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Model structures on the category of small double categories

THOMAS M FIORE

SIMONA PAOLI
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In this paper we obtain several model structures on DblCat , the category of small
double categories. Our model structures have three sources. We first transfer across a
categorification-nerve adjunction. Secondly, we view double categories as internal
categories in Cat and take as our weak equivalences various internal equivalences
defined via Grothendieck topologies. Thirdly, DblCat inherits a model structure as
a category of algebras over a 2–monad. Some of these model structures coincide
and the different points of view give us further results about cofibrant replacements
and cofibrant objects. As part of this program we give explicit descriptions for and
discuss properties of free double categories, quotient double categories, colimits of
double categories, horizontal nerve and horizontal categorification.
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1 Introduction

The theory of categories enriched in Cat, called 2–categories, has been highly developed
over the past 40 years and has found numerous applications. Beginning with Bénabou’s
bicategories (weak 2–categories) in [4], through Kelly’s monograph [54] on enriched
categories, and including the more recent companion by Lack [57], as well as many
others, we have seen the n D 2 case for higher category theory become very well
understood. Limits in 2–categories from Kelly [53], 2–monads on 2–categories from
Blackwell–Kelly–Power [8] and Kan extensions for 2–functors from Dubuc [26] are
now widely known. Model structures on 2–Cat have also been studied recently by
Lack [58; 59] and Worytkiewicz–Hess–Parent–Tonks [83]. Model structures, more
generally, have been used in the study of .1; 1/–categories as a means of comparison
by Bergner [5; 6; 7], Joyal–Tierney [52], Rezk [75] and Toën [81].

Recent examples, however, show that 2–categories are not enough and that one must
invoke Ehresmann’s earlier notion of double category [30; 31]. In many mathematical
situations one is interested in two types of morphisms, which may or may not interact.
Between rings, for example, there are ring homomorphisms as well as bimodules.
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Between manifolds there are differentiable maps and cobordisms, which are both used
in field theory. Between categories there are functors as well as adjunctions. The notion
of 2–category does not capture both types of morphisms, but the notion of (pseudo)
double category certainly does.1

Concisely, a small double category is an internal category in Cat. A small double
category consists of a set of objects, a set of horizontal morphisms, a set of vertical mor-
phisms and a set of squares, equipped with various associative and unital compositions
satisfying the interchange law. In addition to the early work of Bastiani–Ehresmann [2],
Ehresmann–Ehresmann [27; 28; 29], C Ehresmann [30; 31] and Brown–Spencer [18],
recent work on double categories has been completed by Brown and collaborators [15;
16; 17], Dawson–Paré [20; 21; 22], Dawson–Paré–Pronk [23], Fiore [34], Garner [38],
Grandis–Paré [42; 43; 44; 45], Kock [56], Shulman [76; 77] and others.

Double categories are the nD2 case for n–fold categories, which have been studied and
applied for some time now. In the same way that higher categories may be defined by
iterated enrichment, one may define wider categories or n–fold categories via iterated
internalization. The edge symmetric2 case has been studied by Brown and Higgins in
the concept of cubical !–category and by Grandis in the concept of symmetric weak
cubical categories in [40] and [41]. Further, n–fold categories internal to the category
of groups have been used to model connected homotopy .nC 1/–types by Loday [63]
as summarized in the survey paper by Paoli [70]. Recent work includes Lack–Paoli [61]
and Paoli [71]. Applications of versions of the nD 2 case of internalized categories
include Dawson–Paré–Pronk [25], Fiore [33; 34], Kerler–Lyubashenko [55], May–
Sigurdsson [66], Morton [69] and Shulman [76; 77]. Thus, there has been a general
trend towards n–fold categories, especially the nD ! and nD 2 cases.

In this article we introduce model categories into the theory of double categories,
anticipating a utility in the theory of wider categories analogous to that of model
structures in the theory of higher categories. Already in the nD 2 case we see that
n–fold categories and n–categories diverge: even though the homotopy theory of
2–categories resembles that of categories, the homotopy theory of double categories
is much richer. This results from the numerous ways to view a double category: as
an internal category in Cat, as a categorical structure with two directions, as certain
simplicial objects in Cat, as certain bisimplicial sets or as algebras over a 2–monad.

1These examples and others can be found in the article of Grandis–Paré [42]. There it is remarked in
the introduction: “We conclude with some remarks about the motivation of this work. Its leitmotif can
be summarised as follows: arrows which are too relaxed (like profunctors, spans, relations) or too strict
(like adjunctions) to have limits, can be studied in a (pseudo) double category, correlating them with more
ordinary (horizontal) arrows.”

2Edge symmetric means that the n–morphisms in all nC 1 directions are the same.
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Each point of view suggests different notions of weak equivalence and fibration. The
new types of pasting diagrams available in a double category also create new phenomena.
We take these various points of view into consideration when constructing the model
structures.

Thus, our model structures have three sources. First, we transfer the Thomason diagram
structure and categorical diagram structure on the category of simplicial objects in
Cat to DblCat via a horizontal categorification-horizontal nerve adjunction. In the
Thomason structure on Cat in [80], a functor is a weak equivalence if and only
if its nerve is a weak homotopy equivalence of simplicial sets. In the categorical
structure on Cat of Joyal–Tierney [51] (reproved by Rezk in [74]), a functor is a
weak equivalence if and only if it is an equivalence of categories. Both the Thomason
structure and the categorical structure on Cat are cofibrantly generated, and thus
induce cofibrantly generated model structures on simplicial objects in Cat where
weak equivalences and fibrations are defined levelwise. We apply Kan’s Lemma on
Transfer of cofibrantly generated model structures (Theorem 7.11) to transfer both
of these diagram structures to DblCat (Theorem 7.13 and Theorem 7.17). However,
the application is not straightforward, and we must make several double categorical
preparations, including horizontal categorification and a pushout formula in DblCat.
We also prove one negative result in Theorem 7.22: it is impossible to transfer the Reedy
categorical structure on Cat�

op
to DblCat. The transfer from bisimplicial sets is treated

by Fiore–Paoli in [35]. Even better, [35] contains a Thomason model structure on the
category of small n–fold categories, and this model structure is Quillen equivalent to
SSet.

We arrive at a second source for model structures on DblCat when we view double
categories as internal categories in Cat. In this way we obtain double categorical
versions of the categorical structure on Cat, where a functor is a weak equivalence
if and only if it is fully faithful and essentially surjective. Although the notion of
fully faithfulness makes sense internally, essential surjectivity does not, and therefore
equivalences of internal categories need further explanation. Model structures on
categories internal to a good category C have already been developed by Everaert–
Kieboom–Van der Linden in [32], and we apply their results to the case C D Cat.
They define essential surjectivity (and hence also weak equivalences) with respect
to a Grothendieck topology T on C. We take simplicially surjective functors and
categorically surjective functors as bases for Grothendieck topologies on Cat, and
obtain two distinct model structures in Sections 8.2 and 8.3. Additionally, we show in
Theorem 8.52 that the model structure induced by the trivial topology coincides with
the trivial model structure from the 2–category of internal categories.
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Third, DblCat inherits a model structure as a category of algebras over a 2–monad.
This is an application of Lack’s algebra structure [60]. The underlying 1–category of a
2–category with finite limits and finite colimits always admits the so-called trivial model
structure, whose weak equivalences are equivalences and fibrations are isofibrations.
If K is a locally finitely presentable 2–category equipped with a 2–monad T with
rank, then the category of (strict) T –algebras is a model category: a morphism of
T –algebras is a weak equivalence or fibration if and only if its underlying morphism is
a weak equivalence or fibration in the trivial model structure on K . In our application
of [60] in Section 9, K is the 2–category Cat.Graph/ of internal categories in small
nonreflexive graphs, and T is the 2–monad SM induced by the Cartesian monad M

on Graph whose algebras are categories.

Depending on the reader’s experience, certain model structures will be of more interest
than others. Simplicially-minded readers will no doubt find the transfers from Cat�

op

most interesting, while categorically-minded readers may find the model structures on
Cat.Cat/ arising from [32] more interesting. Universal algebraists may find the third
point of view most appealing, namely double categories as algebras for a 2–monad.
Nevertheless, certain model structures can be defined from two points of view, and will
thus be of interest to readers working in different fields.

In other words, we prove that some of these model structures coincide. The model
structure obtained by transferring the categorical diagram structure across the vertical
categorification-vertical nerve adjunction is the same as the model structure associated
to the simplicially surjective topology on Cat (Corollary 8.29). The algebra structure
is the same as the model structure associated to the categorically surjective topology
on Cat (Theorem 9.1).

These two different constructions of the same model structures yield more refined
information about cofibrant replacements and cofibrant objects. For example, the
cofibrant objects in the algebra structure are known to be precisely the flexible algebras,
but from the categorically-surjective-topology structure we see that the flexible double
categories are precisely those with object category free on a graph (Corollary 9.4 and
Remark 9.7). Such a description allows us to conclude that the flexible 2–categories
of Lack [58] are indeed flexible algebras for a 2–monad. Lack’s Theorem 4.8 (iv) in
[58], which characterizes flexible 2–categories as those 2–categories with underlying
1–category a free category on a graph, now extends to double categories.

We also compare our model structures on DblCat with the analogous ones for Cat in
Propositions 7.16, 7.20 and 8.56. The vertical embedding of Cat into DblCat preserves
and reflects weak equivalences, fibrations and cofibrations from the Thomason structure
into the transferred diagram Thomason structure, as well as from the categorical

Algebraic & Geometric Topology, Volume 8 (2008)



Model Structures on DblCat 1859

structure into the transferred diagram categorical structure. The horizontal embedding of
Cat into DblCat preserves and reflects weak equivalences, fibrations and cofibrations
from the categorical structure into the trivial structure. However, the vertical inclusion
of 2–Cat into DblCat preserves neither the weak equivalences nor the cofibrations of
the categorical structure into the algebra structure, as shown at the end of Section 9.
Nevertheless, a 2–category is cofibrant in 2–Cat if and only if its vertical embedding
into DblCat is cofibrant.

In order to build our model structures we prove various general results about double
categories, so far not available in the literature. These results are also of independent
interest for the theory of double categories in its own right. We develop free double
categories, their quotients and colimits of double categories using a double categorical
version of Street’s 2–categorical notion of derivation scheme [78]. In particular we
obtain an explicit formula for two pushouts of double categories in Theorem 10.6,
which is essential for our application of Kan’s Lemma on Transfer in Theorem 7.13
and Theorem 7.17. We also prove that the 2–categories DblCatv and DblCath are
2–cocomplete in Theorem 4.2.

Free double categories on reflexive double graphs have been studied by Dawson–Paré
in [22]. By reflexive double graph we mean a collection of objects, vertical edges,
horizontal edges and squares equipped with source and target maps, identity edges and
identity squares. In this paper, we will instead use double graphs with 1–identities. A
double graph with 1–identities is like a reflexive double graph, except identity squares
are not required. Between double graphs with 1–identities and double categories, there
is the intermediate notion of double derivation scheme. A double derivation scheme is a
double graph with 1–identities in which the horizontal and vertical reflexive 1–graphs
are categories. In the free double category on a double derivation scheme, the vertical
and horizontal 1–categories are preserved, but nontrivial squares consist of allowable
compatible arrangements. Since we are considering compatible arrangements of squares
in a double derivation scheme rather than in a double reflexive graph, our allowable
compatible arrangements are different than the composable compatible arrangements
of Dawson–Paré [21].

Free double categories on double derivation schemes and their quotients allow us to
construct colimits of double categories. First one takes the colimits of the vertical and
horizontal 1–categories. These, together with the colimit of the sets of squares, form a
double derivation scheme. Finally, we mod out the free double category on this double
derivation scheme by the smallest congruence which guarantees that the natural maps
are double functors, and the result is the colimit in DblCat. This colimit formula is
the basis of Theorem 10.6 which gives an explicit description of the pushouts of a
double functor along two inclusions of external products. This theorem is crucial for
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our application of Kan’s Lemma on Transfer. These two pushouts are special cases of
a more general theorem on pushouts along inclusions of external products, which will
appear in a separate paper with a comparison to Dawson–Paré–Pronk [24].

Free double categories on double derivation schemes and their quotients find further
application in the construction of fundamental double categories of simplicial objects
in Cat, that is, in our construction of a left adjoint to the horizontal nerve. We obtain
an important example of our explicit constructions of fundamental double categories in
a second way as well, namely via weighted colimits (see Example 6.6 and Proposition
6.11).

We begin in Section 2 with a review of double categories, including horizontal 2–
categories, vertical 2–categories, double functors, horizontal and vertical natural
transformations, the external product of 2–categories and Cartesian closedness of
the category DblCat, as well as the 2–categories DblCatv and DblCath . Free double
categories on double derivation schemes are introduced in Section 3 and are used
in Section 4 to describe colimits in DblCat. The horizontal nerve is discussed in
Section 5 along with its representable definition in terms of external products of finite
ordinals. In Section 6, free double categories on double derivation schemes and their
quotients are applied to construct the left adjoint to the horizontal nerve. Section 7
focuses on transferring model structures across the horizontal categorification-horizontal
nerve adjunction and recalls model structures on Cat, smallness issues and Kan’s
Lemma on Transfer. Section 8 begins with an exposition of the methods of Everaert–
Kieboom–Van der Linden [32], and then applies them to obtain model structures on
Cat.Cat/DDblCat induced by three Grothendieck topologies on Cat: the simplicially
surjective topology, the categorically surjective topology, and the trivial topology.
The model structure induced by the simplicially surjective topology coincides with
the transfer of the diagram categorical structure across the adjunction cv a Nv . In
Section 9 we prove that the algebra structure on DblCat coincides with the model
structure induced by the categorically surjective topology. In Section 10, the Appendix,
we obtain an explicit description of certain pushouts in DblCat, namely Theorem 10.6.
We use this to characterize the behavior of the horizontal nerve on such pushouts in
Theorem 10.7. The essential application is to pushouts along the generating acyclic
cofibrations in the transfer in Section 7.
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Bellaterra (Barcelona) for its hospitality during the CRM Research Program on Higher
Categories and Homotopy Theory in 2007–2008. Additional material in this article
was completed during that time. Simona Paoli thanks the Universitat Autònoma de
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2 Double categories

We first recall the elementary notions of double category theory. In many mathematical
contexts there are two interesting types of morphisms; double categories organize
them into one structure. For example, between rings there are morphisms of rings as
well as bimodules, between objects of any 2–category there are morphisms as well as
adjunctions, and so on. Sometimes one would like to distinguish a family of squares,
such as the pullback squares among the commutative squares, and double categories
are also of use here. The notion of double category is not new, and goes back to
Ehresmann [30; 31].

Definition 2.1 A small double category D D .D0;D1/ is a category object in Cat,
the category of small categories. This means that D0 and D1 are small categories
equipped with functors

D1 �D0
D1

m // D1

s
&&

t

88 D0uoo
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that satisfy the usual axioms of a category. We call the objects and morphisms of D0

respectively the objects and vertical morphisms of D , and we call the objects and
morphisms of D1 respectively the horizontal morphisms and squares of D .

When one expands this definition, one sees that a small double category consists of a
set of objects, a set of horizontal morphisms, a set of vertical morphisms, and a set of
squares equipped with various sources, targets, and associative and unital compositions.
Further, the horizontal and vertical compositions of squares are required to satisfy the
interchange law. Since we only deal with small categories and small double categories,
we will usually leave off the adjective small. Sources and targets are indicated as
follows.

(1) A
f // B A

j

��

A
f //

j

��
˛

B

k
��

C C g
// D

We denote the set of squares with the boundary

A
f //

j

��

B

k
��

C g
// D

D

0@ f

j k

g

1A :by

Then one has the categories

.Obj D;Hor D/ and .Ver D;Sq D/

under horizontal composition and the categories

.Obj D;Ver D/ and .Hor D;Sq D/

under vertical composition. We will write Œf g� for the horizontal composition of
horizontal morphisms f and g , and similarly Œ˛ ˇ� for the horizontal composition of
squares ˛ and ˇ . We will write

�
v
w

�
for the vertical composition of vertical morphisms

v and w , and similarly
�

ı

�
for the vertical composition of squares 
 and ı .

There are many examples of double categories. The commutative squares in a given
1–category form the squares of a double category. More generally, for a 2–category C,
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Bastiani–Ehresmann defined the double category QC of quintets of C (pages 272 and
273 of [2]). The objects of QC are the objects of C, horizontal and vertical morphisms
are the morphisms of C, and the squares ˛ as in (1) are the 2–cells ˛W k ıf +3g ı j .
In many situations, one has examples of a slightly more general notion called pseudo
double category, defined briefly in [2] on page 288 as the notion of dicategory, and
defined in detail by Grandis–Paré in Section 7 of [42] . A pseudo double category
is like a double category, except one direction is a bicategory (weak 2–category)
rather than a 2–category. For example, the double category of rings, bimodules, ring
homomorphism, and twisted maps of bimodules is weak in one direction. Another
example is given by finite sets, Riemann surfaces with labelled analytically parametrized
boundary components, bijections of finite sets, and holomorphic maps preserving the
given structure. In these two examples we choose the horizontal direction to be weak,
so that bimodules respectively Riemann surfaces are the horizontal morphisms. In this
paper we work only with strict double categories, though pseudo double categories can
also fit into our framework.

The notion of double category contains many familiar structures. If we view a category
as an internal category in Cat with object and morphism categories discrete, it is
equivalent to viewing an ordinary category as a double category with trivial vertical
morphisms and trivial squares. Every 2–category C can be considered a double
category in at least four ways: as a double category HC with trivial vertical morphisms,
as a double category V C with trivial horizontal morphisms, as Ehresmann’s quintets
QC, or as the transpose of Ehresmann’s quintets .QC/t . Any double category D has
an underlying horizontal 2–category HD and an underlying vertical 2–category VD :
we obtain these substructures as the full subdouble categories with only trivial vertical
morphisms or trivial horizontal morphisms respectively. We denote the underlying
1–categories of HD and VD by .HD/0 and .VD/0 respectively. The subscript 0 here
means underlying 1–category of a 2–category, and is unrelated to the subscript 0 in
Definition 2.1. Though the formula .VD/0 DD0 holds, .HD/0 is not the same as D0 .

Definition 2.2 A double functor F W D //E is an internal functor in Cat. Such a
functor consists of functions

Obj D // Obj E

Hor D // Hor E

Ver D // Ver E

Sq D // Sq E

which preserve all sources, targets, compositions, and identities.
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Internal natural transformations in Cat are also called horizontal natural transforma-
tions. We recall the notion from pages 249 and 250 of Bastiani–Ehresmann’s article [2],
or 1.4 of Grandis–Paré’s article [42].

Definition 2.3 If F;GW D //E are double functors, then a horizontal natural
transformation � W F +3G as in [42] assigns to each object A a horizontal morphism
�AW FA //GA and assigns to each vertical morphism j a square

FA
�A //

Fj

��

�j

GA

Gj

��
FC

�C

// GC

such that:

(1) For all A 2D , we have �1v
A
D iv

�A
.

(2) For composable vertical morphisms j and k ,

FA
�A //

F Œjk�

��

� Œjk�

GA

GŒjk�

��
FE

�E

// GE

D

FA
�A //

Fj

��

�j

GA

Gj

��
FC �C //

Fk

��

�k

GC

Gk

��
FE

�E

// GE:

(3) For all ˛ as in Diagram (1),

FA
Ff //

Fj

��

F˛

FB
�B //

Fk

��

�k

GB

Gk

��
FC

Fg
// FC

�C

// GD

D

FA
�A //

Fj

��

�j

GA
Gf //

Gj

��

G˛

GB

Gk

��
FC

�C

// GC
Gg

// GD:

We also need the analogous notion of vertical natural transformation.
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Definition 2.4 If F;GW D //E are double functors, then a vertical natural trans-
formation � W F +3G as in [42] assigns to each object A a vertical morphism
�AW FA //GA and assigns to each horizontal morphism f a square

FA

�A

��

Ff //

�f

FB

�B

��
GA

Gf

// GB

such that:

(1) For all objects A 2D , we have �1h
A
D ih

�A
.

(2) For all composable horizontal morphisms f and g ,

�Œf g�D Œ�f �g�:

(3) For all ˛ as in Diagram (1),�
F˛

�g

�
D

�
�f

G˛

�
:

Thus, double categories form a 2–category in two different ways, depending on the
choice of 2–cell. Further, there are useful adjunctions with 2–Cat and Cat. Our
notation, introduced before Definition 2.2, follows that found in Section 1.3 of [42].

Proposition 2.5 (Compare page 80 of [29].) Let DblCath respectively DblCatv
denote the 2–categories of small double categories, double functors, and horizontal
natural transformations respectively vertical natural transformations. Let 2–Cat denote
the 2–category of small 2–categories, 2–functors, and 2–natural transformations.3

Then the inclusion 2–functors

HW 2–Cat // DblCath

V W 2–Cat // DblCatv

have as right 2–adjoints the 2–functors

HW DblCath // 2–Cat

VW DblCatv // 2–Cat

3In this article we follow the convention that 2–functors and 2–natural transformations are strict
2–functors and strict 2–natural transformations.
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respectively. Moreover, the inclusion 2–functors

HW Cat // DblCath

V W Cat // DblCatv

have as right 2–adjoints the 2–functors

.H-/0W DblCath // Cat

.V-/0W DblCatv // Cat

respectively.

The external product of 1–categories was defined by Bastiani–Ehresmann on page 251
of [2], and called there the square product. We extend this notion to 2–categories in
Definition 2.6, and even double categories in Remark 2.8.

Definition 2.6 If C and D are 2–categories, then their external product C � D is the
double category with objects Obj C�Obj D,

.j ;D/W .C;D/ //.C 0;D/;vertical morphisms

.C; f /W .C;D/ //.C;D0/;horizontal morphisms

.C;D/
.C;f / //

.j ;D/

��
˛

.C;D0/

.k;D0/

��
.C 0;D/

.C 0;g/

// .C 0;D0/

and squares

given by pairs ˛ D .
; ı/ of 2–cells 
 W j +3k and ıW f +3g in C and D
respectively.

We may simplify the foregoing definitions using the operation of transposition, which
interchanges the roles of horizontal and vertical.

Definition 2.7 The transpose of a double category D is the double category Dt with

Obj Dt
D Obj D

Hor Dt
D Ver D

Ver Dt
D Hor D

Dt

0@ f

j k

g

1ADD

0@ j

f g

k

1A
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and the expected compositions and units. Transposition defines 2–functors

.-/t W DblCath // DblCatv

.-/t W DblCatv // DblCath

that are mutually inverse.

Remark 2.8 A vertical natural transformation � W F +3G is a horizontal natural
transformation � t W F t +3Gt . The transpose of the 2–adjunction H a H is the
2–adjunction V a V. The external product of 2–categories C and D is C � D D
V C�HDD .HC/t �HD. More generally, the external product of double categories
C and D is C � D WDCt �D .

Lemma 2.9 The external product of 2–categories is a functor

�W 2–Cat� 2–Cat //DblCat :

Proof Transpose is functorial.

Example 2.10 Let Œm� denote the partially ordered set f0; 1; 2; : : : ;mg. Then the
double category Œm�� Œn� has the shape

//

��

//

��

//

��

//

�� ��

//

��

// //

�� ��//

��

//

��

//

��

//

�� ��

//

��

// //

�� ��//

��

//

��

//

��

//

�� ��

//

��

// //

�� ��//

��

//

��

//

��

//

�� ��

//

��

// //

�� ��// // // // // // //

with m rows and n columns of squares.

We round off this section with a discussion of Cartesian closedness for DblCat,
DblCatv , and DblCath .

Proposition 2.11 (nD 2 case of Ehresmann–Ehresmann [28]) The category DblCat
is Cartesian closed. In other words for each D there is an endofunctor .-/D of DblCat
and a bijection of sets

(2) DblCat.C �D;E/Š DblCat
�
C;ED�
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natural in C and E.

Corollary 2.12 (pages 423–425 of [28], 1.6 of [42]) The objects of ED are dou-
ble functors D //E , horizontal morphisms are horizontal natural transformations,
vertical morphisms are vertical natural transformations, and squares are modifications.

Proof In Equation (2), we take C to be the terminal double category, HŒ1�, V Œ1�, or
Œ1�� Œ1�. See 1.6 of [42] for the definition of modification.

Proposition 2.13 The 2–category DblCatv is Cartesian closed. More precisely, the
functor .-/D of Proposition 2.11 and Corollary 2.12 extends to an endo–2–functor of
DblCatv , and there is an isomorphism of categories

(3) DblCatv.C �D;E/Š DblCatv
�
C;ED�

2–natural in C and E. Similarly, the 2–category DblCath is Cartesian closed.

Proof Equation (2) is the object part of the isomorphism in Equation (3). For the
bijection of morphism sets we have

Mor DblCatv.C �D;E/Š DblCat.V Œ1��C �D;E/

Š DblCat
�
V Œ1��C;ED�

ŠMor DblCatv
�
C;ED�:

The proof that this isomorphism of graphs is a 2–natural functor is similar to the
analogous proof of the Cartesian closedness of Cat.

Corollary 2.14 For a small category C and small double categories D and E, we
have an isomorphism of categories

DblCatv.V C�D;E/Š Cat.C;DblCatv.D;E//

2–natural in C and E.

Proof From Equation (3) and the 2–adjunction V a .V-/0 of Proposition 2.5 we have
a 2–natural isomorphism of categories

DblCatv.V C�D;E/Š DblCatv
�
V C;ED�

Š Cat
�

C;
�
V.ED/

�
0

�
Š Cat.C;DblCatv.D;E//:
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3 Free double categories and quotients

As expected, there is a notion of free double category and quotient double category.
However, the situation is richer than for ordinary categories, as there is an intermediate
step between double categories and double graphs, which we call double derivation
schemes. Double derivation schemes and quotients are crucial in the explicit description
of colimits in Section 4, the construction of a left adjoint to horizontal nerve in Section 6,
and the computation of pushouts in Theorem 10.6 and Theorem 10.7.

In this section we introduce double analogues to some of Street’s concepts in [78].
The special kind of double graphs we will work with have 1–identities but are not
equipped with identity squares. This is important because nontrivial squares in a double
category may very well have one or more trivial edges. Recall that a reflexive graph
is a graph equipped with a distinguished identity edge 1AW A //A for each vertex
A. All graphs in this paper are directed and small, so we often leave off the adjectives
directed and small.

Definition 3.1 A double graph A is an internal graph in the category of small graphs.
This consists of a set of vertices (objects) Obj A, a set of horizontal edges Hor A, a
set of vertical edges Ver A, and a set of squares Sq A equipped with source and target
maps as in Diagram (1). A morphism of double graphs is a morphism of internal graphs
in the category of small graphs, or equivalently, a map which preserves the sources
and targets of Diagram (1). We denote the horizontal and vertical 2-graphs of a double
graph A by HA and VA.

Definition 3.2 A double graph with 1–identities is a double graph in which the
horizontal and vertical 1–graphs are reflexive graphs. This means for each object
A, there is a distinguished horizontal edge 1h

A
W A //A as well as a distinguished

vertical edge 1v
A
W A //A . There are no distinguished squares. A morphism of

double graphs with 1–identities is a morphism of double graphs which preserves the
distinguished edges. Double graphs with 1–identities form a category which we denote
by DblGr1-Id.

A double graph with 1–identities is a double category without any of the compositions
and without identity squares. The intermediate structure between double graphs with
1–identities and double categories is analogous to Street’s notion of derivation scheme
in [78].

Definition 3.3 A double derivation scheme is a double graph with 1–identities whose
vertical reflexive 1–graph and horizontal reflexive 1–graph are categories. A morphism
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of double derivation schemes is a morphism of double graphs with 1–identities which is
a functor on both the horizontal and vertical 1–categories. Double derivation schemes
form a category which we denote by DblDerSch. We denote the horizontal and
vertical derivation schemes of a double derivation scheme S by HS and VS , and their
underlying categories by .HS/0 and .VS/0 .

To take a free category on a reflexive graph, one merely takes paths of composable edges
and identifies paths which differ only by insertion or deletion of identity edges. How-
ever, the 2–dimensional situation is more subtle, as evidenced by Dawson–Paré [22],
Johnson [49] and Power [72; 73]. Thus, in the construction of a free double category
we need a careful definition of allowable compatible arrangement. We use the notion
of compatible arrangement from Dawson–Paré [21], and develop it further for our
purposes.

Definition 3.4 In a double derivation scheme S , a compatible arrangement consists
of a subdivision of a rectangle into smaller rectangles and a function which assigns to
each vertex an object, to each horizontal line segment a horizontal morphism, to each
vertical line segment a vertical morphism, and to each constituent rectangle a square in
S , which are compatible in the following sense:

(1) For each horizontal edge in the subdivision, the domain and codomain respec-
tively of the morphism assigned to it are the objects assigned to the left and right
vertices respectively.

(2) For each vertical edge in the subdivision, the domain and codomain respectively
of the morphism assigned to it are the objects assigned to the top and bottom
vertices respectively.

(3) For each constituent rectangle the composition of the morphisms assigned to the
edges on
(a) the left side is the horizontal domain of the square assigned to it;
(b) the right side is the horizontal codomain of the square assigned to it;
(c) the top is the vertical domain of the square assigned to it;
(d) the bottom is the vertical codomain of the square assigned to it.

In the free double category on a double derivation scheme, a square is a compatible
arrangement for which the image under any morphism of double derivation schemes
into any double category becomes composable to a single square by a sequence of
horizontal and vertical compositions. We will call such compatible arrangements
allowable. However, an image of a compatible arrangement is just a compatible
arrangement in the target double category with the same underlying subdivision of
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the rectangle. So whether a compatible arrangement is allowable in the free double
category depends only on its shape, ie, the underlying subdivision of the rectangle.

A horizontal (respectively vertical) cut in a compatible arrangement is a horizontal
(respectively vertical) line segment which consists of edges of the underlying subdivision
of the rectangle. A horizontal (respectively vertical) cut is full length if it stretches from
the left (respectively top) edge of the arrangement to the right (respectively bottom)
edge of the arrangement. We can use this notion to characterize when a compatible
arrangement is allowable.

Definition 3.5 A subdivision of a rectangle is allowable if it is either the trivial
subdivision, consisting of just the rectangle itself, or contains a full length horizontal or
vertical cut which divides it into two allowable subdivisions. A compatible arrangement
is allowable if its underlying subdivision of the rectangle is allowable.

As an illustration, consider the following two examples of subdivisions of a rectangle.

Allowable:
Not
allowable:

Note that our notion of allowable compatible arrangement differs from Dawson–Paré’s
notion of composable compatible arrangement [21] in that a compatible arrangement in
a double category D is composable if it is composable to a single square through the
use of compositions in D and factorizations. So their notion depends on the ambient
double category, not only on the shape of the arrangement. Any allowable compatible
arrangement in our sense is composable in the sense of Dawson–Paré.

Proposition 3.6 A compatible arrangement in a double category is allowable if and
only if it can be composed to a single square by a sequence of horizontal and vertical
compositions.

Proof We argue by induction on the number of squares in the arrangement. The
statement is trivially true for arrangements consisting of a single square. Now let CA

be a compatible arrangement consisting of two or more squares, with an assignment
into a double category D which is composable by a sequence of horizontal and vertical
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compositions of squares. Consider the last composition used. Without loss of generality,
assume that this is a horizontal composition of two squares 
1 and 
2 along a vertical
morphism v , as below.

��

//


1 v
��

//


2

��// //

Both 
1 and 
2 have been obtained by sequences of horizontal and vertical compositions
of squares in CA, so v is a vertical composition of vertical morphisms v1; : : : ; vn in
CA. The underlying edges of these vertical morphisms form a full length cut in the
underlying subdivision of the rectangle for CA. The squares on the left side of this cut
form a compatible arrangement, since they form a rectangular subset of a compatible
arrangement. Call this arrangement CA1 . It can be composed to 
1 by a subsequence
of the horizontal vertical compositions used for CA. In the same way, the squares on
the right side of this cut form a compatible arrangement CA2 which can be composed
to 
2 by a sequence of horizontal and vertical compositions. Since both CA1 and
CA2 contain strictly less squares than CA, the induction hypothesis gives that they
are both allowable compatible arrangements.

Conversely, suppose that a compatible arrangement CA of two or more squares in a
double category D is allowable. Then it contains a horizontal (respectively vertical)
cut into two allowable compatible arrangements CA1 and CA2 . By induction these
arrangements can be composed to single squares in D by sequences of horizontal
and vertical compositions. Now consider the sequence of horizontal and vertical
compositions used for CA1 followed by the one for CA2 and then one final vertical
(respectively horizontal) composition along the cut. This shows that CA is composable
to a single square in D by a sequence of horizontal and vertical compositions of
squares.

For inductive arguments on the number of squares in an allowable compatible arrange-
ment, we need to know that cutting an allowable arrangement along any full length cut
produces two smaller allowable compatible arrangements.

Proposition 3.7 If CA is a compatible arrangement which is allowable, then any full
length cut divides the arrangement into two allowable compatible arrangements.

Proof We prove this by induction on the number of squares in the arrangement. It
is obviously true for compatible arrangements consisting of a single square. For an
arrangement consisting of n � 2 squares, let C1 be an arbitrary full length cut as in
this proposition and let C2 be the full length cut used to establish that CA is allowable.
Assume without loss of generality that C2 is horizontal. Let CA1 and CA2 be the
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CA2

CA1

C2

Figure 1: CA cut along C2

compatible arrangements obtained by cutting CA along C2 , as in Figure 1. Note that
both of the arrangements CA1 and CA2 are allowable and contain strictly less than n

squares.

If C1 is vertical, the cut C1 itself gets divided by C2 into two vertical cuts C1;1 and
C1;2 , which are full length vertical cuts for CA1 and CA2 respectively, as in Figure 2.
The cut C1;1 divides CA1 into compatible arrangements CA1;1 and CA1;2 , and the

C1

C1;1

C1;2

C2

Figure 2: Vertical C1 cut by C2 into C1;1 and C1;2

cut C1;2 divides CA2 into compatible arrangements CA2;1 and CA2;2 , as in Figure 3.
By the induction hypothesis, CA1;1 , CA1;2 , CA2;1 , and CA2;2 are all allowable. It

C1

CA2;1 CA2;2

CA1;1 CA1;2

C2

Figure 3: CA1 and CA2 cut into allowable compatible arrangements

is clear that the compatible arrangement to the left of C1 gets divided into CA1;1 and
CA2;1 by the left side of the cut C2 , so the compatible arrangement to the left of C1 is
allowable. In the same way the compatible arrangement to the right of C1 gets cut into
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CA1;2 and CA2;2 by the right side of the cut C2 , so this compatible arrangement is
also allowable, as we wanted to prove.

If C1 is horizontal, assume without loss of generality that CA1 contains C1 . By the
induction hypothesis, C1 divides the allowable compatible arrangement CA1 into two
allowable compatible arrangements, say CA1;a and CA1;b , as in Figure 4. We see that

CA2

CA1;b

CA1;a

C1

C2

Figure 4: Horizontal C1 cuts CA1 into allowable compatible arrangements

C1 divides the total arrangement CA into two compatible arrangements, CA1;a and
CA1;c , the latter of which is divided by C2 into CA1;b and CA2 . Since both CA1;b

and CA2 are allowable, we conclude that both CA1;c and CA1;a are allowable. This
completes the proof.

Proposition 3.8 The forgetful functors T and U admit left adjoints S and R respec-
tively.

DblGr1-Id ?

S
++

DblDerSch
T

jj

R
**

? DblCat
U

jj

The left adjoint S gives the free double derivation scheme on a double graph with 1–
identities, and the left adjoint R gives the free double category on a double derivation
scheme. The functor R preserves the horizontal and vertical 1–categories.

Proof For a double graph with 1–identities A, let SA have vertical and horizontal
1–categories the free 1–categories on the respective reflexive graphs. The set of squares
remains the same. It is straightforward to verify that this defines a left adjoint to T .

For a double derivation scheme S , let RS have vertical and horizontal 1–categories the
vertical and horizontal 1–categories of S respectively. The squares of RS are allowable
compatible arrangements whose constituent squares are squares of S and identity
squares. Such compatible arrangements are composed vertically and horizontally by
concatenation. Clearly, composites of allowable compatible arrangements are allowable.
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If J W S //U D is a morphism of double derivation schemes, then it induces a double
functor J 0W RS //D which is J on the horizontal and vertical 1–categories. For
an allowable compatible arrangement D , the square J 0D is the composite in D of
J applied to the constituents of D . Morphisms RS //D restrict to morphisms
S //U D , and it is not hard to check that these two operations are inverse. We
conclude that R a U .

Now that we have free notions, we also define quotients. Note that the notion of
congruence for ordinary categories is an equivalence relation on the morphisms of
highest dimension, satisfying certain compatibility properties. We imitate this in our
notion of congruence for a double category.

Definition 3.9 A congruence on a category C is an equivalence relation on C.a; b/
for each a; b 2 C, such that if f � f 0 and g � g0 , then gf � g0f 0 whenever the
composites exist.

Definition 3.10 A congruence on a double derivation scheme S consists of a congru-
ence on the horizontal 1–category and a congruence on the vertical 1–category.

Definition 3.11 A congruence on a double category D consists of an equivalence
relation on

D

0@ f

j k

g

1A
for each boundary

A
f //

j

��

B

k
��

C g
// D

such that if ˛ � ˛0; ˇ � ˇ0; and 
 � 
 0 then�
˛ ˇ

�
�
�
˛0 ˇ0

��
˛




�
�

�
˛0


 0

�
whenever the composites exist. Note that the congruence does not concern the horizontal
and vertical morphisms.
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Example 3.12 Suppose KW D //E is a double functor. Then we may define a
congruence �K on D by

˛ �K ˛0 W”K.˛/DK.˛0/:

Proposition 3.13 Let D be a double category equipped with a congruence. If two al-
lowable compatible arrangements CA1 and CA2 with the same underlying subdivision
of the rectangle have congruent constituent squares, then the composites of CA1 and
CA2 in D are congruent.

Proof By Theorem 1.2 of Dawson–Paré [21], any two composites of a composable
compatible arrangement are equal. The compatible arrangements CA1 and CA2 are
composable since they are allowable. If we compose each of CA1 and CA2 using the
same sequence of pairwise compositions, then the pairwise composites in each step
are congruent. An inductive argument shows that the total composites are then also
congruent.

Definition 3.14 Let C be a category and � a congruence on C. The quotient category
C=� has the same objects as C and has homsets .C=�/.a; b/ D C.a; b/=�. The
composition in C=� is induced by the composition in C.

Definition 3.15 Let S be a double derivation scheme and � a congruence on S . The
quotient double derivation scheme S=� has the same objects and squares as S . The
horizontal and vertical 1–categories of S=� are the quotient categories of .HS/0 and
.VS/0 .

Definition 3.16 Let D be a double category and � a congruence on D . The quotient
double category D=� has the same objects and the same horizontal and vertical
1–categories as D . The set of squares of D=� with the indicated boundary are

.D=�/

0@ f

j k

g

1A D D

0@ f

j k

g

1A=� :
The horizontal and vertical compositions of squares in D=� are induced by the
horizontal and vertical compositions of squares in D .

These are of course not the most general notions of quotient, but more general quotients
can be built from these as follows. All quotients can be characterized by the usual
universal properties.
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Definition 3.17 Let C be a category and R � C �C a subcategory satisfying the
usual axioms of an equivalence relation both on the set of objects and on the set of
morphisms. Then the quotient category C=R is defined as follows. First we obtain a
graph with object set Obj C=Obj R and morphism set Mor C=Mor R. We make this
into a reflexive graph by identifying 1A and 1B whenever A and B are identified. Let
F be the free category on this reflexive graph. The quotient category C=R is defined as
F=� where � is the smallest congruence on the free category F such that the induced
map of reflexive graphs C //F=� is a functor.

Such quotients of categories have been considered by Boerger [9]. However a coun-
terexample by Boerger [9] and Mersch [67; 68] shows that the quotient functor may
identify morphisms which are not equivalent. Isbell completed early work on quotients
in [48]. More recently, quotients of categories by generalized congruences have been
considered by Bednarczyk–Borzyszkowski–Pawlowski [3].

For general quotients of double categories, we need quotients of double derivation
schemes as an intermediate notion.

Definition 3.18 Let S be a double derivation scheme and R � S � S a subdouble
derivation scheme satisfying the usual axioms of an equivalence relation on the sets
of objects, vertical morphisms, horizontal morphisms, and squares. Then the quotient
double derivation scheme S=R is defined as follows. The horizontal and vertical
1–categories are the quotients of the horizontal and vertical 1–categories of S as in
Definition 3.17. The squares are Sq.S=R/D .Sq S/=.Sq R/:

Definition 3.19 Let D be a double category and R � D �D a subdouble category
satisfying the usual axioms of an equivalence relation on the sets of objects, vertical
morphisms, horizontal morphisms, and squares. Then the quotient double category
D=R is defined as follows. First we take the quotient of the underlying double derivation
scheme of D by the underlying double derivation scheme of R as in Definition 3.18.
Let F be the free double category F on this double derivation scheme. The quotient
double category D=R is defined as F=� where � is the smallest congruence on the
free double category F such that the induced morphism of double derivation schemes
D //F=� is a double functor.

In the above definition, see Definitions 3.11 and 3.16 for congruences and quotients
of double categories by congruences. Note that only squares get identified in the last
step, since the horizontal and vertical 1–categories of the free double category on a
double derivation scheme are the same as the horizontal and vertical 1–categories of
the double derivation scheme.
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We will make use of free double categories and their quotients in our discussion of
categorification in Section 6 as well as in an explicit description of certain pushouts of
double categories in Theorem 10.6 and Theorem 10.7. These are essential ingredients
in the construction of model structures on DblCat. For now it is sufficient to give a
colimit formula in DblCat.

4 Limits and colimits of double categories

Model structures in general require the existence of limits and colimits. Moreover, in
order to transfer model structures along certain adjunctions we will need an explicit
formula for certain pushouts of double categories, as in Theorem 10.6 and Theorem
10.7. So in this section we discuss limits and colimits of double categories. We also
prove that the 2–categories DblCatv and DblCath are 2–cocomplete.

Colimits for categories were described in detail by Gabriel and Zisman. Their con-
struction was extended by Worytkiewicz–Hess–Parent–Tonks [83] to a construction
of colimits in 2–Cat. We extend this further to a construction in DblCat which goes
roughly as follows. To take the colimit of a functor F from an indexing category I into
DblCat, first we take the colimit S of the underlying double derivation schemes, then
we take the free double category F on S , and finally we form the quotient F=� of the
free double category F by the smallest congruence � on F such that the induced maps
of double derivation schemes Fi //F=� are double functors. The quotient double
category F=� is the colimit of the functor F . The intermediate notion of double
derivation scheme allows us to deal with the quotients of morphisms and quotients of
squares separately. We present the details in the following theorems.

Theorem 4.1 The category DblCat is complete and cocomplete.

Proof The limits of the sets of objects, horizontal morphisms, vertical morphisms,
and squares assemble to form a double category and this double category is the limit.
After all, DblCat is a category of algebras.

The category DblCat is the category of models in Cat of a sketch with finite diagrams,
and Cat is locally finitely presentable, so an application of Proposition 1.53 in Adámek
and Rosický’s book [1] shows that DblCat is locally finitely presentable. Locally
finitely presentable categories are cocomplete, so DblCat is cocomplete.

Note that the underlying horizontal and vertical 2–categories of the limit are the limits
of the underlying horizontal and vertical 2–categories, since H and V admit left
adjoints by Proposition 2.5. The forgetful functor 2-Cat //Cat also admits a left
adjoint, so similar comments hold for the horizontal and vertical 1–categories.
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Theorem 4.2 The 2–categories DblCatv and DblCath are 2–cocomplete.

Proof We prove that DblCatv is 2–cocomplete; the statement for DblCath will
follow, since transposition is an isomorphism of 2–categories.

The cotensor product fC;Eg of a category C with a double category E is EV C , since

DblCatv
�
D;EV C�

Š DblCatv.D�V C;E/
Š DblCatv.V C�D;E/

Š Cat.C;DblCatv.D;E//

is an isomorphism of categories 2–natural in D by Proposition 2.13 and Corollary
2.14. Thus DblCatv is cotensored, and by the dual of a statement on page 50 of
Kelly’s monograph [54], the existence of conical colimits in the 2–category DblCatv
is equivalent to the existence of ordinary conical colimits in its underlying 1–category
DblCat. But ordinary conical colimits exist in DblCat by Theorem 4.1, so that the
2–category DblCatv admits conical colimits.

The tensor product C�D of a category C with a double category D is V C�D , since

DblCatv.V C�D;E/Š Cat.C;DblCatv.D;E//

is an isomorphism of categories 2–natural in E by Corollary 2.14. Thus DblCatv is
tensored.

Since DblCatv admits conical colimits and tensor products, we conclude from the dual
of Theorem 3.73 in [54] that DblCatv is 2–cocomplete.

We work towards an explicit description of colimits in DblCat which mimics Gabriel
and Zisman’s calculation of colimits in Cat below.

Theorem 4.3 (Colimit formula in Cat of [37]) The colimit of a functor F W I //Cat
is calculated as follows. Let F be the free category on the colimit of the underlying
reflexive graphs. The colimit of F is the quotient F=� of the free category F by
the smallest congruence � on F such that the induced morphisms of reflexive graphs
Fi //F=� are functors.

Lemma 4.4 The horizontal and vertical 1–categories of a colimit of double derivation
schemes are the colimits of the underlying horizontal and vertical 1–categories. Simi-
larly, the horizontal and vertical 1–categories of a colimit of double categories are the
colimits of the underlying horizontal and vertical 1–categories.
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Proof The right adjoint to the forgetful functor

DblDerSch // Cat

S
� // .HS/0

assigns to a category E the double derivation scheme E with horizontal 1–category
E, a unique vertical morphism between any two objects, and a unique square for each
boundary. Similarly, the forgetful functor S � //.VS/0 admits a right adjoint. Since
left adjoints preserve colimits, the statement for double derivation schemes follows.

The same argument works for DblCat in place of DblDerSch.

Theorem 4.5 (Colimit formula in DblDerSch) The colimit S of a functor

F W I // DblDerSch

is calculated in the following way. Let F be the free double derivation scheme on the
colimit of the underlying double graphs with 1–identities. The colimit S of F is the
quotient F=� of the free double derivation scheme F by the smallest congruence � on
F such that the induced morphisms of double graphs with 1–identities Fi //F=�
are morphisms of double derivation schemes.

Proof Suppose S0 is a double derivation scheme and ˇi W Fi //S0 are natural
morphisms of double derivations schemes. We define a unique factorization

Fi
ˇi //

˛i

��

S0

S

>>

on horizontal and vertical 1–categories by the universal property of Lemma 4.4, and on
squares by the universal property of the colimit of the sets Sq Fi . The set of squares
in the free double derivation scheme on a double graph with identities is the same as
the set of squares in the double graph with identities by Proposition 3.8.

Theorem 4.6 (Colimit formula in DblCat) The colimit C of a functor

F W I // DblCat

is calculated as follows. Let S be the colimit in DblDerSch of the underlying double
derivation schemes, and F the free double category on S . The colimit C of F is
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the quotient F=� of F by the smallest congruence � such that the induced natural
morphisms of double derivation schemes

(4) Fi
˛i // S

p // F // F=�

are double functors. Note that the horizontal and vertical 1–categories of S;F , and C
are the same, in particular the horizontal and vertical 1–categories of C are the colimits
of the horizontal and vertical 1–categories of the Fi .

Proof Let qW S //C denote the morphism of double derivation schemes defined
as the composite of the inclusion p with the quotient double functor from F to C .
Then q ı ˛i is a double functor for all i 2 I . Suppose C0 is a double category and
ˇi W Fi //C0 are natural double functors. Then by Theorem 4.5 there exists a unique
morphism J of double derivation schemes that makes the upper left triangle commute:

Fi
ˇi //

˛i

��

C0

S

9! J

>>

q
// C .

9! L

OO

The morphism J induces a double functor KW F //C0 since F is free on S . Since
Kıpı˛iDˇi is a double functor for all i , the induced morphisms of double derivations
schemes

Fi //F=�K

analogous to (4) are double functors. Here �K is defined as in Example 3.12. Since
K preserves �K and �K contains �, the double functor K also preserves � and
induces a unique functor L which makes the lower right triangle commute. Therefore
the square commutes, and further L is the unique double functor such that the square
commutes by the uniqueness of the two fillers.

Recall that filtered colimits in Cat are particularly simple to calculate: the filtered
colimit of the underlying reflexive graphs is already a category and this category is
the filtered colimit in Cat. Similarly, one does not need to use free constructions and
quotients to calculate filtered colimits in DblCat.

Theorem 4.7 A filtered colimit of double categories is calculated by simply taking
the filtered colimits of the underlying reflexive double graphs.
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Proof The filtered colimit of the underlying reflexive double graphs admits all the as-
sociative and unital compositions necessary for a double category by the corresponding
result in Cat. The interchange law holds because it is possible to find representatives
of all four squares in a single stage, where the interchange law is known to hold.

5 Nerves of double categories

Grothendieck’s full and faithful nerve N W Cat //SSet has been of tremendous use
in higher category theory. One can expect that its n–fold version will similarly be of
use. In fact, Brown–Higgins [11; 12; 13; 14] have studied edge symmetric n–fold
categories from the point of view of cubical sets, and also Grandis [40; 41]. A double
category is a 2–truncated cubical set. We introduce in this section simplicial nerves of
double categories. The simplicial nerve will be of use in Section 7 where we transfer
model structures on Cat�

op
to DblCat via a horizontal categorification-horizontal

nerve adjunction. The bisimplicial nerve, its left adjoint, and the associated transfer of
model structure, are treated in [35]. The horizontal nerve, which we consider now, is
really an internal notion.

Definition 5.1 Let D D .D0;D1/ be a double category. Then the horizontal nerve of
D is the simplicial object NhD in Cat defined as

.NhD/0 DD0

.NhD/1 DD1

.NhD/n DD1 t�s D1 t�s � � � t�s D1„ ƒ‚ …
n copies of D1

:

Obj.NhD/n W // // // // // // //

Mor.NhD/n W

//

��

//

��

//

��

//

�� ��

//

��

// //

�� ��// // // // // // //

Obj .NhD/n D Cat.Œn�; .Obj D;Hor D//In other words,

Mor .NhD/n D Cat.Œn�; .Ver D;Sq D//:

Composition in .NhD/n is vertical.

There is of course the analogous notion of vertical nerve of D denoted NvD .

Algebraic & Geometric Topology, Volume 8 (2008)



Model Structures on DblCat 1883

Example 5.2 If C is a category, then the simplicial set Nh.HC/ is the usual nerve of
C. The horizontal nerve Nh is preferred for this reason. The horizontal embedding H ,
in turn, is preferred because it is the functor

CatD Cat.Set/ // Cat.Cat/D DblCat

induced by the embedding Set //Cat . In other words, considering a category C as
a double category with discrete object category and discrete morphism category is the
same as identifying it with HC.

Like the nerve of a category, the horizontal nerve of a double category has a representable
definition. Recall that DblCatv denotes the 2–category of small double categories,
double functors, and vertical natural transformations.

Proposition 5.3 For every double category D , the simplicial category

Œn� 7! DblCatv.HŒn�;D/

is isomorphic to the horizontal nerve NhD . Equivalently, the object simplicial set of
the horizontal nerve is

Œn� 7! DblCat.Œ0�� Œn�;D/

and the morphism simplicial set of the horizontal nerve is

Œn� 7! DblCat.Œ1�� Œn�;D/:

Proof The double categories HŒn� and Œ0�� Œn� are isomorphic, and vertical natural
transformations between double functors HŒn� //D are the same as double functors

Œ1�� Œn�D .HŒ1�/t �HŒn� // D

as pointed out by Grandis–Paré [42].

Proposition 5.3 makes the functoriality of Nh immediate. Even more, if we make
Cat�

op
into a 2–category with 2–cells the modifications, then Nh becomes a 2–functor.

Corollary 5.4 The horizontal nerve is a 2–functor

NhW DblCatv //Cat�
op
:

In Section 6 we construct the left adjoint to the horizontal nerve explicitly, but for now
we observe that a left adjoint exists. Recall the Enriched Lemma from Kan, which
follows from Theorem 4.51 of Kelly’s monograph [54].
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Theorem 5.5 (Enriched Lemma from Kan) Let V be a symmetric monoidal closed
category with small homsets. Suppose A is a small V –category, B is a cocomplete
V –category, and J W A //B is a V –functor. Then the enriched left Kan extension of
J along the Yoneda embedding exists and is the enriched left adjoint of the singular
functor

J�W B //VAop

B
� // B.J.�/;B/:

Theorem 5.6 The horizontal nerve NhW DblCat //Cat�
op admits a left 2–adjoint

ch called horizontal categorification.

Proof Let V be Cat, and let J W A //B be the Cat–functor

HW � // DblCatv :

By Proposition 5.3 the horizontal nerve is J� .

Since the 2–category DblCatv is 2–cocomplete by Theorem 4.2, and � is small, we
may now apply Theorem 5.5 to obtain the left 2–adjoint ch .

Theorem 5.7 The horizontal nerve Nh preserves filtered colimits.

Proof It follows from Theorem 4.7 that the category of horizontal morphisms and
squares of a filtered colimit of double categories is the filtered colimit of the categories
of horizontal morphisms and squares. Since filtered colimits commute with finite limits,
in particular iterated pullbacks, Nh preserves filtered colimits.

The horizontal nerve is also well behaved with respect to external products.

Proposition 5.8 Let � W Cat //Cat�
op denote the constant functor. Let

�W Set�
op // Cat�

op

be the inclusion induced by the functor Set //Cat which takes a set to the corre-
sponding discrete category. If A and B are categories, then Nh.A � B/D �A� �N B.
In other words, Nh.A � B/k D A�N Bk where we view the set N Bk as a discrete
category.

Like the traditional nerve, the horizontal nerve is fully faithful.
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Proposition 5.9 The horizontal nerve NhW DblCatv //Cat�
op is fully faithful in

the 2–categorical sense, that is, the functors

DblCatv.D;E/
.Nh/D;E // Cat�

op
.NhD;NhE/

are isomorphisms of categories.

Proof The data of a double functor F and a vertical natural transformation � are
encoded entirely in NhF and Nh� , so .Nh/D;E is injective on objects and injective
on morphisms.

If F 0W NhD //NhE is a morphism in Cat�
op

, then the functors F 0
0

and F 0
1

give
the data for a double functor F , and compatibility with face and degeneracy maps
guarantees compatibility of F with horizontal composition and units. From .NhF /0D

F 0
0

and .NhF /1 D F 0
1

it follows that NhF D F 0 using the compatibility with the
injective maps ei;iC1W f0; 1g // f0; : : : ; ng defined by

ei;iC1.0/D i

ei;iC1.1/D i C 1

for 0 � i � n� 1. Similarly, if � 0 is a 2–cell in Cat�
op

, we can construct a vertical
natural transformation � from � 0

0
and � 0

1
such that Nh� D � 0 . Then .Nh/D;E is

surjective on objects and surjective on morphisms.

Also like the traditional nerve, the horizontal nerve is 2–coskeletal, which means that
the component NhD // csk2 tr2 NhD of the unit for the adjunction

Cat�
op

?

tr2

**

Cat�
op
2

csk2

jj

is an isomorphism of simplicial objects in Cat. To prove this, we need a proposition
from enriched category theory, the first part of which is Theorem 5.13 of [54].

Proposition 5.10 (Proposition 1.1 of Lack–Paoli [62]) Let V be a symmetric mon-
oidal closed category which is complete and cocomplete. If

A I //B J //C

are V –functors, and J is fully faithful, then J is dense provided that JI is so, and then
the identity JI D JI exhibits J as the left Kan extension of JI along I . Furthermore,
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the singular functor C.J; 1/W C // ŒBop;V � can then be obtained by first applying the
singular functor

C.JI; 1/W C // ŒAop;V �
and then right Kan extending along I W Aop //Bop .

Proposition 5.11 The horizontal nerve of a small double category is 2–coskeletal.

Proof For I and J in Proposition 5.10, we take

�2
I // �

J // DblCatv

where I is the inclusion of the full subcategory �2 of � on the objects Œ0�, Œ1� and
Œ2�, and J D H as in the proof of Theorem 5.6. Clearly, J is fully faithful in the
2–categorical sense. We denote by N 2

h
the 2–truncation of the horizontal nerve, which

is the singular functor DblCatv.JI; 1/. By the same argument as in Proposition 5.9,
N 2

h
is fully faithful in the 2–categorical sense, which is equivalent to the density of

JI according to Theorem 5.1 (ii) of [54]. By Proposition 5.10, the horizontal nerve
Nh D DblCatv.J; 1/ is 2–naturally isomorphic to the composite

DblCatv
N 2

h // Cat�
op
2

RanI // Cat�
op :

Evaluating this 2–natural isomorphism at a double category D , we obtain an isomor-
phism

NhD // csk2 tr2 NhD

between NhD and a 2–coskeletal simplicial object. From the naturality of the unit, it
follows that NhD is also 2–coskeletal.

Definition 5.12 The classifying space functor B is the composite

DblCat
Nh // Cat�

op N� // SSet�
op diag // SSet

j�j // Top;

where N� is the levelwise nerve induced by the ordinary nerve N , diag is induced
by the diagonal functor, and j � j is the geometric realization. The bisimplicial set
N�.Nh.D// is isomorphic to the bisimplicial nerve NdD of the double category D .

6 Horizontal categorification

We now construct a left adjoint ch to the horizontal nerve Nh by analogy with the usual
nerve N . Horizontal categorification ch is appropriately compatible with external
products, as we show in Example 6.6 and Proposition 6.11.
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We recall the left adjoint cW SSet //Cat to the nerve functor N constructed by
Gabriel–Zisman [37]. For a simplicial set X , the category cX is the fundamental
category of X , or categorification of X . It is the free category on the reflexive graph
.X0;X1/ modulo the smallest congruence such that for every � 2X2 with edges

�

g

��???????
f

??�������

h

//

we have g ıf � h. The following proof is our guideline for the left adjoint ch to Nh .

Proposition 6.1 Categorification c is left adjoint to the nerve functor N .

Proof We need to construct a natural bijection

Cat.cX;A/Š SSet.X;N A/:

Suppose we have a map GW X //N A of simplicial sets. The 1–truncation is a
morphism of reflexive graphs, so there is a unique functor J making the upper left
triangle commute.

.X0;X1/
.G0;G1/ //

��

A

FreeCat.X0;X1/

9! J

99

// cX

9! G0

OO

Since J comes from a morphism of simplicial sets, the functor J takes congruent
morphisms to equal ones. Therefore there exists a unique functor G0 making the lower
right triangle commute.

For the converse, given a functor G0W cX //A , we compose it with the morphism
of reflexive graphs

.X0;X1/ // FreeCat.X0;X1/ // cX

to obtain a morphism of reflexive graphs .G0;G1/W .X0;X1/ //A . We define
G2W X2

//.N A/2 on � 2X2 as

G1.d2�/ // G1.d0�/ // :

By definition G2 is compatible with d2 and d0 , and the quotient in the definition of
cX makes G2 compatible with d1 . This, together with the simplicial identities relating
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X1 and X2

d0s0 D idX1
d2s0 D s0d1 d0s1 D s0d0 d2s1 D idX1

;

implies that G2 is also compatible with the degeneracies s0 and s1 . Since N A is
2–coskeletal this morphism .G0;G1;G2/ of 2–truncated simplicial sets induces a
morphism GW X //N A of simplicial sets:

Set�
op
2 .tr2 X; tr2 N A/Š SSet.X; csk2 tr2 N A/Š SSet.X;N A/:

The two procedures G 7!G0 and G0 7!G are inverse to one another.

Remark 6.2 Any morphism of simplicial sets GW X //N A is completely deter-
mined by its 1-truncation .G0;G1/ as follows. We let ei;iC1W f0; 1g // f0; : : : ; ng

be the injective map defined by

ei;iC1.0/D i

ei;iC1.1/D i C 1

for 0� i � n�1, and we let ei W f0g // f0; : : : ; ng be the injective map defined by

ei.0/D i

for 0� i � n. If � is an n–simplex, then G.�/ is the string of n morphisms in A

G.e�
0;1
.�//

//
G.e�

1;2
.�//

// � � � � � �
G.e�

n�1;n
.�//

//

where the source and target of G.e�
i;iC1

.�// are G.e�i .�// and G.e�
iC1

.�//.

We turn next to the left adjoint of the horizontal nerve. We will exhibit two proofs that
the horizontal categorification of the product of a category with a simplicial set is an
external product of the category with the fundamental category of the simplicial set.
This is done in Example 6.6 using the definition of horizontal categorification, while it
is done in Proposition 6.11 using weighted colimits.

Definition 6.3 Let X 2Cat�
op

. We define a double category chX called the horizontal
categorification or fundamental double category of X as follows. First we define a
double derivation scheme S with vertical 1–category X0 and with horizontal 1–
category the fundamental category of the simplicial set Obj X . The squares of S are
the morphisms of X1 . We equip the free double category F on the double derivation
scheme S with the smallest congruence � such that:

(1) If ˛; ˇ 2Mor X1 are composable in X1 , then the vertical composite
�
˛
ˇ

�
in F

is congruent to the composite of ˇ and ˛ in X1 .
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(2) For all � 2Mor X2 with boundary

�

ˇ

��???????
˛

??�������



//

Œ˛ˇ�� 
:we have

(3) For any vertical morphism j , that is, for any j 2Mor X0 , the horizontal identity
ih
j is congruent to the degeneracy of j in Mor X1 .

(4) For any f 2 Obj X1 , the vertical identity square iv
f

on the image of f in the
horizontal 1–category of S is congruent to the identity on f in the category
X1 .

We define chX as the quotient of F by the congruence �. The horizontal and vertical
1–categories of chX are the horizontal and vertical 1–categories of S .

Remark 6.4 In the definition of horizontal categorification it is not necessary to mod
out by additional relations to make the identity squares functorial. If g ı f � h in the
horizontal 1–category because of � 2 Obj X2 , then the identity morphism on � in the
category X2 implies we have iv

h
� Œiv

f
ivg � (the face maps are functors and we have (2)

and (4)). For vertically composable morphisms j and k , we have

ih

Œjk�
�

�
ih
j

ih
k

�
because degeneracy is a functor and by (1) and (3).

Example 6.5 If X is a simplicial set, then ch�X DHcX . By definition, the horizontal
1–category is cX , and the vertical 1–category is the discrete category X0 . Since X1

is also discrete, there are no nontrivial squares.

Example 6.6 Recall from Proposition 5.8 that � W Cat //Cat�
op denotes the con-

stant functor and �W Set�
op //Cat�

op
denotes the inclusion. If A is a category and

Y is a simplicial set, then the horizontal categorification of the simplicial category
�A��Y is A�cY . In fact, the horizontal 1–category of the double derivation scheme
S is

c.Obj.�A� �Y //D c.Obj A�Y /D .Obj A/� cY;

which is the same as the horizontal 1–category of A � cY . The vertical 1–category of
S is

.�A� �Y /0 D A�Y0;
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which is the same as the vertical 1–category of A � cY . The squares of S are

Mor.�A� �Y /1 D .Mor A/�Y1:

The congruence on F corresponds precisely to the relations in A � cY for pairwise
compositions of squares and identity squares. We present an alternative conceptual
proof of this example in Proposition 6.11.

As we have seen in Theorem 5.6, the horizontal nerve Nh admits a left 2–adjoint. We
verify that ch as in Definition 6.3 is the underlying 1–functor of the left 2–adjoint.

Proposition 6.7 Horizontal categorification ch is left adjoint to the horizontal nerve Nh .

Proof We use the notation of Definition 6.3 and construct a natural bijection

DblCat.chX;D/Š Cat�
op
.X;NhD/:

Suppose GW X //NhD is a morphism of simplicial objects in Cat. This induces
a morphism of double derivation schemes S //D and a unique double functor J

making the upper left triangle commute:

S //

��

D

F //

9! J

>>

chX .

9! G0

OO

Since G is a morphism of simplicial objects in Cat, J takes congruent squares to
equal squares, and there exists a unique double functor G0 making the lower right
triangle commute.

On the other hand, given a double functor G0W chX //D we compose it with

.X0;X1/ // F // chX

to obtain a morphism .G0;G1/ of 1-truncated simplicial objects in Cat. By the same
argument as in the proof of Proposition 6.1, we obtain maps of simplicial sets

GObjW Obj X // Obj NhD

GMorW Mor X // Mor NhD :

The maps .GObj
0
;GMor

0
/ and .GObj

1
;GMor

1
/ are already known to be functors, and X is

a simplicial object in Cat.
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We claim that .GObj
2
;GMor

2
/ is also a functor. If �; � 0 2Mor X2 are composable we

denote their composite as �
�

� 0

�
:

We similarly denote composites in .NhD/2 . To indicate a composite of a horizontal
path of squares in D , we separate the squares by a dot. Then G2 preserve compositions

G2

�
�

� 0

�
D d2G2

�
�

� 0

�
� d0G2

�
�

� 0

�
DG1d2

�
�

� 0

�
�G1d0

�
�

� 0

�
D

�
G1d2�

G1d2�
0

�
�

�
G1d0�

G1d0�
0

�
D

�
G1d2� �G1d0�

G1d2�
0 �G1d0�

0

�
D

�
G2�

G2�
0

�
;

and G2 preserves units similarly.

By Proposition 5.11, NhD is 2–coskeletal, so the 2–truncated morphism .G0;G1;G2/

induces a morphism X //NhD , and by Remark 6.2, this morphism must be
.GObj;GMor/ from above.

The two procedures G 7!G0 and G0 7!G are inverse to one another.

Proposition 6.8 Consider Cat embedded into Cat�
op

as the constant simplicial ob-
jects, and consider Cat embedded vertically into DblCat. Then the adjunction ch aNh

restricts to the identity adjunction on these full subcategories.

We now move towards a conceptual proof of Example 6.6 in Proposition 6.11.

Remark 6.9 Recall that if S is a set and A is an object of a category, then the copower
S �A is the coproduct of A with itself S times. In some categories, the copower has a
simple description. For example, if C is a category, then the copower in Cat is

S �CD
a
S

CD S �C:

If X is a simplicial set and Y 2 Cat�
op

, then X �Y is the simplicial object in Cat

Œn�
� // Xn �Yn D

`
Xn

Yn DXn �Yn ;

which is the same as �X �Y .
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Lemma 6.10 If X and Y are simplicial objects in Cat, then X �Y is the weighted
colimit X �G of the Cat–functor

GW � // Cat�
op

Œn�
� // Y � ��Œn�

with weighting X W �op //Cat .

Proof Since .Cat;�/ is symmetric monoidal closed, it follows from a general fact
that Cat�

op
has a tensor product

.Y ˝Z/n WD Yn �Zn D .Y �Z/n

and an internal hom
ŒY;Z�n W D Cat�

op
.�Œn� �Y;Z/

Š Cat�
op
.Y � ��Œn�;Z/

for all Y;Z 2 Cat�
op

.

For any Z 2 Cat�
op

,
Cat�

op
.G.Œn�/;Z/

is the n–th category of the internal hom ŒY;Z�. Thus we have a natural isomorphism

Cat�
op
.X;Cat�

op
.G.�/;Z//Š Cat�

op
.X �Y;Z/

and X �Y satisfies the universal property of the weighted colimit X �G .

We finish the conceptual proof of Example 6.6.

Proposition 6.11 If A is a category and Y is a simplicial set, then the horizontal
categorification of the simplicial category �A � �Y is A � cY where cY is the
traditional categorification of Y .

Proof By Lemma 6.10, �A� �Y is the weighted colimit �A�G of

GW � // Cat�
op

Œn�
� // �Y � ��Œn�

with weighting �AW �op //Cat .
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Let J W � //DblCat be the horizontal embedding. Then by Theorem 4.51 of Kelly’s
monograph [54], for each Z 2 Cat�

op
, ch.Z/ŠZ �J: Hence

(5)

ch.�A� �Y /D ch.�A�G/

Š .�A�G/�J

Š �A� .G �J /

by the general Fubini Theorem, which is equation (3.23) in [54]. The functor

G �J W � //DblCat

in the last line takes Œn� to

G.Œn�/�J Š ch.G.Œn�//D ch.�Y � ��Œn�/:

From Example 6.5 and the fact that c preserves finite products, we have

ch.�Y � ��Œn�/DHc.Y ��Œn�/ŠHcY �HŒn�:

We conclude that (5) has the form

(6) ch.�A� �Y /Š �A� .HcY �HŒ��/:

We claim that the right hand side of (6) is isomorphic to V A�HcY . In fact, Corollary
2.14 and the adjunction sk0 a tr0 give, for all E 2 DblCatv

DblCatv.V A�HcY;E//Š Cat.A;DblCatv.HcY;E//

Š Cat.A; tr0 DblCatv.HcY �HŒ��;E//

Š Cat�
op
.�A;DblCatv.HcY �HŒ��;E//:

The claim follows now from the definition of weighted colimit. Hence, (6) implies that

ch.�A� �Y /Š V A�HcY D A � cY:

Remark The vertical categorification of a simplicial object X in Cat is the transpose
of chX .

7 Model structures arising from Cat�op

Now that we have the adjunction ch a Nh in place we can use it to transfer model
structures from Cat�

op
to DblCat using Kan’s Lemma on Transfer (Theorem 7.11).

This theorem says that one can lift a model structure across an adjunction under a
certain pushout condition and certain smallness conditions, which guarantee functorial
factorizations. This is our first method for constructing model structures on DblCat.
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In Section 8 we will adopt the point of view of double categories as internal categories
and apply the results of Everaert–Kieboom–Van der Linden [32]. In Section 9 we
will consider DblCat as a category of algebras for a 2–monad and use Lack’s algebra
structure [60].

The category Cat�
op

has four model structures of interest to us. These arise as diagram
structures and Reedy structures associated to two cofibrantly generated model structures
on Cat: the Thomason structure and the categorical structure. In Sections 7.1–7.4
we review some material for the reader’s convenience: model structures on Cat, their
associated diagram structures, smallness arguments, and Kan’s Lemma on Transfer.
After these preliminaries, we turn to our new results. In Sections 7.5 and 7.6 we transfer
the diagram structures to DblCat across the horizontal categorification-horizontal nerve
adjunction, and show that the transferred structures on DblCat extend the Thomason
structure and categorical structure on the vertically embedded subcategory Cat. In
the proofs of our transfer results we crucially need to know the behavior of certain
pushouts, and these are treated in Theorem 10.6 and Theorem 10.7 of the Appendix.
We show in Section 7.7 that the Reedy categorical structure cannot transfer.

Recall the notion of cofibrantly generated model category.

Definition 7.1 A model category C is cofibrantly generated if there exist sets of
morphism I and J in C such that:

(1) The domains of I are small with respect to I –cell as defined in Definition 7.5
and Definition 7.8.

(2) The domains of J are small with respect to J –cell.

(3) The class of fibrations is precisely the class of morphisms with the right lifting
property with respect J .

(4) The class of acyclic fibrations is precisely the class of morphisms with the right
lifting property with respect to I .

In this case, I is the set of generating cofibrations and J is the set of generating
acyclic cofibrations.

7.1 Model structures on Cat

In the Thomason structure on Cat in [80] a functor F is a weak equivalence (respectively
fibration) if and only if Ex2 NF is a weak equivalence (respectively fibration) of sim-
plicial sets. The functor Ex2 is superfluous for weak equivalences, as Thomason proved
that F is a weak equivalence if and only if NF is. The functor ExW SSet //SSet
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is the right adjoint to barycentric subdivision SdW SSet //SSet , which we recall
below. The Thomason structure is cofibrantly generated. The generating cofibrations
are the inclusions of categorical boundaries

c Sd2 @�Œm� //c Sd2�Œm� ;

while the generating acyclic cofibrations are the inclusions of categorical horns

c Sd2ƒk Œm� //c Sd2�Œm� :

We now recall the definition of barycentric subdivision Sd. The simplicial sets Sd�Œm�
and Sdƒk Œm� are respectively the nerves of the posets of nondegenerate simplices of
�Œm� and ƒk Œm�. The ordering is the face relation. Thus a q–simplex of Sd�Œm� is a
tuple .v0; : : : ; vq/ of nondegenerate simplices (faces) of �Œm� such that vi is a face
of viC1 for all 0� i � q� 1. Such a tuple is a q–simplex of Sdƒk Œm� if and only if
all v0; : : : ; vq are in ƒk Œm�. A p–simplex u is a face of a q–simplex v in Sd�Œm� if
and only if

fu0; : : : ;upg � fv0; : : : ; vqg:

A p–simplex u of Sd�Œm� is nondegenerate if and only if all ui are distinct.

The barycentric subdivision of a simplicial set Y is by definition

colim
�Œn�!Y

Sd�Œn�

where the colimit is indexed over the category of simplices of Y . It follows from page
311 of [80] that c Sd2�Œm� and c Sd2ƒk Œm� are respectively the posets of nonde-
generate simplices of Sd�Œm� and Sdƒk Œm� and the generating acyclic cofibration
c Sd2ƒk Œm� //c Sd2�Œm� is the inclusion of these posets.

The other model structure on Cat is the categorical structure, or natural structure,
of Joyal–Tierney [51]. In the categorical structure a functor is a weak equivalence if
and only if it is an equivalence of categories. A functor F W A //B is a fibration if
and only if for each isomorphism ˇW b Š Fa in B there is an isomorphism ˛W a0 Š a

in A such that Fa0 D b and F˛ D ˇ . These fibrations of categories are also called
isofibrations. A cofibration is a functor that is injective on objects. The categorical
structure on Cat is also cofibrantly generated. There are three generating cofibrations:

∅ � � // f1g

f0; 1g
� � // f0! 1g

f0 � 1g // f0! 1g
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and one generating acyclic cofibration:

f1g
� � // f0Š 1g D I :

7.2 Diagram model structures on Cat�op

Given a model category M and a small category C, one might hope that the category MC

of functors C //M is also a model category with levelwise weak equivalences and
levelwise fibrations. By this we mean that a natural transformation is a weak equivalence
(respectively fibration) if and only if each of its components is. Unfortunately, this
definition does not always give rise to a model structure on MC . However, if M is a
cofibrantly generated model category, Theorem 7.2 guarantees that this definition does
indeed give rise to a model structure on MC , which is even cofibrantly generated.

Theorem 7.2 (Theorem 11.6.1 in [46]) Let C be a small category and M a cofi-
brantly generated model category with I the set of generating cofibrations and J the set
of generating acyclic cofibrations. Then MC is a cofibrantly generated model category
with levelwise weak equivalences and levelwise fibrations. The generating cofibrations
are natural transformations of the form

`
C.C;�/

A

`
C.C;�/

f

// `
C.C;�/

B

for f W A //B in I . The generating acyclic cofibrations are defined similarly with
f in J . A morphism in MC is a cofibration if and only if it is a retract of a transfinite
composition of pushouts of generating cofibrations. The components of a cofibration
are also cofibrations.

Thus, the category Cat�
op

inherits two model structures from Section 7.1. In the dia-
gram Thomason structure on Cat�

op
, a natural transformation ˛ is a weak equivalence

(respectively fibration) if and only if Ex2 N˛i is a weak equivalence (respectively
fibration) of simplicial sets for each i � 0. In the diagram categorical structure on
Cat�

op
, a natural transformation ˛ is a weak equivalence (respectively fibration) if

and only if ˛i is an equivalence of categories (respectively isofibration) for all i � 0.

If C is a Reedy category, then a model structure on M also induces a Reedy model
structure on MC (see for example Hirschhorn [46] or Hovey [47]). The category �op

is a Reedy category, so the Thomason and categorical structures on Cat also give rise
to two more model structures on Cat�

op
. However, we do not study these in more

detail because of the following Theorem and also because of Theorem 7.22.

Algebraic & Geometric Topology, Volume 8 (2008)



Model Structures on DblCat 1897

Theorem 7.3 (Theorem 15.6.4 in [46]) If C is a Reedy category and M is a cofi-
brantly generated model category, then the identity functor of MC is a left Quillen
equivalence from the cofibrantly generated diagram model structure to the Reedy model
structure, and a right Quillen equivalence in the opposite direction.

7.3 Smallness

We will need some knowledge about smallness to use Kan’s Lemma on Transfer. We
recall some of the relevant notions described in Hovey’s monograph [47]. Appropriate
smallness conditions also allow us to conclude that a transfinite composition of weak
equivalences is a weak equivalence.

Definition 7.4 Let � be a cardinal. An ordinal � is �–filtered if it is a limit ordinal
and, if A� � and jAj � � , then sup A< �.

Definition 7.5 Let C be a category with all small colimits and � a cardinal. An object
A of C is called �–small if for all �–filtered ordinals � and all colimit-preserving
functors X W � //C the map of sets

(7) colim
ˇ<�

C.A;Xˇ/ // C.A; colim
ˇ<�

Xˇ/

is a bijection. An object A is said to be small if it is �–small for some cardinal � . An
object A is said to be finite if it is �–small for a finite cardinal � , that is, for any limit
ordinal � and colimit-preserving functor X , the map (7) is a bijection. We say the
concepts hold relative to a class of morphisms D in C if they hold true for all X with
Xˇ //XˇC1 in D for all ˇC 1< �.

For example, categories are small as follows, and we conclude similarly that double
categories are small.

Proposition 7.6 Any category A is �–small where

� D jObj AjC jMor AjC jMor A s�t Mor Aj:

In particular, if Mor A is a finite set, then A is finite as an object of Cat.

Proof Let XW � //Cat be a colimit-preserving functor from a �–filtered ordinal
�. Recall that ordinals are filtered categories and filtered colimits of categories are
formed by simply taking the filtered colimits of the object set and the morphism set.

Suppose F W A //colim X is a functor. For each A 2 Obj A and f 2Mor A there
are ordinals ˛1.A/ and ˛2.f / such that F.A/ and F.f / are in the image of X˛1.A/
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and X˛2.A/ . Let ˇ be the supremum of all the ˛1.A/ and ˛2.f /. Then ˇ < � and
we obtain maps of sets

GObjW Obj A // Obj Xˇ

GMorW Mor A // Mor Xˇ

which factor the functor F . There exists for each f 2Mor A an index 
 .f / such that
s.G.f //DG.s.f // and t.G.f //DG.t.f // in X
.f / . For each A 2 Obj A there is
an index ı.A/ such that G.1A/D 1G.A/ in Xı.A/ . For each .`; k/ 2Mor A s�t Mor A
there exists an index �.`; k/ such that G.`ık/DG.`/ıG.k/ in X�.`;k/ . Let � be the
supremum of all these indices 
; ı; � . Then � < � and G induces a functor A //X�
which factors F . Hence (7) is onto.

Suppose M W A //X˛ and N W A //Xˇ are functors that become equal in the
colimit. Then for each A 2 Obj A and each f 2Mor A there are indices 
 .A/ and
ı.f / such that M.A/DN.A/ and M.f /DN.f / in X
.A/ and Xı.f / respectively.
Let � < � be the supremum of all these indices 
 .A/ and ı.f /. Then M and N

become equal at the stage � and the map (7) is injective.

Proposition 7.7 Let D be a double category and sh; sv; th; tv the horizontal and
vertical source and target maps. Then D is �–small where

� DjObj DjC jHor DjC jHor D sh�th Hor Dj

C jVer DjC jVer D sv�tv Ver Dj

C jSq DjC j Sq D sv�tv Sq Dj

C jSq D sh�th Sq Dj:

In particular, if Sq D is a finite set, then D is finite as an object of DblCat.

Proof We first obtain a map of the underlying quadruple of sets, and then we go out
far enough to make it into a double functor by considering the various compositions
and identities as in Proposition 7.6.

Note that this proposition easily generalizes to n–fold categories.

One useful application of finiteness is to transfinite compositions of weak equivalences.

Definition 7.8 If C is a category with all small colimits, � is an ordinal, D is a
class of morphisms in C, and X W � //C is a colimit preserving functor such that
Xˇ //XˇC1 is in D for all ˇC 1< �, then the morphism

X0
//colim X
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is called a transfinite composition of morphisms in D. If I is a class of morphisms
in C, then a transfinite composition of pushouts of elements of I is called a relative
I –cell complex. The class of relative I –cell complexes is denoted I –cell.

Proposition 7.9 (Corollary 7.4.2 in [47]) Suppose C is a cofibrantly generated
model category in which the domains and codomains of the generating cofibrations and
generating acyclic cofibrations are finite. Then every transfinite composition of weak
equivalences is a weak equivalence.

Example 7.10 In both the Thomason structure and the categorical structure on Cat, ev-
ery transfinite composition of weak equivalences is a weak equivalence, as the domains
and codomains of the generating cofibrations and generating acyclic cofibrations only
have finitely many morphisms. Since weak equivalences and colimits in Cat�

op
are

levelwise, every transfinite composition of weak equivalences in the diagram structures
is also a weak equivalence.

7.4 Kan’s Lemma on Transfer

Our first main tool for constructing model structures on DblCat is Kan’s Lemma on
Transfer. The form we will use is Corollary 7.12.

Theorem 7.11 (Kan’s Lemma on Transfer, Theorem 11.3.2 in [46]) Let C be a
cofibrantly generated model category with generating cofibrations I and generating
acyclic cofibrations J . Suppose D is complete and cocomplete, and that

(8) C ?

F

&&
D

G

ff

is an adjunction. Assume the following.

(1) For every i 2 I , dom Fi is small with respect to FI –cell. For every j 2 J ,
dom Fj is small with respect to FJ –cell.

(2) The functor G maps every relative FJ –complex to a weak equivalence in C.

Then there exists a cofibrantly generated model structure on D with generating cofibra-
tions FI and generating acyclic cofibrations FJ . Further, f is a weak equivalence in
D if and only G.f / is a weak equivalence in C, and f is a fibration in D if and only
G.f / is a fibration in C.
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Along the lines of Proposition 3.4.1 of Worytkiewicz–Hess–Parent–Tonks [83], we
have the following corollary.

Corollary 7.12 Let C be a cofibrantly generated model category with generating
cofibrations I and generating acyclic cofibrations J . Suppose D is complete and
cocomplete, and that F aG is an adjunction as in (8). Assume the following.

(1) For every i 2 I and j 2 J , the objects dom Fi and dom Fj are small with
respect to the entire category D.

(2) For any ordinal � and any colimit preserving functor X W � //C such that
Xˇ //XˇC1 is a weak equivalence, the transfinite composition

X0
// colim X

is a weak equivalence.

(3) G preserves filtered colimits.

(4) If j 0 is a pushout of F.j / in D for j 2 J , then G.j 0/ is a weak equivalence in
C.

Then there exists a cofibrantly generated model structure on D with generating cofibra-
tions FI and generating acyclic cofibrations FJ . Further, f is a weak equivalence in
D if and only G.f / is a weak equivalence in C, and f is a fibration in D if and only
G.f / is a fibration in C.

Proof Clearly, (1) of Theorem 7.11 follows from the hypotheses. To see (2), we recall
that a relative FJ –complex is a transfinite composition of pushouts of morphisms Fj

where j 2J . If a relative FJ –complex f is a transfinite composition of Y W � //D ,
then Gf is the transfinite composition of X D G ı Y . Since Gf is a transfinite
composition of weak equivalences, Gf is also a weak equivalence. Hence G takes
relative FJ –complexes to weak equivalences in C.

7.5 Transfer of the diagram Thomason structure on Cat�op

With these preliminaries and our free constructions on double categories, we can transfer
the diagram Thomason structure to DblCat. Recall the diagram Thomason structure
on Cat�

op
from Section 7.2.

Theorem 7.13 There is a cofibrantly generated model structure on DblCat such that a
double functor K is a weak equivalence (respectively fibration) if and only if NhK is
levelwise a weak equivalence (respectively fibration) in the Thomason structure on Cat.
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Proof We apply Corollary 7.12 to the adjunction F D ch aNh DG . First we point
out that

ch

� a
�op.Œn�;�/

c Sd2ƒk Œm�

�
D ch.c Sd2ƒk Œm���Œn�/

D .c Sd2ƒk Œm�/� c�Œn�

D .c Sd2ƒk Œm�/� Œn�

by Example 6.6 or Proposition 6.11 (for simplicity we suppress � and � ). Similarly,

ch

� a
�op.Œn�;�/

c Sd2�Œm�

�
D .c Sd2�Œm�/� Œn�

and the horizontal categorifications of the generating acyclic cofibrations j D f � 1�Œn�
in Theorem 7.2 are the inclusions f � 1Œn� for the inclusions

f W c Sd2ƒk Œm� //c Sd2�Œm�

and m� 1, n� 0.

(1) The double categories .c Sd2 @�Œm�/� Œn� and .c Sd2ƒk Œm�/� Œn� have a finite
number of squares, hence they are finite by Proposition 7.7.

(2) A transfinite composition of weak equivalences in Cat�
op

is a weak equivalence
by Example 7.10.

(3) The horizontal nerve Nh preserves filtered colimits by Theorem 5.7.

(4) Consider the pushout in DblCat:

.c Sd2ƒk Œm�/� Œn� //

ch.j/Df�1Œn�

��

D

j 0

��
.c Sd2�Œm�/� Œn� // P .

Then by Proposition 5.8 Nhch.j / is the acyclic cofibration j , and by Theorem
10.7 the diagram

.c Sd2ƒk Œm�/��Œn� //

Nhch.j/Dj

��

NhD

Nh.j
0/

��
.c Sd2�Œm�/��Œn� // NhP

is a pushout in Cat�
op

. Hence Nh.j
0/ is an acyclic cofibration, and in particular

a weak equivalence in Cat�
op

.
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We may compare the transferred diagram Thomason model structure on DblCat to the
Thomason model structure on Cat as follows.

Proposition 7.14 The functor .V-/0W DblCat //Cat maps the weak equivalences
and fibrations of the transferred diagram Thomason model structure on DblCat to weak
equivalences and fibrations in the Thomason model structure on Cat. In particular,
.V-/0 is a right Quillen functor.

Proof As functors, .V-/0 and .Nh-/0 are the same.

Corollary 7.15 The adjunction

Cat ?

V
))
DblCat

.V�/0

hh

is a Quillen adjunction.

Proof An adjunction is a Quillen adjunction if and only if the right adjoint is a right
Quillen functor, so the Corollary follows immediately from Proposition 7.14.

Proposition 7.16 The functor V W Cat //DblCat preserves and reflects weak equiv-
alences, fibrations, and cofibrations. In other words, a functor F is a weak equivalence
(respectively fibration, respectively cofibration) in the Thomason model structure on
Cat if and only if V F is a weak equivalence (respectively fibration, respectively
cofibration) in the transferred diagram Thomason model structure on DblCat. As a
consequence, the transferred diagram Thomason model structure on DblCat extends
the Thomason model structure on Cat as a vertically embedded subcategory.

Proof For a functor F , the morphism NhV F of simplicial objects in Cat is F in
every degree. Thus V preserves and reflects weak equivalences and fibrations.

By Corollary 7.15, V preserves cofibrations. It also reflects cofibrations as follows.
If F is a functor such that VF is a cofibration, and G is an acyclic fibration in Cat,
then any diagram in DblCat

V C

V F
��

K //V C0

VG
��

V D
L

//V D0

admits a lift, as V G is an acyclic fibration by the above. Since V is fully faithful, this
lift gives us a lift in Cat. Hence F is a cofibration.
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7.6 Transfer of the diagram categorical structure on Cat�op

Our preparations allow us to also quickly transfer the diagram categorical structure.
Recall the diagram categorical structure on Cat�

op
from Section 7.2. In Section 8.2

we will show that the vertical analogue of this transferred model structure on DblCat
coincides with the model structure induced by the simplicially surjective topology �
on Cat using the methods of Everaert–Kieboom–Van der Linden [32]. An important
reason for interest in the equality of these two structures lies in the fact that the second
construction yields an explicit form for the cofibrant replacement, which is not at all
transparent using only the transferred structure.

Theorem 7.17 There is a cofibrantly generated model structure on DblCat such that a
double functor K is a weak equivalence (respectively fibration) if and only if NhK is
levelwise a weak equivalence (respectively fibration) in the categorical structure on Cat.

Proof We apply Corollary 7.12 to the adjunction F D ch aNh DG . All generating
acyclic cofibrations j in Theorem 7.2 for the categorical diagram structure on Cat�

op

are natural transformations of the form

`
�op.Œn�;�/

f1g

`
�op.Œn�;�/

f

// `
�op.Œn�;�/

I

where f is the inclusion f1g //I and Œn� is an object of �op . These generating
acyclic cofibrations have horizontal categorification

f1g� Œn� //I � Œn�

by Example 6.6 or Proposition 6.11 (for simplicity we suppress � and � ).

(1) The double categories ∅� Œn�, f0; 1g� Œn�, f0 � 1g� Œn�, and f1g� Œn� have a
finite number of squares, hence they are finite by Proposition 7.7.

(2) A transfinite composition of weak equivalences in Cat�
op

is a weak equivalence
by Example 7.10.

(3) The horizontal nerve Nh preserves filtered colimits by Theorem 5.7.

(4) Consider the pushout in DblCat:

f1g� Œn� //

ch.j/

��

D

j 0

��
I � Œn� // P .
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Then by Proposition 5.8 Nhch.j / is the acyclic cofibration j , and by Theorem
10.7 the diagram

f1g ��Œn� //

Nhch.j/Dj

��

NhD

Nh.j
0/

��
I��Œn� // NhP

is a pushout in Cat�
op

. Hence Nh.j
0/ is an acyclic cofibration, and in particular

a weak equivalence in Cat�
op

.

We may compare the transferred diagram categorical model structure on DblCat to
the categorical model structure on Cat as follows.

Proposition 7.18 The functor .V-/0W DblCat //Cat maps the weak equivalences
and fibrations of the transferred diagram categorical model structure on DblCat to weak
equivalences and fibrations in the categorical model structure on Cat. In particular,
.V-/0 is a right Quillen functor.

Proof As functors, .V-/0 and .Nh-/0 are the same.

Corollary 7.19 The adjunction

Cat ?

V
))
DblCat

.V�/0

hh

is a Quillen adjunction.

Proof This follows immediately from Proposition 7.18.

Proposition 7.20 The functor V W Cat //DblCat preserves and reflects weak equiv-
alences, fibrations, and cofibrations. In other words, a functor F is a weak equivalence
(respectively fibration, respectively cofibration) in the categorical model structure on
Cat if and only if V F is a weak equivalence (respectively fibration, respectively
cofibration) in the transferred diagram categorical model structure on DblCat. As a
consequence, the transferred diagram categorical model structure on DblCat extends
the categorical model structure on Cat as a vertically embedded subcategory.

Proof The proof is completely analogous to the proof of Proposition 7.16.
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7.7 No transfer of the Reedy categorical structure on Cat�op

In this section we consider the category Cat�
op

of simplicial objects in Cat equipped
with the Reedy model structure associated with the categorical model structure on Cat.
The weak equivalences in this Reedy model structure are the levelwise equivalences
of categories and the fibrations are the Reedy fibrations. (For further details, see
Hirschhorn [46].) In this section we show that it is impossible to transfer this model
structure to DblCat via the adjunction ch aNh , where Nh is the horizontal nerve and
ch is the horizontal categorification. We will need the following theorem.

Theorem 7.21 (Theorem 1 of Joyal–Street [50]) For a given functor GW B //C ,
the canonical comparison functor from the pullback of F along G to the pseudo
pullback of F along G is an equivalence of categories for all functors F W A //C if
and only if G is an isofibration.

Now we turn to the objective of this subsection.

Theorem 7.22 There does not exist a model structure on DblCat such that a double
functor K is a weak equivalence (respectively fibration) if and only if NhK is a weak
equivalence (respectively fibration) in the Reedy model structure on Cat�

op
associated

to the categorical structure on Cat.

Proof Suppose that such a transferred model structure on DblCat does exist. Then
.ch;Nh/ is a Quillen pair. Let D be a double category and consider a Reedy cofibrant
fibrant replacement r W NhD //V� in Cat�

op
, that is, V� is a Reedy fibrant object

and r is an acyclic cofibration in the Reedy structure. Our strategy is to prove that the
existence of such a transferred model structure implies a false statement, namely that
(14) is an equivalence of categories for every double category D . We then exhibit a
double category for which (14) is not an equivalence.

Since V� is Reedy fibrant, the map .d0; d1/ is an isofibration in Cat, which implies
that the composite functors di

V1
.d0;d1/

//

di

((
V0 �V0 �i

// V0

are themselves isofibrations (the two projections �i W V0 �V0
//V0 are clearly isofi-

brations). By Theorem 7.21 this implies that the canonical functor

(9) V1 �V0
V1

//V1

ps
�V0

V1
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from the pullback to the pseudo pullback is an equivalence of categories.

Next we similarly show that (12) is an equivalence of categories. By Definition 6.3
.chV /0D V0 , the set of objects of V1 maps to the set of horizontal morphisms of chV ,
and the set of morphisms of V1 maps to the set of squares of chV . We claim that the
functor

(10) .chV /1
.d0;d1/ // .chV /0 � .chV /0

is also an isofibration. First note that V1
//V0 �V0 is an isofibration precisely when

any diagram in chV of the special form

v ko

��
ok w

��
g

//

with v;w isomorphisms in V0 and g an object of V1 , can be filled with an isomorphism
˛ in V1 (a “generating vertically invertible square” in chV ):

v ko

��

g0 //

˛ ok w

��
g

// .

Now consider a general such diagram in ch.V /. This has the form

(11)
v ko

��
ok w

��
g1

//
g2

//
gn

// ,

where the bottom edge is an equivalence class of a path of composable horizontal
morphisms by Definition 6.3. We next insert vertical identity morphisms and fill in the
individual squares to obtain the following allowable compatible arrangement

v ko

��

g0
1 //

˛1

g0
2 //

˛2

g0n //

˛n ok w

��
g1

//
g2

//
gn

//

(this is possible because V1
//V0 �V0 is an isofibration). The equivalence class

in ch.V / of this allowable compatible arrangement gives the required filling for (11).
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So (10) is indeed an isofibration. Reasoning as for (9), this implies that the following
functor is an equivalence of categories.

(12) .chV /1 �.chV /0 .chV /1 // .chV /1
ps
�.chV /0 .chV /1

We claim that the unit component �V is a weak equivalence. First we observe that
every component of the counit "W chNh

+3 IdDblCat is an isomorphism of double
categories, since the nerve functor Nh is fully faithful. Also, one of the triangle
identities states that Nh"D � �NhD D id, so �NhD is an isomorphism. The naturality of
the unit � therefore gives us a commutative diagram

NhD DNhchNhD

Nhchr

��

NhD
�NhD

oo

r

��
NhchV V�V

oo

in which the morphism �NhD is a levelwise equivalence (since it is an isomorphism),
and the morphism r is a levelwise equivalence (by hypothesis). The morphism Nhchr

is one as well, since chr is a weak equivalence (chr is an acyclic cofibration since
ch was assumed to be a left Quillen functor and r is an acyclic cofibration). By the
2-out-of-3 property, it follows that �V is a levelwise equivalence of categories, as
claimed.

Consider the following commutative diagram in Cat.

.NhD/2

r2 o

��

Segal

Š
//

.D/

.NhD/1 �.NhD/0 .NhD/1

.r1;r1/

��
.C /

// .NhD/1
ps
�.NhD/0 .NhD/1

.r1;r1/

��

V2

.�V /2 o

��
.B/

Segal // V1 �V0
V1

� //

..�V /1;.�V /1/

��
.A/

V1

ps
�V0

V1

..�V /1;.�V /1/

��

.NhchV /2 Segal

Š // .NhchV /1 �.NhchV /0
.NhchV /1

� // .NhchV /1
ps
�.NhchV /0

.NhchV /1

Note that .B/ and .D/ commute by the definition of Segal maps, while the commu-
tativity of .A/ and .C / follows from the universal property of the pseudo pullbacks.
The vertical functors r2 and .�V /2 are equivalences of categories, since r and �V are
weak equivalences from above. The bottom edge of .C / is an equivalence, since it is
(9). The bottom edge of .A/ is an equivalence as it is (12) (recall that .NhE/0 D E0

and .NhE/1 D E1 for any double category E).
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We claim that the top edge of .C / is an equivalence of categories. Since r0 and r1 are
equivalences, the right vertical functor

.r1; r1/W .NhD/1
ps
�.NhD/0 .NhD/1 // V1

ps
�V0

V1

is an equivalence. Moreover, since �V is a levelwise equivalence, the 2-out-of-3
property and the commutativity of .A/ imply that the functor

V1 �V0
V1

// .NhchV /1 �.NhchV /0 .NhchV /1

is an equivalence. Also, the commutativity of .B/ and the 2-out-of-3 property imply
that V2

//V1 �V0
V1 is an equivalence. The commutativity of .D/ then implies

that
.NhD/1 �.NhD/0 .NhD/1 // V1 �V0

V1

is an equivalence. Finally, the commutativity of .C / implies that the canonical map

(13) .NhD/1 �.NhD/0 .NhD/1 // .NhD/1
ps
�.NhD/0 .NhD/1

is an equivalence of categories, as claimed.

The map (13) is nothing but

(14) D1 �D0
D1

// D1

ps
�D0

D1:

The objects of D1

ps
�D0

D1 are diagrams of the form

(15)
g //

Š

��
f

//

and morphisms of D1

ps
�D0

D1 are diagrams of the form

(16)
f //

��
˛

��

Šoo g //

ˇ

�� ��
f 0

//
Š

oo
g0

//
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where the middle square is a commutative square of vertical morphisms. The objects
and morphisms of D1 �D0

D1 are those of (15) and (16) where the isomorphisms are
identities. The canonical functor (14) is given by this inclusion.

We now exhibit a double category D where the canonical functor (14) is not an
equivalence, which then implies that our original assumption on the existence of a
transferred Reedy structure on DblCat is false. Let D be the double category with four
distinct objects A;B;C;D and only the following nontrivial morphisms.

C
g //

Š

��

D

A
f

// B

There are no nontrivial squares. Suppose that the canonical functor (14) is essentially
surjective. Then there exist objects X;Y;Z and morphisms as in the following diagram

A
f //

��
˛

B

��

C
Šoo g //

ˇ

��

D

��
X

f 0
// Y Y

g0
// Z

with ˛ and ˇ vertically invertible squares. However, since all squares in D are trivial,
we conclude that B D Y D C , a contradiction. Hence, the canonical functor (14) is
not essentially surjective and is not an equivalence.

We conclude that it is impossible to transfer the categorical Reedy model structure on
Cat�

op
to DblCat.

8 Model structures arising from Grothendieck topologies

Until now we have considered model structures transferred from Cat�
op

. But one can
also view double categories as internal categories, and for these a homotopy theory
has already been developed. Model structures on internal categories in a category C
satisfying certain hypotheses have been studied by Everaert–Kieboom–Van der Linden
[32]. As they point out, there are various notions of internal equivalence of internal
categories. The notions full and faithful representably make sense for internal functors as
in Definition 8.8, but notions of essential surjectivity depend on a class of morphisms E
in C. If this class of morphisms is the class ET of T –epimorphisms for a Grothendieck
topology T on C, then the internal equivalences are the weak equivalences for a model
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structure on Cat.C/ in good cases. The classes we.T /, fib.T /, and cof.T / are defined
in [32] so that the following theorem holds. We will recall the classes we.T /, fib.T /,
and cof.T / below.

Theorem 8.1 (5.5 of [32]) Let C be a finitely complete category such that Cat.C/
is finitely complete and finitely cocomplete and T is a Grothendieck topology on C.
If the class we.T / of T –equivalences has the 2-out-of-3 property and C has enough
T –projectives, then

.Cat.C/;we.T /; fib.T /; cof.T //

is a model category.4

We apply this theorem to CD Cat for various Grothendieck topologies in this section.
In Section 8.2 we show that the model structure associated to the simplicially surjective
topology � is the same as the vertically transferred diagram categorical structure.
This second construction using [32] is advantageous, as it gives us more information
about the model structures, such as simple descriptions of cofibrations and cofibrant
replacements. We will show in Section 9 that the model structure associated to the
categorically surjective basis � 0 in Section 8.3 turns out to be the same as the model
structure on DblCat viewed as a category of algebras over a 2–monad. We also show
that the trivial topology induces the trivial model structure associated to the 2–category
DblCath .

8.1 Homotopy theory of internal categories according to Everaert–
Kieboom–Van der Linden [32]

First we recall the notions and results of Everaert–Kieboom–Van der Linden [32],
specialized to the case of internal categories in CD Cat.

Definition 8.2 Let isoW Cat.Cat/ //Grpd.Cat/ be the right adjoint to the inclusion
Grpd.Cat/ //Cat.Cat/ . For B 2 Cat.Cat/, this means that iso.B/1 has objects
the invertible horizontal morphisms of B and morphisms the horizontally invertible
squares. The category iso.B/1 is a subcategory of B1 . Composition is the vertical
composition of squares.

4As Tim Van der Linden pointed out to us, the factorizations in this model structure are functorial if
there exists a functor P W C //C and a natural transformation �W P +3 IdC such that P .C / is
T –projective and �C is a T –epimorphism for all objects C of C . This is the case with the � –topology,
the � 0–topology, and the trivial topology we consider in this paper.
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Definition 8.3 If F W A //B is a double functor, then the mapping path object is
the category .PF /0 defined as the pullback below:

.PF /0
xF0 //

xt

��

iso.B/1

t

��
A0

F0

// B0 .

The functor t W iso.B/1 //B0 is the target for horizontal composition, exactly as in
Definition 2.1. The objects of .PF /0 are

.a; f W b
Š //F0a/

for a an object of A and f a horizontal isomorphism of B . The morphisms are pairs

(17)

0BBBBB@
a

k
��

a0

;

b
Š //

j

��
˛

F0a

F0k
��

b0
Š

// F0a0

1CCCCCA
where k is a vertical morphism in A and ˛ is a horizontally invertible square in B .
Composition in .PF /0 comes from the vertical composition in A and B .

Definition 8.4 Let T be a topology on Cat. We denote by YT the composition of
the Yoneda embedding Y with the sheafification functor.

Cat
Y

//

YT

))

SetCatop // Sh.Cat; T /

A functor pW E //B is a T –epimorphism if YT .p/ is an epimorphism. In this case,
we often simply say that p is T –epi. We denote the class of T –epimorphisms by ET .

To show that a functor is T –epi, we will use the following characterization of T –
epimorphisms.

Proposition 8.5 (Corollary III.7.5 and III.7.6 of Mac Lane–Moerdijk [65], Proposition
2.12 in Everaert–Kieboom–Van der Linden [32]) Let T be a topology on a small
category. A morphism pW E //B is T –epi if and only if for every morphism
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gW X //B there exists a covering sieve ffi W Ui
//X gi and a family of mor-

phisms fui W Ui
//E gi such that for every i 2 I the following diagram commutes.

(18) Ui

ui

��

fi // X

g

��
E p

// B

Remark 8.6 Suppose K is a basis for the topology T in Proposition 8.5 and such g

and p are given. Then there exists a covering sieve ffi W Ui
//X gi in T and a family

of morphisms fui W Ui
//E gi making (18) commute if and only if there exists a

covering family fgj W Vj
//X gj in K and a family of morphisms fvj W Vj

//E gj
making (18) commute. Thus, in Proposition 8.5 one could equivalently replace the
phrase “covering sieve” by the phrase “covering family in a given basis”.

Proof A sieve S is a covering sieve in the topology T generated by the basis K

if and only if it contains a covering family R from the basis K . Suppose such a
covering sieve ffigi with morphisms fuigi is given. Then this covering sieve contains
a covering family in L for which (18) commutes. Conversely, given such a covering
family fgj gj with morphisms fvj gj , we may take the sieve

fgj ıwjw a morphism such that gj ıw existsgj

generated by the family fvj gj . Then the family fvj ıwg makes (18) commute.

Example 8.7 Suppose T is a topology on a small category. If a morphism p admits
a right inverse q , then p is a T –epimorphism. To see this using Proposition 8.5, take
any covering family ffig of X and the morphisms ui D qgfi .

Definition 8.8 Let sW iso.B/1 //B0 be the source map for horizontal composition,
as in Definition 2.1. A double functor F W A //B is essentially T –surjective if the
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functor

.PF /0
xF0 // iso.B/1

s // B0

s ı xF0.a; b
Š //F0a/D b;given by

s ı xF0

0BBBBB@
a

k
��

a0

;

b
Š //

j

��
˛

F0a

F0k
��

b0
Š

// F0a0

1CCCCCAD
b

j

��
b0

and

is a T –epimorphism. If F is additionally fully faithful in the sense of Bunge–Paré
[19], that is, if

A1

F1 //

.s;t/

��

B1

.s;t/

��
A0 �A0

F0�F0

// B0 �B0

is a pullback square in Cat, then F is called a T –equivalence. We denote the class of
T –equivalences by we.T /. Note that a double functor F is fully faithful if and only if
its restrictions to the two functors

.Obj A;Hor A/ //.Obj B;Hor B/

.Ver A;Sq A/ //.Ver B;Sq B/

are both fully faithful.

Remark 8.9 If A and B are 1–categories, then a functor F W A //B is essentially
surjective in the usual sense if and only if s ı xF0 is surjective. The functor F is fully
faithful in the sense of Definition 8.8 if and only if it is fully faithful in the usual sense.
The notions of essential surjectivity and fully faithfulness can be found in any standard
reference on category theory, such as pages 19 and 115 of Borceux [10] or pages 14,
15 and 93 of Mac Lane [64].

Definition 8.10 Let E be a class of functors. We say that a category P is projective
with respect to the class E if for every functor GW Q // //R in E and every functor
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H W P //R there exists a functor F W P //Q such that GF DH :

P

H

��

9F

���
�

�
�

�
�

Q
G

// // R .

The double arrow head signifies that G is in E . If E is the class ET of T –epi functors,
then a projective category P is called T –projective.5

Definition 8.11 We say that there are enough T –projectives in Cat if for every
category C there exists a T –projective category P and a T –epi functor P // //C .

Definition 8.12 A double functor F W E //B is a T –fibration if the induced mor-
phism .rF /0 in the diagram below is a T –epimorphism:

(19) iso.E/1

.rF /0

J
J

$$J
J

iso .F /1

$$

t

%%

.PF /0

xt
��

xF0 // iso.B/1

t

��
E0

F0

// B0 .

On objects, .rF /0 is�
f 0W b0

Š //e

�
7!

�
e; Ff 0W Fb0

Š //Fe

�
:

Remark 8.13 If E and B are 1–categories, then .rF /0 is surjective if and only if F

is an isofibration. Recall from Section 7.1 that a functor F W E //B is said to be
an isofibration if for any object e of E and any isomorphism f W b Š Fe in B, there
exists a lift to an isomorphism f 0W b0 Š e in E.

Example 8.14 (Example 5.2 of [32]) If 1 denotes the terminal double category, then
the unique double functor D //1 is a T –fibration for every topology T on Cat.
Hence, in the model structure of Theorem 8.1, every object is fibrant.

5This was also called ET –projective in [32].
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Proof In diagram (19), the functor xt is the identity, so that .rF /0 is simply t . A
right inverse assigns horizontal identities to objects, and horizontal identity squares to
vertical morphisms. By Example 8.7, the functor .rF /0 is a T –epimorphism.

Proposition 8.15 (Proposition 5.6 of [32]) A double functor F W E //B is an
acyclic T –fibration if and only if it is fully faithful and F0 is a T –epi functor.

Definition 8.16 A double functor is a T –cofibration if it has the left lifting property
with respect to all acyclic T –fibrations.

Proposition 8.17 (Proposition 5.9 of [32]) A double functor J W A //X is a T –
cofibration if and only if J0 has the left lifting property with respect to all T –epi
functors.

Corollary 8.18 A double category X is cofibrant in the T –model structure if and
only if X0 is T –projective.

Proof By Proposition 8.17, X is cofibrant if and only if for any T –epi functor G and
any functor H , a lift `

∅ //

��

Q

G
����

X0
H

//

`
>>~

~
~

~
R

exists, or equivalently, X0 is T –projective.

Remark 8.19 These results allow us to construct a cofibrant replacement E for a
double category B in the T –model structure. Let E0 be a T –projective category and
K0W E0

// //B0 a T –epimorphism (we will explicitly give E0 and K0 in the � – and
� 0–structures in Remark 8.31 and Remark 8.48). Let E1 be the following pullback in
Cat:

E1

K1 //

.s;t/

��

B1

.s;t/

��
E0 �E0

K0�K0

// B0 �B0 .

Then the double graph E carries a unique double category structure such that K D

.K0;K1/ is a double functor by Lemma 5.14 of [32]. Since K is fully faithful and K0

is T –epi, KW E //B is an acyclic T –fibration by Proposition 8.15. By Corollary
8.18, E is a cofibrant double category, and hence a cofibrant replacement for B in the
T –model structure.
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Remark 8.20 We conclude from Proposition 8.5 that if T 0 � T are Grothendieck
topologies, then every T 0–epimorphism is a T –epimorphism. Thus we conclude from
Definitions 8.8, 8.12 and 8.16 that if T 0 � T then we.T 0/� we.T /, fib.T 0/� fib.T /,
and cof.T 0/� cof.T /.6

8.2 Model structure from the simplicially surjective basis

For a category C, we write Ck for the k –th set of the nerve N C. Similarly for a
functor F we write .NF /k D Fk . We say that a functor F is simplicially surjective
if Fk is surjective for all k � 0. We prove that the associated topology on Cat
induces a model structure on DblCat which coincides with the vertical analogue of
the transferred diagram categorical structure of Section 7.6. This second construction
gives additional information about (the vertical analogue of) the transferred diagram
categorical structure, including an explicit form for the cofibrant replacement functor.

Lemma 8.21 For a category C define

K.C/ WD ffF W D //Cg j F a simplicially surjective functor g:

Then K is a basis for a Grothendieck topology � on Cat.

Proof

(1) If F is an isomorphism, then NF is an isomorphism and each Fk is bijective.

(2) If fFg 2 K.C/ and GW C0 //C is any functor, consider the pullback
�2W D�C C0 //C0 in Cat of F along G . Since the nerve functor preserves
limits, N�2 is the pullback of NF along NG . Then N�2 is simplicially
surjective, since limits of simplicial sets are formed pointwise.

(3) If G ıF exists and Fk and Gk are surjective for all k � 0, then clearly Gk ıFk

is surjective for all k � 0, and fG ıFg is a covering family.

Lemma 8.22 A functor pW E //B is � –epi for the Grothendieck topology � if and
only if p is simplicially surjective.

Proof If p is � –epi, then take g D 1B in Proposition 8.5 with Remark 8.6 to obtain
pu D f for some covering family ff g in K . Then fk is surjective for all k � 0.
Hence p is simplicially surjective.

If p is simplicially surjective, then fpg is a covering family in K , and so is the pullback
�2 of p along g . Applying Proposition 8.5 with Remark 8.6 again, we see that p is
� –epi.

6We thank Joachim Kock for posing this question.
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Recall that the objects of the k –th category ..A0/k ; .A1/k/D .NvA/k of the vertical
nerve are composable strings of k vertical morphisms, and the morphisms are vertically
composable strings of k squares. The composition is horizontal composition of vertical
strings of squares. Fully faithful double functors and � –equivalences have a useful
characterization in terms of the vertical nerve.

Proposition 8.23 A double functor F W A //B is fully faithful if and only if for
every k � 0 the functor

..F0/k ; .F1/k/W ..A0/k ; .A1/k/ // ..B0/k ; .B1/k/

is fully faithful.

Proof Since the nerve functor preserves pullbacks, and pullbacks of simplicial sets
are formed pointwise, it follows from Definition 8.8 that F is fully faithful if and only
if each ..F0/k ; .F1/k/ is fully faithful.

Proposition 8.24 A double functor F W A //B is a � –equivalence if and only if
for every k � 0 the functor

..F0/k ; .F1/k/W ..A0/k ; .A1/k/ // ..B0/k ; .B1/k/

is an equivalence of categories.

Proof The double functor F is essentially � –surjective if and only if s ı xF0 is � –epi.
But this occurs if and only if .s ı xF0/k is surjective for each k , which is equivalent to
the essential surjectivity of ..F0/k ; .F1/k/ by Remark 8.9. Fully faithfulness follows
from Proposition 8.23.

Corollary 8.25 The class we.�/ of � –equivalences has the 2-out-of-3 property.

Proposition 8.26 Cat has enough � –projectives.

Proof We first construct a � –projective category P from a category C. Let

P WD
a
n�0

Cn � Œn�D

� a
c2C0

Œ0�

�a�a
n�1

a
.f1;:::;fn/2Cn

Œn�

�
where Œn�Df0; 1; : : : ; ng is the .nC1/–element ordinal viewed as a category and Cn �Œn�

denotes the copower of the category Œn� with the set Cn , as recalled in Remark 6.9.
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Suppose we have functors
P

H
��

Q
G

// // R ,

and G is � –epi. We denote H on the .f1; : : : ; fn/–summand of P by

H.f1;:::;fn/W Œn�
// R

and by Hc on the c–summand. If H.f1;:::;fn/.j �1� j /D rj for 1� j � n, then there
exists .q1; : : : ; qn/ 2 Qn such that Gn.q1; : : : ; qn/ D .r1; : : : ; rn/ since G is � –epi.
We define a functor

F.f1;:::;fn/W Œn�
// Q

F.f1;:::;fn/.j � 1� j / WD qj

for 1� j � n. Similarly, for c 2 C0 , there exists d 2Q0 such that G0.d/DHc.0/.
We define Fc.0/D d . Putting these F ’s together, we obtain a functor F W P //Q
such that GF DH , and we conclude that P is � –projective.

Next we construct a � –epi functor LW P // //C . On the .f1; : : : ; fn/–summand of P
define L as

L.f1;:::;fn/.j � 1� j / WD fj

for 1� j � n. Similarly on the c summand, Lc.0/ WD c . We claim that for each k � 0,
Lk W Pk

//Ck is surjective. Note that

Pk D

� a
c2C0

Œ0�k

�a�a
n�1

a
.f1;:::;fn/2Cn

Œn�k

�
:

If k � 1, and .f1; : : : ; fk/ 2 Ck , then Lk maps .0� 1; 1� 2; : : : ; k � 1� k/ in the
.f1; : : : ; fk/–component of Pk to .f1; : : : ; fk/. Similarly if c 2C0 , then L0 maps 0

in the c–component of P0 to c . Hence Lk is surjective for all k � 0, L is � –epi, and
Cat has enough � –projectives.

Theorem 8.27 The simplicially surjective topology � on Cat determines a model
structure

.Cat.Cat/;we.�/; fib.�/; cof.�//:

Proof The category Cat.Cat/ is complete and cocomplete by Theorem 4.1. The class
of � –equivalences has the 2-out-of-3 property by Corollary 8.25 and Cat has enough
� –projectives by Proposition 8.26, so we can apply Theorem 8.1.
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We now give a more explicit description of the fibrations, acyclic fibrations, fibrant
objects, and cofibrant replacement.

Proposition 8.28 Let F W E //B be a double functor.

(1) F is a � –fibration if and only if for each k � 0 the functor

..F0/k ; .F1/k/W ..E0/k ; .E1/k/ // ..B0/k ; .B1/k/

is an isofibration.

(2) F is an acyclic � –fibration if and only if the functor ..F0/k ; .F1/k/ is fully
faithful and surjective on objects for each k � 0.

Proof

(1) Applying the nerve to Diagram (19), we see that F is a � –fibration if and
only if .rF /0k is surjective for all k � 0. By Remark 8.13, this is the case
if and only if for each k � 0 the functor ..F0/k ; .F1/k/ is an isofibration.
Here .iso.B/1/k D iso..B0/k ; .B1/k/ is the category with objects composable
strings of k vertical morphisms and with morphisms vertical strings of vertically
composable squares that are each horizontally invertible.

(2) From Proposition 8.23, F is fully faithful if and only if each ..F0/k ; .F1/k/

is fully faithful. Since F0 is � –epi if and only if .F0/k is surjective for each
k � 0, the statement follows from Proposition 8.15.

Corollary 8.29 The model structure on DblCat induced by the simplicially surjective
topology � on Cat coincides with the model structure obtained by transferring the dia-
gram categorical structure across the vertical categorification-vertical nerve adjunction
cv a Nv . The transfer across cv a Nv is completely analogous to the transfer across
ch aNh in Section 7.6.

Proof From Propositions 8.24 and 8.28 we see that the weak equivalences and fibra-
tions of the two model structures coincide.

Remark 8.30 By Example 8.14, every double category is fibrant in the � –model
structure.

Remark 8.31 We can now easily construct a cofibrant replacement E for a double
category B in the � –model structure. Let E0 be the � –projective category associated
to B0 with projection K0 WDL as in the proof of Proposition 8.26. Then E and K as
defined in Remark 8.19 are a cofibrant replacement for B in the � –model structure.
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Proposition 8.32 Let F be a � –equivalence. Then BF , as in Definition 5.12, is a
weak homotopy equivalence of topological spaces.

Proof By Proposition 8.24, F is a � –equivalence if and only if .NvF /k is an
equivalence of categories for each k � 0. Since ..NvF /k/` D .NdF /k` , we see that
.NdF /k� is a weak equivalence of simplicial sets for each k � 0. Hence diag.NdF /

is a weak equivalence of simplicial sets, and BF D jdiag.NdF /j is a weak homotopy
equivalence.

Remark 8.33 For each m 2N , the assignment

C 7!Km.C/ WD ffF W D //CgjFk surjective for all 0� k �mg

is a basis for a Grothendieck topology �m on Cat. We obtain a �m –model structure
as above, though �m –equivalences will of course not necessarily be weak homotopy
equivalences of classifying spaces.

8.3 Model structure from the categorically surjective basis

A functor is said to be categorically surjective if it is surjective on objects and full. It
is straightforward to check that a basis for a Grothendieck topology on Cat is given by
declaring a covering family to be a single categorically surjective functor. We call this
topology � 0 . In this section we study the model structure on DblCat induced by � 0 . In
Section 9 we show that this model structure is the model structure on DblCat viewed
as a category of algebras over a 2–monad.

As before we start with a characterization of the � 0–epi functors. We will use this to
prove a 2-out-of-3 property for the � 0–equivalences.

Proposition 8.34 A functor pW E //B is � 0–epi if and only if there is a subcategory
H � � //E such that pjHW H //B is surjective on objects and full. Thus, a � 0–epi
functor is not necessarily categorically surjective.

Proof Suppose that p is � 0–epi. Then by Proposition 8.5 and Remark 8.6 there is a
commutative square

U

u

��

f // B

1B
��

E p
// B ,

Algebraic & Geometric Topology, Volume 8 (2008)



Model Structures on DblCat 1921

where f is surjective on objects and full. For each pair of objects x;y in U, we have
a commutative triangle:

U.x;y/
f .x;y/ //

u.x;y/ &&LLLLLLLLLL
B.f x; fy/

E.ux;uy/

p.ux;uy/

77ppppppppppp

Since f .x;y/ is surjective, so is p.ux;uy/. Let HD im.u/. Thus, pjH is surjective
on objects and full.

Conversely, let H � � ` //E be a subcategory such that pjH is surjective on objects and
full, and let gW X //B be any functor. Consider the commutative diagram

H�B X
p0 //

pbs

��

X

g

��

H

`
��

pjH

##GGGGGGGGGG

E p
// B .

Then p0 is surjective on objects and full since pjH is. Further, gp0 D p`s . By
Proposition 8.5 and Remark 8.6, it follows that p is � 0–epi.

Even though the � 0–epi functors do not coincide with the categorically surjective
functors, they do give rise to the same projective objects.

Corollary 8.35 A category P is � 0–projective if and only if it is projective with respect
to categorically surjective functors.

Proof We use the same notation as in Definition 8.10. If P is � 0–projective, then P is
projective with respect to categorically surjective functors because every categorically
surjective functor is � 0–epi by Proposition 8.34. For the converse, suppose P is
projective with respect to categorically surjective functors, and suppose G is � 0–epi.
Then by Proposition 8.34 again, there exists an inclusion `W Q0 //Q such that G`

is a categorically surjective functor. Thus there exists an F 0 such that G`F 0 DH . If
we let F D `F 0 then we see that P is � 0–projective.

Even better, we can characterize the � 0–projective objects.
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Proposition 8.36 A category is � 0–projective if and only if it is a free category on a
directed graph.

Proof Let C be a free category on a directed graph � ; we show that C is � 0–
projective. Suppose GW Q // //R is � 0–epi and H W C //R is a functor. Let
Q0 �Q be a subcategory such that GjQ0 W Q0 //R is surjective on objects and full.
Let U W Cat //Graph denote the forgetful functor. Then there is a map of directed
graphs which makes the following diagram commute:

�

xxp p
p

p
p

p

U.H /j�
��

U Q0
U.GjQ0 /

// U R

and induces a functor F such that

C
F

���
�

�
�

H

��
Q0

GjQ0

// R

commutes. Hence the diagram

C
wwpppppp

H

��
Q0jJ

xxpppppp

Q � �

G
// // R

commutes and C is � 0–projective.

For the converse, suppose P is a � 0–projective category. Let Q be the free category on
the underlying directed graph of P with the identity arrows omitted. Note that every
arrow of Q is either a path hf1; : : : ; fni of nonidentity arrows fi in P or an empty
path hiA (forming the identity arrow 1A on the object A in Q). We define an identity-
on-objects functor GW Q //P by G.hiA/D 1A and G.hf1; : : : ; fni/D fn ı � � � ıf1 .
The functor G is clearly categorically surjective.

Consider the diagram
P

1P
��

F

��~
~

~
~

Q
G

// // P:
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Since P is � 0–projective, there exists a functor F which makes the diagram commute
as indicated. When F.f /D hf1; : : : ; fni, we say that F.f / has length n. Note that
since F is a functor, F.1A/ has length 0. By the commutativity of the diagram, the
length of F.f / is greater than or equal to 1 for any nonidentity arrow f .

Now let f be any nonidentity arrow in P, and suppose F.f /D hf1; : : : ; fni as well
as F.fi/D hfi1; : : : ; fimi

i. Since GF D 1P , we know that f D fn ı� � �ıf1 . Since F

is a functor, we also know that F.f /D F.fn/ ı � � � ıF.f1/D hf11; : : : ; fnmn
i. Thus

hf1; : : : ; fni D hf11; : : : ; fnmn
i:

Since all the fi and fij are nonidentity arrows, it follows that mi D 1 and fi1 D fi

for all i 2 f1; : : : ; ng. Summarizing, if F.f /D hf1; : : : ; fni, then F.fi/ has length 1

for each i .

Let C be the free category on the directed graph with the objects of P as vertices and
as edges those arrows f of P for which the length of F.f / is 1. By the argument
above, the functor F factors through a functor zF W P //C as in the diagram

C

incl
��

P
zFoo

1P
��

F

���
�

�
�

Q
G

// P:

Let zG be the restriction of G to C. It is obvious that zG zF D 1P .

Now consider the other composition, zF zG . This is obviously the identity on objects.
For a morphism hf1; : : : ; fni in C, we have

zF zG.hf1; : : : ; fni/D zF .fn ı � � � ıf1/

D zF .fn/ ı � � � ı zF .f1/

D hfni ı � � � ı hf1i

D hf1; : : : ; fni;

where the second to last equality follows from the fact that the fi are edges in the
graph on which C is free, in other words zF .fi/ has length 1. So zF zG.hf1; : : : ; fni/D

hf1; : : : ; fni. We conclude that PŠ C, so P is a free category on a directed graph.

Proposition 8.37 If a functor pW A //B is � 0–epi, then pk W Ak
//Bk is surjec-

tive for all k � 0.
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Proof By Proposition 8.5 and Remark 8.6 there exists a functor f surjective on
objects and full such that 1B ıf D p ıu for some u. Since fk D pk ıuk is surjective,
so is pk .

Proposition 8.38 If a double functor F W A //B is a � 0–equivalence, then for every
k � 0 the functor

..F0/k ; .F1/k/W ..A0/k ; .A1/k/ // ..B0/k ; .B1/k/

is an equivalence of categories.

Proof Since F is fully faithful, ..F0/k ; .F1/k/ is fully faithful for all k � 0 by
Proposition 8.23. Since F is essentially � 0–surjective, s ı xF0 is � 0–epi and hence
.s ı xF0/k D .s/k ı . xF0/k is surjective for all k � 0 by Proposition 8.37. Remark 8.9
then implies that ..F0/k ; .F1/k/ is essentially surjective for all k � 0.

Lemma 8.39 Suppose A
F //B

G //C are double functors and two of GF;G; or
F are � 0–equivalences. Then the third double functor is fully faithful.

Proof By Proposition 8.38 the vertical nerves of the two � 0–equivalences are levelwise
equivalences of categories. Hence the vertical nerve of the third double functor is also
levelwise an equivalence of categories, and in particular levelwise fully faithful. By
Proposition 8.23, this implies that the third functor is fully faithful.

Lemma 8.40 Suppose A
F //B

G //C are double functors and GF and F are
� 0–equivalences. Then G is essentially � 0–surjective.

Proof We need to show that s ı xG0 is � 0–epi. Let HF � .PF /0 and HGF � .PGF /0
be subcategories such that s ı xF0jHF

and s ı .GF /0jHGF
are surjective on objects and

full. Define a full subcategory HG of .PG/0 D B0�C0
iso.C/1 by applying F0 to the

first coordinate of HGF as follows. For any object .a; cŠ!G0F0a/ in HGF , we have
an object .F0a; c

Š
!G0.F0a// in HG . For any morphism0BBBBB@

a

k
��

a0

;

c
Š //

j

��
˛

G0F0a

G0F0k
��

c0
Š

// G0F0a0

1CCCCCA
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in HGF we have a morphism0BBBBB@
F0a

F0k
��

F0a0

;

c
Š //

j

��
˛

G0.F0a/

G0.F0k/

��
c0

Š
// G0.F0a0/

1CCCCCA
in HG . Then we see as follows that s ı xG0jHG

W HG!C0 is surjective on objects and
full. If c2C0 , there exists an object .a; cŠ!G0F0a/ in HGF , with .F0a; c

Š
!G0.F0a//

in HG and s ı xG0..F0a; c
Š
!G0F0a//D c . So s ı xG0jHG

is surjective on objects. If
c

j
!c0 is a morphism in C0 and .F0a; c

Š
!G0.F0a// and .F0a0; c0

Š
!G0.F0a0// are

objects of HG , then there exists a morphism0BBBBB@
a

k
��

a0

;

c
Š //

j

��
˛

G0F0a

G0F0k
��

c0
Š

// G0F0a0

1CCCCCA
in HGF which gives rise to a morphism0BBBBB@

F0a

F0k
��

F0a0

;

c
Š //

j

��
˛

G0.F0a/

G0.F0k/

��
c0

Š
// G0.F0a0/

1CCCCCA
in HG that maps to j under s ı xG0jHG

. We conclude that s ı xG0jHG
is surjective

on objects and full and therefore s ı xG0 is � 0–epi. This implies that G is essentially
� 0–surjective.

Lemma 8.41 Suppose A
F //B

G //C are double functors and GF and G are
� 0–equivalences. Then F is essentially � 0–surjective.

Proof We need to show that s ı xF0 is � 0–epi. Let HGF � .PGF /0 be a subcategory
such that s ıGF0jHGF

is surjective on objects and full. Define a full subcategory HF

of .PF /0 DA0 �B0
iso.B/1 with object set

Obj HF WD f.a; b
Š
!F0a/j.a;G0.b

Š
!F0a// 2 Obj HGF g:

Then we can see as follows that s ı xF0jHF
W HF ! B0 is surjective on objects and

full. If b 2 B0 , then G0b 2 C0 , and there is an object .a;G0b
Š
!G0F0a/ 2 HGF ,
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because s ı .GF /0jHGF
is surjective on objects. However, ..G0/0; .G1/0/ is fully

faithful, that is, G restricted to the objects of B and the horizontal morphisms of B is
a fully faithful functor of categories. So there is a unique isomorphism b

Š
!F0a whose

image under G is G0b
Š
!G0F0a. Hence, .a; bŠ!F0a/ 2HF and this object maps to

b under s ı xF0jHF
. We conclude that s ı xF0jHF

is surjective on objects.

Moreover, if b
j
!b0 is a morphism in B0 and .a; bŠ!F0a/ and .a0; b0Š!F0a0/ are

objects of HF , then G0j is a morphism of C0 , and since s ı .GF /0jHGF
is full, there

is a morphism of the form0BBBBBB@
a

k
��

a0

;

G0b
G.Š/ //

G0j

��
˛

G0F0a

G0F0k
��

G0b0
G.Š/

// G0F0a0

1CCCCCCA
in HGF . However, the functor ..G0/1; .G1/1/ is fully faithful, so there is a unique
square ˇ , such that

G

0BBBBB@
b

j

��

Š //

ˇ

F0a

F0k
��

b0
Š

// F0a0

1CCCCCAD ˛:
Moreover, ˇ is also horizontally invertible. Hence0BBBBB@

a

k
��

a0

;

b
Š //

j

��
ˇ

F0a

F0k
��

b0
Š

// F0a0

1CCCCCA
is a morphism in HF which maps to j under s ı xF0 . We conclude that s ı xF0jHF

is
surjective on objects and full, so s ı xF0 is � 0–epi and F is essentially � 0–surjective.

Lemma 8.42 Suppose that A
F // B

G // C are double functors, and F and G

are � 0–equivalences. Then G ıF is essentially � 0–surjective.

Proof We need to show that s ı .GF /0 is � 0–epi. Let HF � .PF /0 and HG � .PG/0
be subcategories such that s ı xF0jHF

and s ı xG0jHG
are surjective on objects and full.
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Let HGF be the full subcategory of .PGF /0 DA0 �C0
iso.C/1 , with objects

Obj HGF WDf.a; c
Š
!G0b

Š
!G0F0a/ j

.b; c
Š
!G0b/ 2HG ; .a; b

Š
!F0a/ 2HF g:

Suppose that c 2C0 , then there are objects .b; cŠ!G0b/2HG and .a; bŠ!F0a/2HF ,
since s ı xG0jHG

and s ı xF0jHF
are surjective on objects. So .a; cŠ!G0b

Š
!G0F0a/ 2

HGF , and this object maps to c under s ı .GF /0jHGF
.

Next, suppose that c
j
!c0 is a morphism of C0 and that .a; cŠ!G0b

Š
!G0F0a/ and

.a0; c0
Š
!G0b0

Š
!G0F0a0/ are objects of HGF . Then there exist morphisms0BBBBB@

b

kb

��
b0

;

c

j

��

Š //

˛

G0b

G0kb

��
c0

Š
// G0b0

1CCCCCA
in HG , and 0BBBBB@

a

ka

��
a0

;

b

kb

��

Š //

ˇ

F0a

F0ka

��
b0

Š
// F0a0

1CCCCCA
in HF , and therefore0BBBBB@

a

ka

��
a0

;

c

j

��

Š //

˛

G0b

G0kb

��
Gˇ

Š // G0F0a

G0F0ka

��
c0

Š
// G0b0

Š
// G0F0a0

1CCCCCA
is a morphism of HGF that maps to c

j
!c0 under s ı .GF /0jHGF

. So we have proved
that s ı .GF /0jHGF

is surjective on objects and full. We conclude s ı .GF /0 is � 0–epi
and GF is essentially � 0–surjective.

The previous four lemmas are summarized in the following theorem.

Theorem 8.43 The class we.� 0/ of � 0–equivalences has the 2-out-of-3 property.

Proposition 8.44 Cat has enough � 0–projectives.
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Proof Suppose C is a category. Let P be the free category on the underlying directed
graph of C. This is � 0–projective by Proposition 8.36. The functor P //C , which is
the identity on objects and defined by composition on paths of morphisms, is surjective
on objects and full, so it is � 0–epi. Thus Cat has enough � 0–projectives.

Theorem 8.45 The categorically surjective topology � 0 determines a model structure

.Cat.Cat/;we.� 0/; fib.� 0/; cof.� 0//:

Proof The category Cat.Cat/ is complete and cocomplete by Theorem 4.1. The class
of � 0–equivalences has the 2-out-of-3 property by Theorem 8.43 and Cat has enough
� 0–projectives by Proposition 8.44, so we can apply Theorem 8.1.

Remark 8.46 By Example 8.14, every double category is fibrant in the � 0–model
structure.

Proposition 8.47 A double category X is cofibrant in the � 0–model structure if and
only if X0 is a free category on a directed graph.

Proof By Corollary 8.18 a double category is cofibrant if and only if X0 is projective
with respect to � 0–epi functors. But by Proposition 8.36, X0 is projective with respect
to � 0–epis if and only if it is a free category on a directed graph.

Remark 8.48 We can now easily construct a cofibrant replacement E for a double
category B in the � 0–model structure. Let E0 be the free category on the underlying
directed graph of B0 , and K0W E0

//B0 the functor which is the identity on objects
and composition on paths of morphisms. Then E0 is � 0–projective, and K0 is a
� 0–epimorphism as in the proof of Proposition 8.44. Then E and K as defined in
Remark 8.19 are a cofibrant replacement for B in the � 0–model structure.

As an immediate consequence of Propositions 8.24 and 8.38, we see that every � 0–
equivalence is a � –equivalence. This also follows from Remark 8.20, since the cate-
gorically surjective � 0–topology is contained in the simplicially surjective � –topology.
An interesting question is whether or not a condition slightly stronger than simplicial
surjectivity but also slightly weaker than categorical surjectivity would give rise to
a model structure with weak equivalences between those of the � 0–structure and the
� –structure. For example, such a condition on a functor is to be U –split. However, this
condition recovers the � 0–topology instead of something new. In fact, this condition
only gives a different basis for the � 0–topology which will be of use in Section 9.
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Definition 8.49 Let U W Cat //Graph be the forgetful functor from categories to
directed graphs. We say that a functor p is U –split if there exists a morphism q of
directed graphs such that .Up/ ı q D id.

Lemma 8.50 A functor pW E //B is U –split if and only if there is a subcategory
H � � //E such that pjHW H //B is surjective on objects and full.

Proof Suppose p is U –split. Then there exists a morphism of directed graphs q such
that Up ıqD id. Let H be the full subcategory E whose objects are in the image of q .
Then pjH is surjective on objects and full, as one sees using the directed graph section
q .

Conversely, suppose there exists a subcategory H of E such that pjH is categorically
surjective. Then pjH is U –split, and id D U.pjH/ ı q D Up ı q so that p is also
U –split.

Proposition 8.51 The assignment

C 7!L.C/ WD ffF W D //Cgj F is U –split g

is a basis for the � 0–topology on Cat.

Proof We omit the proof that this is a basis.

Recall that a sieve is a covering sieve in the topology induced by a basis if and only if
it contains a covering family from the basis. If S is a � 0–covering sieve, it contains a
categorically surjective functor, and hence a U –split functor by Lemma 8.50, so that
S is also a covering sieve in the topology induced by L.

Conversely, suppose S is a sieve on B2Cat containing a U –split functor pW E //B
and pjH is categorically surjective. Then p ı i 2 S for the inclusion i W H //E , and
S is a covering sieve in the � 0–topology.

8.4 Model structure from the trivial topology

On the underlying category of any 2–category K with finite limits and finite colimits
there is the trivial model structure as proved by Lack [60] using pseudo limits. A weak
equivalence (respectively fibration) in this model structure is a morphism f W A //B

such that K.E; f /W K.E;A/ //K.E;B/ is a weak equivalence (respectively fibra-
tion) for all E in the categorical model structure on Cat. Thus f is a weak equivalence
if and only if there is a morphism gW B //A such that gf and fg are isomorphic
via 2–cells to the respective identities. A morphism f is a fibration, or isofibration,
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if and only if for all morphisms aW E //A and bW E //B and any invertible
2–cell ˇW b Š fa, there exists a morphism a0W E //A and an invertible 2–cell
˛W a0Š a with fa0D b and f ˛Dˇ (the notion of isofibration at the end of Section 7.1
is a special case of this). If the 2–category K is merely a 1–category, then the trivial
model structure agrees with the usual trivial model structure: the weak equivalences
are exactly the isomorphisms and all morphisms are both fibrations and cofibrations.
The trivial model structure on the underlying category of a 2–category K is compatible
with the Cat–enrichment as proved in [60].

Thus DblCat admits three trivial model structures, depending on whether we take as
2–cells the horizontal natural transformations, the vertical natural transformations, or
only trivial 2–cells. When we say trivial model structure on DblCat we mean the
one arising from the 2–category DblCath D Cat.Cat/ which has horizontal natural
transformations as its 2–cells.

The following theorem summarizes Section 7 of Everaert–Kieboom–Van der Linden’s
paper [32] and Theorem 3.3 of Lack’s paper [60] applied to KD Cat.C/ to conclude
that the �triv –model structure coincides with the trivial model structure on the underlying
category of the 2–category Cat.C/.

Theorem 8.52 Let C be a finitely complete category such that Cat.C/ is finitely
complete and finitely cocomplete. Let �triv denote the trivial topology7 on C. Then the
following hold.

(1) A morphism p in C is �triv –epi if and only if there exists a morphism q such
that pq D id.

(2) An internal functor F is an acyclic �triv –fibration if and only if there exists an
internal functor G such that FG D id and GF Š id.

(3) Every object of C is �triv –projective, and hence C has enough projectives.

(4) Assume for the rest of this theorem that the �triv –equivalences have the 2-out-of-3
property. Then we have the �triv –model structure on Cat.C/ of Theorem 8.1.

(5) Every object of Cat.C/ is fibrant and cofibrant.

(6) The weak equivalences in the �triv –model structure are precisely the equivalences
in the 2–category Cat.C/.

(7) The �triv –model structure coincides with the trivial model structure of [60] on
the underlying category of the 2–category KD Cat.C/.

7In the trivial topology the only covering sieve on an object is the maximal sieve.
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Proof

(1) This follows from Proposition 8.5.

(2) This is Proposition 7.1 of [32], and it follows from (1) along with Proposition
8.15.

(3) This follows immediately from (1).

(4) The model structure follows from (3) and the hypotheses we have made.

(5) Every object is fibrant by Example 8.14, and every object is cofibrant by (2).

(6) Since every object is fibrant and cofibrant, the weak equivalences are precisely
the homotopy equivalences. In Section 3 of [32], a cocylinder on Cat.C/ is given
such that two internal functors are homotopic if and only if they are naturally
isomorphic. Hence, the weak equivalences are precisely the equivalences.

(7) By Theorem 3.3 of [60], the weak equivalences in the trivial model structure on
Cat.C/ are the equivalences. By 3.4 of [60], the acyclic fibrations in the trivial
model structure are the morphisms in (2). Since the classes of weak equivalences
and acyclic fibrations in the two model structures are the same, we conclude that
the two model structures coincide.

Remark 8.53 The assumption that the �triv –equivalences have the 2-out-of-3 property
can be removed by proving directly that the �triv –equivalences are the equivalences in
the 2–category Cat.C/ using (1) and fully faithfulness.

The trivial model structure on a category of internal categories is much like the Strøm
structure of [79]. This analogy is made precise in Section 7 of [32].

We finish this section by comparing the categorical model structure on Cat with the
trivial model structure on DblCat that arises from DblCath . Our comparison uses the
horizontal embedding H of Cat into DblCat, which is the same as the embedding

Cat.Set/ //Cat.Cat/

induced by the embedding Set //Cat .

Proposition 8.54 The functor .H-/0W DblCat //Cat maps the weak equivalences
and fibrations of the trivial model structure on DblCat to weak equivalences and
fibrations in the categorical model structure on Cat. In particular, .H-/0 is a right
Quillen functor.
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Proof The functor .H-/0 preserves weak equivalences because it is the underlying
functor of the 2–functor HW DblCath //Cat , which maps equivalences to equiva-
lences.

To prove that .H-/0 preserves fibrations, we use the characterization of isofibrations
(in a 2–category in general, and in Cat in particular) at the beginning of Section 8.4.
If F is a double functor that is an isofibration, and ˇW b +3.HF /0 ı a is a natural
isomorphism in Cat, then we obtain the required ˛ by applying H to the lifting
problem, and then applying .H-/0 to the solution ˛0 of the new lifting problem in
DblCat.

Corollary 8.55 The adjunction

Cat ?

H
))
DblCat

.H�/0

hh

is a Quillen adjunction.

Proof This follows immediately from Proposition 8.54.

Proposition 8.56 The functor HW Cat //DblCat preserves and reflects weak equiv-
alences, fibrations, and cofibrations. In other words, a functor F is a weak equivalence
(respectively fibration, respectively cofibration) in the categorical model structure on
Cat if and only if HF is a weak equivalence (respectively fibration, respectively
cofibration) in the trivial model structure on DblCat that arises from the 2–category
DblCath . As a consequence, the trivial model structure on DblCat from DblCath
extends the categorical model structure on Cat as a horizontally embedded subcategory.

Proof The 2–functor HW Cat //DblCat is fully faithful in the 2–categorical sense,
so it preserves and reflects equivalences (=weak equivalences).

The functor H preserves and reflects isofibrations because of the characterization
of isofibrations at the beginning of Section 8.4 and the fact that horizontal natural
transformations between functors E //HC are in bijective correspondence with
natural transformations between the underlying 1–functors.

Cofibrations are preserved by H by Corollary 8.55. The functor H reflects cofibrations
as follows. If F is a functor such that the double functor HF is a cofibration, and G
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is an acyclic fibration in Cat, then any diagram in DblCat

HC

HF
��

K //HC0

HG
��

HD
L

//HD0

admits a lift, as HG is an acyclic fibration by the above. Since H is fully faithful, this
lift gives us a lift in Cat. Hence the functor F is a cofibration as well.

After this discussion of model structures on DblCat as a category of internal categories
in Section 8, we now turn to a model structure on DblCat as a category of algebras
and show that this model structure is the same as the categorically surjective model
structure. We will make use of the trivial model structure on the underlying category
of the 2–category Cat.Graph/.

9 A model structure for DblCat as the 2–category of algebras
for a 2–monad

Every 2–category of strict algebras over a 2–monad T with rank (that is, which
preserves ˛–filtered colimits for some ˛ ) on a locally finitely presentable 2–category
K admits a canonical cofibrantly generated Cat-enriched model structure as proved
by Lack [60]. It is obtained by transferring the trivial model structure on the 2–
category K described in Section 8.4. A strict morphism of strict T –algebras is a
weak equivalence (respectively fibration) if and only if its underlying morphism is an
equivalence (respectively isofibration). We prove that the model structure induced by
the categorically surjective topology � 0 can be recovered in this way.

The interest in having these two different descriptions of the � 0–model structure lies in
the fact that they allow a characterization of the flexible double categories (Corollary 9.4
and Remark 9.7). We will see that the cofibrant replacement in the � 0–model structure
of Remark 8.48 is left 2–adjoint to the inclusion of strict algebras, strict morphisms,
and 2–cells into strict algebras, pseudo morphisms, and 2–cells. In particular, the
cofibrant replacement in Remark 8.48 coincides with the cofibrant replacement in the
algebra structure of Lack [60]. Another interesting aspect of the two descriptions of
the � 0–model structure is that DblCat provides a good setting for comparing Lack’s
categorical model structure on 2–Cat [58; 59] to a model structure on algebras over a
2–monad.

Recall that the adjunction GraphaCat induces a Cartesian monad M on the category
Graph of small directed graphs. These directed graphs are nonreflexive; a choice
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of distinguished arrows called identities is not part of the data. The algebras of M

are precisely the small categories. A Cartesian monad is a monad whose underlying
functor preserves pullbacks and whose unit and multiplication are Cartesian natural
transformations, that is, each of their naturality squares is a pullback square. Since
M is Cartesian, it induces a 2–monad SM on Cat.Graph/, the 2–category of internal
categories in Graph. The strict algebras for this 2–monad SM are pairs .D0;D1/

of M –algebras with source, target, unit, and composition maps compatible with the
M –algebra structure. Thus, the strict SM –algebras are precisely double categories.
Similarly, strict morphisms and 2–cells for strict SM –algebras are double functors
and horizontal natural transformations. The 2–category of strict SM –algebras, strict
morphisms, and 2–cells is

SM –Algs D Cat.Cat/D DblCath:

The term algebra will always mean strict algebra, so we occasionally leave off the
adjective strict.

Let U W Cat //Graph be the forgetful functor. The functor U induces a 2–functor

xU W Cat.Cat/ // Cat.Graph/

which coincides with the forgetful 2–functor

SM –Algs
// Cat.Graph/ :

An internal category in Graph is a (nonreflexive) double graph E with a category
structure on .Obj E;Hor E/ and on .Ver E;Sq E/, in other words horizontal compo-
sitions are defined in the double graph E but vertical compositions are not. There
are no vertical identity 1–arrows in E, and no vertical identity squares on horizontal
1–morphisms.

Theorem 9.1 The model structure on DblCat induced by the 2–monad SM is the
� 0–model structure.

Proof First we prove that the weak equivalences are the same. Note that a double
functor G is fully faithful if and only if xU G is fully faithful as in Definition 8.8. A
double functor G is a weak equivalence as a morphism of algebras if and only if xU G is
a weak equivalence in the trivial model structure on Cat.Graph/, which is the case if
and only if xU G is fully faithful and there exists a morphism q of directed graphs such
that U.s ı xG0/ ı q D idB0

by Definition 8.8 and Theorem 8.52 (1). That is equivalent
to G being fully faithful and s ı xG0 being U –split, which is precisely the definition of
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weak equivalence in the � 0–model structure using Proposition 8.34 and Lemma 8.50.
Hence the weak equivalences coincide.

Similarly, a double functor G is a fibration as a morphism of algebras if and only if
xU G is a fibration in the trivial model structure on Cat.Graph/, which is the case if
and only if there exists a morphism q of directed graphs such that .U.rG/0/ ı q D id
in Diagram (19), which is the case if and only if .rG/0 is U –split. This is equivalent
to G being a fibration in the � 0–model structure. Hence the fibrations coincide.

Corollary 9.2 The categorically surjective � 0–model structure is cofibrantly generated
and admits an enrichment as a Cat-enriched model category.

For a 2–monad T on K as above, let T –Algs denote the 2–category of strict T –
algebras, strict morphisms, and 2–cells. As usual, we denote by T –Alg the 2–category
of strict T –algebras, pseudo morphisms, and 2–cells. As proved by Blackwell–Kelly–
Power [8], the inclusion T –Algs

//T –Alg admits a left 2–adjoint denoted A 7!A0 .
The counit component qW A0 //A is a strict morphism, and if q admits a section
in T –Algs , then A is called flexible. The flexible algebras are the closure under
flexible colimits of the free algebras. Strict morphisms from A0 to B are in bijective
correspondence with pseudo morphisms from A to B .

Theorem 9.3 (Theorem 4.12 of Lack [60]) The cofibrant objects of T –Algs are
precisely the flexible algebras; in particular, any algebra of the form A0 is cofibrant,
and is thus a cofibrant replacement for A. Every free algebra is flexible.

Corollary 9.4 The cofibrant objects in the � 0–model structure are precisely the flexible
double categories. In particular, a double category X is flexible if and only if X0 is a
free category on a directed graph.

Proof This follows from Theorem 9.1, Theorem 9.3, and Proposition 8.47.

We next show that the cofibrant replacement in the � 0–model structure of Remark 8.48
is the same as the left 2–adjoint A 7!A0 to the inclusion SM –Algs

// SM –Alg . Our
method is to verify that the cofibrant replacement has the same 2–universal property
as A0 . For this we need to identify the pseudo morphisms of strict SM –algebras.

Proposition 9.5 The pseudo morphism between strict SM –algebras are the pseudo
double functors which are strict in the horizontal direction, but weak in the vertical
direction.
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Proof Let A and B be strict algebras for the 2–monad SM , in other words, A and
B are internal categories in Graph equipped with internal functors aW SM .A/ //A ,
and bW SM .B/ //B defining the vertical composition. More specifically, a0 and b0

define the vertical compositions of paths of vertical arrows, and a1 and b1 define the
vertical composition of vertical paths of squares.

A pseudo morphism .F; '/W A //B consists of an internal functor F W A //B in
Graph and an invertible internal transformation

SM .A/
SM .F / //

a

��
'

SM .B/

b

��
A

F
// B;

given by a morphism of graphs 'W . SM .A//0 //B1 which satisfies the coherence
conditions from Blackwell–Kelly–Power [8]. It follows from the identity coherence
condition that ' sends every object of A to the corresponding horizontal identity arrow.
To every path hu1; : : : ;uni of compatible vertical arrows in A, ' assigns a horizontally
invertible square in B denoted by

FA0

Fu1

��

'u1;:::;un

FA0

F.unı���ıu1/

��

FA1

��
FAn�1

Fun

��
FAn FAn .

It follows from the second coherence axiom that for any path of paths

hhu11; : : : ;u1m1
i; hu21; : : : ;u2m2

i; : : : ; hun1; : : : ;unmn
ii;

the pasting in Figure 5 is equal to 'u11;:::;u1m1
;:::;un1;:::;unmn

.

Note that the coherence conditions imply ' is completely determined by its compo-
nents 'u1;u2

for composable vertical arrows u1 and u2 in A. These 'u1;u2
are the

composition coherence isomorphisms for the underlying vertical pseudo functor of F .

The internal natural transformation ' associates to the empty path on A the unit
coherence isomorphism of the underlying vertical pseudo functor of F . The coherence
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Fu11

��

'u11;:::;u1m1 F.u1m1
ı���ıu11/

��

'.u1m1
ı���ıu11/;:::;.unmnı���ıun1/

F..unmnı���ıun1/ı���ı.u1m1
ı���ıu11//

��

Fu1m1

��

:::

Fun1

��

'un1;:::;unmn F.unmnı���ıun1/

��
Funmn

��

Figure 5: Pasting of associativity coherence squares

conditions on ' contain the coherence conditions for the coherence isomorphisms of a
pseudo functor.

Conversely, given a pseudo double functor (weak in the vertical direction) the natural
isomorphism ' is defined in terms of the coherence isomorphisms.

Proposition 9.6 The cofibrant replacement in the � 0–model structure of Remark 8.48
is isomorphic to the left 2–adjoint A 7!A0 to the inclusion SM –Algs

// SM –Alg .

Proof Let Q denote the cofibrant replacement functor defined on objects in Remark
8.48. Our task is to present a natural isomorphism of categories

(20) SM –Algs.QA;B/Š SM –Alg.A;B/

for strict SM –algebras (double categories) A and B .
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The category .QA/0 is the free category on the underlying directed graph of A0 , and
the category .QA/1 is the pullback in Cat

.QA/1 //

.s;t/

��

A1

.s;t/

��
.QA/0 � .QA/0 // A0 �A0 .

In particular, squares of QA (the morphisms of .QA/1 ) have the form

.hu1; : : : ;umi; ˛; hv1; : : : ; vni/;

where ˛ is a square in A with the vertical morphism uD um ı � � �u1 as its horizontal
source and the vertical morphism v D vn ı � � � ı v1 as its horizontal target.

Given a double functor GW QA //B , we may define a pseudo morphism

.F; �/W A // B

as follows. On objects, F.A/DG.A/; on horizontal morphisms, F.f /DG.f /; on
vertical morphisms, F.u/D G.hui/; and on squares, F.˛/D G.hui; ˛; hvi/, where
u is the horizontal source of ˛ and v is the horizontal target of ˛ . Further, � has
components �u1;:::;um

DG.hu1; : : : ;umi; i
h
umı���ıu1

; hum ı � � � ıu1i/ (where ih
umı���ıu1

is the horizontal identity square on the vertical morphism um ı � � � ıu1 ).

Given a pseudo morphism .F; '/W A //B , we may define a double functor

GW QA // B

as follows. On objects, G.A/D F.A/; on horizontal morphisms, G.f /D F.f /; on
vertical morphisms,

G.hu1; : : : ;umi/D F.um/ ı � � � ıF.u1/I

and on squares

G.hu1; : : : ;umi; ˛; hv1; : : : ; vni/D Œ�u1;:::;um
F˛ .'v1;:::;vm

/�1�:

It is straightforward to see that these two procedures are inverse to each other, and
define a bijection on the object sets of Equation (20). We extend this bijection to an
isomorphism of categories. If � W G1

+3G2 is a horizontal natural transformation of
double functors, then we define �W F1

+3F2 by �A D �A and

�hu1;:::;umi D Œ.'1/u1;:::;um
�umı���ıu1

.'2/
�1
u1;:::;um

�:
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Conversely, if �W F1
+3F2 is a horizontal natural transformation of pseudo mor-

phisms, then we define � W G1
+3G2 by �A D �A and �u D �hui .

Naturality can be easily verified.

Remark 9.7 Proposition 9.6 allows us to give an alternative proof of Corollary 9.4.
In fact, if A is a cofibrant object in the � 0–model structure, the map ∅ //A has the
left lifting property with respect to the counit component qW QA //A , which is an
acyclic fibration by Lemma 5.14 of Everaert–Kieboom–Van der Linden [32]. It follows
easily that q has a section, and thus A is flexible. Conversely, if A is flexible, then q

has a section p . In the diagram below, let f be an acyclic fibration in the � 0–model
structure and h any map.

∅ //

��

∅ //

��

B

f

��
QA q //

r

77ooooooo
A

h

//

p

bb C

Since QA is cofibrant, there is a map r W QA //B with f r D hq . Hence the map
rpW A //B satisfies f rp D hqp D h. This shows that ∅ //A is a cofibration;
that is, A is cofibrant.

The categorical model structure on 2–Cat of Lack [58; 59] has weak equivalences
the strict 2–functors that are biequivalences, fibrations those strict 2–functors with
the equivalence lifting property (as defined in [59], not [58]), and cofibrations those
strict 2–functors whose underlying functor has the left lifting property with respect to
functors that are surjective on objects and full. We can compare this with the � 0–model
structure as follows.

Proposition 9.8 Consider 2–Cat vertically embedded in DblCat. If a 2–functor
is a cofibration in the � 0–model structure on DblCat, then it is a cofibration in the
categorical model structure on 2–Cat. A 2–category is cofibrant in the categorical
model structure on 2–Cat if and only if it is cofibrant in the � 0–model structure on
DblCat. Thus a 2–category is flexible in the sense of Lack [58] if and only if it is
flexible as an algebra over the 2–monad SM .

Proof Suppose G is a 2–functor such that VG is a cofibration in the � 0–model
structure on DblCat. Then .VG/0 has the left lifting property with respect to � 0–
functors by Proposition 8.17. This implies that .V G/0 has the left lifting property with
respect to all functors that are surjective on objects and full by Proposition 8.34. The
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underlying functor of G is .VG/0 , so G is a cofibration in the categorical structure
on 2–Cat.

A 2–category is cofibrant in the categorical structure on 2–Cat if and only if its
underlying category is projective with respect to all functors that are surjective on
objects and full. But this coincides with cofibrant 2–categories in the � 0–model structure
on DblCat by Corollary 8.18 and Corollary 8.35.

Remark 9.9 Our characterization of flexible double categories extends Lack’s charac-
terization of flexible 2–categories as those 2–categories with underlying category a
free category on a graph (Theorem 4.8 (iv) of [58]). See Corollary 9.4 and Proposition
9.8.

The sets of weak equivalences with source and target 2–categories in the two model
structures have nontrivial intersection, but neither set of weak equivalences is contained
in the other. The V –image of a biequivalence is not necessarily essentially � 0–surjective,
though it is fully faithful. For example, consider the inclusion hW f0g //f0Š 1g .
Then h is a biequivalence, and the only object of .PV h/0 in Definitions 8.3 and 8.8 is
.0; 0

id0
�!0/. Then s ıVh0 cannot be surjective on objects, as its target has two objects.

By Proposition 8.34, the functor s ıV h0 is not � 0–epi. Thus Vh is not essentially
� 0–surjective.

For a reason why the left adjoint V in Proposition 9.8 is not a left Quillen functor,
consider the 2–functor j 0

1
given by inclusion of the terminal 2–category f1g into the

free-living adjoint equivalence E0 . The free-living adjoint equivalence E0 has objects
0 and 1. Morphisms are

f W 0 //1

gW 1 //0 ;

as well as all concatenations of f and g . There is a unique 2–cell between every
parallel pair of morphisms. In particular, every 2–cell of E0 is invertible. The 2–
functor j 0

1
is a generating acyclic cofibration for the categorical structure on 2–Cat

as described in [59]. However V j 0
1

is not a cofibration in the � 0–model structure
on DblCat: its underlying functor .V j 0

1
/0 of object categories does not have the

left lifting property with respect to all � 0–epimorphisms. For example, let C be the
smallest category containing the underlying category .E0/0 D .VE0/0 of E0 as well
as an additional object 10 and an arrow 10 //0 . The projection from C to E0 takes
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10 to 1 and is the identity on E0 , hence it is � 0–epi. Then the commutative diagram

.V f1g/0
17!10 //

.V j 0
1
/0

��

C

��
.V E0/0 id

// .V E0/0

does not admit a lift. Thus, V in Proposition 9.8 preserves neither cofibrations nor
weak equivalences.

It is interesting to note that the Cat-analogue of Theorem 9.1 does not hold. In other
words, if we view Cat as the category of algebras over the 2–monad M on Graph,
then the associated model structure on Cat is not the model structure associated to the
topology of surjective functions on Set. A covering family in a basis for this topology
is a single surjective function, so that the epimorphisms for this topology are the same
as the epimorphisms for the trivial topology by Proposition 8.5 and Remark 8.6, namely
the surjective maps themselves. In fact, the trivial topology, simplicially surjective
topology, and categorically surjective topology on Set all give rise to the categorical
model structure on Cat, while the algebra structure on Cat has weak equivalences the
isomorphisms of categories. When we pass to DblCat on the other hand, the three
model structures associated to these three topologies become distinct, and one of them
agrees with the algebra structure.

10 Appendix: Horizontal nerves and pushouts

Though the horizontal nerve preserves filtered colimits, it certainly does not preserve
general colimits, not even pushouts. The purpose of this appendix is to explicitly
describe the behavior of the horizontal nerve on pushouts in DblCat along

i � 1CW A � C //B � C

where i W A //B is either of the following full inclusions from Section 7.1.

c Sd2ƒk Œm� // c Sd2�Œm�

f1g //I

Theorem 10.7 is the main technical result needed for an application of Kan’s Lemma on
Transfer (Theorem 7.11) to transfer model structures across the adjunction ch aNh in
Theorem 7.13 and Theorem 7.17. In the following, we use “n” to denote set-theoretic
complement. We begin with some pushouts in Cat which will aid us in our description
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of the horizontal and vertical 1–categories of the pushouts in Theorem 10.6. The squares
will require an induction argument. Special pushouts in Cat have been considered by
many people, for example Fritsch–Latch [36], Thomason [80] and Trnková [82].

Lemma 10.1 If A� B and D are sets, then the pushout in Set

A� _

��

// D

��
B // P

is P DD
`
.BnA/:

Lemma 10.2 Suppose A is a full subcategory of B and

A
F //

� _

��

D

��
B // P

is a pushout in Cat. Then the objects of P are

Obj PD Obj D
a
.Obj BnObj A/

and morphisms of P have two forms:

(1) A morphism B0

f //B1 with f 2 .Mor BnMor A/.

(2) A path X1

f1 //D1
d //D2

f2 //X2 where d is a morphism in D,
and f1; f2 2 .Mor BnMor A/[ fidentities on Obj Pg: If f1 is nontrivial, then
D1 2 A. If f2 is nontrivial, then D2 2 A.

Proof To calculate a pushout of categories, one takes the free category on the pushout
of the underlying graphs, and then mods out by the relations necessary to make the
natural maps from A;B;D to the free category into functors as in Theorem 4.3. Thus
the objects of P are

Obj D
a
.Obj BnObj A/

by Lemma 10.1. The edges of the pushout graph are

Mor D
a
.Mor BnMor A/;

again by Lemma 10.1. The free category on this consists of finite composable paths of
these edges.
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Suppose

P0

f1 // P1

f2 // P2 Pk�1

fk // Pk

is a morphism in the pushout P. Then we can reduce it to the form (1) or (2) using
the relations induced by A;B; and D as follows. Suppose fj�1 and fjC1 are in
Mor D, while fj is in .Mor BnMor A/. Then Pj�1 and Pj must be objects of A.
But by the fullness of A, fj must be in Mor A, and we have arrived at a contradiction.
Thus no morphism of .Mor BnMor A/ can be surrounded by morphisms of D: there
exist 0 � m � n � k C 1 such that for all 0 � j � m and all n � j � k we have
fj 2 .Mor BnMor A/, and for all m< j < n we have fj 2Mor D. Next we compose
the fj in each range, and we obtain a path of the form (1) or (2).

Remark 10.3 A morphism f of B is in Mor BnMor A if and only if its source or
target is in Obj BnObj A by the fullness of A in B.

Lemma 10.4 If A�B are sets and C and D are categories, then the pushout in Cat

Adisc �C //
� _

i�1C
��

D

��
Bdisc �C // P

is PD D
`
..BnA/disc �C/. (The subscript “disc” means discrete category on a given

set.)

Proof Since Bdisc �CDAdisc �C
`
..BnA/disc �C/, the pushout of the underlying

graphs is

(21) D
a
..BnA/disc �C/

by Lemma 10.1. The free category on this graph, modulo the appropriate relations as
in Theorem 4.3, is once again (21).

Alternatively, this Lemma also follows easily from Lemma 10.2.

Lemma 10.5 Suppose A is a full subcategory of B, C is a set, and

A�Cdisc
F //

� _

��

D

��
B�Cdisc // P
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is a pushout in Cat. Then the objects of P are

Obj PD Obj D
a
..Obj BnObj A/�C /

and the morphisms of P have two forms:

(1) A morphism .B0; c/
f //.B1; c/ with c in C and f D .f 0; c/ in

.Mor BnMor A/�C .

(2) A path X1

f1 //D1
d //D2

f2 //X2 where d is a morphism in D,
and each of f1 and f2 is either in Mor BnMor A�C or an identity morphism.

Moreover, if f1 or f2 is not an identity morphism in (2), then the path has one of the
two respective forms

.B1; c1/
.f 0

1
;c1/ // .A1; c1/

d // D2

f2 // X2

X1

f1 // D1
d // .A2; c2/

.f 0
2
;c2/ // .B2; c2/

where c1; c2 2 C , B1;B2 2 Obj BnObj A, A1;A2 2 Obj A, f 0
1
; f 0

2
2Mor BnMor A,

and d 2Mor D.

Proof This follows from Lemma 10.2.

Let us recall the two full inclusions i W A //B under consideration. The first case in
which we are interested is the full inclusion of posets c Sd2ƒk Œm� //c Sd2�Œm� .
Here cW SSet //Cat denotes the fundamental category functor as described in
Section 6 and SdW SSet //SSet is the subdivision functor recalled in [39] and in
Section 7.1.

The second full inclusion i W A //B of interest is f1g //I . The category I consists
of two objects 0 and 1 and four morphisms: an isomorphism and its inverse between
0 and 1, and the identity maps. The discrete subcategory f1g is clearly full.

We can now give an explicit description of pushouts in DblCat along

i � 1CW A � C // B � C

which we use immediately in Theorem 10.7 for the transfer.
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Theorem 10.6 Let i W A //B be either of the following full inclusions.

c Sd2ƒk Œm� //c Sd2�Œm�

f1g //I

Let C be a category (eg the finite ordinal Œn�), and D a double category. Then the
pushout

A � C
F //

i�1C
��

D

��
B � C // P

in DblCat has the following explicit description:

Obj P D Obj D
a
..Obj BnObj A/�Obj C/(22)

.HP /0 D .HD/0
a
..Obj BnObj A/disc �C/(23)

Mor.VP /0 D fpaths of the form (1) and (2)(24)
in Lemma 10.5 with C D Obj C
and DD .VD/0g:

Squares of P have two forms:

(1) A square
//

��
ˇ

��//

in Sq.B � C/nSq.A � C/.

(2) A vertical path of squares
//

��
ˇ1

��//

��
ı

��//

��
ˇ2

��//

where ı is a square in D and each of ˇ1 and ˇ2 is either a vertical identity square
(on a horizontal morphism) in P or is in Sq.B � C/nSq.A � C/. Moreover,
in the case of c Sd2ƒk Œm� //c Sd2�Œm� , the square ˇ1 is always a vertical
identity square.
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Note that Sq.B � C/nSq.A � C/D8̂̂̂̂
<̂̂
ˆ̂̂̂:

.B;C /
.1B;g///

.f;1C /

��

.B;C 0/

.f;1C 0 /

��
.B0;C /

.1B0 ;g/

// .B0;C 0/

ˇ̌̌̌
ˇ g 2Mor C;
f 2Mor BnMor A

9>>>>>=>>>>>;
:

Proof We use Theorem 4.6. First we calculate the pushout S of the underlying double
derivation schemes. The object set Obj SD Obj P is the pushout of the object sets, so
(22) follows from Lemma 10.1. The horizontal and vertical 1–categories of S (and
P ) are the pushouts of the horizontal and vertical 1–categories, so (23) follows from
Lemma 10.4 and (24) follows from Lemma 10.5. By Lemma 10.1 again, the pushout
of the sets of squares is

(25) Sq SD Sq D
a
.Sq.B � C/nSq.A � C//:

Thus we have calculated the pushout S of the underlying double derivation schemes,
its horizontal and vertical 1–categories coincide with those of P , and they have the
form claimed in the theorem. It only remains to show that the squares of P have the
form claimed in the theorem.

The double category P is the free double category on the double derivation scheme S
modulo the smallest congruence making the natural morphisms of double derivation
schemes from A � C;B � C; and D to P into double functors. Squares of P are
represented by allowable compatible arrangements in S . To prove that squares of P
have the form (1) or (2), it suffices to show that any allowable compatible arrangement of
squares in S can be transformed into (1) or (2) using the relations of the congruence and
the double category associativity, identity, and interchange axioms. The congruence
allows us to compose squares according to the relations in the double categories
A � C;B � C; and D .

We must treat the two inclusions i separately.

Let i W A //B be the full inclusion c Sd2ƒk Œm� //c Sd2�Œm� . Recall from
Section 7.1 that c Sd2ƒk Œm� and c Sd2�Œm� are respectively the posets of nondegen-
erate simplices of Sdƒk Œm� and Sd�Œm�, and that there is a morphism of the form
.u0; : : : ;up/ //.v0; : : : ; vq/ in B if and only if

fu0; : : : ;upg � fv0; : : : ; vqg:
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Also, an object .v0; : : : ; vq/ of B is in A if and only all vr are faces of ƒk Œm�. Thus,
we see for any path of composable morphisms in B

B0

f1 //B1

f2 //B2 Bn�1

fn //Bn

with Bj not in A, all f` and B` with ` � j are also not in A. Thus, once a path
leaves A, it cannot return to A. In particular, if B //B0 is a morphism in B and
B is not in A, then B0 is also not in A. Another useful property of B is that every
morphism has a unique decomposition into irreducibles. These special features of the
posets A and B allow us to put the squares of P into the desired form (1) or (2), as
we do now.

Suppose R is an allowable compatible arrangement of squares in S , that is, a repre-
sentative of a square in P . If R consists entirely of squares in D , then it is equivalent
to its composition in D , so it has the form (2) and we are finished.

So suppose that R contains at least one square in Sq B � CnSq A � C. Then R has
at least one vertex .B;C / in B � C but not in A � C, that is, B is in B but not in A.
Any horizontal morphism in R with source (respectively target) .B;C / is in B � C
but not in A � C, as .B;C / is not in A � C. Thus the target (respectively source)
of such a morphism has the form .B;C 0/ and is also in B � C but not A � C. Any
vertical morphism in R with source .B;C / is in B�C but not in A�C, as .B;C / is
not in A � C. Thus the target of such a vertical morphism is of the form .B0;C / with
B0 not in A by the special feature of the posets A and B described in the preceding
paragraph. From the original vertex .B;C / we traverse down a vertical morphism
with source .B;C / if there is one, otherwise we traverse to the right along a horizontal
morphism with source .B;C /. In either case, we arrive at another vertex .B1;C1/

which is in B�C but not in A�C. From this vertex we repeat the procedure, moving
either to the right or down. We continue in this way until we reach the bottom edge of
the allowable compatible arrangement R. We conclude that the entire bottom edge of
the diagram consists of objects and horizontal morphisms in B � C but not in A � C,
and hence not in D .

Each of these horizontal morphisms on the bottom edge is the bottom edge of a square
in B � C but not in A � C, since squares of D only have vertices in D (some objects
of D are identified with objects of A � C). Thus, the bottom portion of R looks like
Figure 6 with all squares in B � C but not in A � C.

Next we factor the vertical morphisms of Figure 6 into irreducibles, which we can do
since these vertical morphisms are of the form .f;C / where f is a morphism in B and
C is an object of C. By the uniqueness of the factorization and the form of squares in
B � C, we can factor these squares at the height of the shortest one as illustrated in
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Figure 6: The bottom portion of R

Figure 7: A factorization of the squares in Figure 6

Figure 7. We include these new horizontal morphisms into the allowable compatible
arrangement R, and obtain a new compatible arrangement R1 . The compatible
arrangement R1 is also allowable, since the same cuts that make R allowable also
make R1 allowable.

The bold horizontal line in Figure 7 is a full length cut on an allowable compatible
arrangement R1 , hence it divides R1 into two allowable compatible arrangements
by Proposition 3.7. We denote the upper allowable compatible arrangement by R1;1

and the lower allowable compatible arrangement by R1;2 . Then R1;1 has at least one
square less than R, since we cut off at the height of the shortest square whose bottom
edge is on the bottom edge of R. If we argue by induction on the number of squares
in an allowable compatible arrangement, we may assume that R1;1 is equivalent to a
square of the form (1) or (2). The allowable compatible arrangement R1;2 is equivalent
to a square of the form (1), as it can be composed horizontally. Finally, we compose
R1;1 with R1;2 to conclude that R is also equivalent to a compatible arrangement of
the form (1) or (2).

We only need an argument for the triviality of ˇ1 whenever a compatible arrangement
is equivalent to one of the form (2). Suppose ˇ1 is in Sq.B � C/nSq.A � C/. Then
its lower two vertices cannot be in A�C (for if they were, the upper two vertices must
also be in A � C, and the square ˇ1 would be in A � C). Thus, the upper two vertices
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of the square ı are not in A � C, a contradiction. Thus ˇ1 must be a vertical identity.
This completes the proof of Theorem 10.6 for the case c Sd2ƒk Œm� //c Sd2�Œm� .

Now we turn to the squares in the second case. Let i W A //B be the full inclusion
f1g //I where I is the category with two objects 0 and 1 and an isomorphism
between them. We will again argue by induction on the number of squares in the
allowable compatible arrangement, but the special features of the inclusion f1g //I
are different from those of the previous case. Note that B � C only has the four types
of squares listed in Figure 8. The only vertical morphisms in B � C that are identified

.0;C1/ // .0;C2/ .1;C1/ // .1;C2/

.0;C1/ // .0;C2/ .1;C1/ // .1;C2/

.0;C1/ //

��

.0;C2/

��

.1;C1/

��

// .1;C2/

��
.1;C1/ // .1;C2/ .0;C1/ // .0;C2/

Figure 8: The four types of squares in B � C

with a morphism in D are the trivial vertical morphisms idv.1;C /W .1;C / //.1;C / .

Suppose that any allowable compatible arrangement of squares in S with fewer than
n squares is equivalent in P to one of the form (1) or (2). Let R be an allowable
compatible arrangement of n squares in S . Since R is allowable, it admits a full
length cut C which divides R into two allowable compatible arrangements each with
fewer than n squares. We now recombine these two smaller allowable compatible
arrangements to show that R is equivalent to a compatible arrangement of the form (1)
or (2), but the argument is slightly different depending on whether C is horizontal or
vertical.

Suppose the full length cut C is horizontal. Let R1 and R2 be the allowable compatible
arrangements above and below C respectively. Since R1 and R2 have fewer than n

squares, they must be equivalent to compatible arrangements of the form (1) or (2). If
R1 and R2 both are equivalent to compatible arrangements of the form (2), then by
the fullness of A in B their vertical composite is also of the form (2), and hence R is
equivalent to a compatible arrangement of the form (2). If one or both of R1 and R2
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has the form (1), then one can similarly conclude that R is equivalent to a compatible
arrangement of form (1) or (2).

Suppose the full length cut C is vertical. Let Q` and Qr be the allowable compatible
arrangements to the left and to the right of C respectively. Since Q` and Qr have
fewer than n squares, they must be equivalent to compatible arrangements of the form
(1) or (2). There are several cases to consider.

If both Q` and Qr are equivalent to compatible arrangements of the form (1), then their
horizontal composite R is clearly in B � C, and hence also equivalent to a compatible
arrangement of the form (1) or (2).

If Q` is equivalent to a compatible arrangement of the form (1) and Qr is equivalent
to a compatible arrangement of the form (2), then ˇr

1
and ˇr

2
must be in B � C as

in Figure 9. Further, the vertical morphism kr W .Br
2
;C / //.Br

3
;C / must be the

.B1;C
`
1
/

��

//

ˇ`

.B1;C /

p`

��

.B1;C / //

j r

��
ˇr

1

��
Q` .Br

2
;C /

kr

��

//

ır

��

Qr

.Br
3
;C /

mr

��

//

ˇr
2

��
.B4;C

`
1
/ // .B4;C / .B4;C / //

Figure 9: Q` of form (1) and Qr of form (2)

vertical identity idv.1;C / on the object .1;C /, since kr D .mr /�1p`.j r /�1 lies in both
B � C and D , and the only vertical morphisms in both B � C and D are such vertical
identities. Then we can subdivide ˇ` in B � C as in Figure 10. The middle square
of Q` is now an identity square on a horizontal morphism in D , and hence is also a
square in D . Finally, we horizontally compose Q` and Qr and use the interchange
law to obtain a compatible arrangement of the form (1) or (2). Hence R is equivalent
to a compatible arrangement of the form (1) or (2).

Next we consider the case where Q` and Qr are both equivalent to compatible
arrangements of the form (2) and the squares ˇ`

1
; ˇ`

2
; ˇr

1
; ˇr

2
are in B � C as in
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.B1;C
`
1
/

��

// .B1;C /

��

.B1;C / //

��
ˇr

1

��
Q` .1;C `

1
/ // .1;C / .1;C / //

ır

��

Qr

.1;C `
1
/

��

// .1;C /

��

.1;C /

��

//

ˇr
2

��
.B4;C

`
1
/ // .B4;C / .B4;C / //

Figure 10: ˇ` subdivided and kr D idv.1;C /

��

//

ˇ`
1

.B1;C1/

j`

��

.B1;C1/ //

j r

��
ˇr

1

��
Q`

��

//

ı`

.B`
2
;C1/

k`

��

.Br
2
;C1/

kr

��

//

ır

��

Qr

��

//

ˇ`
2

.B`
3
;C2/

m`

��

.Br
3
;C2/

mr

��

//

ˇr
2

��// .B4;C2/ .B4;C2/ //

Figure 11: Q` and Qr both of form (2) and ˇ`1; ˇ
`
2; ˇ

r
1; ˇ

r
2 in B � C

Figure 11. Then B`
2
D 1DBr

2
and B`

3
D 1DBr

3
, since the only objects of B�C that

are identified with an object of D are of the form .1;C /. Thus j `D j r and m`Dmr ,
as there is a unique vertical morphism from any object of B � C to another. Since j `

and m` are invertible and m`k`j ` Dm`kr j ` , we see also that k` D kr . Hence Q`

and Qr can be horizontally composed to obtain a compatible arrangement equivalent
to (1) or (2).
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Next we consider the case where Q` and Qr are both equivalent to compatible
arrangements of the form (2), but the squares ˇ`

1
; ˇ`

2
; ˇr

1
; ˇr

2
may be vertical identity

squares in P , that is, not necessarily in B�C, as in Figure 12. Suppose ˇ`
1

is a vertical

��

//

ˇ`
1

P1

j`

��

P1

f r

//

j r

��
ˇr

1

��
Q`

��

//

ı`

D`
1

k`

��

Dr
1

kr

��

//

ır

��

Qr

��

//

ˇ`
2

D`
2

m`

��

Dr
2

mr

��

//

ˇr
2

��// P2 P2
//

Figure 12: Q` and Qr both of form (2) and one of ˇ`1; ˇ
`
2; ˇ

r
1; ˇ

r
2 not in B � C

identity square. Then P1 DD`
1

. We claim that ˇr
1

is also a vertical identity square;
there are two cases to prove. If D`

1
is an object of D that is not of the form .1;C /,

then f r cannot be in B � C (as its source is not in B � C). Hence ˇr
1

is a vertical
identity square. For the second case, if D`

1
is of the form .1;C /, then j r is a vertical

arrow in B�C with source and target .1;C /. By the special form of squares in B�C
in Figure 8, we see that ˇr

1
is also a vertical identity square. Thus, we have proved,

if ˇ`
1

is a vertical identity square, then ˇr
1

is also a vertical identity square. One can
similarly show that if any one of ˇ`

1
; ˇ`

2
; ˇr

1
; ˇr

2
is a vertical identity square, then the

square next to it is also.

Let us continue the case where Q` and Qr are both equivalent to compatible arrange-
ments of the form (2) as in Figure 12, and suppose again that ˇ`

1
is a vertical identity

square. Then ˇr
1

is also a vertical identity square. If either of ˇ`
2

or ˇr
2

is a vertical
identity square, then so is the other, in which case Q` and Qr can be horizontally
composed to give a compatible arrangement equivalent to one of the form (1) or (2). If
neither ˇ`

2
nor ˇr

2
is a vertical identity square, then they are both in B�C, and we can

argue as in Figure 11 to conclude D`
2
DDr

2
, m` Dmr , and k` D kr , in which case

Q` and Qr can be horizontally composed to give a compatible arrangement equivalent
to one of the form (1) or (2).
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The other cases of Figure 12, where one or more of ˇ`
1
; ˇ`

2
; ˇr

1
; ˇr

2
is a vertical identity

square in P , are similar.

Therefore every square of P is equivalent to a compatible arrangement of the form
(1) or (2), for both inclusions i under consideration. This completes the proof of
Theorem 10.6.

The two inclusions of Theorem 10.6 have some features in common, and the theorem
holds for an entire class of inclusions i W A //B . We will return to the this topic and
its interaction with Dawson–Paré–Pronk [24] in the future. Theorem 10.6 allows us to
characterize the behavior of the horizontal nerve on such pushouts in Theorem 10.7,
which we need to transfer the model structures from Cat�

op
in Section 7.

Theorem 10.7 Let i W A //B be either of the following full inclusions.

c Sd2ƒk Œm� // c Sd2�Œm�

f1g //I

Let C be a finite ordinal Œn� viewed as a category, D a double category, and P the
pushout

A � C //

i�1C
��

D

��
B � C // P

in DblCat. Then the induced map

Nh.D/
a

Nh.A�C/

Nh.B � C/ // Nh.P /

is an isomorphism of simplicial objects in Cat.

Proof We calculate the pushout

(26) Nh.D/
a

Nh.A�C/

Nh.B � C/

levelwise and compare it with Nh.P /, whose form is known from Theorem 10.6. The
horizontal nerve of an external product of categories is known from Proposition 5.8.

In level 0, the pushout (26) is

D0

a
A�.Obj C/disc

B� .Obj C/disc
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which is the same as the vertical 1–category of P and thus .NhP /0 .

In level k � 1 the pushout (26) is

Nh.D/k
a

A�N Ck

B�N Ck

by Proposition 5.8. An application of Lemma 10.5 to level k together with Theorem
10.6 give immediately that

Nh.D/k
a

A�N Ck

.B�N Ck/ // .NhP /k

is full (and is the identity on objects). To see that this functor is also faithful, we only
need to concern ourselves with the squares of the form (2) in Theorem 10.6. For the
Thomason structure these squares always have a representative where ˇ2 is of the form

.A;C /

��

// .A;C 0/

��
.B;C / // .B;C 0/

such that A is a maximal element of c Sd2ƒk Œn�. This determines ˇ2 and ı uniquely.
For the categorical structure all nonidentity ˇ2 squares are of the form

.1;C /

��

// .1;C 0/

��
.0;C / // .0;C 0/:

A similar argument for ˇ1 shows that ˇ1 , ı , and ˇ2 are determined uniquely.
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categories, Cah. Top. Géom. Différ. Catég. 34 (1993) 57–79 MR1213297
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MR2303000

[39] P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Math. 174,
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