The theorem fails if x is maximal or minimal as the next example shows.

Example 3.14 Let X be an acyclic finite T0 –space with non-trivial fundamental group.
Let S.X /DX [f�1; 1g be its non-Hausdorff suspension. Then S.X / is also acyclic
and �1.S.X //D 0. Therefore it is homotopically trivial. Hence, X [f1g ,! S.X / is
a weak homotopy equivalence. However �1 is not a 
 –point of S.X /.
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Using the relativity principle of simple homotopy theory (see Cohen [5, (5.3)]) one can
prove that if x is a 
 –point, jK.XXfxg/j! jK.X /j is a simple homotopy equivalence.
In fact, this holds whenever X X fxg ,!X is a weak homotopy equivalence.

Theorem 3.15 Let X be a finite T0 –space and let x 2 X . If the inclusion i W X X

fxg ,!X is a weak homotopy equivalence, it induces a simple homotopy equivalence
jK.X X fxg/j ! jK.X /j. In particular X X fxg�&X .

Proof Since jK.X X fxg/j is a strong deformation retract of jK.X /j, and the open
star of x ,

ı

st.x/D jK.X /j X jK.X X fxg/j
is contractible, then by [5, (20.1)], the Whitehead Torsion �.jK.X /j; jK.XXfxg/j/D0.

This result essentially shows that one-point reductions are not sufficient to describe
all weak homotopy types of finite spaces. Of course they are sufficient to reach all
finite models of spaces with trivial Whitehead group. On the other hand, note that the
fact that X Xfxg and X have the same weak homotopy type does not imply that the
inclusion X X fxg ,!X is a weak homotopy equivalence.

Definition 3.16 If x 2X is a 
 –point, we say that there is an elementary 
 –collapse
from X to X X fxg. A finite T0 –space X 
 –collapses to Y if there is a sequence of
elementary 
 –collapses that starts in X and ends in Y . We denote this by X &
 Y . If
X 
 –collapses to a point, we say that it is 
 –collapsible.

In contrast to collapses, a 
 –collapse does not induce in general a collapse between the
associated simplicial complexes. For example, if K is any triangulation of the Dunce
hat, C.X .K//&
 X .K/, but aK0 =&K0 since K0 is not collapsible (see Lemma 3.5).

We finish this section analyzing the relationship between 
 –collapsibility and joins.

Proposition 3.17 Let X and Y be finite T0 –spaces.

(i) X ˚Y is homotopically trivial if X or Y is homotopically trivial.

(ii) X ˚Y is 
 –collapsible if X or Y is 
 –collapsible.

Proof If X or Y is homotopically trivial, jK.X /j or jK.Y /j is contractible and then
so is jK.X /j � jK.Y /j D jK.X ˚Y /j. Therefore X ˚Y is homotopically trivial.

The proof of (ii) follows as in Proposition 3.3. If xi 2 Xi is a 
 –point, yC Xi˚Y
xi

D

yC
Xi
xi
˚Y is homotopically trivial by item (i) and then xi is a 
 –point of Xi ˚Y .
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There is an analogous result for acyclic spaces that follows from the Künneth formula
for joins (see Milnor [10]).

Note that the converse of these results are false. To see this, consider two finite simply
connected simplicial complexes K; L such that H2.jKj/D Z2 , H2.jLj/D Z3 and
Hn.jKj/DHn.jLj/D 0 for every n� 3. Then X .K/ and X .L/ are not acyclic, but
X .K/˚X .L/, which is weak homotopy equivalent to jKj � jLj, is acyclic by the
Künneth formula and, since it is simply connected (see [10] or Remark 3.12), it is
homotopically trivial.

A counterexample for the converse of item (ii) is the following.

Example 3.18 Let K be a triangulation of the Dunce hat. Then, X .K/ is a homo-
topically trivial finite space of height 3. The non-Hausdorff suspension S.X .K//D
X .K/[f�1; 1g is 
 –collapsible since 1 is a 
 –point and S.X .K//Xf1g has maximum.
However X .K/ is not collapsible and then S.X .K// is not collapsible by Proposition
3.8. Moreover X .K/ and S0 are not 
 –collapsible either because their heights are
less than or equal to 3.

4 h–regular complexes

Recall that a CW–complex K is regular if for each (open) cell en , the characteristic
map Dn! en is a homeomorphism, or equivalently, the attaching map Sn�1!K

is a homeomorphism onto its image Pen , the boundary of en . In this case, it can be
proved that the closure en of each cell is a subcomplex, which is equivalent to say that
Pen is a subcomplex.

A cell e of a regular complex K is a face of a cell e0 if e � e0 . This will be denoted
by e � e0 . The barycentric subdivision K0 is the simplicial complex whose vertices
are the cells of K and whose simplices are the sets fe1; e2; : : : ; eng such that ei is a
face of eiC1 .

We can define, as in the case of simplicial complexes, the face poset X .K/ of a regular
complex K , which is the set of cells ordered by �. Note that K.X .K//DK0 , which
is homeomorphic to K and therefore X .K/ is a finite model of K , ie it has the same
weak homotopy type as K .

Example 4.1 Figure 3 shows a regular structure for the real projective plane RP2 .
The edges are identified in the way indicated by the arrows. It has three 0–cells, six
1–cells and four 3–cells. Therefore its face poset has 13 points (Figure 4).
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Figure 4

In this section we introduce the concept of h–regular complex, generalizing the notion
of regular complex. Given an h–regular complex K , one can define X .K/ as before.
In general, K and K.X .K// are not homeomorphic. However we prove that X .K/ is
a finite model of K . We also study the relationship between collapses of h–regular
complexes and of finite spaces. The results obtained in this section can be applied to
study collapsibility and homotopy types of complexes with more flexible cell structures
which give rise to finite models with fewer points.

Definition 4.2 A CW–complex K is h–regular if the attaching map of each cell is a
homotopy equivalence with its image and the closed cells en are subcomplexes of K .

In particular, regular complexes are h–regular.

Proposition 4.3 Let K DL[ en be a CW–complex such that Pen is a subcomplex of
L. Then en is contractible if and only if the attaching map 'W Sn�1! Pen of the cell
en is a homotopy equivalence.

Proof Suppose 'W Sn�1! Pen is a homotopy equivalence. Since Sn�1 ,!Dn has the
homotopy extension property, the characteristic map  W Dn! en is also a homotopy
equivalence.
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Suppose now that en is contractible. The map  W Dn=Sn�1! en= Pen is a homeomor-
phism and therefore it induces isomorphisms in homology and, since en is contractible,
by the long exact sequence of homology it follows that '�W Hk.S

n�1/!Hk. Pe
n/ is

an isomorphism for every k .

If n � 3, �1. Pe
n/ D �1.en/ D 0 and by a theorem of Whitehead, ' is a homotopy

equivalence. If n D 2, Pen is just a graph and since '�W H1.S
1/ ! H1. Pe

n/ is an
isomorphism, the attaching map ' is a homotopy equivalence. Finally, if nD 1, since
the cell is contractible, ' is one-to-one and therefore a homeomorphism.

Corollary 4.4 A CW–complex is h–regular if and only if the closed cells are con-
tractible subcomplexes.

Example 4.5 The following are four different h–regular structures for the Dunce hat
which are not regular structures. In each example the edges are identified in the way
indicated by the arrows.

a

a a

b b

b

a

a a

b b

b

c

a

a a

b b

b

c

a

a a

b b

b

c c

c

d

For an h–regular complex K , we also define the associated finite space (or face poset)
X .K/ as the poset of cells of K ordered by the face relation �, like in the regular
case.
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The proof of the following lemma is standard.

Lemma 4.6 Let K [ e be a CW–complex, let  W Dn ! e be the characteristic
map of the cell e and let A be a subspace of Pe . We denote Ce.A/ D f .x/ j x 2

Dn X f0g;  . x
kxk
/ 2Ag � e .

(1) If A� Pe is open, Ce.A/� e is open.

(2) A� Ce.A/ is a strong deformation retract.

Theorem 4.7 If K is a finite h–regular complex, X .K/ is a finite model of K .

Proof We define recursively a weak homotopy equivalence fK W K! X .K/.
Assume fK n�1 W Kn�1! X .Kn�1/� X .K/ is already defined and let x D  .a/ be
a point in an n–cell en with characteristic map  W Dn! en . If aD 0 2Dn , define
fK .x/D en . Otherwise, define fK .x/D fK n�1. . a

kak
//.

In particular note that if e0 2K is a 0–cell, fK .e
0/D e0 2 X .K/. Notice also that if

L is a subcomplex of K , fL D fK jL .

We will show by induction on the number of cells of K , that for every cell e 2 K ,
f �1

K
.Ue/ is open and contractible. This will prove that fK is continuous and, by

McCord’s Theorem [9, Theorem 6], a weak homotopy equivalence.

Let e be a cell of K . Suppose first that there exists a cell of K which is not contained
in e . Take a maximal cell e0 (with respect to the face relation �) with this property.
Then LDKXe0 is a subcomplex and by induction, f �1

L
.Ue/ is open in L. It follows

that f �1
L
.Ue/\ Pe

0 � Pe0 is open and by the previous lemma, Ce0.f
�1

L
.Ue/\ Pe

0/� e0

is open. Therefore,

f �1
K .Ue/D f

�1
L .Ue/[Ce0.f

�1
L .Ue/\ Pe

0/

is open in K .

Moreover, since f �1
L
.Ue/\ Pe

0 � Ce0.f
�1

L
.Ue/\ Pe

0/ is a strong deformation retract,
so is f �1

L
.Ue/� f

�1
K
.Ue/. By induction, f �1

K
.Ue/ is contractible.

In the case that every cell of K is contained in e , f �1
K
.Ue/D e DK , which is open

and contractible.

As an application we deduce that the finite spaces associated to the h–regular structures
of the Dunce hat considered in Example 4.5 are all homotopically trivial. The first one
is a contractible space of 5 points, the second one is a collapsible and non-contractible
space of 13 points and the last two are non-collapsible spaces of 15 points since they
do not have weak points. Here we exhibit the Hasse diagram of the space associated to
the third h–regular structure of the Dunce hat.
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�

555555555

OOOOOOOOOOOOOOOOOOOO �

555555555

SSSSSSSSSSSSSSSSSSSSSSSSSS �

oooooooooooooooooooo

									

555555555 �

									

555555555 �

ooooooooooooooooooo

									

�

444444444

OOOOOOOOOOOOOOOOOOO �

GGGGGGGGGGGGG

SSSSSSSSSSSSSSSSSSSSSSSSS �












OOOOOOOOOOOOOOOOOOO �

wwwwwwwwwwwww

GGGGGGGGGGGGG �

ooooooooooooooooooo

444444444 �

kkkkkkkkkkkkkkkkkkkkkkkkk

wwwwwwwwwwwww
�

ooooooooooooooooooo












b� �a �c

Figure 5: A homotopically trivial non-collapsible space of 15 points.

Example 4.8 Let K be the space which is obtained from a square by identifying all
its edges as indicated.

We verify that K is homotopy equivalent to S2 using techniques of finite spaces.
Consider the following h–regular structure of K

a

ab

b

c
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which consists of three 0–cells, three 1–cells and two 2–cells. The Hasse diagram of
the associated finite space X .K/ is

�

>>>>>>>>>

LLLLLLLLLLLL �

���������

7777777

�

======== �

��������
�ab

�������

7777777

c� �a �b

The 0–cell b is an up beat point of X .K/ and the 1–cell ab is a down beat point of
X .K/X fbg. Therefore K is weak homotopy equivalent to X .K/X fb; abg which is
a (minimal) finite model of S2 (see [2]). In fact X .K/X fb; abg D S0˚S0˚S0 is
weak homotopy equivalent to S0 �S0 �S0 D S2 .

In [3] we proved that a collapse K&L of finite simplicial complexes induces a collapse
X .K/& X .L/ between the associated finite spaces. This is not true when K and L

are regular complexes. Consider LDK.W / the associated simplicial complex to the
Wallet W (see Figure 6), and K the CW–complex obtained from L by attaching a
regular 2–cell e2 with boundary K.fa; b; c; dg/ and a regular 3–cell e3 with boundary
L[ e2 .

�

FFFFFFFFFF a�

xxxxxxxxx

EEEEEEEEE �b

yyyyyyyy

GGGGGGGGG
�

wwwwwwwwww

�

222222

OOOOOOOOOOOOOO �

������

333333 �









8888888 �

ooooooooooooooo

������

c� � �d

Figure 6: W .

Note that the complex K is regular and collapses to L, but X .K/D X .L/[fe2; e3g

does not collapse to X .L/ because yUX .K /Xfe2g

e3 D X .L/ D W 0 is not contractible.
However, one can prove that a collapse K&L between h–regular CW–complexes
induces a 
 –collapse X .K/&
 X .L/.

Theorem 4.9 Let L be a subcomplex of an h–regular complex K . If K&L, then
X .K/&
 X .L/.
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Proof Assume K D L[ en [ enC1 . Then en is an up beat point of X .K/. Since
K&L, enC1&L\ enC1 D PenC1 X en . In particular PenC1 X en is contractible and
then

yC
X .K /Xfeng

enC1 D X . PenC1
X en/

is homotopically trivial. Therefore

X .K/&e X .K/X fen
g &

 X .L/:
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