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Cobordisms of maps with singularities of given class

YOSHIFUMI ANDO

Let P be a smooth manifold of dimension p. We will describe the group of all
cobordism classes of smooth maps of n—dimensional closed manifolds into P with
singularities of given class (including all fold singularities if » = p) in terms of
certain stable homotopy groups by applying the homotopy principle on the existence
level, which is assumed to hold for those smooth maps. It will enable us to construct
an explicit classifying space for this cobordism group in the dimensions #» < p and
nzpz2.
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Dedicated to Professor Takao Matumoto on his sixtieth birthday

1 Introduction

Let N and P be smooth (C°°) manifolds of dimensions n and p respectively. Let
k> n, p (k may be o). Denote by JX(N, P) the k—jet bundle of the manifolds N
and P with the canonical projection nzli, X 71’1‘, onto N x P and the fiber JX(n, p) of
all k—jets of smooth map germs (R”,0) — (R”,0). Here, Jr]]:, and n’l‘, map a k—jet to
its source and target respectively. Let Q2 = Q(n, p) denote a nonempty open subspace
of Jk(n, p) which is invariant with respect to the action of L*( p) X L*(n), where
L¥*(@m) denotes the group of k—jets of germs of diffeomorphisms of (R™,0). Let
Q(N, P) denote the open subbundle of JX(N, P) associated to Q(n, p). A smooth

map f: N — P is called an Q—regular map if and only if j* f(N) C Q(N, P).

Let CS°(N, P) denote the space of all Q2—regular maps of N to P equipped with the
C > topology. Denote by I'q (N, P) the space consisting of all continuous sections
of the fiber bundle n1’§,|Q(N , P): Q(N, P) - N equipped with the compact-open
topology. Then we have the continuous map jo: CS°(N, P) — I'q(N, P) defined
by jo(f) = jXf. We say that Q(n, p) satisfies the homotopy principle (simply
h-principle) if any section s in T'q(N, P) has an Q-regular map f such that j¥ f
is homotopic to s as sections. In this paper we say that Q(n, p) satisfies the relative
homotopy principle on the existence level if the following property (h-P) holds.
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(h-P) Let C be a closed subset of N . Let s be a section of I'q(N, P) which has an
Q-regular map g defined on a neighborhood of C into P, where jkg =s.
Then there exists an 2 -regular map f: N — P such that jk f is homotopic to

s relative to a neighborhood of C by a homotopy s, in I'q(N, P) with sg = s
and sy = jk f.

Let itm: J%(n, p) = J*(m + m, p + m) denote the map defined by i+m(jé‘f) =
jé‘( f xidgm) for a positive integer m, where f: (R",0) — (R?,0) and idgm is
the identity of R™. Denote by Q, = Q,(n + 1, p + 1) a nonempty open subspace
of Jk(n+1, p + 1) which is invariant with respect to the action of L*( p+1) x
L¥(n+1) and satisfies i+1(2(n, p))CQLui(n+1, p+1). Let P be a smooth manifold
of dimension p. We define the notion of 2, —cobordisms of 2-regular maps to P.
Let fi: Ny — P (i =0,1) be two Q-regular maps, where N; are closed smooth
n—dimensional manifolds. We say that they are 2. —cobordant when there exists an
Q, —regular map, called an 2, —cobordism, €: (W,dW) — (P x[0,1], Px0U P x 1)
such that, for a sufficiently small positive real number €:

(1) W is acompact smooth manifold of dimension 7+ 1 with 0W equal to NoU N,
and the collar of dW is identified with Ny x [0, €]U Ny x[1 —¢, 1],

(11) Q:|N0 X [0, 6] = f() Xid[o,e] and Q:|N1 X [1 —E€, 1] = f] X id[l—e,l] .

We similarly define the notion of oriented 2,—cobordisms of Q-regular maps by
providing manifolds concerned with orientations, where Ny U N; in (i) should be
replaced by Nog U (—Ny). Let Dt(n, P; 2, Q) (respectively O(n, P; 2, Q24)) denote
the monoid of all €2,—cobordism (respectively oriented €2,—cobordism) classes of
Q2 —regular maps to P. In this paper we will describe these monoids of cobordism
classes in terms of certain stable homotopy groups.

We need some notation for this purpose. Let £ — X and F — Y be smooth vector
bundles of dimensions n and p over smooth manifolds, and let 7y and 7wy be the
projections of X x Y onto X and Y respectively. Define the vector bundle J ke, F)
over X xY by

k
(1-1) J¥(€. F) = D Hom(S (3 (£)). 3 (F))

i=1

with the canonical projections né‘(: J¥(E,F) > X and n{ﬁ: JK(E,F) — Y. Here,
S¥(€) is the vector bundle | J rexS 1(Ex) over X, where S?(£y) denotes the i —fold
symmetric product of the fiber 8/? over x. The canonical fiber

PHom(S! (R"). R?)

i=1
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Cobordisms of maps with singularities of given class 1991

is canonically identified with J k@, p). If we provide N and P with Riemannian
metrics, then JK(TN, TP) is identified with JK(N, P) over N x P (see Section 2).
Let Q(&, F) denote the open subbundle of J k&, F) associated to Q(n, p).

Let Gy, refer to the Grassmann manifold G, ¢ (respectively oriented Grassmann
manifold ém g) of all m—subspaces (respectively oriented m—subspaces) of RE+™,
Let )/G and , yG denote the canonical Vector bundles of dimensions m and £ over the
space Gm respectively such that ]/G &) yG is the trivial bundle 8Z+m Let T()/G )
denote the Thom space of 7, VG . The spaces {T (]/G )}¢ constitute a spectrum Let

Z Gn — Gn+1

denote the injection mapping an n—plane a to the (n + 1)—plane generated by a and
the (n + £ + 1)—st unit vector e, ¢4+ in RAHEHT et

Q@ =Q(yg, . TP) and SZ*=Q*()/3++11,TP@8},)

be the open subbundles of J k()/G ,TP) and J k()/”++1 TP & ¢ P) associated to
Qm, p)and Q,(n+1,p+1) respectlvely, where ¢! p denotes the trivial bundle P xR.
Set

= (7§, @e e and P = (xE, V@6, )le.-
There exists a ﬁberw1se map A(Q’Q*): Q — 2, associated to

i+1|Q(n, p): Qn, p) > Q(n+1,p+1)
covering i ¢ x idp. Then A®-22) induces the bundle map
b(7) @2 7 — 7%
covering A(%£2+) and the associated map T'(b(7)®*+)) between the Thom spaces.
Let £ > n, p. We denote the image of
(1-2) Th@) @) lim 7,40(T(Pg)) — lim 7,44(T(Pg,))
{—00 {—00 *

by Imm(T(b()?)(Q’Q*))) (respectively ImD(T(b(?)(Q’Q*)))) in the unoriented (re-
spectively the oriented) case.

We are ready to state the main result of this paper.

Theorem 1.1 Let n and p be positive integers. Let P be a p—dimensional manifold.
Let Q(n, p) and Q.(n+ 1, p+ 1) denote the above open subsets invariant with respect
to the actions of LX(p) x LK(n) and L*(p + 1) x L¥(n + 1), respectively, such
that i1 (Q(n, p)) C Qu(n+1,p + 1), Q(n, p) satisfies the h-principle and that
Q. (m+ 1, p+ 1) satistfies the relative h-principle on the existence level in (h-P).
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Then there exist isomorphisms

nE29: N0, P; Q. QL) — Im™ (T (b(7)E2)),
o2 O(n, P;Q, Q) — Im®(T(b(7)@2)).

Let K denote the contact group introduced by Mather [37] which acts on J¥(n, p) or
J*(m4+m, p+m). Let Q" = Qx(n+m, p+m) denote the subset of J* (n+m, p+m)
which consists of all K—orbits K(i4+,(z)) for k—jets z € Q(n, p). It will be proved
that Qx(n +m, p + m) is an open subset (see Lemma 5.2).

As for the image of T'(b(7)®£2%)),. | we will prove the following theorem.

Theorem 1.2 Letn < p and P be as in Theorem 1.1. Let Q(n, p) denote a nonempty
open subset in J¥(n, p) invariant with respect to the action of K and let Qi =
Qi (n+ 1, p+ 1) be as above. Then the homomorphism T (b(7)$%%x)), in (1-2) is
surjective.

Let Q K;()/g:””n,RP +m) denote the subbundle of J* (yg:rf; ,RP*m) agsociated to
Qi(n +m, p+m). Let C°(X,Y) denote the space consisting of all base-point
preserving continuous maps between connected spaces with base points equipped with
the compact-open topology. We define the space Bg by

Be= 1im ( Jim COSTP T(G, ) Pyl ro+m)),
where € = &(n, P; 2, Qx) means N, P; 2, Q) or O(n, P; 2, Qi) depending on
Gutm = Guyme Of Guim = Gy, ¢ TEspectively.

Theorem 1.3 Letn < p orn= p=2. Let P be a closed connected p—dimensional
manifold such that P is oriented in addition in the case of O(n, P;2,Qx). Let
Q(n, p) be a nonempty K —invariant open subset such that it n = p = 2, then Q2(n, p)
contains all fold jets at least. Then there exist isomorphisms

N(n, P; 2, Qx) — [P, B,
O(n, P;Q, Q) — [P, Bo).

In our study of cobordisms of singular maps the h-principle for €2-regular maps plays
a quite important role and our method is available in the dimensions n = p as well.
Theorem 1.1 was developed from an observation for fold-maps in the author’s paper [5,

Theorem 0.4]. Set % = Q;g(yg:z:';, TP ®¢'p) and )755;% = (ﬂéner)*(Aéner)'ﬂ%‘
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Theorem 1.2 implies that if n < p, then €(n, P; 2, Q) is isomorphic to the stable
homotopy group

Jim 74 (T(7g1)) & Jim 4 (T (Tgp))

for m = 1. If we apply the relative h-principle in Theorem 9.1 to [45, Theorem 9.2]
due to Sadykov, then it follows that €(n, P; Q, Q) is isomorphic to n,,_,_g(T()?é,’g))
also in the dimensions n = p = 2 as well as n < p, where £ and m are sufficiently
large integers. By using these stable homotopy groups, we will induce the space B¢
by applying the S'—duality in Spanier [52] in Section 8. In Section 9 we will see that
the h-principle in (h-P) holds for a very wide class of K—invariant open sets Q2(n, p).
Let S/ (n, p) denote the Boardman manifold in J kn, p) with Boardman symbol
I =(iy,--- i) defined in [13]. An important example of 2(n, p) is the open subset
Q1 (n, p) which is the union of all £X (n, p) with K = I in the lexicographic order.
The results of the paper show the importance of the homotopy type of Q(n, p). In
[2; 4; 5; 7] we described the homotopy type of Q%°(n, p) for i = max{n—p+1,1}
in terms of orthogonal groups and Stiefel manifolds. Although available only in the
case of fold-maps, in Section 10 we will construct a simpler spectrum associated
to special generic maps, say definite fold-maps, whose stable homotopy group is a
direct summand of €(n, P; ", Q%%) and also construct the corresponding classifying
space. This result is a refinement of [5, Theorem 0.3]. We should note that special
generic maps do not satisfy the h-principle (see Burlet and de Rham [14] and Saeki
and Sakuma [49]). Let F,, denote the space of all base point preserving maps of the
m—sphere S™ and let F = lim;y—o00 Fiy. When n = p = 1 and P is closed and
oriented, we will prove that there exists an isomorphism of O(n, P; 1, Q1-9) onto
[P, F], which we gave in [3; 5] from a different point of view. Therefore, we may
assert that the topology of By will be important in connection with the canonical
homomorphism of D (n, S”; QL0 QL% to O, S™; Q, Qi) and the map F — Bp
(see (10-8)). We should refer to Chess [16], in which O(n, R”; Q10 Q1:0) T, was
proved.

The study of h-principles for 2—-regular maps has a long history. Here, we only
refer the reader to Smale [51], Hirsch [25], Phillips [40], Feit [21], Gromov [22; 24],
Eliashberg [18; 19] and du Plessis [41; 42; 43] for details and further references.

In [20] Eliashberg studied the cobordisms of the solutions of the first order differential
relations such as Lagrange and Legendre immersions by applying the h-principles in
Gromov [23; 24] and Lees [34]. Sadykov [45] studied and expressed the cobordism
group of 2-regular maps in terms of the stable homotopy group as explained above
under the assumption of the relative h-principle in a formal approach.
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In [44] Riményi and Sziics constructed a certain classifying space such that the group
of cobordism classes of smooth maps of n—dimensional manifolds into P having only
a given class of C'®° stable singularities is described by the homotopy classes of P to
this space in the case n < p. In [56] Sziics developed further results concerning the
classifying space and the structure of this cobordism group. The method of construction
of this classifying space is quite different from ours of the space B¢ using h-principles
in this paper. The results Propositions 67 and 71 in [56] resemble Theorems 1.2 and
1.3 in the corresponding case. In [27; 28; 30], Kalmar studied the cobordism groups of
fold-maps in negative codimensions.

As another line of investigation of cobordisms of singular maps in which h-principles are
not available, we refer to Saeki [47], Ikegami and Saeki [26], Saeki [48], Kalmér [29]
and Sadykov [46].

We will define the homomorphisms n2-+) and ¢(%:$+) in Section 3. In Section 4
we will prove Theorem 1.1. In Section 5 we will prove that Q" is an open subset. In
Section 6 we will prepare several results which are necessary in the proofs of Theorems
1.2 and 1.3. In Section 7 we will prove Theorem 1.2. In Section 8 we will explain
how the space B¢ is introduced. In Section 9 we will give a wide class of open sets
Q(n, p) which satisty the h-principle in (h-P). Theorem 1.3 will be proved in this
section. In Section 10 we will construct a simpler spectrum associated to the open
subspace consisting of all regular jets and all definite fold jets in Q"~?T1.9(;, p) and
the corresponding classifying space. We will show that it yields a direct summand of
the cobordism group for fold-maps by using the homotopy type of Q"~?+1.0(;, p)
and the relative h-principle.

2 Preliminaries

Given a fiber bundle 7¢: £ — X and a subset C in X, we denote (7€)~1(C) by
E|c. Let 171 F — Y be another fiber bundle. A map b: € > F is called a fiber map
coveringamap b: X — Y if & Fob =bon¢ holds. The restriction b|(€|c) Elc—>F
(or Flp(c)) is denoted by b|C In particular, for a point x € X, £|x and b|x are
simply denoted by & and by: Ex — Fb(x) respectively. The trivial bundle X x R¢ is
denoted by &t y (see Steenrod [54]).

Let £ - X and F — Y be vector bundles of dimensions # and p respectively. The
origin of R is simply denoted by 0 for any natural number m. We define the action
of L¥(p) x LK(n) on J*(n, p) by (j§h1, j§ha)- j§ /= j§hio fohy"). Let
&1 — X1 and F; — Y7 be other vector bundles of dimensions n and p respectively, and
let 51: E—& and 52: F — F1 be bundle maps covering b;: X — X7 and b,: ¥ — Y]
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respectively. Then 51 and 52 yield the isomorphisms S(£y) — S "(El,bl(x)) and
Fy = Fl,b,y(y) forany x € X and y € Y for 1 =i = k and hence, we have the bundle
map

iy bo): THE F) > T (Er Fr)

covering by X b,. Then j(Z?l,Ez) induces the bundle map j(ZJl,Z?Z)Q: QE,F) —
Q. Fr).

If we provide N and P with Riemannian metrics, then the Levi-Civita connections
induce the exponential maps expy : Tx N — N and expp ,: T, P — P for x € N
and y € P respectively. In dealing with the exponential maps we always consider the
convex neighborhoods. We define the smooth bundle map

(2-1) J¥(N, P)>J*(TN,TP) over N x P

by sending z = j)’ff € (nﬁ, X né‘,)_l(x, y) to the k—jet of (expP’y)_1 o foexpy .«
at 0 € T, N, which is regarded as an element of J* (TN, T, P)(= J)’C‘,y(TN, TP))
(see Kobayashi and Nomizu [33, Proposition 8.1] for the smoothness of exponential
maps). More strictly, (2-1) gives a smooth equivalence of the fiber bundles under
the structure group L*(p) x Lk(n). Namely, it gives a smooth reduction of the
structure group Lk(p) x Lk(n) of J¥(N, P) to O(p) x O(n), which is the structure
group of JK(TN,TP). Let =1 (N, P) denote the Boardman manifold in J*(N, P),
where I = (iy,---,i;) is a Boardman symbol such that n = iy = --- = i = 0 (see
Boardman [13], Levine [35] and Mather [39]). Let Q7 (N, P) denote the open subset
which is the union of all ZX(N, P) with K < I in the lexicographic order. Let
SI(TN,TP) and QI (TN, TP) be the subbundles of JX(TN,TP) associated to
>1(n, p) and Q1 (n, p), which are identified with ! (N, P) and Q! (N, P) under
(2-1), respectively.

Let f: X — Y be a continuous map. If fi: m;(X) — 7;(Y) is an isomorphism for
0 =i <m and an epimorphism for i = m, then we call f a homotopy m—equivalence
in this paper.

3 Homomorphisms in Theorem 1.1

Let Q(n, p) and Q,(n+ 1, p + 1) be open subsets given in Theorem 1.1.

As usual we provide N(n, P; 2, Q2,) and O(n, P; Q, Q,) with the structures of mon-
oids. Namely, given two Q-regular maps f;: N; — P (i =0, 1), we define the sum
[ fo] + [ f1] to be the cobordism class of the Q-regular map f: No U N; — P defined
by f|N; = fi. We proceed the arguments commonly in the unoriented case and the
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oriented case in Sections 3 and 4, because in the oriented case we only need to provide
manifolds and vector bundles concerned with the orientations. The orientability of P
is not necessary even in the oriented case in Theorems 1.1 and Theorem 1.2. However,
we will need the orientability of P in the oriented case in Section 8.

We will identify R™ with S™\{(0,---,0, 1)} for positive integers m in the following.
Let M be an m—dimensional compact manifold such that M should be oriented in
the oriented case. Let £ > m. Take an embedding epr: M — RE+H™ and identify M
with epr(M). Let cpr: M — Gy be the classifying map defined by sending a point
X € M to the m—plane Tx M € Gy,. Let vps be the orthogonal normal bundle of M
in REE™  Let erp: TM — y(’;”m (respectively ¢y, : var — ?ém) be the bundle map
covering the classifying map cps: M — Gp,, which is defined by sending a vector v of
TxM (respectively w €vpys i) to (Tx M, v) (respectively (Tx M, w)). Then we have
the canonical trivializations tp7: TM @ vpy — 8?}”’ and 1, vg @ ?ém — eéj;m
They induce

1G,, © (cTM B vy, ) © IA_JI =cpr X 1dgetm .

Let F be any vector bundle of dimension ¢ over P and Q(m,q) be an Lk (q) x
L¥ (m)—invariant open subspace of JX(m, ¢). Let 2, = Q(yg’m , F) be the subbundle
of Jk(y&”m,]-") associated to Q2(m, g). If there is amap sps: M — R, with ném oSy
being homotopic (respectively equal) to cps, then crpr, cv,, and the projection
ném | ,, = Gy, induce the bundle maps

™ . k . k =4
Cong - TM — (g )G |, and My — (ng )V, |,

covering sps such that g, o (csj;y ® c;)]\"f )o [1\_/11 is homotopic (respectively equal) to

Spr X idge+m , where

. k ~L £+
i, (¢, ve, 76,2, — g "

is the trivialization induced from /g, .

Qg F)<~— (ﬂém)*)/&"m l@,, (or (Jrém)*)?émmm)

y J{ TC{AJ/\I/I (or c;]{\; )

M — Gy x P TM(or vpr)
k \L icTM(or Copg)
Gm g (orpg )

Let A 4 refer to the Grassmann manifold Gy, 4 (respectively oriented Grassmann
manifold G, 4) of all m-subspaces (respectively oriented m—subspaces) of R™ 4.
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Let y;l”m . and ?Zm . denote the canonical vector bundles of dimensions 7 and g over
Am,q respectively such that

lem .q @ )//\flm,q
is the trivial bundle ¢ A+q Let T(p4 A ) denote the Thom space of ?Zm . Here, we
see that the spaces ’

{T((6,)*P6,,|2.)}e
constitute a spectrum. Let j: Gy, — Ay, ¢4 denote the injection mapping an m—plane
a in Rt = RM+E x  to the same a as the m—plane in R”T¢+! We have the
canonical bundle maps

b: )/glm - yfgnm,ZJrl and b )/}ém @Sé;m ?ﬁzlew
covering j. Let %, = Qv z+1"7:) be the open subbundle of Jk(yzlm e+1"7:)
associated to 2(m, g). We have the bundle map !

j(b, id]:)QZ Slm — Sl;n

covering j. Then b induces the bundle map

. (k \xol 1 sE4+1
b' (T[Gm) (me 698Gi11)|ﬂ""' (jTAm Z-i—l) ( Am Z-i—l)lsz.

covering j(b,idr)gq. Since
T (%) (76, ®£G,)l2.,) = T(x§,)* 76,)le.) A S,
we have the associated map
TO): T((xg,) P, NS — TG, G5 Dles)-
This shows the assertion.

Take an embedding ey: N — R*T¢c S+ and apply the above notation. Then we
have the bundle map

ilern,idrp)a: Q(TN,TP) — R = Q(yg,, TP).

Let /: N — P be an Q2—regular map with the jet extension j* f: N — Q(TN, TP)
and let sy = j(crny,idrp)o o jkf. Then we have the composite

AR o N 5@, =Q, (y”+1 TP®el)
and b(7) (22 ocgNivy — )/9*

covering AGLE) o ¢ ~ - Denote the Pontrjagin—Thom construction (see Thom [57])
for eny by ay: S™tt — T(vy). Let €(n, P; Q, Q) refer to

N(n, P;2,R2) or O, P;Q,RQ2),
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let Im(T(b(;?)(Q’Q*))) refer to Imm(T(b()?)(Q’Q*))) or ImD(T(b()?)(Q’Q*))) and
let w refer to n(2+) or ¢(2:52+) depending on whether we work in the unoriented
case or oriented case. We now define the maps

w: €(n, P; 2, Q) — Im(T (b(p) )

by mapping the cobordism class [f] of €(n, P;2,,) to the homotopy class of
TR @) o T () oay.

N

We have to prove that w([ f]) does not depend on the choice of a representative f .

Lemma 3.1 Suppose that two Q2 -regular maps f;: N; — P (i = 0,1) are Q.-
cobordant. Then we have n&2:) ([ fo]) = n$&2) ([ f1]). If N; are oriented and f;
(i =0, 1) are oriented Q2 —cobordant, then we have 0(2-%+) ([ f5]) = o2 ([ £1)).

Proof We first have to prove that w(][f]) does not depend on the choice of an
embedding ey . Let £ be a sufficiently large integer. Let ex: N — R"*¢ be an
embedding of N . For a nonnegative integer m1, let e} be the composite of e and the
inclusion R"+¢ = Rt x 0 — R* 4™ Then we may regard vy & &’y as the normal
bundle of e’ and the Pontrjagin-Thom construction for e is the m—th suspension
snttm s T(uy & ) =T (vy) AS™ of that for e .

Given two embeddings ey, : N; — R (i =0, 1) with £, = £ + m for m =0, by
the above argument we consider e]’GO in place of ey, . It will be proved by the argument
below that w([ f]) does not depend on the choice of e]’GO and ey, .

Let € be a sufficiently small positive real number. Let 7(0,€) and I(1, €) denote the
intervals [0, €] and [1 —e, 1] respectively. Let €: (W, 0W) — (P x[0,1], Px0U P x 1)
be an Q. —cobordism of fo and f;. Take embeddings ey, : N; —R" and epy: W —
R [0, 1], and let us identify as N; = ep;, (N;) = en; (N;) x {i}, W = ey (W)
and P = P x {i}. Then we may assume that for i =0, 1,
i) WnN(S"HxI(i,e))=N; xI(i,e),

(i) ew|N;xI(i,e) =en; xidj(i ).

(i) €C|N;xI(i,€) = fi x id[(,"e),

(iv) j*E|N; x {i} = jk(f; xidr)|N; x {i} under N; = N; x {i} and P = P x {i}.

In the identification TW |y, = TN; ® 8]1\,l_ , the positive direction of 8}\,0 should
correspond to the inward normal direction, and that of ¢ }\’1 should correspond to the
outward normal direction. Then we may assume that the trivializations

tn: TN; @ vy, —)87\,—:_6 and try: TW @ vW—>s’;;rE+1
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satisfy ty |n, = (tw; @ldgjlv )o (idrn; EBkN) where k” sN D VN, = VN, GBSN is
the map interchanging the components el N, and vy . Let

1 -y n+1
Cygn®£‘cn . yGn @8G yGn—‘,—l

denote the bundle map covering i ¢: G, — G, defined by
e, GBSE (Vx @ (x,1)) = V’G(x) + ey 4041

for x € Gy, Vyx € (yG )x and t € R. Let sy, = j(ern;,iddrp)g o j k fi and sy =
J(CTW,ldT(Px[O 1]))9* o jk&. Then we have that

v, @l o (crn; @ (en; ><1dR)) = crw|TN; @8}\7,-’
CSW |N1 = b(V)(Q 24 oc

Let ay: S"H [0, 1] — T(vir) be the Pontrjagin—Thom construction for ey . Under
the identifications

Qu(TW,T(Px[0,1])) = Qu(TW,TP ®ebh) x [0, 1],
Q. (y”+1 T(P x[0,1])) = Q. (y"+1 TP®eb)x[0,1],

the composite T (cg,y )an gives a homotopy between T'(b()? Q*))oT(csN )oan,
and T'(b(p)€%2~ )) o T(cle) oap, . This proves w([ fo]) = o ([ f1])- |

4 Proof of Theorem 1.1

We prove Theorem 1.1 in this section. Let Q(n, p) and Q. (n+ 1, p + 1) be the open
subsets given in Theorem 1.1.

Proof of Theorem 1.1 We use the notation in the proof of Lemma 3.1. We first prove
that w is injective. For this, take two €2-regular maps f;: N, — P (i =0, 1) such that
o([ fo]) = o(f1]). Recall the map T'(b(7)&-2)) o T(cSN’ ) oay; which represents
w([f;]). There is a homotopy H: S™*¢ x[0, 1] — T( ) such that if € is sufficiently
small, then we have, for i =0, 1,

(i) HIS"™ X I, €) = TO@) E2)) 0 T(esy! ) oan; o (mgnte| S™H x 1(i, €)),

(ii) H is smooth around H -1 (2,) and is transverse to 2 .

We set W = H~1(R,). Then we have
(i) WN(S"xI(i, €)= N; xI(i,e),
(iv) H|N;x I(i,€) = AC2) o5y o (. |(N; x I(i, €)),
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V) TWnx1ae =T(Nix 1, €)= (TN; @ ey ) x 1(i,€),

Vi) vw N x1G,e) = VN, X I(i,€).
By (ii) we have the bundle map c2?: vy — ?é* covering H|W: W — @, such that
il) 2 | N1 =B EED 0 00" 0 (myy, [V, x 10, €)) by (i) and (iv).

y [4, Proposition 3.3] we obtain a bundle map of 7 W & 8%4/ to

k * . n+1
(nGn-i-l) ()/Gn-‘rl ®e Gn+1)|ﬂ*

with a required property concerning the trivialization. By this property and the dimen-

sional reason, we obtain a bundle map

IV TW > (g, e Dle.

covering H|W: W — R, induced from the above bundle map such that g , o IV

) oty, ! is homotopic to (H|W) x idgnte+1. Since )/"+1 is the universal bundle

€ > n), cZ: W is regarded as c};ﬂfV Let

b(y @)@ (6 ) (e, Beg,le = (7§, ) k!,

covering A8 be the bundle map induced from Cyl @l in the proof of Lemma
3.1. Then we may assume by (iv), (v) and (vi) that

(viii) L |(M xI(i€)) 18 equal to

b(y ® )2 0 ([ X @ (s, ¥ idR)) 0 TN, @6, |(TN: ® en,) x 1(i, €)).
Hence, cp is homotopic to né o H|W relative to (No x [0, €]) U (N x[1 —€,1]).
Let 7poel, : T(Px[0,1]) = (TP @sP) x[0,1]— TP EBSP be the canonical bundle

map covering the canonical projection wp: P x [0, 1] — P. Then we have the bundle
map

erw. mrpeel)e.: Qu(TW,T(Px[0,1]) = Qu(TW,TP&ep)x[0,1]
— R, =Q, ()/”'H TP®eh)

covering ¢y x wp. Therefore, since [0, 1] is contractible, there is a section sy : W —
Q.(TW,T(P x][0,1])) such that

”f’x[o,l] osw |Ni x I(i,€) = fi xid[( e,
p Oﬂéx[o,l] osSw = ﬂjg o (H|W),
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and that j(crw. TTPeel, )@, © sw is homotopic to H|W relative to (N x [0, €]) U
(N1 x [l —€,1]).

Since Q2. (T W, T(P x [0, 1])) satisfies the relative h-principle on the existence level,
there exists an Q,-regular map €: W — P x [0, 1] such that €(x,?) = fo(x) x ¢ for
0=1=Ze, €x,1) = fi(x) xt for 1 —e <¢ =1 and that jX¢ is homotopic to sy
relative to (Ng x[0,€/2]) U (N x[1 —e€/2, 1]). This implies that the 2—-regular maps
fo and fi are Q,—cobordant. This proves that  is injective.

We next prove that w is surjective. Let an element & of Im(T(b()?)(Q’Q*))) be
represented by a map «: S"Ht — T()?é) such that (7'(b(7)&-2))), ([a]) = &. We
may suppose that & is smooth around o~ () and is transverse to €. We set N =
o~ 1(R). If N = @, then [@] must be a null element, although we can deform o« so
that N # & even in this case. Since « is transverse to €2, we have the bundle map
¢INivy — )’/‘é covering «|N . It follows from [4, Proposition 3.3] that there exists a
bundle map

CZNGB‘S?V: TN @&y — (nén)*(yg” @ 83Gn)|52

covering &|N: N — & such that the composite
(IQ &) ldggz) o (ld(nén)*(ygn) @kan)
o (¢IN®N @ c2N) o (idry Bky) o (13! ®ids3)

is homotopic to (| N) xidgn+e+3, where k; SG EB)/G — )/G EBSG and ki vNEB
8?\, -3 y D VN are the maps 1nterchang1ng the components respectlvely Slnce VG

the un1versal bundle (£ > n), cIN ®e} s homotopic to ¢, N N & ((«|N) x idgs), and
) (c @clN)o t_l is homotopic to (a|N) x lan+e Hence, ¢y is homotopic to
né o a|N By [4, Proposmon 3.3] again, ¢’V and ¢’ |  are homotopic as bundle

maps vy — ysz Since we have the bundle map
ilern.idrp)e: Q(TN,TP) — @ = Q(yg,. TP)

covermg cy X idp, there is a section sy: N — Q(TN, TP) such that nP oSN =
nP oa|N and j(crn,id7p)g o sy is homotopic to «|N. Since Q(T N, T P) satisfies
the h-principle, there exists an Q-regular map f: N — P such that ]k f is homotopic
to s . This implies that j(crn,id7p)e o j¥ f and «|N are homotopic. This proves
that

o[/ = [TO@) ) o T(c,N) oan]
= [T (@) )y o T(c!N) oay]
= [T(b(?) %)) oq]

=a.
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This is what we want. O

Under the assumption of Theorem 1.1 €(n, P; 2, 2,) inherits the structure of an
abelian group from the stable homotopy groups. The null element is defined to be
represented by an Q-regular map f: N — P, which has an 2, —cobordism

& (W, 0W) — (P x]0,1], P x0)
with dW = N such that €|N = f under the identification P x0 = P.

5 Examples of /C—invariant open subsets

In this section # < p is not necessarily assumed. As an important example of Q. (n +
1, p+ 1) for Q(n, p) we recall Q}C = Q@+ 1, p+ 1), which is the set consisting
of all K—orbits [C(i1(z)) for k—jets z € Q(n, p). Let Cy, denote the ring of smooth
function germs (R”,0) — R and let m,, denote its maximal ideal.

Lemma 5.1 Let i be a nonnegative integer smaller than n 4+ 1. Then any k —jet
weXi(n+1,p+1) hasak—jet z € X¥(n, p) such that w lies in K(i1(2)).

Proof We consider the usual coordinates x = (x1,X2,++ ,X,41) of R"*! and y =
(V1. y2,+++ . yp+1) of RP *1. Under suitable respective coordinates
x' = (x/l,x;,--- ,x;1+1) and y/ = (y{,yg,--' ,y,’,+1)

of R”*! and R?*+!, w is represented as w = j&g with
(yll Og(x,),--- ay;+] og(xl)) = (x;"" ax;,«l_iagn_i+1(x/)"" 7gp(x,)vx;,1+1)’
where g/ € m’ZH_1 . Let g: R"t! — RP*! be the map germ defined by
(yl Og(x)’." ,J/p—i—l Og(x)) = (XI,"' 9xn—i9gn_i+1(x)"" ,gp(x),xn—{—l)-

It is evident that jé‘ge K(w). Let y= (x1,+++, X, 0). Define the map germ f: R" =
R"” x0— R? by

f = { (¥1, o Xmi €7 THNE), £ TF2(X), oL gP (X)) fori <,

(' (%), £2(x), -+ , g2 (X)) fori = n.
Then we have 0(jkz) =Cpy1/ (T (mpy1)+ mﬁill)
~ Cn/(f*(mp) +mh T
= QG N).
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Setting z = j k£, wehave w € K(iy1(z2)). |

Lemma 5.2 Let Q(n, p) be a K—invariant open subset of J¥(n, p). Then the set Q
is open in J*(n+m, p +m) form > 0.

Proof It is enough to prove the case m = 1. Suppose to the contrary that Q} ic 18 not
open. Then there exists a k—jet w € SZ,C and k—jets w; ¢ Q,C such that limj oo wj =
w. By definition, there exists a k—jet z € Q(n, p) such that w € K(i11(z)). Let
i =n—rankz. Then we may assume without loss of generality that w = i;(2),
w =jé‘g, w; = jé‘gj and lim; o w; = w with
(yl Og(X),"‘ » Vp+1 Og(x)) = (Xl,"' » Xn—i» gn_i+1(x)9"' ,gp(x) xn+1)
—i —i +1

(ylogj(x)s""yp-i-logj(x)):(g}(x)v"'1gJ"1 l(x)’g;l l+1(x)’ sg]p (x))’

where g’ € m,2, forn—i+4+ 1=t = p. Since limj oo wj =iy1(z), we set

1 —i+1

h] (xl"" ’xn-i-l) = (X],"' 7xn—l'7gjr'l i+ (X),"' ’g;’(x)7xn+l)v
2 1 °

Ry (s X)) = (1, X, €T (X). -+ &7 (X), Xn41)-

Since the map germ defined by

—i +1
(xlv"' ’xl’l-f'l)'—)(g}(x)"” ’g;l l(x)’xn—i-{—l»"' xn,gjp (x))

is a local diffeomorphism for sufficiently large numbers j, we have
Qi (w)) ~ Qr(jg hj) ~ Qi g h})-
Let us define
, (X1, Xn—i, &7 ’+1(x),---,gf’(;)) fori <n,
jj(xl’...’xn): | n—i ] j .
(g; (X). - .8 ?(x)) fori = n.

Then we have that lim; jo hj =w= z+1(z) and z+1(] 1) = ] h2 and hence,
Or(wj) ~ Qk(]0 Jj). Since lim; o jg f] = z, we have that j; f] e Q(n, p) for
sufficiently large numbers j. By definition, we have j h2 € Ql for sufficiently large
numbers j. Since Oy (w;) ~ Qk( ]é‘hz) it follows from [38 Theorem 2.1] that
wj € Q for sufficiently large numbers j. This is a contradiction. a

Lemma 5.3 If two map germs f1» f2 (R™,0) — (R?,0) are K—equivalent, then

the Boardman symbols of f1 and jg f2 are the same. Consequently, the Boardman
manifold X1 (m, q) is invariant with respect to the action of K.
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Proof By [36] there exist a germ of a diffeomorphism /4: (R™,0) — (R™,0) and
a smooth map germ M : (R™,0) — GL(g) such that M (x) f1(h(x)) = f2(x). Let
Ji) = (f{(x), -+, f1(x)) with f] € Cn/miF! (i = 1,2). Let 3(f;) denote the
ideal of Cm/mfn‘"1 generated by fli,--- fq’ Let hy: Cm/mfnJrl —>Cm/m£‘n"'1 be the
isomorphism defined by /14(¢)) = ¢ o h. Then we have h«(J(f1)) = J(f2). The
Boardman symbols of jok fi (i =1,2) are determined by J( f;) and are the same by
[39]. This proves the assertion. O

Lemma 5.4 If I is a Boardman symbol such that Q! (n, p) is nonempty, then Q7 (n+
1, p + 1) is the union of all K—orbits K(i,(z)) for z € QL (n, p).

Proof Let I = (ij,i»,---). Since QI (n, p) is nonempty, we have i; < n. Let
weQlm+ 1, p + 1), whose Boardman symbol is J = . Since j; =i; = n, it
follows from Lemma 5.1 that there exists a z € Q7 (n, p) such that w € K(i41(2)).

Conversely, let z € Q! (n, p) with Boardman symbol K < I. Since the Boardman
symbol of i (z) is obviously equal to K, we have i, 1(z) € QT (n+ 1, p+1). This
shows the assertion. O

6 Preliminaries for Theorem 1.2

We prepare lemmas and propositions for the proof of Theorem 1.2.

Lete; =(0,---,0,1,0,---,0) with 1 being the i —th component. Let Prpt1: RPT!
R be the projection mapping (X1,--+,Xp4+1) to Xp41. Let Jr{‘: Jkn, p) — J'(n, p)
be the canonical forgetting projection.

Let K be a finite simplicial complex and L be its subcomplex such that K\ L is a
manifold and dim L < dim K.

Lemma 6.1 Let Q(n, p) be a K—invariant open subset of Jk(n, p). Let (K,L)
be given as above and dim K < p. Let y: (K,L) — (QL,iy1(Q(n, p))) be a
map such that y|(K\L) is smooth. Then there exists a homotopy v: (K, L) —
(k. i+1(Q(n, p))) such that

@ Yo=1v,

(i) yalL =vyIL,

(i) pryps (T8 0Py (@) (x1, - Xuy1)) = Xnp1 forany u € K,
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Proof Let us define e: K — R?*! by e(u) = (n{‘ oy (u))(eyr1). Since Y (L) C
i+1(2(n, p)), we have that, for any u € L, e(u) = e,4 1. Consider the fiber bundle
dpps1: JE(m 4+ 1, p + 1) — RPH! defined by dgpt1 G f) = ji f(ent1). Since
dim K < p, K\ L is a manifold, ¥ |(K\L) is smooth and since }C is an open subset,
it follows from the transversality theorem and the covering homotopy property of
Ogrp+1 that there exists a homotopy ¢;: K — J k(n+1, p + 1) relative to L with
@o = ¥ such that

(1) the deformation u) = dpp+1 0 @) of e with uy = e satisfies that u; does not
take the value of any nonpositive multiple of e, 1,

(2) @n(K) C QL forany A.

In the following an element of GL(m) is regarded as a linear isomorphism of R"
and E,, is the unit matrix of degree m. Let hi: (K,L) = (GL(p+1),Ep11) be
the homotopy defined by hi(u) =((1—=A)+A/|lug()|]) Epy1. It follows from (1)
that h}(u)(ul(u)) € S? and h{ (u)(ay(u)) # —ep41 for any u € K. By considering
the rotation which is the identity on all points orthogonal to both u;(«) and e, and
rotates the great circle through u;(u) and e, so as to carry u;(u) to e,4; along
the shorter way (when u;(u) = e,41, we consider E,), we have the homotopy
hi: (K,L)— (SO(p+1), Ep4 ) relative to L such that h(z)(u) =E,yq and h%(u) o
h}(u)(uy(u)) =epqq forany u € K. Let hy: (K, L) — (GL(p+ 1), Ep41) be the
homotopy defined by /) = hé)h for 0 =A =1/2 and hy =h§k_1 oh% for 1/2=A=1.
Define kp+1: K — J'(n+1,1) by

p1 () = prypyy ot (5 (hy () 0 1 (w)).

Since kp41(u) is of rank 1 for any u € K, we have the unique vector V(u) € R7+1
of length 1 such that V() is perpendicular to Ker(k,41(«)) and kp41(u)(V (1)) is
positive. Namely, A (u) on{C (¢1(u))(V(u)) is directed to the same orientation of e, 1 .
Since kp41(u)(e,41) =1, V(u) cannot be equal to —e; 1.

We set v(u) = kp41(u)(V(u)) > 0. By considering the rotation which is the identity
on all points orthogonal to both V() and e,+ and rotates the great circle through
V(u) and e, so as to carry e, to V(u) along the shorter way, we again have the
homotopy H}fz (K,L)— (SO(n+1), E,41) relative to L such that H(} (u) = Epiq
and H/(u)(e,41) = V(u) forany u € K. Let H}: (K,L) - (GL(n + 1), E,41)
be the homotopy relative to L defined by Hf w)=((A—=A)+Ar/v(u)E,+1- Let
H,: (K,L)— (GL(n+1), E,+1) be the homotopy defined by H) (u) = H21}L(u) for
0=A=1/2and Hy(u) = H},  (u)o H](u) for 1/2 =) = 1. Then we have that
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for any u € K,

Kp41 () 0 Hy(u)(€n41) = kp1(u) o HE(u) o H{ (u)(en+1)
= kpt1(u) o HE (u)(V (1))
= kp+1(W)(V(w))/v(u)
=1.

Since Hl1 (u) € SO(n + 1) and e; is orthogonal to e, (i <n 4+ 1), Hl1 (u)(e;)
is orthogonal to Hl1 (u)(ep41) = V(u). Namely, Hi(u)(e;) lies in Ker(kp41(u)).
Hence, we have

Kpy1(u)o Hy(u)(e;) =0 fori <n+1.

Define the homotopy ¥;: (K, L) — (QL,i11(Q(n, p)) relative to L by

@32 (1) for0 =21 =1/3,

U () = § h3p—1(u) o (u) for 1/3 =4 =2/3,
hy(u)o @y (u) o Hap—p(u) for2/3 =1 = 1.

By the definition we have

0 fori <n+1,

prp_H OH{C(WI (u))(el) = { 1 fori =n + 1.

This is what we want. O

Proposition 6.2 Under the same assumption of Lemma 6.1, we have a homotopy
U, (K, L) — (QL,iy1(Qn, p))) such that

1) Yo=1,
(i) WL =vy|L,
(i) W (K) Cit1(R2(n, p)).
Proof Let y; be the homotopy given in Lemma 6.1. Let us express ¥ (1) =

(fkl (u), sz(u),--- ,prH(u)) using the coordinates of R?*1, where f)f(u) is re-
garded as a polynomial of degree at most k& with constant 0. We note that

P )(x1. -+ o Xng1) = Xpp1 + higher term.

Let Diff(R”*1,0) be the space of all germs of local diffeomorphisms of (R”*1,0).
Let us define a homotopy of maps ®@;: (K, L) — (Diff(R"*1,0), id(gn+1,0y) by

@5 () (X1, s Xng1) = (X1, X1 + AT W) = Xng1)).
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It is obvious that ®; («) is a germ of a diffeomorphism of (R”*!,0). Then we have
the inverse ®; (1)~! such that

(6-1) Pryy g oW1 (u) o @1 () (X1, Xng1) = Xnt1.

We now define ¢y: (K, L) — (QL.i11(Q(n, p))) by

¢ () = Yy 0 jE (@ ()7,

In order to exclude the terms containing x,41 from yjo¢; (1 = j = p) we define
the homotopy ny: (K, L) — (J*¥(n+ 1, p+1),iy1(J*(n, p))) by

M) (x) = (1 =A)g1 (W) (X1, Xn41)
(6_2) +)\(¢1(M)(X1, ,xn,o)‘i‘(o"" v09xn+1))'

It is obvious that 11 (K) C i4+1(2(n, p)) and that ny|L = |L. It remains to prove
that 7, is a homotopy to €2 ,lc It follows from (6—1) and (6-2) that

Prytp oM () (X) = (1 =A) (Xp41) + AxXpp1 = Xnt1.

Let us express 1) (u) = (gi(u), gi(u), ‘e ,gf“ (u)), where gi(u) is regarded as a

polynomial of degree at most k with constant 0. Consider the ideal J, (1) generated
by gi(u),gi(u),~-- ,gf“(u) in mn+1/mﬁill. Then J) (u) is constantly equal to
Jo(u), and hence Q(ny (1)) ~ Q(¥1(u)). Since Y1 (u) € Q}C, we have ny (u) € Q}C
by [38]. Then the required homotopy W, is defined by W) = 33 (0 =1 = 1/3),
Uy =¢3a—1 (1/3=A=2/3)and V) =n3p— (2/3=A=1). |

Proposition 6.3 Let (1, p) be a K—invariant open subset of J¥(n, p). Then
it1: Q. p) — Qe

is a homotopy (p — 1)—equivalence.

Proof Let , denote a jet of Q(n, p) and t,4+1 = i+1(ty). We first prove that
(I+1): i (Q(0n, p))— n,-(SZ,IC) is surjective for 0 =i < p—1. Indeed, let [a] € 7; (Q}C)
be represented by a: (S, e;) — (Q,IC, tn+1)- Then by Proposition 6.2 we have a
homotopy ¢;: (S%,e;) — (Q}C, tn+1) such that ¢ (S?) Ciy1(Q(n, p)).

Nextlet 0 =i < p — 1. Let [b] € ;i (Q(n, p)) be represented by b: (S, e;) —
(Q(n, p), tn) such that (i;1)«([p]) = 0. Then we have a homotopy @: S’ x [0, 1] —
(Q;lc,tn+1) such that @|S? x 0 = iy o b under the identification S* = S’ x 0 and
@(e; [0, 1]US x 1) =1,,41. It follows from Proposition 6.2 that since i + 1 < p, there
exists a homotopy ®@;: (S? x[0, 1], S x0Ue; x[0, 1JUS  x1) = (QL, i1 (Q(n, p)))
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relative to S* x 0Ue; x [0, 1]U S? x 1 such that ®; (S’ x [0, 1]) Ci4(R(n, p)). This
proves the injectivity of (i1)«: 7 (Q(n, p)) — w; (Q}C) O

7 Proof of Theorem 1.2

Let Ayu,q express Gy,,q OF Gm,q. Let ig,,,.: Am,q — Am+rg denote the injection
mapping an m—plane a to the (m + r)—plane including a and the canonical vectors
€ tmt1s " »€qtm4r in RITM™HT We use the notation

X =Qcg " TP ®ep).

Lemma 7.1 Themap iy, .: Amq —> Am+rq is a homotopy m—equivalence.

Proof We only prove the unoriented case. The proof in the oriented case is similar.
Let us consider the diagram with the canonical maps as described

Amg —22> 0(q+m+1r)/0(q) x O(m) x E,
lAm_;’_r L1
Am+r.gq O(q@+m+r)/O(q+m)xE,

where py is induced from the inclusion R9T" = R9+t" x () — RYT™*" and p; and p,
are induced from the inclusions O(g)x O(m) — O(g+m) and O(m)x E, — O(m++r)
respectively. Since Ay 4 is a fiber of the fiber bundle p;, pg is a homotopy (¢ +m—1)—
equivalence. Since p, is a homotopy m—equivalence, iy, , is also a homotopy m—
equivalence. O

In the following lemma p is not necessarily larger than #.

Lemma 7.2 Let Q(n, p) be a K—invariant open subset of J¥(n, p). Then the fiber
map AQR20): @ S'l,lc is a homotopy min{n, p — 1}—equivalence.

Proof Consider the commutative diagram

—— 7i(Qn, p)) ——> mi(R) —— 7 (Gpyg X P) ——

| l |

— i () — 7 (R)) — 7i(Gpy1e % P) —

which is induced from the homomorphisms (A2-x)), of the exact sequence of the
homotopy groups for the fiber bundle €2 over G, ¢ x P to that for the fiber bundle €2 ,IC
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over G, ¢x P. Then it follows from Lemma 7.1 for (i @), and Proposition 6.3 that if
0 <i <min{n, p—1}, then (ACH)),: 7;(R) — 7;(R}-) is an isomorphism by the
five lemma and if i = min{n, p — 1}, then it is an epimorphism by [15, Lemma 3.2]. O

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 We only prove the unoriented case. In the oriented case we
only need the Thom Isomorphism Theorem under the coefficient group Z. It follows
from Lemma 7.2 and the Whitehead theorem [53, Section 5, 9 Theorem] that

(A2 0 Hy(R) — Hi ()
is an isomorphism for 0 =i < »n and an epimorphism for i = n.
Let £ > n, p. By virtue of the Thom Isomorphism Theorem, we have that
T(b@) M)t Hio(T(7g): 2/ (2) — Hie(T(7g): 2/ (2))
is an isomorphism for —¢ =i < n and an epimorphism for i = n.

Let C denote the Serre class of finite groups of orders prime to two. Then it follows
from [50, Proposition 2, page 277] that

T(@) ) : Hio(T(7g): 2) — Hiro(T(7g): Z)

is a C—isomorphism for —¢ =i <n and a C—epimorphism for i = n. By the Whitehead
theorem modulo C [50, Theorem 3, page 276],

(7-1) Tb(7) @ 2)s: 71T (Pg)) — mise(T(7g))
is a C—isomorphism for —¢ =i <n and a C—epimorphism for i = n.

Let 9V (R) (respectively 91 (R ,IC)) denote the cobordism group of smooth maps s of
closed i —manifolds M to €2 (respectively €2 ,IC) under the corresponding cobordism of
smooth maps such that there exists a bundle map of the stable £—dimensional normal
bundle vps to )75 (respectively ?é}c ) covering s. It follows from the standard argument
in the cobordism theory (see, for example, Stong [55]) that

N (@) ~ i (T(Pg)) and N (i) ~ 7t (T(Pgy)-

Consequently, any element of 7;1.¢(T(P§)) and 7;4¢(T ()7;; 1)) is of order two. This
together with (7-1) proves Theorem 1.2. * a

By Lemmas 5.2 and 5.4 it will be easy to see inductively that Qy(n 4+ m, p +m) is
the subset of JX(n +m, p +m) which consists of all K—orbits K(i+1(2)) for k—jets
z€Qxm+m—1, p+m—1) for m > 1 and that if Q(n, p) = Q! (n, p) # @, then we
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have Q1 (n+m, p+m)=Qx(n+m, p+m) Byusingthemap Jkm+m, p+m)—
JEkm+m+q, f+m+q) sending a jet j kfto Jo K(f xidga), we have the canonical

map AR @ _ @9 This induces the canonical bundle map

b(7) @ ;5L — Pauta
and the associated map
~ m om+q ~
T@) R ) Tlrgp) = T(Tgmsa)-

Let 6 denote an integer such that =1 whenn < p and 0 =n+2—p whenn= p = 2.

Proposition 7.3 Let 0 be the integer as above. Then the homomorphism

lim 7,1.0(T(7gg)) — Jim Tuse (T (Pgosa))
{—00

(Qf.Q

induced from the above map T (b(3) it )) is an isomorphism for g = 0.

Proof We only prove the unoriented case. The proof proceeds as in the Proof of
Theorem 1.2. By the iterated use of Lemma 7.2, we have that T (b()/)(Qe al )) is
a homotopy min{n + 6, p + 6 — 1}—equivalence, and hence, a homotopy (n + 1)—
equivalence. Therefore,

0 0+
(ACEIT): H(QF) — Hi(@)

is an isomorphism for 0 =i =< n and an epimorphism for i = n 4 1. By the argument
similar to that in the proof of Theorem 1.2, we have that

o (Qf. oftd ~ ~
-2) (T W) 7010(T(Pgg) — 70 (T Pgora))
is a C—isomorphism for —¢ =i = n and a C—epimorphism for i = n + 1. Since any
element of the groups in (7-2) is of order two, we obtain the proposition. O

8 Classifying space

In this section we will induce the classifying space Bgo in Theorem 1.3. We assume
that P is oriented in the oriented case.

k

”+m , RPT™M) with the projection T G ONLO

Consider the vector bundle J¥ ()/
Gn+m := Gn4m x {a point}

and the open subbundle Q;C(y"Jrf RPT™) of Jk ()/”JFJ:" RP+™MY associated to 7,
where RP tm s regarded as a vector bundle over a point. As in Section 3, the spaces

(T ((k TG, +m) (VGner)lﬂ%)}f constitute a spectrum.
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Let » denote any integer with x = p + 3. Let £ > n, p,x. We set G, yg4, =
Ap+t9+x,0+p- Let P be embedded in RP**. Let x € Gy9, y € P and (vp)y be
the orthogonal complement of 7), P in RPH* Let ¢: Gy X P — Gpig4, denote
the map such that c(x, y) is the (n + 6 + »x)—subspace x @ (vp), in RrHO+x+ 4D
Let c: néﬁe (yg:fe) ®ny(vp) = y&jf;:‘x be the bundle map which is canonically

induced to cover the classifying map c.

Let J* ("t @v, TP & 8‘199 @ vp) denote

k
Hom(@S’ (nénw (yg:fﬁ) ®np(vp)).np(TP & 8?; ® vP))

i=1

and define the fiber map
(8-1) TRt TP &%) — I " ov. TP o) o vp)

over G40 X P by mapping j)’foz € J)]f’y(y(";jfg, TP EBS?,) to j&’y)(a xid(yp),). We
also obtain the bundle map

(8-2) Yo" @v, TP@sh@vp) — JXGEHH TP@sh @ vp)

covering (¢, wp): Gyy9 X P — Gy g4, x P which is canonically induced from the
bundle map ¢ and id7pgef, @vp - It follows from Lemma 7.1 that (¢, mp) is a homotopy
(n + 0)—equivalence. The composite of the maps in (8—1) and (8-2) on the fibers over
(x, y) and (c(x, ), y) induces a map
Qe e Ty P @65) — Qg2 ) e Ty P @ 65 @ (vp)y),

which is a homotopy (n + 1)—equivalence by the iterated use of Proposition 6.3
and G, 19 X P — Gy 494, X P is a homotopy (n + 0)—equivalence by Lemma 7.1.
Consequently, we obtain the fiber map

(8-3) jox: el TP &%) — Qegiit TP osh o vp)

covering (c, wp), which is also a homotopy (n 4+ 1)—equivalence.

Trivialization TP & vp — 81;,—“‘ induces the bundle isomorphism

TR TP @ el @vp) — JE@EHOT* RPTOT P

over G, 494, % P, where R? +0+x jg regarded as the trivial vector bundle over a point.
Let Q K(y&:’f:fx,RpJ“eJ”‘) be the open subbundle associated to Q2977 Then we
have the bundle map

B4) koo Qg TP @sh @ vp) — Qg 0% RPFOT) < p
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over G, 194, x P. In the following we identify the two spaces in (8§—4). Thus we have
the following lemma.

Lemma 8.1 The fiber map Kq,. o jo, covering (c,mp) is a homotopy (n + 1)—
equivalence.

Let

k . gk n+60+x p+O0+x
T[Gn+9+x' J (yGnJrGJr;(’R ) - Gn—}-@—}-x

be the canonical projection. Let B()?éJrf ot
n x

Qe (yfsToH  RPFO+) P defined by

,VP)Q,xp denote the vector bundle over

~l+p _  k * ~+p
B(yGn-i-(-)-‘r)t’ VP)QicxP = (T[Gn+9+%) (VGn+e+x)|QK(V&1§Z¢,{>R”+9+”) X VPp.

This satisfies

~L
TBGs P vp)aexp)

n+6-+x
_ k * ~l+p
= T((nGn+9+%) (VG,1+9+,{)|Q)C(V£;:_T_;F:_%,Rl’+9+”)) AT (vp).

Let

(16, o) (i) © (TE) (TPl @yit® | TP@e)

k * s+ p
- ((nGn+9+x) (yGn+8+x)|Q’C(y£}j,_i—;ix’Rp+e+x)) xP

be the bundle map covering kg, © jo,, mapping

el )z @ TP o (el )e® (wp)y)t,

where | denotes the orthogonal complement. This induces a bundle map
B: ((1,,0)* (76, 0) ® 5 (TP ®vP)l@erit? TPae]
- WG, Gnio P kG,  , TPOep) p

—> B(¥,

Gn+9+x ’ vP)QKXP

covering
ko ooc: Qe TP ®c%) — Qe(yg 0 RPTOH ) x P,

which is a bundle map over P and is a homotopy (n + 1)—equivalence.

Let X and Y be connected polyhedra with base points respectively. Let {X; Y} denote
the set of S —homotopy classes of S—maps. Let G494, = Ap4+x,¢ as in Section 1.
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Proposition 8.2 Let Q(n, p) denote a nonempty KC—invariant open subset. Let P be
oriented in the oriented case. Then there exists an isomorphism

. AL
Jim (T (ot Trec) —

hm 0 T+ (T((ﬂGnJreﬂ) (VGn+9+x)|Q,C(y"+9+j: Ro+HO+0)) A T(vp)).

Proof Setting 52,9C =Q ;C(yg++99, TP ® e%), we have that

(8-5) Tt (T (Tgo)) = (8" T (Pgo )}
N{Sn—i-f-i-p-i-x T( ~t )/\Sp-i-%}

~ {SH+K+P+R T(Vﬂe @85{’2}5)}

N{Sn+€+p+% T(Vﬂe (nP) (TPGBVP)|9%)}.

By Lemma 8.1 and an argument as in the proof of Theorem 1.2 using the Thom
isomorphism Theorem, the associated map 7' (B) induces the isomorphism between
the last group in (8-5) and {S™tt+r+x; T(B()’/\(GijeJr ,VP)Q,xp)}. Furthermore,
we have that

(8-6) {S" TPV T(B@OG? | ve)acxp)}

~ {Sn-f-e-‘rp-‘r}f T((T[G
~ {Sn+€+x

~L+
n+9+%) (VaneJm)lQ)c(V"HJri Rr+o+0) AT (vp)}

T((nGn+0+x) (VGn+9+z)|QK(Vn+6+: Rp+0+2) AT (vp)5.

This proves the proposition. O

In the rest of this section we assume that P should be closed and connected. Let P°
be the union of P and the base point. Consider the duality map T'(vp) A S*(P°) —
SPT%+1 in [52] and [12]. Then the last group in (8-6) is isomorphic to
(8-7)

+0+ 0 +r+
{S"TETHE A SH(PY); T((nGn+9+%) (yGn+9+z)|QlC(Vn+9+j_t Rr+o-+x)) A SPTH,

Take a representative map o in a homotopy class in (8—7) and consider the correspon-
dence of a point y in P to a map |(S"Tt+*+ A {y base point}). It is not difficult
to see that the set of S —homotopy classes in (8-7) is bijective to the following sets of
homotopy classes

[P, CO(SmHEHxtt T((”G +9+X) (yGnJrgﬂ)|QK(ygn+sz’Rp+e+;,))/\Sp+x+t)]

{
S IPCOUSTI T, ) 6, ot mrrorn))
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Setting

_ 1 0/ gl+n— k 4
B’é—eli)n;oc (§ttn p’T((”Gn+6+x)*( Gn+e+x)|9f<(y3;i;r:%’RHH}{)))’
we define the classifying space Bg = limy—o0 BF as in Section 1. We have the
following proposition.

Proposition 8.3 Let Q(n, p) be as in Proposition 8.2. Let P be a closed and con-
nected p—dimensional manifold such that P is oriented in addition in the oriented case.
Then there exists an isomorphism

: k * L
x,%lglooﬂn+z+x(T((”G"+9+”) (VGn+9+x)|ch(Vg:ﬁ::k Ro+H0+x)) A T(vp))

— [P, B¢,

9 Proof of Theorem 1.3

The development of the h-principles was described in detail by Gromov [24]. We
only refer to the Smale-Hirsch Immersion Theorem [51; 25], the Feit k—mersion
Theorem [21] and the general theorems due to Gromov [22] and du Plessis [41; 42;
43]. In particular, du Plessis has proposed a nice condition called “extensibility” under
which the h-principle holds for Q7 —regular maps or smooth maps with only C—simple
singularities. However, this extensibility condition is not so effective in the dimensions
n = p. On the other hand, Eliashberg [18; 19] proved the famous h-principle on the
1—jet level for sections s: N — Q!(N, P) which have a given fold map f, defined
around s~ (Z1(N, P)) such that (j2 fo)"(Z1O(N, P)) = s~ 1(Z1(N, P)) and the
fold singularities of any semi-index of fy are not empty.

In order to prove Theorem 1.3 by applying Theorems 1.1 and 1.2 we have to show that
the assumption concerning h-principles is satisfied in the situation of Theorem 1.3. We
proved the h-principle in (h-P) for fold-maps in [3] and [6]. Recently we introduced a
very effective condition for the h-principle in (h-P) in [10]. As an application we can
prove the following theorem by using [10] (see a proof in [1]). Let £k > n, p, as in
Section 1.

Theorem 9.1 Letn < p orn = p = 2. Let Q(n, p) denote a K—invariant open
subspace in J¥(n, p) such that when n = p = 2, Q(n, p) contains X"~P+1.0(n, p)
at least. Then the h-principle in (h-P) holds for 2 (n, p).

In particular, we show the following examples of 2(n, p):
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(i) QI@n, p) suchthat whenn=p =2, 1= (n— p+1,0) (see Ando [9]),

(i1) an open subspace consisting of all regular k—jets and a finite number of K—orbits
of JC—simple singularities such that when n = p = 2, it contains all fold jets in
addition (see Ando [10]).

IfQ.(n+1, p+1)= Q}C then we write €(n, P; Q) simply in place of €(n, P; 2, Qx)
in the following. We have the following corollary of Theorems 1.1, 1.2 and 9.1 and
Proposition 7.3.

Corollary 9.2 Letn< p. Let Q2(n, p) and Q ,IC be the IC—invariant open subsets given
in Theorem 1.2. Let P be a p—dimensional manifold. Then the homomorphism

. . . ~f SOIRT ~f
: €n. P1Q) —> lim m,4(T(Fg)) ~ lim a6 (T (Fgp))
is an isomorphism.

If we apply Theorem 9.1 to [45, Theorem 9.2], then under the same assumption of
Theorem 1.3, there exists an isomorphism

(9-1) C(n, P;Q) — lim 1,1 (T(P4m))
{—00 K

for a sufficiently large integer m also in the dimensions n = p =2 as well as n < p. We
note that in [45, Theorem 9.2] everything is unoriented, but it works in the oriented case
as well. This isomorphism is nothing but the composite of w and the homomorphism

. N . ~
9-2) JAm e (T (Pg1)) — lim 7,46(T ()
which is induced by T (b(7)@k-2%)).

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 If n < p, then we have
C(n, P;Q) ~ li T ¢
(n )~ lim Tnye( ()/Q}C))
by Corollary 9.2. If n = p = 2, then the homomorphisms

~ 0+ O0+x+q ~ ~
(T @) ) (TG ) — Tt (TR )

are isomorphisms for integers ¢ = 0 by Proposition 7.3. By Propositions 8.2 and 8.3
and (9-1) €(n, P; ) is isomorphic to [P, B¢|. This completes the proof. a

The following corollary should be compared with [56, Proposition 88].
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Corollary 9.3 Under the same assumption of Theorem 1.3, O(n, P; Q)®Q is isomor-
phic to Hy(Qc(y2T0+* | RPH0+%) % P; Q) in the dimensions n < p andn>=p =2,

Gp
where { > n, p. ot

Here, let us see a relationship between the space By, the Thom—Atiyah duality in
bordism and cobordism, and the spaces introduced by Kazarian [31; 32]. The unoriented
case is not argued but is similar. Let us recall the n—dimensional oriented bordism
group ,(P) of maps to P and the Thom-Atiyah duality, 77, (M SO(£) A P%) ~
[P, QY M SO + p—n)] (see Atiyah [11] and Conner and Floyd [17, Chapter I, 12]),
where M SO denotes the Thom space of the universal bundle y over BSO and Qtx
denotes the £—th iterated loop space. Setting

521:Q n+1 TP 1 d 529+x -Q n+6+x ’Rp+0+z’
K }C(VGnJruz ®ep) an | K(yGn+9+x.z+p )

we have the following commutative diagram (£ >> n, p), although we do not give a
proof of the commutativity:

(9-3) O(n, P;: Q) 2, (P)
Im® (7 (b(7)€-420))) N
(C nn+e(T(?fz}C))) -
~t+p
7Tn+€+p+m(T(y9%+x|*) 7Tn+g+p+m(MSO(€+p)
A S™(P0)) A S™(P?))
[P, Bo] [P, Q=P M SO0)).

Let us explain the homomorphisms in this diagram.

(1) For the left vertical maps, the first vertical map is n(:22<) . We have the bundle
map

Lk kol p+m k % o l+D m
b: (”Gn+9) ( Gn+9+x)|52% 69852% — ((ﬂGn+9+x) (VGn+0+x)|9%+x|*) *Ep
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covering the composite of the (n 4+ 1)—homotopy equivalent canonical maps G, g9 —
Gpio4yx and G945 = Gyig4y . It induces the isomorphism

n+0)*(Aén+g)|Qz))

~ Tt pam (TG, ) (6, )ge) A ST
T(b)+«

~L+
= Tt pim(T(TG, o) Py, gors, ) AS™(PO).

e (T((E

The second vertical map is obtained by composing T(b()’/\)(Q}C’Q%))* for fixed £ as
in (9-2) and this isomorphism. The third vertical map is obtained by inserting this
isomorphism in the middle of the isomorphism in Proposition 8.2 together with the
isomorphism in Proposition 8.3.

(2) The second and the bottom horizontal homomorphisms are induced from the
canonical projections
QU CIKET RPFO) — Gyginisp C BSO(ULH ).
n+6+x.l+p
(3) The left vertical map is an isomorphism by Theorems 1.1, 1.2, (9—1), Propositions
82and83forn<pandnz=p=2.

According to [31] and [32, 2.18 Corollary and 2.8 Example], let us consider the
subspace Q“‘”‘I’MSO(K)Q(,,,I,) in Q=P M SO(£) which consists of all maps
a: SYH"=P 5 M SO(L) where a is smooth around ¢! (BSO({)) and for any point
x €a~'(BSO(£)) with a(x) = y, the k—jet of the composite of a: (S¢t"~P x) —
(MSO(£), y) and a projection germ of (M SO(L), y) to the fiber (y,,y) lies in
Qi (Sttn—r, Yy) associated to €2(n, p). Then the cobordism class represented by
an 2-regular map is mapped to the homotopy class represented by a map P —
Qe"'”_PMSO(Z)Q(n,p) in (9-3), whose corresponding map S¢t"~Px P — M SO({)
is transverse to BSO({).

10 Fold-maps

Let m Z q. Let V7 denote the Stiefel manifold (Eq x O(m —¢))\ O(m) under
the canonical bases of R” and R?, whose element is regarded as an epimorphism
R™ — R? or a regular ¢ X m—matrix in the following. Let £ - X and F — Y be
vector bundles of dimensions m and ¢ with metrics respectively. Let V(&, F) denote

the subbundle of Hom (&, F) associated to V7.

We have the actions of O(q) x O(m) on V>V, g from the left-hand side through O(g)

and from the right-hand side through O(m) x 1 respectively. The group O(g) x O(m)
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also naturally acts on Q79 1:0(m, ¢). In [5, Theorem 2.6] we described the homotopy
type of Q"~9T1.9Gn,¢) in terms of orthogonal groups and Stiefel manifolds, and
have given a topological embedding

. __ ;m.q. ysrow m—q+1,0
vo=iyg Vinr1,4>8 (m,q),

which is equivariant with respect to the actions of O(g) x O(m). Furthermore, if
m —q + 1 is odd, then there exists an equivariant map

_ png . m—q+1,0
Roy =Ry Q 9 (m,q)—>Vnrl°_T_Vl’q

such that R p oip,q is the identity of V¥, g In particular, we note that if m = ¢,
then iy, o Rq.p is a deformation retraction of Q™ 911.0(m, ¢). We note that the

image of i ;," ’é is a deformation retract of the open subspace consisting of all regular
jets and all definite fold jets in Q" 9F1:0(m, q).

If iyq( jo2 f) were defined by i1 ( jo2 )= jo2 (idg X f), then the following technical
modification of iy, and Rg p followed by Lemma 10.1 is unnecessary. Let /;: R —
R’ be the map reversing the order of coordinates as

ht(x19x2a"' ’xt—laxt) = (xl’axl—lv"' axz’xl)‘
Define
: __:mq, —q+1,0
e =lpgt Vi1~ 1 0m.q)
and Ro,y =Ry'T: Q" 0m, ) VY,

by ipd(A) =iy &(Ahmyr)-hm and KRGS (g /) = RS G (f © hm))hm1.-

It will be easy to see

maq ’m’q —_ W
Rowolyg=idye, .

Let it J%(m,q) — J¥(m + 1,4 + 1) denote the map defined by i+1(jé‘f) =
jEGdg x f). Let

41 - . row row
T Tt Vg = ik g1

denote the map defined by jT!1(4) = (1) + 4 and j(4) = A + (1), where +

denotes the direct sum of matrices. We consider another action of O(m) on V};O_T_Vl e

distinguished as O(m)*, by T-A = A((1) +T~") for A € V¥, , and T € O(m).

Lemma 10.1 (i) ir;’gz and ‘ﬁg?/ are equivariant with respect to the actions of

O(q) x O(m) on J?(m, q) and of O(q) x O(m)* on V¥, 7

i) Jjyr: V;;’_Vifl’q — V;f_iv_vz’q 41 Is equivariant with respect to the actions of O(q) x

O(m)* on V;ﬁ_’l,q and on V'V, g+1 through (O(q) x 1) x (O(m) x 1)*.
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(iii) The following formulas hold:

Ry i1 GFUN) = 1 RS Ug /)
o T (1 (A) = i1 (& (A))
Proof Let A€V, 2 Se€O(@) and T € O(m).
(i) We have that

pa(S, T 4) =iy & (SA) + 1))
=iy g (SA) + T hmt1) - hm

=S iy a(Ahmithme1 (D) + Ty 1) - m

=S iy g Ahmir (i Thm (1)) - i
=S iy & (Ahmi1) - (T hnhim)
=S (iyq(Ahmir) hm)- T
=(S.T71) ipg(4).
R 3 (S, T~ - (g /) =RGH(S - (g /)-T)
= RGY(S (g (f)-T)hu)hmr
= SRG g (f) - hmhm) T - hn) A 14
= SRGY g (f) - hm - (hin Thim)) A 14
= SRg:qV(joz(fohm))(hmThm + (1)t

2019

= SRGY (g (f © hm) eyt hin s (i T hi + (1)) 1

= SR (g (f © hm)hm1 (1) +T)
= (S, T7")-RG% g )
(i1) We have that

J+1((S. T 4) = SA((1) + T) + (1)
=(S+M)AF M) +T+(1)
=((S+ ). (T 1)) - (4+(1)).
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(iii) By the definition of iy, and Ry we have that

RT3 Gidg x ) = j T (RIS, (3 ).
&I G ) =T EA)).
Therefore, we have that
Re oy T 141G = R  (hgyrhggr - jE((f X idR) - A1) im42
= R’S}l"’“wqﬂ - j@(idg X(hg © f ©h)hmea
= hg+1J 7RG (g (hg o f © hm))hm+2
= (hq Ry} (g thg © f © hm))hmy1) + (1)
= (Rg % (j3(f © hm)hmy1) + (1)
= jr1 (RS g ()

and the other formula is similarly proved. O

Let @ = Qm_q“’o(y&"m,}'). Let

iv.a(vg,F): V(sle ®vg, F)— X,
Rey(vg F):Q—>Vieg &vg . F)

be the fiber maps associated to iy, and Rq p respectively. Then

(a) the fiber map iy Q()/g’ , JF) is a topological embedding,
(b) if m —g + 1 is odd, then Rg V(VG ,F)oiy Q(yG , F) is the identity of

V(eG @ )/G ,F).
Let )’/}4} denote the vector bundle induced from ?ém over
Vieg, ®vE . F).
We note )7;; = (%Q,V()/&”m ,F ))*)7{}. Then we have the bundle maps
box: )’)é — ;’/‘f, and b )’/}l} — )75

covering %Q,V(yg’m ,F) and iV’Q(]/énm,F) respectively. The associated maps T (bsy)
and T (b;) between the Thom spaces satisfy that 7' (bsz) o T'(b;) is equal to the identity

of T(P).
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We set

Q = Qn—P-f-l,O(ygn’ TP),
Q9% — QPO @l TP ®eh),

Qi =Q POt TP @eh).

Vat1 =Vieg, ® v . TP),
VnE-BH = V(gé;n ) y(’;n e?rislGn TP & 8},),
Vn+2 - V(glGnJrl ® ygnJrl ’ e b 8}’)

Let A®: @ — @9 and Vi Va1 — VnE?H denote the fiber maps associated to
i1 |Q"PT19(;, p) and the map j_'l’lp: Vo, = Vil 1 sending 4 to 4 + (1)

n+l,p
respectively. The canonical bundle map

n 1 n+1
yGn ® 8Gn - J/Gn-l—l

@

covering i% G, > G, +1 induces the fiber maps jo: Q% - Q@i and vV, -

n

V42 covering i% xidp. Note that A925) = jo 0 A® . Let n— p + 1 be odd. By
Lemma 10.1 we have the commutative diagram:

Ry &, TP)

Q Va+1
iAGB lV-H
. m?_z—f-;,p-kl(ygn GBEIGH,TPGBS}D) ®

Q Vn+1
ljsz lJV

+1,p+1, n+1
A AR (yén+l,TP®8},)
n+2-

Since j_’if’lp and ¥ xidp are homotopy n—equivalences, we have the following lemma.

Lemma 10.2 Let n — p + 1 be odd. The fiber maps v4; and jy are homotopy
n—equivalences.

We have the bundle map by : ?ﬁnﬂ — 771(3,,“ covering jp o v, and its associated
map 7 (by) between the Thom spaces. Recalling the map

T(b() @) T(g) — T(Pg,)

Algebraic €& Geometric Topology, Volume 8 (2008)



2022 Yoshifumi Ando

we obtain the following commutative diagram

T (b(p) €3 2K))

Tt e (T(P§)) 7Tn+e(T(J7é,C))

w |

A T(bV)* ~
Tast (TG, ) — 2 (TGE ).
where the left vertical map and the right vertical map are 7 (bgz)« for (n, p) and
(n+1, p+ 1) respectively.

Proposition 10.3 Letn = p =2 and { > n,p. Letn—p+ 1 be odd. Let 2 =
Q”‘p"'l’o(ygn, TP)and Qi = Q”_l""l’o(y(”;;:] , TP EBS},) be as above. Then there
exist homomorphisms

wy. @(I’l, P7 Qn_p+1’0) —> Tp4y (T()//\Il;n+2))’
Ly 7TH+K(T()7I€'"+2)) — &(n, P; Qn—p+1,0)

such that wy oy is the identity of nn+g(T()7£ +2)). In particular, if n = p, then wyp
n
is an isomorphism.

Proof In the diagram (10-1) it follows from the similar argument as in proof of
Theorem 1.2 that 7'(by )« is an epimorphism. It follows from (a) and (b) that 7T (bg)«
in the diagram (10-1) for (n, p) and (n + 1, p 4 1) are epimorphisms. By Theorem
1.1 we obtain the required homomorphisms wy and (. O

Here, we prove the following refinement of [5, Theorem 0.3]. This theorem should be
compared with the results of Kalmar [27; 28].

Theorem 10.4 Under the assumption of Proposition 10.3 there exists a splitting epi-
morphism

€, PP 10) o lim ((im myx (TP6, ) AT(0))).

X—>00 \{—00

where P is oriented in the oriented case. In particular, if n = p, then this is an
isomorphism.

Proof The proof proceeds similarly as in the proof of Propositions 8.2 and 8.3 by
replacing spaces Qi (&, F) by V(E,F). The canonical projections are denoted by
n;: V(E,F)— X and JTII// : V(E,F) — Y respectively. We only prove the unoriented
case. Define the fiber map

(10-2) Vigr —> V’(81Gn+1 @yg;:l ®vp, TP Deh dvp),
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where the last space is the subbundle of

Hom(nz";l1+1 (glGnJrl o) ygjjl) ®np(vp), TP & 8}, ®vp)
associated to V421, p+14x Over G4 X P and the map sends 4 € (Vy42)(x,y) to
A®idwp), - Let Gpio4x = Apyr4x,¢ as above. We have a bundle map

n+1

(10_3) nén-l—l (81Gn+1 ® yGn-i—l) D 7'[;;(1)})) - A

yGn+2+x

covering a classifying map ¢*: G, 1 x P — G424, (We may need to replace £ with
a bigger integer). We note that (¢*,mp): Gpi1 X P — Gpi24, X P is a homotopy
(n + 1)—equivalence. By (10-2) and (10-3) we obtain a homotopy (n + 1)—equivalent
fiber map

Vatz —> Vygi 21 % TP ®ep ®vp)

covering (c¢T, wp). The trivialization TP @ vp — 811’,+” induces the bundle map
- n+2+x 1 n+2+x p+1+x
(10-4) V()/Gn+2+%, TP®epdvp) — V(VGHH,{’R )x P

over Gyyo45 X P.

We denote, by V,,_ 41, p+1+x,¢» the space which consists of all triples (a, b, ¢) where
a, b and ¢ are mutually perpendicular subspaces in R?1£+%+2 of dimensions n—p+1,
p+1+x and £ respectively with a®b@c =R HF2+2 e yI’,’H’L” be the canonical
vector bundle over Vy,_ ;11 p4 14, Of dimension p + 1+ x.

We denote an element of V()/g:f;’i,Rp"'H'”) by (a, ), where « € G124, and

h e V((yg:f;’; Yo» RPFT1T%) “which is regarded as an epimorphism. Then («, /)
defines (Ker(h), Ker(h)L,at) in Vy— pi1 p+14x.¢. Which is the triple of the kernel of
h, the orthogonal complement of Ker(4) in o and the orthogonal complement o . Let
V()/Ig HAx Rotitx ) denote the principal bundle with fiber O(p + 1 + x) associated

to Hom()/;g itx Rotitx ). We have the canonical homeomorphism

n+2+x mp+l+x pH+1+x mp+1+x
V()/Gn+2+”’R ) — V(J/V ’ R )

which maps (e, ) to h|Ker(h)L: Ker(h)+ — RPH1+% over (Ker(h), Ker(h)1, al).
Let i denote the map

,LL: V(V(n;:f;_};,Rp+l+%) — V()/5+1+%,Rp+l+x) SN Vn—p—}-l,p—}-l—i—;{’e
defined by p((a, h)) = (Ker(h), Ker(h)*, at). Let

P Va—p+1,p+1+x = Gn—p+1,6+p+1+x

be the map defined by p(a,b,c) = a. Then p o gives a fiber bundle. Since
p~H(RYPHIX0) s Gp+1+4x, for 0xREFPHIFX e have that (pop) H(R"P=PF1x
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0) is Voy p+14%,p+1+4x-namely O+ p+1+3x)/O(L). Hence, pou is a homotopy
{—equivalence. We note that

Al pt14a ~0 pH1+x
(10-5) (popw)* ()/Gn ol Z+n+1+x) VV(yg:j_'zF: JRPH1+3x) @ 8V( g+—‘,2-—2|——;-{}f’Rp+l+%).

Now w4y (T(yVn+2)) is isomorphic t0 7,4 ¢4 p1x (T(yVn—i-Z @ 811;—:_%2)). This is iso-
morphic to

7Tn+£+p+x(T((VVn+2 O () (TP® VP))|V(yg+i;rj_‘%,TP®s},®vP)))-

Since setting G = G424 ¢+ p, We have the bundle map

~ ~4
s ® (p) (TP @ vp) —> (1E)* (P Dyt 2 moi4x) X vp
covering the canonical homotopy (n 4+ 1 4 x»)—equivalent map

VOErs® TP @eh ®vp) — Vya 2 RPFIF%) x P,

by (10-4), the last group is isomorphic to

*AK+P|V(
Y

Tt pn(T((E) n24% Roti4x)) AT (Vp)).

This is isomorphic to

o+
Tntttpt1+2x(T((TE)* P P & 81+x)|V(yg+2+” Ro+14x)) A T(vp)).

. 4 p+1+x
Since we have the bundle map of )/G”HH @ €Gnirir © VG

canonical map G424, — G again, this is isomorphic to

Pitr g 81+" covering the

pH1+4x
7Tn+€+p+1+2x(T((7an+2+x) (VGn+z+x ®e Gn+2+x)|V(yn+2+_’: Ro+1+20) AT (vp)).
Since po i is a homotopy £—equivalence, it follows from (10-5) that the last group is

isomorphic to

SO+ p+1+n
Tttt pr1+20(T PG, 0000 L )AT(p)),

which is isomorphic to

(10-6)  Tuyi(T @G, ,, )ATWPR) ST TP, )AT(vp)}

Since £ is sufficiently large and x is any integer with x = p + 3, we have proved the
assertion. O

Now we define

By = lim cosm P T )).

n p+1
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By the duality map T'(vp) A S’ (P%) — SPT*+7 the last group in (10-6) is isomor-
phic to

(STHEEASI(PO): TG, ) A ST (ST A PO TS, D).

n—p—+1

Then we have the following proposition.

Proposition 10.5 Let P be a closed and connected p—dimensional manifold such
that P is oriented in addition in the oriented case. Then we have the isomorphism

li THE P. By,
JAm a4 (T(y, ) — [P, By

where V1, = V(glGn-',-l ® yg;:rll, TP®sl).

Furthermore, let 7 = p and F be the space defined in Section 1. It was proved in [5,
Proposition 4.1 and Remark 4.3] and [3] by applying Theorem 10.4 that if P is closed,
connected and oriented, then there exists an isomorphism

(10=7) O, P; QY% ~ [P, F].

In particular, the homotopy group 7, (F, *) of the F’s connected component of maps
of degree 0 is isomorphic to the n—th stable homotopy group m; by [3, Theorem 1
and Corollary 2].

Chess [16, 1.3 Corollary] proved, in our notation, that O(n, R”; Q1-%) is isomorphic
to ;. We can prove this fact from (10-7). In fact, let O(n, S"; Q 1.0.0) denote the
subset of O(n, S™; Q1:%) which consists of all cobordism classes [ f] such that the
degree of f is 0. By applying the h-principles in (h-P) for fold-maps to R” and S”
in [6] we can prove that the inclusion R” = S”\{(0,---,0,1)} — S” canonically
induces an isomorphism

O, R QM%) — O, S";2"%0).
The detail is left to the reader.

The author proposes a problem: Let iq: 73 ~ O (n, S"; Q1:9;0) — O(n, S™; Q) denote
the homomorphism induced from the inclusion Q1-°(n, n) — Q(n, n). For an element
a # 0 in m;, we define a K—invariant open subset U(a) in J k(n,n) as the union of all
KC—invariant open sets 2(n, n) such that ig(a) # 0. Study how the singularities in U (a)
are related to a. By the definition of iy,q, Propositions 10.3 and 10.5, Theorem 10.4
and [5, Remark 4.3], the homomorphism O(n, S™; Q%) — O(n, §"; Q) corresponds
to

(10-8) [S", F]— [S", Bp] induced from F —> By,

Algebraic €& Geometric Topology, Volume 8 (2008)



2026

Yoshifumi Ando

which is constructed from the inclusion of a point to the space

Qg™ RPTM.

The spaces Bgo'’s for O(n, S™; Q) will be useful. This should be compared with the
theme and the problem studied in [8].
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