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Commensurability classes of
.�2 ; 3; n/ pretzel knot complements

MELISSA L MACASIEB

THOMAS W MATTMAN

Let K be a hyperbolic .�2; 3; n/ pretzel knot and M D S3 nK its complement. For
these knots, we verify a conjecture of Reid and Walsh: there are at most three knot
complements in the commensurability class of M . Indeed, if n¤ 7 , we show that
M is the unique knot complement in its class. We include examples to illustrate how
our methods apply to a broad class of Montesinos knots.

57M25

1 Introduction

Two hyperbolic 3–manifolds M1 DH3=�1 and M2 DH3=�2 are commensurable
if they have homeomorphic finite-sheeted covering spaces. On the level of groups,
this is equivalent to �1 and a conjugate of �2 in Isom.H3/ sharing some finite index
subgroup. The commensurability class of a hyperbolic 3–manifold M is the set of all
3–manifolds commensurable with M .

Let M D S3 nK DH3=�K be a hyperbolic knot complement. A conjecture of Reid
and Walsh suggests that the commensurability class of M is a strong knot invariant:

Conjecture 1.1 [11] Let K be a hyperbolic knot. Then there are at most three knot
complements in the commensurability class of S3 nK .

Indeed, Reid and Walsh prove that for K a hyperbolic 2–bridge knot, M D S3 nK is
the only knot complement in its class. This may be a wide-spread phenomenon; by
combining Proposition 5.1 of [11] with the last line of the proof of Theorem 5.3(iv)
of [11], we have the following set of sufficient conditions for M to be alone in its
commensurability class:

Theorem 1.2 Let K be a hyperbolic knot in S3 . If K admits no hidden symmetries,
has no lens space surgery and admits either no symmetries or else only a strong
inversion and no other symmetries, then S3 nK is the only knot complement in its
commensurability class.
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Figure 1: The .�2; 3; n/ pretzel knot

The .�2; 3; n/ pretzel knot, n 2Z, is defined by the diagram in Figure 1. The diagram
determines a knot when n is odd and determines a link otherwise. Moreover, these
knots have complements that are hyperbolic precisely when n¤ 1; 3; 5. In fact, both
this family of knots and the family of 2–bridge knots are part of the larger family of
Montesinos knots. Our main result is the following theorem:

Theorem 1.3 Let K denote a hyperbolic .�2; 3; n/ pretzel knot. The conjecture
of Reid and Walsh holds for K . Moreover, unless n D 7, S3 nK is the only knot
complement in its commensurability class.

This will follow from Theorem 1.2 in the case n ¤ 7. As for the .�2; 3; 7/ pretzel
knot, Reid and Walsh show that there are exactly two other knot complements in the
commensurability class of its complement which correspond to its two lens space
surgeries.

Taking advantage of what is already known about these knots, we can reduce Theorem
1.3 to the following theorem:

Theorem 1.4 A hyperbolic .�2; 3; n/ pretzel knot admits no hidden symmetries.

Indeed, let Kn be the .�2; 3; n/ hyperbolic pretzel knot, ie, n is odd and n¤ 1; 3; 5.
Assuming in addition that n ¤ 7, then Kn admits no nontrivial cyclic surgeries by
work of the second author [9] and, therefore, no lens space surgeries. The .�2; 3; 1/

knot does have symmetries other than a strong inversion, but it is a 2–bridge knot and
is therefore covered by the work of Reid and Walsh [11]. Assuming Kn is a hyperbolic
knot and n ¤ �1, then Kn is strongly invertible and has no other symmetries by
Boileau and Zimmermann [2] and Sakuma [13]. Thus, Theorem 1.3 follows once we
prove Theorem 1.4.
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The main part of this paper, then, is devoted to proving Theorem 1.4. Using work of
Neumann and Reid [10], this comes down to arguing that the invariant trace field of the
.�2; 3; n/ pretzel knot, which we will denote by kn , has neither Q.i/ nor Q.

p
�3/

as a subfield. We will see that it suffices to show this in the case where n is negative.
Indeed, we conjecture the following:

Conjecture 1.5 Let n be an odd, negative integer. Then the .�2; 3; n/ and
.�2; 3; 6� n/ pretzel knots have the same trace field.

Using a computer algebra system, we have verified this conjecture for �49� n��1.
We also provide theoretical support for this conjecture in Remark 3.6 below. Note that
the complements of .�2; 3; n/ and .�2; 3; 6� n/ also share the same volume. This
is stated in Week’s thesis [14] (see also Bleiler and Hodgson [1]) and a new proof by
Futer, Schleimer and Tillman has recently been announced [3]. This suggests that the
.�2; 3; n/ pretzel knots provide an infinite set of examples of pairs of hyperbolic knot
complements that share the same volume and trace field and yet are not commensurable.
Our proof of Theorem 1.4 does not depend on the validity of our conjecture.

The results we have just quoted [2; 9; 13] show that many other Montesinos knots also
have no lens space surgeries and admit, at most, a strong inversion. So, our methods
apply to a large class of Montesinos knots.

Our paper is organised as follows. In the next two sections we review some definitions
and results that are necessary in our arguments; we also present evidence in support of
Conjecture 1.5 and prove Theorem 1.4. The argument comes down to showing that
neither Q.i/ (Section 4) nor Q.

p
�3/ (Section 5) is a subfield of the trace field. In

Section 6, we extend our results to .p; q; r/ pretzel knots and discuss how they apply
to Montesinos knots in general.

2 Hidden symmetries, the trace field and the cusp field

In this section, we explicitly describe the relationship between hidden symmetries of a
hyperbolic knot complement and its trace field. Although some of our definitions will
be phrased in terms of hyperbolic knot complements, they apply to the more general
class of Kleinian groups of finite covolume.

Let S3 nK be a hyperbolic knot complement and �1.S
3 nK/ its fundamental group.

Then S3 nK is homeomorphic to H3=�K , for some discrete torsion free subgroup
�K of IsomC.H3/ D PSL2.C/. By the Mostow–Prasad Rigidity Theorem, �K is
unique up to conjugacy if K is hyperbolic and has finite volume. Since �1.S

3 nK/
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is a knot group, the isomorphism from �1.S
3 nK/ onto �K lifts to an isomorphism

�0W �1.S
3 nK/! SL2.C/, which is usually called the discrete faithful representation

of �1.S
3 nK/. We will now abuse notation and identify �1.S

3 nK/ with its image
�K � .P/SL2.C/ via the discrete faithful representation.

The commensurator of a Kleinian group � � PSL2.C/ of finite covolume is the group

C.�/D fg 2 Isom.H3/ W j W \ g�1gj<1g:

If CC.�/ denotes the subgroup of orientation-preserving isometries of C.�/, then K

is said to have hidden symmetries if CC.�/ properly contains the normalizer of � in
PSL2.C/.

Recall that the trace field of � , Q.ftr  W  2�g/, is a simple extension of Q. However,
in order to get an invariant of the commensurability class of � , one must pass to the
subfield k� D Q.ftr  2 W  2 �g/, known as the invariant trace field. In the case
� D �K corresponds to the fundamental group of a hyperbolic knot complement, these
two fields coincide. Moreover, after conjugating, if necessary, one can arrange that a
peripheral subgroup of � has the form� �

1 1

0 1

�
;

�
1 g

0 1

� �
:

The element g is called the cusp parameter of � and the field Q.g/ is called the
cusp field of � . One can show that g 2 k� (see for example [10, Proposition 2.7]).
Therefore, the cusp field is a subfield of the trace field.

The following corollary of [10, Proposition 9.1] relates the existence of hidden symme-
tries of K to the cusp field of � :

Corollary 2.1 [11] Let K be a hyperbolic knot with hidden symmetries. Then the
cusp parameter of S3 nK lies in Q.i/ or Q.

p
�3/.

Therefore, in order to prove that K has no hidden symmetries, it suffices to show that
the trace field k� contains neither Q.i/ nor Q.

p
�3/.

3 The trace field of the .�2 ; 3; n/ pretzel knot

In this section we determine the trace field kn of the .�2; 3; n/ pretzel knot, prove
Theorem 1.4, and provide evidence in support of Conjecture 1.5.
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Let Kn denote the .�2; 3; n/ pretzel knot. As above, we’ll assume n is odd and
n¤ 1; 3; 5 so that Kn is a hyperbolic knot. As described in the previous section, there
is a discrete faithful .P/SL2.C/–representation �0 of the knot group

�1.S
3
nKn/Š hf;g; h j hf hg D f hgf;gf .hg/.n�1/=2

D f .hg/.n�1/=2hi

where the generators f , g and h are as indicated Figure 1.

To determine the trace field, we’ll need to describe the parabolic representations � of
�1.S

3 nKn/. The generators f , g , h must be mapped to conjugate elements of trace
two. Thus, after an appropriate conjugation in SL2.C/, we may assume (cf [12])

(1) �.f /D

�
1�uv �v2

u2 1Cuv

�
; �.g/D

�
1 0

w 1

�
and �.h/D

�
1 �1

0 1

�
:

Taking the trace of �.hf hg/� �.f hgf /, we have .u� v � 1/.u� vC 1/w D 0. If
w D 0, the representation will not be faithful, so we must have uD v˙ 1. As either
choice will lead to the same field kn , we’ll set uD vC 1. Then the upper left entry
of �.hf hg/ � �.f hgf / becomes v2.vw � .v C 1/.v C 2//. Again, v D 0 would
mean � is not faithful (for example, it would follow that �.Œf;g�/D I ), so we can set
w D .vC 1/.vC 2/=v . Then an induction argument shows that �.gf .hg/.n�1/=2/�

�.f .hg/.n�1/=2h/ is of the form

pn

v.jnjC1/=2

�
0 v

.1C v/.2C v/ v.1C v/

�
where the polynomial pn is defined by the following recurrences: If n is odd and
negative,

p�1 D v
3
C 2v2

C vC 1

p�3 D�.v
5
C 3v4

C 4v3
C 5v2

C 4vC 2/

pn D�..v
2
C vC 2/pnC2C v

2pnC4/ for n< �3;

while if n is odd and at least 7,

p7 D�.v
3
C 2v2

C 8vC 8/

p9 D v
5
C 4v4

C 10v3
C 16v2

C 24vC 16

pn D�..v
2
C vC 2/pn�2C v

2pn�4/ for n> 9:

It follows that the discrete faithful representation of �n corresponds to setting v equal to
a root ˛n of (some irreducible factor of) pn . Moreover, the trace field is kn DQ.˛n/.

An easy induction shows that, for odd, negative n, pn.v/D v
2�n2.nC1/=2p6�n.2=v/.

This shows that both kn and k6�n correspond to factors of the same polynomial.
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Therefore, our arguments to show that kn contains neither Q.i/ nor Q.
p
�3/ as a

subfield for n negative will also hold for n� 7. This is why we can restrict our attention
to the case where n is negative.

Before proving Theorem 1.4 we introduce another family of polynomials under the
assumption that n is odd and negative:

q�1 D w
3
�w2

C 2w� 7

q�3 D w
5
� 2w4

� 2w3
C 5w2

C 3w� 9

q�5 D w
7
� 2w6

� 4w5
C 8w4

C 4w3
� 7w2

C 2w� 7

qn D .w
2
� 1/.qnC2� qnC4/C qnC6 for n< �5:

As the following lemma shows, these polynomials are related to the polynomials pn

defined above by letting w D 2� .vC 1/.vC 2/=v .

Lemma 3.1 Let n be a negative, odd integer. Then

qn.w/D
pn.v/p6�n.v/

v2�n

where w D 2� .vC 1/.vC 2/=v .

Proof It is easy to verify the equality for nD�1, �3, �5. Let n< �7. Under the
substitution w D 2� .vC 1/.vC 2/=v , w2 � 1 becomes .v2C 2vC 2/.v2C 2/=v2 .
Thus, using induction,

qn.w/D qn .2� .vC 1/.vC 2/=v/

D
.v2C 2vC 2/.v2C 2/

v2

�
pnC2p6�.nC2/

v2�.nC2/
�

pnC4p6�.nC4/

v2�.nC4/

�
C

pnC6p6�.nC6/

v2�.nC6/

D
1

v2�n
..v2
C vC 2/pnC2C v

2pnC4/

� ..v2
C vC 2/p6�.nC2/C v

2p6�.nC4//

D
pn.v/p6�n.v/

v2�n
:

This shows that kn D Q.˛n/ Š Q.ˇn/, where ˛n and ˇn are roots of pn and qn ,
respectively.

In the next two sections we will prove the following two propositions using the poly-
nomials pn and qn defined above. As we have mentioned above, because of the
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connection between the pn with n negative and with n positive, it will suffice to make
the argument in the case that n is a negative, odd integer.

Proposition 3.2 Let Kn denote the .�2; 3; n/ pretzel knot with trace field kn where
n is odd and negative. Then Q.i/ is not a subfield of kn .

Proposition 3.3 Let Kn denote the .�2; 3; n/ pretzel knot with trace field kn where
n is odd and negative. Then Q.

p
�3/ is not a subfield of kn .

Assuming these two results, we can prove Theorem 1.4.

Proof of Theorem 1.4 Let Kn denote the .�2; 3; n/ pretzel knot with n odd and kn

its trace field. By assumption Kn is hyperbolic, so n ¤ 1; 3; 5 and by the remarks
above it suffices to consider n< 0. It follows from the preceding two propositions that
kn contains neither Q.i/ nor Q.

p
�3/ if n< 0. Therefore, by Corollary 2.1, Kn has

no hidden symmetries for all n¤ 1; 3; 5.

As for Conjecture 1.5, it would follow from the following:

Conjecture 3.4 If n is odd and negative, then pn and qn are irreducible.

We have verified Conjecture 3.4 for �49� n��1, using a computer algebra system.
The conjecture has two other important consequences.

Remark 3.5 If we could prove Conjecture 3.4 for every n, we could immediately
deduce that kn has no Q.i/ nor Q.

p
�3/ subfield. Indeed, as these polynomials have

odd degree, kn would then be an odd degree extension of Q and therefore would admit
no quadratic subfield.

Remark 3.6 Conjecture 3.4 would imply that the trace field of the .�2; 3; n/ (and
.�2; 3; 6�n/) pretzel knot has degree 2�n. This agrees with an observation of Long
and Reid [8, Theorem 3.2] that the degree of the trace fields of manifolds obtained
by Dehn filling a cusp increases with the filling coefficient. (Hodgson made a similar
observation. See also Hoste and Shanahan [5], especially Corollary 1 and the Question
that follows it.)
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4 Q.i / is not a subfield of kn

In this section, we prove Proposition 3.2. Our main tool is the recursion defining
the polynomials qn 2 ZŒw� (n negative, odd) and their reduction modulo 2l , for l a
positive integer.

Proposition 4.1 Let qn 2 ZŒw� be as described in the previous section. Then

qn.w/� .wC 1/e
mY

iD2

gi.w/ mod 2;

where the gi are relatively prime and deg gi � 2 for all 2� i �m and e D 0 (resp. 2)
if 3 − n (resp. 3 j n).

Proof The recursion relation gives

q0n � .wC 1/2.q0nC2� q0nC4/C q0nC6 mod 2:

By induction, one can show that qn�wq0n� .wC1/2 mod 2. Therefore, gcd.qn; q
0
n/�

gcd.q0n; .wC 1/2/� 1; .wC 1/; or .wC 1/2 mod 2. Also, by induction, .wC 1/ is
a factor of q0n mod 2 if and only if .w C 1/ is a factor of q0

nC6
mod 2. When n

is not a multiple of 3, by definition of q�1 , q�3 and q�5 , .1Cw/ is not a factor
of q0n and so gcd.qn; q

0
n/ � 1 mod 2. This shows that qn mod 2 has no repeated

factors in the case 3 − n. When n is a multiple of 3, .wC 1/ is a factor of q0n and
gcd.qn; q

0
n/� .wC1/f mod 2, where f � 2. Suppose that 3 j n. Let e be the greatest

integer such that .wC1/e divides qn mod 2. If e> 3, then .wC1/3 divides q0n mod 2,
which implies gcd .qn; q

0
n/ is divisible by .wC 1/3 mod 2, which is a contradiction.

Therefore, e D 2 or 3. By induction, .w2� 1/ divides .q6k�1� q6kC1/. Therefore,
.wC 1/3 divides q6kC3 mod 2 if and only if .wC 1/3 divides q6k�3 mod 2. Since
.wC 1/3 does not divide q�3 mod 2, it is not a factor for any qn mod 2 where 3 j n.
Lastly, by induction, qn.0/� 1 mod 2 for all n. This shows that w is not a factor of
qn mod 2 which implies deg gi � 2 for all 2� i �m.

Our proof will also require the following standard facts about the reduction of polyno-
mials modulo primes and the factorization of ideals in number fields (for example, see
Koch [7, Sections 3.8 and 4.8]).

Theorem 4.2 Let f .x/ 2 ZŒx� be an irreducible monic polynomial, ˛ a root and
k DQ.˛/ with ring of integers Ok . Let dk denote the discriminant of k and �.˛/
the discriminant of f . Let p be a rational prime and xf the reduction of f modulo p .
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(i) xf decomposes into distinct irreducible factors if and only if p does not divide
�.˛/.

(ii) Suppose that p does not divide �.˛/d�1
k

and xf D xf1
e1
� � � xfm

em . Then pOk D

Pe1

1
� � �Pem

m .

(iii) Let P1; � � � ;Pm be the prime divisors of p in Ok with ramification indices
e1; � � � ; em , let kPi

be the completion of k with respect to the valuation vi D

e�1
i vPi

, and let Qp denote the completion of Q with respect to the valuation vp .
Then the ramification index of kPi

over Qp is equal to the ramification index of
Pi over p in k=Q.

We also require the following two lemmas in our proof.

Lemma 4.3 Let g.w/ 2 ZŒw� be an irreducible monic polynomial, ˛ a root and
k D Q.˛/ with ring of integers Ok . Let xg denote the reduction of g modulo 2.
Suppose further that

xg D xg1
2

mY
iD2

xgi ;

where xgi are relatively prime with deg xg1 D 1 and deg xgi � 2 for 2 � i �m. Then
either

2Ok D P1 � � �PmC1 or 2Ok D P2
1P2 � � �Pm:

Proof If the factorization of g mod 2 corresponds to the factorization of 2Ok , then we
are done. If not, then using Theorem 4.2 (iii) and Hensel’s lemma, we can determine the
factorization of 2Ok using the 2–adic factorization of g . Since the residue class Z=2Z
is finite, the decomposition of g into irreducible factors over Q2 can be accomplished
in finitely many steps. Consider the square-free part of g mod 2. Then g mod 2l is
square-free for all l � 2. To see this, suppose that g�u2q D 2lC1h for some integer
l > 1 and polynomials u; q; h 2 ZŒw�. Then g � u2q D 2.2lh/ would imply that
g mod 2 is not square-free, which is a contradiction. Also, by the same argument, the
square-free part of g mod 2l will have no linear factors when l > 1. In fact, each factor
of the square-free part of g mod 2l corresponds to exactly one factor of the square-free
part of g mod 2. This shows that for each i , 2 � i � m, there is a unique prime
Pi dividing 2 in Ok corresponding to the factor xgi . Moreover, Pi has ramification
index ei D 1 for 2 � i � m. Now, there are two possibilities for the prime ideals
in the factorization of the ideal 2Ok corresponding to the factor g1 mod 2. If xg1

2

remains a square mod 2l for all l , then 2 is ramified and this corresponds to a factor
P2

1
appearing in the factorization of 2Ok . If xg1

2 factors into distinct irreducible linear
factors mod 2l for large enough l , then 2 is not ramified and there are two distinct
prime ideals corresponding to the two factors. This finishes the proof.
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Lemma 4.4 The polynomial qn has no quadratic factor that reduces to .w C 1/2

mod 2.

Proof A quadratic monic polynomial f such that f � .wC1/2 mod 2 has the form
f .w/Dw2C2awC.2bC1/ for some integers a; b . (Since qn is monic, we can assume
f is as well.) The polynomial f has discriminant 4.a2� 2b� 1/, so if kn DQ.i/ is
defined by f , then a2�2b�1D�d2 , for some nonzero integer d . One can prove by
induction that qn.2/D1: This implies that f .2/D˙1: If f .2/D�1D4C4aC2bC1,
then bD�2a�3: But this implies that �d2D a2C4aC5D .aC2/2C1� 1, which
is a contradiction. If f .2/D 1, then b D �2a� 2 and �d2 D .aC 3/.aC 1/. This
implies aD�2 and bD 2, and so f .x/Dw2�4wC5. But this gives a contradiction
as 5 does not divide qn.0/ which is either �7 or �9:

Proof of Proposition 3.2 Let �0 denote the parabolic representation of �1.S
3 nKn/

corresponding to the discrete faithful representation conjugated to be in the form as
described in Equation (1) of the previous section and let ƒn.w/ be the irreducible
factor of qn.w/ giving the representation corresponding to the complete structure.
Denote the image group by �n . Then the trace field kn D k�n DQ.ˇn/ corresponds
to some root ˇn of the polynomial ƒn.w/.

If 3 − n, then by Proposition 4.1, ƒn.w/ has distinct factors modulo 2. Therefore, by
Theorem 4.2, 2 does not divide the discriminant �.ˇn/ of ƒn.w/. Since the discrimi-
nant dkn

of Q.ˇn/ divides �.ˇn/, it follows that 2 does not divide the discriminant
of kn . Since the discriminant of Q.i/ is -4, Q.i/ cannot be a subfield of kn . This
follows from standard facts about the behavior of the discriminant in extensions of
number fields (see Koch [7, Chapter 3], for example.)

In the case 3 j n, there are two situations by Lemma 4.3. Let Okn
denote the ring of

integers in kn . If there is no ramified prime ideal in Okn
dividing 2 in Okn

, then the
argument follows as above. If there is such a prime, then

2Okn
D P2

1P2 � � �Pm:

is the prime factorization of 2 in Okn
. We will suppose that Q.i/ � kn and derive

a contradiction. Now, the ring of integers of Q.i/ is ZŒi �; moreover, the prime
factorization of 2 in ZŒi � is Q2 , where QD .1C i/ZŒi �. Since ZŒi ��Okn

, it follows
that 2 divides the ramification index ej of each prime ideal Pj dividing 2 in Okn

. If
knDQ.i/ then ƒn is quadratic, but by Lemma 4.4 ƒn 6� .wC1/2 mod 2. Therefore,
ƒn mod 2 has at least one factor corresponding to a prime P dividing 2 such that P2

does not divide 2. This gives the desired contradiction.
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5 Q.
p
�3/ is not a subfield of kn

In this section, we prove Proposition 3.3. Unless otherwise indicated, we will use “�”
to denote equivalence mod 3 throughout this section, although this reduction may occur
in different rings.

The argument that there is no Q.
p
�3/ subfield breaks into two cases as it is convenient

to use qn when 3 j n and pn otherwise.

5.1 Case 1

Let n be negative and odd with 3 j n and let qn 2 ZŒw� be the polynomials defined in
Section 3.

Proposition 5.1 Let n� 0 mod 3. If n� 3 mod 4, then w does not divide qn mod 3.
If n� 1 mod 4, then w2 divides qn mod 3 but w3 does not.

Proof By induction, the constant term of qn is �7 if n� 3 mod 4 and �9 if n� 1

mod 4. So, if n� 3 mod 4, w does not divide qn mod 3.

To see that w2 divides qn for n� 1 mod 4, note that, by induction, for such an n, w2

divides
qnC2� qnC6 D .w

2
� 1/qnC4C qnC8Cw

2qnC6

since nC 4 and nC 8 are also 1 mod 4. It follows that w2 divides

qn D w
2qnC2� .w

2
� 1/qnC4� .qnC2� qnC6/:

Finally, we can argue that w3 does not divide qn by noting that the w2 coefficient of
qn is never 0 mod 3. Let qn;k denote the coefficient of wk in qn . Then

qn;2 D�qnC2;2C qnC4;2C qnC6;2C qnC2;0� qnC4;0:

We have already mentioned that the constant coefficients qnC2;0 and qnC4;0 are either
�7 or �9. So, we have a simple recursion for the w2 coefficients which shows that
they cycle through the values 2; 2; 2; 1; 1; 1; 2; 2; 2; 1; 1; 1; : : : modulo 3.

Using the substitution w D x C x�1 , we can derive a closed form for a sequence
of Laurent polynomials related to qn . Letting rn.x/ D qn.x C x�1/ and using the
recursion relation for qn , one can establish that rn.x/D f.3�n/=2.x/ where

fk D x
�
x2k
Cx3

C 4x2
� 8C 4x�2

Cx�3
Cx�2k

�
=.xC 1/2:
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(We thank Frank Calegari, Ronald van Luijk and Don Zagier for help in determining this
closed form.) In the ring ZŒw�Œx�=.x2�wxC1/ŠZŒx;x�1�, we have wD xCx�1 .
(Note that deg .xdeg qnrn.x// D 2 deg qn , ie, the polynomial xdeg qnrn 2 ZŒx�, or
equivalently the numerator of f.3�n/=2 , indeed defines a quadratic extension of kn:)
However, it will be more convenient to work with the Laurent polynomials fk in the
ring ZŒx;x�1; .xC1/�1��ZŒw�. Since 0 and 1 are not roots of qn , it suffices to look
at the reduction of qn modulo 3 in this ring.

Lemma 5.2 If 3 j n, then

qnC2� qnC4C .w
2
� 1/.q0nC2� q0nC4/� 0:

Proof Working modulo 3, we have that

fk � x.xC 1/�2
�
.xk
�x�k/2Cx3

Cx2
CxCx�2

Cx�3
�

dfk

dx
� .�xC 1/.xC 1/�3.xk

�x�k/2� k.xC 1/2.x2k
�x�2k/and

�x� 1Cx�2
Cx�3:

Moreover, r 0n D
drn

dw
D

drn

dx

dx

dw
D

x2

x2� 1

df.nC3/=2

dx
:

This gives .x2
C 1Cx�2/r 0n � .x

2
C 1/

df.nC3/=2

dx
:

So, if 3 j n, after applying the substitution wD xC1=x and using the above formulas,
we get

qnC2� qnC4C.w
2
� 1/.q0nC2� q0nC4/

D rnC2� rnC4C .x
2
C 1Cx�2/.r 0nC2� r 0nC4/

� f.3�.nC2//=2�f.3�.nC4//=2

C .x2
C 1/

�
df.3�.nC2//=2=dx� df.3�.nC4//=2=dx

�
� .xC 1/�2

�
.x�.nC1/

CxnC1
�x1�n

�xn�1/.x2
C 1/

C .x2
� 1/.x1�n

�xn�1
�xnC1

Cx�.nC1//
�
� 0:

Lemma 5.3 When 3 j n,
qn� .1�w/q

0
n ��w:
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Proof Since qn D .w
2� 1/.qnC2� qnC4/C qnC6 , then

q0n ��w.qnC2� qnC4/C .w
2
� 1/.q0nC2� q0nC4/C q0nC6:

Using the previous lemma we have qn � .1�w/q
0
n � qnC6 � .1�w/q

0
nC6

and the
proof follows by induction.

Lemma 5.4 Let 3 j n and n� 1 mod 4. There is no quadratic factor of qn that reduces
to w2 mod 3.

Proof We’ve seen that the constant term of qn is �9. So the constant term of such a
quadratic factor is ˙3 or ˙9. Since qn is monic, we can assume that such a factor is
as well. So, if such a factor exists, it’s of the form w2C3awCb where b 2 f˙3;˙9g.

Now, by induction, qn.2/D 1, for all n. So, the quadratic factor must evaluate to ˙1

when wD 2. This shows that the factor is one of the following: w2�3wC3, w2�3,
w2� 6wC 9, or w2C 3w� 9.

We can also argue, by induction, that qn.1/D�4 when 3 j n and n� 1 mod 4. So, the
quadratic factor must divide 4 when wD 1 is substituted. This eliminates w2C3w�9

as a candidate.

Similarly, the requirement that qn.�1/ D �8 leaves only w2 � 3 as a candidate.
However, an induction argument shows that qn.

p
3/D �12C 6

p
3 when 3 j n and

n� 1 mod 4. So, w2� 3 is also not a quadratic factor. Thus, as required, qn has no
quadratic factor that reduces to w2 mod 3.

We now have the ingredients to prove the following:

Proposition 5.5 Let Kn denote the .�2; 3; n/ pretzel knot with trace field kn . Sup-
pose further that 3 j n. Then Q.

p
�3/ is not a subfield of kn .

Proof As in the proof of Proposition 3.2, let �0 denote the parabolic representation
of �1.S

3 n Kn/ corresponding to the discrete faithful representation, ƒn.w/ the
irreducible factor of qn.w/ corresponding to this representation, and �n the image
group. Then kn D k�n DQ.ˇn/. By Lemma 5.3, the gcd of qn and q0n modulo 3 is
either 1 or w .

Since w is not a factor of qn when n� 3 mod 4, it follows that qn and q0n have no
common factors modulo 3 in case both n� 3 mod 4 and 3 j n. Therefore, ƒn has
distinct irreducible factors mod 3 and, by Theorem 4.2, we conclude that 3 doesn’t
divide the discriminant of kn so that Q.

p
�3/ cannot be a subfield of kn when

n� 3 mod 4.
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On the other hand, if 3 j n and n� 1 mod 4, then by Proposition 5.1 and Lemma 5.3,
we deduce that the gcd of qn and q0n is w and moreover that

qn � w
2

mY
iD2

gi.w/;

where the gi are relatively prime and irreducible. Since 3 is the unique ramified
prime in the extension Q.

p
�3/jQ and 2 is the unique ramified prime in the extension

Q.i/jQ and since these fields are both quadratic imaginary, we can apply the same
argument used for the case 3 j n in the proof of Proposition 3.2 replacing Lemma 4.4
with Lemma 5.4.

5.2 Case 2

Let n be negative and odd with 3 − n and let pn 2 ZŒv� be the polynomials defined in
Section 3. We will argue that pn has no repeated roots modulo 3. It will then follow
from Theorem 4.2 that 3 does not divide the discriminant of the trace field kn so that
Q.
p
�3/ cannot be a subfield.

A straightforward induction shows that the following is a closed form for pn modulo 3:

(2) pn �
�
.aC b/k � .a� b/k � .aC b/kC2

C .a� b/kC2
�
=.vb/

where aD .v2C v� 1/, b2 D .v2� 1/.v2� v� 1/ and k D .1� n/=2. This formula
requires a little interpretation. First, note that it can be rearranged as

(3) pn �
�1

v

 X
1�i�k

i odd

�
k

i

�
ak�ibi�1

�

X
1�i�kC2

i odd

�
kC 2

i

�
akC2�ibi�1

!
:

This shows that pn D v
�1gn , where gn 2 ZŒv�. Furthermore, the constant term of pn

is 2�.nC1/=2 , so that v is not a factor of pn modulo 3. Therefore, gn ��vpn where

(4) gn D
�
.aC b/k � .a� b/k � .aC b/kC2

C .a� b/kC2
�
=b:

Thus, our goal is to argue that gn has no repeated factors modulo 3. Let F3 Š Z=3Z
denote the field of three elements and fix an algebraic closure xF3 . We will take
advantage of the fact that f;g 2 F3Œv� have a common factor if and only if f and g

have a common root in xF3 . For the sake of convenience, we will often use the same
symbol, gn , a, etc. to represent both the polynomial in ZŒv� and its reduction mod 3

in F3Œv�.

We first examine when a or b2 can have common factors with gn .
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Lemma 5.6 The polynomials b2 and gn in F3Œv� have no common factor.

Proof By induction (using the recurrence given in Section 3), pn.1/ � �1 and
pn.�1/� .�1/�.nC1/=2 for all odd and negative n. So neither vD 1 nor vD�1 is a
root of pn and, hence, neither .v� 1/ nor .vC 1/ is a factor of gn in F3Œv�.

Using the form of pn given by Equation (3) and evaluating at a root v0 of .v2�v�1/

(ie, working in xF3 ), the powers of b2 become zero and we’re left with gn.v0/ �

ak�1.a2�1/� ak�1v0.v0C1/.v0�1/. But, at a root v0 of .v2�v�1/, a becomes
�v0 . Since neither 0 nor ˙1 is a root of v2� v� 1, gn.v0/ 6� 0. Thus, .v2� v� 1/

also has no common factor with gn in F3Œv�.

Lemma 5.7 The irreducible polynomial aD v2Cv�1 is a factor of gn mod 3 if and
only if n� 1 mod 4. However, it is never a repeated factor.

Proof That a is a factor of pn (hence of gn ) if and only if n � 1 mod 4 is easily
verified by induction. (Note that a � v2 C v C 2 appears as part of the recursion
equation.)

Suppose n� 1 mod 4 (so that k is even) and write gn as a sum:

gn D

� X
1�i�k

i odd

�
k

i

�
bk�1�iai

�

X
1�i�kC2

i odd

�
kC 2

i

�
bkC1�iai

�

D�a3
X

i�3; odd

��
k

i

�
bk�1�iai�3

�

�
kC 2

i

�
bkC1�iai�3

�
� abk�2.1� b2/:

Thus, a2 and gn share a factor in F3Œv� only if a and bk�2.1� b2/ do.

If a and bk�2.1�b2/ have a common factor, then a shares a root in xF3 with bk�2 or
.1�b2/��v.v3�v2CvC1/. However, if v0 is a root of a, then v0¤˙1 because
a.1/D 12C 1� 1D 1¤ 0 and a.�1/D�1¤ 0. Also, at a root v0 of a, v2

0
� v0� 1

becomes v0 which is not zero since a.0/D�1¤ 0. So, at a root of a, the factor bk�2

is not zero.

As for .1�b2/, evaluated at a root v0 of a, v3
0
�v2

0
Cv0C1� v0�1. Thus neither this

factor of .1� b2/ nor the other factor, v , is zero at v0 , since, again, v0 ¤ 0; 1. Thus,
.1� b2/ and a also share no root. It follows that a2 does not divide gn modulo 3.

Proposition 5.8 Let n be odd and negative with 3 − n. Then gn and g0n have no
common factor in F3Œv�.
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Proof Suppose, for a contradiction, that gn and g0n have a common factor in F3Œv�.
Then they will have a common root v0 2

xF3 . As we have noted, v is not a factor of
pn , so, it is not a common factor of gn and g0n . Thus, v0 ¤ 0, and Lemma 5.6 and
Lemma 5.7 show that v0 is not a root of a or any factor of b2 . In particular, v0 ¤˙1.

Most of our calculations in this proof will take place in xF3 and we will frequently
evaluate polynomials at v0 to get a value in xF3 . To facilitate our calculations, we fix a
square root of b2.v0/ and call it b . Since v0 is not a root of b2 , b is not zero.

Note that .aCb/k � .a�b/k is not zero at vD v0 . For otherwise, evaluated at v0 , we
would have .aCb/k D .a�b/k . On the other hand, since v0 is a zero of gn , we have
also that .aC b/kC2 � .a� b/kC2 D 0, or, equivalently, .aC b/kC2 D .a� b/kC2

when v D v0 . It follows that, either both .aC b/k and .a� b/k are zero at v0 , or
else, .aC b/2 D .a� b/2 when evaluated at v0 . Now, if .aC b/2 D .a� b/2 , we
deduce that ab is zero at v0 , a contradiction. On the other hand, if both .aC b/k and
.a� b/k are zero, then aC b and a� b are too, which again implies v0 is a root of a,
a contradiction.

Now, at v D v0 , we can write

gn D
�
.aC b/k � .a� b/k � .aC b/k.aC b/2C .a� b/k.a� b/2

�
=b

�
�
.aC b/k.1� a2

� b2
C ab/� .a� b/k.1� a2

� b2
� ab/

�
=b

� .v0C 1/3.v0� 1/
�
.aC b/k � .a� b/k �=bC aŒ.aC b/k C .a� b/k

�
:

Thus, evaluating at v0 , we will have

�b
.aC b/k C .a� b/k

.aC b/k � .a� b/k
D .v0C 1/3.v0� 1/=a:

Since k D .1� n/=2 in Equation (2), we can assume that k � 0 or 1. Our goal is to
derive a contradiction in both cases.

Suppose first that k � 0. Then the derivative is

g0n ��gn.b
0=b/C

�
k.aC b/k�1.a0C b0/� k.a� b/k�1.a0� b0/

� .kC 2/.aC b/kC1.a0C b0/C .kC 2/.a� b/kC1.a0� b0/
�
=b

�

�
gn.v

3
� vC 1/C .vC 1/3b

�
.aC b/k � .a� b/k

�
C.v5

C v4
C v� 1/

�
.aC b/k C .a� b/k

��
=b2

where the first line suggests an algebraic means of deriving the formula given in the
second line. Again, the b2 in the denominator of the second line is only there for the
sake of presenting a simple formula; it cancels to leave a polynomial g0n 2 F3Œv�.
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As above, we may assume that we are evaluating these expressions at a common zero
v0 of gn and g0n , which is not a zero of vC 1 nor of .aC b/k � .a� b/k . It follows
that the factor v5C v4C v� 1 is also not zero at v0 . So, at v0 we have

�b
.aC b/k C .a� b/k

.aC b/k � .a� b/k
D

b2.v0C 1/3

v5
0
C v4

0
C v0� 1

:

Comparing our two expressions for

�b
.aC b/k C .a� b/k

.aC b/k � .a� b/k

we see that
.v0� 1/.v5

0 C v
4
0 C v0� 1/D ab2

) v0C 2D 0:

So, the only possibility for a common zero is v0 D�2� 1. However, we have already
noted that v0 ¤ 1. The contradiction completes the argument in the case k � 0.

The argument for the k � 1 case is similar. That is, at a zero v0 of gn we deduce

�b
.aC b/k�1C .a� b/k�1

.aC b/k�1� .a� b/k�1
D
.v0C 1/.v0� 1/2.v2

0
C v0� 1/

v3
0
� v2

0
C v0C 1

;

while, at a common zero of gn and g0n , we must have

�b
.aC b/k�1C .a� b/k�1

.aC b/k�1� .a� b/k�1
D
.v0� 1/b2

v3
0
� v0C 1

:

Equating these two expressions we find that the common zero v0 is 0 or ˙1. This
contradicts our earlier observation that v0 cannot take any of these values.

Proposition 5.9 Let Kn denote the .�2; 3; n/ pretzel knot with trace field kn . Sup-
pose further that 3 − n. Then Q.

p
�3/ is not a subfield of kn .

Proof As in the proof of Proposition 5.5, let �0 denote the discrete faithful rep-
resentation of �1.S

3 n Kn/, let ƒn.v/ be the irreducible factor of pn giving the
representation corresponding to the complete structure, and �n the image group. Then
kn D k�n DQ.˛n/ for some root ˛n of ƒn .

Since, by Proposition 5.8, gn and g0n have no common factors in F3Œv�, gn has distinct
irreducible factors modulo 3. Since v is not a factor of pn and gn � vpn , it follows
that pn and, therefore, ƒn also have distinct irreducible factors modulo 3. By Theorem
4.2, 3 does not divide the discriminant of kn so that Q.

p
�3/, having discriminant

�3, cannot be a subfield.
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Proof of Proposition 3.3 This follows immediately from Proposition 5.5 and Propo-
sition 5.9.

6 Commensurability classes of Montesinos knots

Let K be a hyperbolic Montesinos knot and M DS3nK its complement. According to
Theorem 1.2, we can ensure that M is the only knot complement in its commensurability
class by showing that K enjoys the following three properties.

(1) K has no lens space surgeries.

(2) Either K has no symmetries, or it has only a strong inversion and no other
symmetries.

(3) K admits no hidden symmetries.

The first two properties are well understood. According to [9], K has no nontrivial
cyclic, and hence no lens space, surgeries unless K is the .�2; 3; 7/ pretzel knot or
K is of the form M.x; 1=p; 1=q/ with x 2 f�1˙1=2n;�2C1=2ng and n, p and q

positive integers. (No examples of a M.x; 1=p; 1=q/ knot with a lens space surgery are
known, but it remains an open problem to show that there are none.) As for the second
property, the symmetries of Montesinos knots are classified in [2; 13]. The symmetry
group can become quite large. For example, the Montesinos knots include the 2–bridge
knots analysed by Reid and Walsh [11] and a significant part of their paper is devoted
to a study of the symmetry groups of those knots, which can be as big as D4 . For
Montesinos knots in general, the groups may be even larger. For example, the .3; 3; 3/
pretzel knot has D6 as its symmetry group. However, Boileau and Zimmermann [2,
Theorem 1.3] and Sakuma [13, Theorem 6.2] have shown that the symmetry group of
a Montesinos knot is often simply Z=2Z.

Thus, for a broad class of Montesinos knots, understanding the commensurability class
comes down to understanding hidden symmetries. For example, if we restrict to the
class of three tangle pretzel knots, we have the following:

Theorem 6.1 Let K be a .p; q; r/ pretzel knot with jpj; jqj; jr j > 1, fp; q; rg 62
ff�2; 3; 5g; f�2; 3; 7gg, and exactly two of p; q; r odd with those two unequal. If K

has no hidden symmetries, then S3 nK is the only knot complement in its commensu-
rability class.

Proof The conditions on p; q; r ensure that K is a hyperbolic knot [6] with a strong
inversion. By [2, Theorem 1.3] and [13, Theorem 6.2], K has no other symmetries.
By [9, Theorem 1.1], K has no lens space surgery. So, if in addition K has no hidden
symmetries, then by Theorem 1.2, S3nK is the unique knot complement in its class.
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For pretzel knots up to ten crossings, we can show the following:

Theorem 6.2 Let K be a .p; q; r/ pretzel knot with p; q; r as in Theorem 6.1 and with
at most ten crossings. Then S3nK is the only knot complement in its commensurability
class.

Remark 6.3 Using the computer software Snap we can extend this to twelve crossings;
according to Goodman, Heard and Hodgson [4], none of the pretzel knots of the type
described in Theorem 6.1 with twelve or fewer crossings has a hidden symmetry. This
means that our theorem follows from [4]. We include our proof as it gives a direct
argument in the case of ten or fewer crossings as opposed to their more general approach
which relies on a sophisticated computer program.

Proof By Theorem 1.3, the theorem holds if K is a .�2; 3; n/ pretzel knot. The only
other candidates of ten or fewer crossings are .2; 3; 5/ (1046 in the tables), .2; 3;�5/

(10126 ) and .�3; 3; 4/ (10140 ). We will show that each of these three has no hidden
symmetries by demonstrating that the trace field has no Q.i/ nor Q.

p
�3/ subfield.

Indeed, in each case we will show that the trace field is an odd degree extension of Q
and, therefore, admits no quadratic subfield.

The .2; 3; 5/ pretzel knot has fundamental group

�2;3;5 Š hf;g; h j hf hfg�1
D f hfg�1f;gf �1ghghg D f �1ghghghi

and we can use the same parametrisation of the parabolic SL2.C/–representations
as in Equation (1). Then the lower right entry of �.hf hfg�1/ � �.f hfg�1f / is
v
�
u.u2� 1/Cwv

�
u2� 1Cuv.u2� 2/

��
. Since v ¤ 0 (v D 0 would imply � is not

faithful), we must have w D u.1� u2/=
�
v.u2 � 1C uv.u2 � 2//

�
. On making this

substitution, we see that � will satisfy the first relation if u�1Cv.u2�u�1/D 0 or,
equivalently, v D .u� 1/=.1Cu�u2/. The second relation will then be satisfied if u

is a root of the irreducible polynomial

p2;3;5 D u17
� 3u16

� 5u15
C 18u14

C 14u13
� 41u12

� 46u11
C 47u10

C 104u9
� 17u8

� 114u7
� 40u6

C 56u5
C 50u4

� 8u3
� 11u2

� 2uC 1:

Note that for any root of u of p2;3;5 , u2 � 1 C uv.u2 � 2/ ¤ 0 where v equals
.u�1/=.1Cu�u2/. Therefore the substitution wDu.1�u2/=

�
v.u2�1Cuv.u2�2//

�
is always defined and p2;3;5 is indeed the Riley polynomial for the .2; 3; 5/ pretzel
knot. Thus, the discrete faithful representation �0 corresponds to a root of p2;3;5 and
the trace field is a degree 17 extension of Q.
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The fundamental group of the .2; 3;�5/ pretzel knot is

�2;3;�5 Š hf;g; h j hf hfg�1
D f hfg�1f; hghghf D ghghfgi

so that we can satisfy the first relation using the same substitutions as for the .2; 3; 5/
pretzel knot. The second relation will also be satisfied provided u is a root of the
irreducible polynomial

p2;3;�5Du11
�3u10

�3u9
C12u8

C7u7
�18u6

�19u5
C13u4

C21u3
�u2
�7uC1:

So, the degree of the trace field is 11.

For the .�3; 3; 4/ knot we have that

��3;3;4Šhf;g; h jg
�1f �1gfgDh�1f �1hf h; h�1f hf hg�1hDf hg�1hg�1hgi:

In this case it’s convenient to alter the parametrisation slightly:

�.f /D

�
1�u �u=v

uv 1Cu

�
; �.g/D

�
1 0

w2 1

�
and �.h/D

�
1 �1

0 1

�
:

The upper left entry of �.g�1f �1gfg/� �.h�1f �1hf h/ is
�u

v2

�
u.v4

� v3
C vw2

Cw4/� v.v2
Cw2/

�
which suggests setting u D v.v2 C w2/=.w4 C vw2 � v3 C v4/. On making this
substitution, we see that the first relation will be satisfied provided vDw.wC1/=.w�1/.
Then the second relation depends on w satisfying the irreducible polynomial

p�3;3;4 D w
7
�w6

C 7w5
� 3w4

C 12w3
C 2w2

C 4wC 2

so that the trace field is of degree 7 over Q.
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