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Cobordisms of maps with singularities of given class

YOSHIFUMI ANDO

Let P be a smooth manifold of dimension p . We will describe the group of all
cobordism classes of smooth maps of n–dimensional closed manifolds into P with
singularities of given class (including all fold singularities if n = p ) in terms of
certain stable homotopy groups by applying the homotopy principle on the existence
level, which is assumed to hold for those smooth maps. It will enable us to construct
an explicit classifying space for this cobordism group in the dimensions n< p and
n = p = 2 .

57R45; 57R90, 58A20

Dedicated to Professor Takao Matumoto on his sixtieth birthday

1 Introduction

Let N and P be smooth (C1 ) manifolds of dimensions n and p respectively. Let
k� n; p (k may be 1). Denote by J k.N;P / the k –jet bundle of the manifolds N

and P with the canonical projection �k
N
��k

P
onto N �P and the fiber J k.n;p/ of

all k –jets of smooth map germs .Rn; 0/! .Rp; 0/. Here, �k
N

and �k
P

map a k –jet to
its source and target respectively. Let �D�.n;p/ denote a nonempty open subspace
of J k.n;p/ which is invariant with respect to the action of Lk.p/ � Lk.n/, where
Lk.m/ denotes the group of k –jets of germs of diffeomorphisms of .Rm; 0/. Let
�.N;P / denote the open subbundle of J k.N;P / associated to �.n;p/. A smooth
map f W N ! P is called an �–regular map if and only if j kf .N /��.N;P /.

Let C1
�
.N;P / denote the space of all �–regular maps of N to P equipped with the

C1 topology. Denote by ��.N;P / the space consisting of all continuous sections
of the fiber bundle �k

N
j�.N;P /W �.N;P /! N equipped with the compact-open

topology. Then we have the continuous map j�W C
1
�
.N;P /! ��.N;P / defined

by j�.f / D j kf . We say that �.n;p/ satisfies the homotopy principle (simply
h-principle) if any section s in ��.N;P / has an �–regular map f such that j kf

is homotopic to s as sections. In this paper we say that �.n;p/ satisfies the relative
homotopy principle on the existence level if the following property (h-P) holds.
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(h-P) Let C be a closed subset of N . Let s be a section of ��.N;P / which has an
�-regular map g defined on a neighborhood of C into P , where j kg D s .
Then there exists an �-regular map f W N ! P such that j kf is homotopic to
s relative to a neighborhood of C by a homotopy s� in ��.N;P / with s0 D s

and s1 D j kf .

Let iCmW J
k.n;p/! J k.nCm;pCm/ denote the map defined by iCm.j

k
0 f / D

j k
0 .f � idRm/ for a positive integer m, where f W .Rn; 0/! .Rp; 0/ and idRm is

the identity of Rm . Denote by �? D �?.nC 1;pC 1/ a nonempty open subspace
of J k.nC 1;p C 1/ which is invariant with respect to the action of Lk.p C 1/ �

Lk.nC1/ and satisfies iC1.�.n;p//��?.nC1;pC1/. Let P be a smooth manifold
of dimension p . We define the notion of �?–cobordisms of �–regular maps to P .
Let fi W Ni ! P (i D 0; 1) be two �–regular maps, where Ni are closed smooth
n–dimensional manifolds. We say that they are �?–cobordant when there exists an
�?–regular map, called an �?–cobordism, CW .W; @W /! .P � Œ0; 1�;P �0[P �1/

such that, for a sufficiently small positive real number � :

(i) W is a compact smooth manifold of dimension nC1 with @W equal to N0[N1

and the collar of @W is identified with N0 � Œ0; ��[N1 � Œ1� �; 1�,

(ii) CjN0 � Œ0; ��D f0 � idŒ0;�� and CjN1 � Œ1� �; 1�D f1 � idŒ1��;1� :

We similarly define the notion of oriented �?–cobordisms of �–regular maps by
providing manifolds concerned with orientations, where N0 [N1 in (i) should be
replaced by N0[ .�N1/. Let N.n;P I�;�?/ (respectively O.n;P I�;�?/) denote
the monoid of all �?–cobordism (respectively oriented �?–cobordism) classes of
�–regular maps to P . In this paper we will describe these monoids of cobordism
classes in terms of certain stable homotopy groups.

We need some notation for this purpose. Let E ! X and F ! Y be smooth vector
bundles of dimensions n and p over smooth manifolds, and let �X and �Y be the
projections of X �Y onto X and Y respectively. Define the vector bundle J k.E ;F/
over X �Y by

(1–1) J k.E ;F/D
kM

iD1

Hom.S i.��X .E//; �
�
Y .F//

with the canonical projections �k
X
W J k.E ;F/! X and �k

Y
W J k.E ;F/! Y . Here,

S i.E/ is the vector bundle
S

x2X S i.Ex/ over X , where S i.Ex/ denotes the i –fold
symmetric product of the fiber Ex over x . The canonical fiber

kM
iD1

Hom.S i.Rn/;Rp/
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is canonically identified with J k.n;p/. If we provide N and P with Riemannian
metrics, then J k.TN;TP / is identified with J k.N;P / over N �P (see Section 2).
Let �.E ;F/ denote the open subbundle of J k.E ;F/ associated to �.n;p/.

Let Gm refer to the Grassmann manifold Gm;` (respectively oriented Grassmann
manifold zGm;` ) of all m–subspaces (respectively oriented m–subspaces) of R`Cm .
Let 
m

Gm
and y
 `

Gm
denote the canonical vector bundles of dimensions m and ` over the

space Gm respectively such that 
m
Gm
˚ y
 `

Gm
is the trivial bundle "`Cm

Gm
. Let T .y
 `

Gm
/

denote the Thom space of y
 `
Gm

. The spaces fT .y
 `
Gm
/g` constitute a spectrum. Let

iG
W Gn!GnC1

denote the injection mapping an n–plane a to the .nC 1/–plane generated by a and
the .nC `C 1/–st unit vector enC`C1 in RnC`C1 . Let

�D�.
 n
Gn
;TP / and �� D�?.


nC1
GnC1

;TP ˚ "1
P /

be the open subbundles of J k.
 n
Gn
;TP / and J k.
 nC1

GnC1
;TP ˚ "1

P
/ associated to

�.n;p/ and �?.nC1;pC1/ respectively, where "1
P

denotes the trivial bundle P �R.
Set

y
 `� D .�
k
Gn
/�.y
 `Gn

/j� and y
 `�� D .�
k
GnC1

/�.y
 `GnC1
/j�� :

There exists a fiberwise map �.�;�?/W �!�? associated to

iC1j�.n;p/W �.n;p/!�?.nC 1;pC 1/

covering iG � idP . Then �.�;�?/ induces the bundle map

b.y
 /.�;�?/W y
 `� �! y

`
�?

covering �.�;�?/ and the associated map T .b.y
 /.�;�?// between the Thom spaces.
Let `� n;p . We denote the image of

(1–2) T .b.y
 /.�;�?//�W lim
`!1

�nC`

�
T .y
 `�/

�
�! lim

`!1
�nC`

�
T .y
 `�?

/
�

by ImN
�
T .b.y
 /.�;�?//

�
(respectively ImO

�
T .b.y
 /.�;�?//

�
) in the unoriented (re-

spectively the oriented) case.

We are ready to state the main result of this paper.

Theorem 1.1 Let n and p be positive integers. Let P be a p–dimensional manifold.
Let �.n;p/ and �?.nC1;pC1/ denote the above open subsets invariant with respect
to the actions of Lk.p/ � Lk.n/ and Lk.pC 1/ � Lk.nC 1/, respectively, such
that iC1.�.n;p// � �?.n C 1;p C 1/, �.n;p/ satisfies the h-principle and that
�?.nC 1;pC 1/ satisfies the relative h-principle on the existence level in (h-P).
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Then there exist isomorphisms

n.�;�?/W N.n;P I�;�?/ �! ImN
�
T .b.y
 /.�;�?//

�
;

o.�;�?/W O.n;P I�;�?/ �! ImO
�
T .b.y
 /.�;�?//

�
:

Let K denote the contact group introduced by Mather [37] which acts on J k.n;p/ or
J k.nCm;pCm/. Let �m

KD�K.nCm;pCm/ denote the subset of J k.nCm;pCm/

which consists of all K–orbits K.iCm.z// for k –jets z 2�.n;p/. It will be proved
that �K.nCm;pCm/ is an open subset (see Lemma 5.2).

As for the image of T .b.y
 /.�;�?//� , we will prove the following theorem.

Theorem 1.2 Let n<p and P be as in Theorem 1.1. Let �.n;p/ denote a nonempty
open subset in J k.n;p/ invariant with respect to the action of K and let �K D
�K.nC 1;pC 1/ be as above. Then the homomorphism T .b.y
 /.�;�K//� in (1–2) is
surjective.

Let �K.
 nCm
GnCm

;RpCm/ denote the subbundle of J k.
 nCm
GnCm

;RpCm/ associated to
�K.n C m;p C m/. Let C 0.X;Y / denote the space consisting of all base-point
preserving continuous maps between connected spaces with base points equipped with
the compact-open topology. We define the space BC by

BC D lim
m!1

�
lim
`!1

C 0.S`Cn�p;T ..�k
GnCm

/�y
 `GnCm
j�K.


nCm
GnCm

;RpCm///
�
;

where CD C.n;P I�;�K/ means N.n;P I�;�K/ or O.n;P I�;�K/ depending on
GnCm DGnCm;` or GnCm D

zGnCm;` respectively.

Theorem 1.3 Let n< p or n = p = 2. Let P be a closed connected p–dimensional
manifold such that P is oriented in addition in the case of O.n;P I�;�K/. Let
�.n;p/ be a nonempty K–invariant open subset such that if n = p = 2, then �.n;p/
contains all fold jets at least. Then there exist isomorphisms

N.n;P I�;�K/ �! ŒP;BN�;

O.n;P I�;�K/ �! ŒP;BO�.

In our study of cobordisms of singular maps the h-principle for �–regular maps plays
a quite important role and our method is available in the dimensions n = p as well.
Theorem 1.1 was developed from an observation for fold-maps in the author’s paper [5,
Theorem 0.4]. Set �m

K D�K.

nCm
GnCm

;TP ˚ "m
P
/ and y
 `

�m
K
D .�k

GnCm
/�.y
 `

GnCm
/j�m

K
.
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Theorem 1.2 implies that if n < p , then C.n;P I�;�K/ is isomorphic to the stable
homotopy group

lim
`!1

�nC`

�
T .y
 `

�1
K
/
�
� lim
`!1

�nC`

�
T .y
 `

�m
K
/
�

for m = 1. If we apply the relative h-principle in Theorem 9.1 to [45, Theorem 9.2]
due to Sadykov, then it follows that C.n;P I�;�K/ is isomorphic to �nC`

�
T .y
 `

�m
K
/
�

also in the dimensions n = p = 2 as well as n < p , where ` and m are sufficiently
large integers. By using these stable homotopy groups, we will induce the space BC

by applying the S –duality in Spanier [52] in Section 8. In Section 9 we will see that
the h-principle in (h-P) holds for a very wide class of K–invariant open sets �.n;p/.
Let †I .n;p/ denote the Boardman manifold in J k.n;p/ with Boardman symbol
I D .i1; � � � ; ik/ defined in [13]. An important example of �.n;p/ is the open subset
�I .n;p/ which is the union of all †K .n;p/ with K 5 I in the lexicographic order.
The results of the paper show the importance of the homotopy type of �.n;p/. In
[2; 4; 5; 7] we described the homotopy type of �i;0.n;p/ for i Dmaxfn�pC 1; 1g

in terms of orthogonal groups and Stiefel manifolds. Although available only in the
case of fold-maps, in Section 10 we will construct a simpler spectrum associated
to special generic maps, say definite fold-maps, whose stable homotopy group is a
direct summand of C.n;P I�i;0; �i;0/ and also construct the corresponding classifying
space. This result is a refinement of [5, Theorem 0.3]. We should note that special
generic maps do not satisfy the h-principle (see Burlet and de Rham [14] and Saeki
and Sakuma [49]). Let Fm denote the space of all base point preserving maps of the
m–sphere Sm and let F D limm!1 Fm . When n D p = 1 and P is closed and
oriented, we will prove that there exists an isomorphism of O.n;P I�1;0; �1;0/ onto
ŒP;F �, which we gave in [3; 5] from a different point of view. Therefore, we may
assert that the topology of BO will be important in connection with the canonical
homomorphism of O.n;SnI�1;0; �1;0/ to O.n;SnI�;�K/ and the map F ! BO

(see (10–8)). We should refer to Chess [16], in which O.n;RnI�1;0; �1;0/� �s
n was

proved.

The study of h-principles for �–regular maps has a long history. Here, we only
refer the reader to Smale [51], Hirsch [25], Phillips [40], Feit [21], Gromov [22; 24],
Eliashberg [18; 19] and du Plessis [41; 42; 43] for details and further references.

In [20] Eliashberg studied the cobordisms of the solutions of the first order differential
relations such as Lagrange and Legendre immersions by applying the h-principles in
Gromov [23; 24] and Lees [34]. Sadykov [45] studied and expressed the cobordism
group of �–regular maps in terms of the stable homotopy group as explained above
under the assumption of the relative h-principle in a formal approach.
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In [44] Rimányi and Szűcs constructed a certain classifying space such that the group
of cobordism classes of smooth maps of n–dimensional manifolds into P having only
a given class of C1 stable singularities is described by the homotopy classes of P to
this space in the case n< p . In [56] Szűcs developed further results concerning the
classifying space and the structure of this cobordism group. The method of construction
of this classifying space is quite different from ours of the space BO using h-principles
in this paper. The results Propositions 67 and 71 in [56] resemble Theorems 1.2 and
1.3 in the corresponding case. In [27; 28; 30], Kalmár studied the cobordism groups of
fold-maps in negative codimensions.

As another line of investigation of cobordisms of singular maps in which h-principles are
not available, we refer to Saeki [47], Ikegami and Saeki [26], Saeki [48], Kalmár [29]
and Sadykov [46].

We will define the homomorphisms n.�;�?/ and o.�;�?/ in Section 3. In Section 4
we will prove Theorem 1.1. In Section 5 we will prove that �m

K is an open subset. In
Section 6 we will prepare several results which are necessary in the proofs of Theorems
1.2 and 1.3. In Section 7 we will prove Theorem 1.2. In Section 8 we will explain
how the space BC is introduced. In Section 9 we will give a wide class of open sets
�.n;p/ which satisfy the h-principle in (h-P). Theorem 1.3 will be proved in this
section. In Section 10 we will construct a simpler spectrum associated to the open
subspace consisting of all regular jets and all definite fold jets in �n�pC1;0.n;p/ and
the corresponding classifying space. We will show that it yields a direct summand of
the cobordism group for fold-maps by using the homotopy type of �n�pC1;0.n;p/

and the relative h-principle.

2 Preliminaries

Given a fiber bundle �E W E ! X and a subset C in X; we denote .�E/�1.C / by
E jC : Let �F W F ! Y be another fiber bundle. A map zbW E!F is called a fiber map
covering a map bW X!Y if �F ızbD bı�E holds. The restriction zbj.E jC /W E jC!F
(or F jb.C / ) is denoted by zbjC . In particular, for a point x 2 X; E jx and zbjx are
simply denoted by Ex and zbx W Ex!Fb.x/ respectively. The trivial bundle X �R` is
denoted by "`

X
(see Steenrod [54]).

Let E!X and F ! Y be vector bundles of dimensions n and p respectively. The
origin of Rm is simply denoted by 0 for any natural number m. We define the action
of Lk.p/ � Lk.n/ on J k.n;p/ by .j k

0 h1; j
k
0

h2/ � j
k
0 f D j k

0 .h1 ıf ı h�1
2
/. Let

E1!X1 and F1!Y1 be other vector bundles of dimensions n and p respectively, and
let zb1W E!E1 and zb2W F!F1 be bundle maps covering b1W X!X1 and b2W Y !Y1
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respectively. Then zb1 and zb2 yield the isomorphisms S i.Ex/! S i.E1;b1.x// and
Fy!F1;b2.y/ for any x 2X and y 2 Y for 1 5 i 5 k and hence, we have the bundle
map

j.zb1; zb2/W J
k.E ;F/! J k.E1;F1/

covering b1 � b2 . Then j.zb1; zb2/ induces the bundle map j.zb1; zb2/�W �.E ;F/ !
�.E1;F1/.

If we provide N and P with Riemannian metrics, then the Levi-Civita connections
induce the exponential maps expN;x W TxN !N and expP;y W TyP ! P for x 2N

and y 2 P respectively. In dealing with the exponential maps we always consider the
convex neighborhoods. We define the smooth bundle map

(2–1) J k.N;P /!J k.TN;TP / over N �P

by sending z D j k
x f 2 .�

k
N
��k

P
/�1.x;y/ to the k –jet of .expP;y/

�1 ı f ı expN;x

at 0 2 TxN , which is regarded as an element of J k.TxN;TyP /.D J k
x;y.TN;TP //

(see Kobayashi and Nomizu [33, Proposition 8.1] for the smoothness of exponential
maps). More strictly, (2–1) gives a smooth equivalence of the fiber bundles under
the structure group Lk.p/ � Lk.n/. Namely, it gives a smooth reduction of the
structure group Lk.p/�Lk.n/ of J k.N;P / to O.p/�O.n/, which is the structure
group of J k.TN;TP /. Let †I .N;P / denote the Boardman manifold in J k.N;P /,
where I D .i1; � � � ; ik/ is a Boardman symbol such that n = i1 = � � � = ik = 0 (see
Boardman [13], Levine [35] and Mather [39]). Let �I .N;P / denote the open subset
which is the union of all †K .N;P / with K 5 I in the lexicographic order. Let
†I .TN;TP / and �I .TN;TP / be the subbundles of J k.TN;TP / associated to
†I .n;p/ and �I .n;p/, which are identified with †I .N;P / and �I .N;P / under
(2–1), respectively.

Let f W X ! Y be a continuous map. If f�W �i.X /! �i.Y / is an isomorphism for
0 5 i <m and an epimorphism for i Dm, then we call f a homotopy m–equivalence
in this paper.

3 Homomorphisms in Theorem 1.1

Let �.n;p/ and �?.nC 1;pC 1/ be open subsets given in Theorem 1.1.

As usual we provide N.n;P I�;�?/ and O.n;P I�;�?/ with the structures of mon-
oids. Namely, given two �–regular maps fi W Ni! P (i D 0; 1), we define the sum
Œf0�C Œf1� to be the cobordism class of the �–regular map f W N0[N1! P defined
by f jNi D fi . We proceed the arguments commonly in the unoriented case and the
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oriented case in Sections 3 and 4, because in the oriented case we only need to provide
manifolds and vector bundles concerned with the orientations. The orientability of P

is not necessary even in the oriented case in Theorems 1.1 and Theorem 1.2. However,
we will need the orientability of P in the oriented case in Section 8.

We will identify Rm with Smnf.0; � � � ; 0; 1/g for positive integers m in the following.
Let M be an m–dimensional compact manifold such that M should be oriented in
the oriented case. Let `�m. Take an embedding eM W M !R`Cm and identify M

with eM .M /. Let cM W M !Gm be the classifying map defined by sending a point
x 2M to the m–plane TxM 2Gm . Let �M be the orthogonal normal bundle of M

in R`Cm . Let cTM W TM ! 
m
Gm

(respectively c�M
W �M ! y


`
Gm

) be the bundle map
covering the classifying map cM W M !Gm , which is defined by sending a vector v of
TxM (respectively w 2�M;x ) to .TxM; v/ (respectively .TxM;w/). Then we have
the canonical trivializations tM W TM ˚ �M ! "`Cm

M
and tGm

W 
m
Gm
˚ y
 `

Gm
! "`Cm

Gm
.

They induce
tGm
ı .cTM ˚ c�M

/ ı t�1
M D cM � idR`Cm :

Let F be any vector bundle of dimension q over P and �.m; q/ be an Lk.q/ �

Lk.m/–invariant open subspace of J k.m; q/. Let �mD�.

m
Gm
;F/ be the subbundle

of J k.
m
Gm
;F/ associated to �.m; q/. If there is a map sM W M!�m with �k

Gm
ısM

being homotopic (respectively equal) to cM , then cTM , c�M
and the projection

�k
Gm
j�mW �m!Gm induce the bundle maps

cTM
sM
W TM ! .�k

Gm
/�
m

Gm
j�m

and c�M
sM
W �M ! .�k

Gm
/�y
 `Gm

j�m

covering sM such that t�m
ı .cTM

sM
˚ c

�M
sM
/ ı t�1

M
is homotopic (respectively equal) to

sM � idR`Cm , where

t�m
W .�k

Gm
/�.
m

Gm
˚ y
 `Gm

/j�m
! "`Cm

�m

is the trivialization induced from tGm
.

�.
m
Gm
;F/

��

.�k
Gm
/�
m

Gm
j�m

(or .�k
Gm
/�y
 `

Gm
j�m

)oo

M

sM

::tttttttttt
//

cM %%JJJJJJJJJJ Gm �P

��

TM (or �M )

cTM
sM

(or c
�M
sM

)

OO

cTM (or c�M
)

��
Gm 
m

Gm
(or y
 `

Gm
)oo

Let Am;q refer to the Grassmann manifold Gm;q (respectively oriented Grassmann
manifold zGm;q ) of all m–subspaces (respectively oriented m–subspaces) of RmCq .
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Let 
m
Am;q

and y
 q
Am;q

denote the canonical vector bundles of dimensions m and q over
Am;q respectively such that


m
Am;q
˚ y


q
Am;q

is the trivial bundle "mCq
Am;q

. Let T .y

q
Am;q

/ denote the Thom space of y
 q
Am;q

. Here, we
see that the spaces

fT ..�k
Gm
/�y
 `Gm

j�m
/g`

constitute a spectrum. Let j W Gm!Am;`C1 denote the injection mapping an m–plane
a in RmC` D RmC` � 0 to the same a as the m–plane in RmC`C1 . We have the
canonical bundle maps

bW 
m
Gm
�! 
m

Am;`C1
and ybW y
 `Gm

˚ "1
Gm
�! y
 `C1

Am;`C1

covering j . Let ��m D �.
m
Am;`C1

;F/ be the open subbundle of J k.
m
Am;`C1

;F/
associated to �.m; q/. We have the bundle map

j.b; idF /�W �m �!��m

covering j . Then yb induces the bundle map

bW .�k
Gm
/�.y
 `Gm

˚ "1
Gm
/j�m

�! .�k
Am;`C1

/�.y
 `C1
Am;`C1

/j��m

covering j.b; idF /� . Since

T ..�k
Gm
/�.y
 `Gm

˚ "1
Gm
/j�m

/D T ..�k
Gm
/�.y
 `Gm

/j�m
/^S1;

we have the associated map

T .b/W T ..�k
Gm
/�.y
 `Gm

/j�m
/^S1

�! T ..�k
Am;`C1

/�.y
 `C1
Am;`C1

/j��m
/:

This shows the assertion.

Take an embedding eN W N !RnC`�SnC` and apply the above notation. Then we
have the bundle map

j.cTN ; idTP /�W �.TN;TP /!�D�.
 n
Gn
;TP /:

Let f W N ! P be an �–regular map with the jet extension j kf W N !�.TN;TP /

and let sN D j.cTN ; idTP /� ı j kf . Then we have the composite

�.�;�?/ ı sN W N !�? D�?.

nC1
GnC1

;TP ˚ "1
P /

b.y
 /.�;�?/ ı c�N
sN
W �N ! y


`
�?

and

covering �.�;�?/ ı sN . Denote the Pontrjagin–Thom construction (see Thom [57])
for eN by aN W S

nC`! T .�N/. Let C.n;P I�;�?/ refer to

N.n;P I�;�?/ or O.n;P I�;�?/;

Algebraic & Geometric Topology, Volume 8 (2008)



1998 Yoshifumi Ando

let Im
�
T .b.y
 /.�;�?//

�
refer to ImN

�
T .b.y
 /.�;�?//

�
or ImO

�
T .b.y
 /.�;�?//

�
and

let ! refer to n.�;�?/ or o.�;�?/ , depending on whether we work in the unoriented
case or oriented case. We now define the maps

!W C.n;P I�;�?/ �! Im
�
T .b.y
 /.�;�?//

�
by mapping the cobordism class Œf � of C.n;P I�;�?/ to the homotopy class of
T .b.y
 /.�;�?// ıT .c

�N
sN
/ ı aN .

We have to prove that !.Œf �/ does not depend on the choice of a representative f .

Lemma 3.1 Suppose that two �–regular maps fi W Ni ! P .i D 0; 1/ are �?–
cobordant. Then we have n.�;�?/.Œf0�/ D n.�;�?/.Œf1�/. If Ni are oriented and fi

.i D 0; 1/ are oriented �?–cobordant, then we have o.�;�?/.Œf0�/D o.�;�?/.Œf1�/.

Proof We first have to prove that !.Œf �/ does not depend on the choice of an
embedding eN . Let ` be a sufficiently large integer. Let eN W N ! RnC` be an
embedding of N . For a nonnegative integer m, let em

N
be the composite of eN and the

inclusion RnC`DRnC`�0!RnC`Cm . Then we may regard �N ˚"
m
N

as the normal
bundle of em

N
and the Pontrjagin–Thom construction for em

N
is the m–th suspension

SnC`Cm! T .�N ˚ "
m
N
/D T .�N /^Sm of that for eN .

Given two embeddings eNi
W Ni!RnC`i (i D 0; 1) with `1 D `0Cm for m = 0, by

the above argument we consider em
N0

in place of eN0
. It will be proved by the argument

below that !.Œf �/ does not depend on the choice of em
N0

and eN1
.

Let � be a sufficiently small positive real number. Let I.0; �/ and I.1; �/ denote the
intervals Œ0; �� and Œ1��; 1� respectively. Let CW .W; @W /! .P� Œ0; 1�;P�0[P�1/

be an �?–cobordism of f0 and f1 . Take embeddings eNi
W Ni!RnC` and eW W W !

RnC` � Œ0; 1�, and let us identify as Ni D eNi
.Ni/ D eNi

.Ni/� fig, W D eW .W /

and P D P � fig. Then we may assume that for i D 0; 1,

(i) W \ .SnC` � I.i; �//DNi � I.i; �/;

(ii) eW jNi � I.i; �/D eNi
� idI.i;�/ ,

(iii) CjNi � I.i; �/D fi � idI.i;�/;

(iv) j kCjNi �fig D j k.fi � idR/jNi �fig under Ni DNi �fig and P D P �fig:

In the identification T W jNi
D TNi ˚ "

1
Ni

, the positive direction of "1
N0

should
correspond to the inward normal direction, and that of "1

N1
should correspond to the

outward normal direction. Then we may assume that the trivializations

tNi
W TNi ˚ �Ni

! "nC`
Ni

and tW W T W ˚ �W ! "nC`C1
W

Algebraic & Geometric Topology, Volume 8 (2008)



Cobordisms of maps with singularities of given class 1999

satisfy tW jNi
D .tNi

˚ id"1
Ni
/ı .idTNi

˚kv
Ni
/, where kv

Ni
W "1

Ni
˚ �Ni

! �Ni
˚ "1

Ni
is

the map interchanging the components "1
Ni

and �Ni
. Let

c
n
Gn
˚"1

Gn
W 
 n

Gn
˚ "1

Gn
! 
 nC1

GnC1

denote the bundle map covering iG W Gn!GnC1 defined by

c
n
Gn
˚"1

Gn
.Vx˚ .x; t//D ViG.x/C tenC`C1

for x 2 Gn , Vx 2 .

n
Gn
/x and t 2 R. Let sNi

D j.cTNi
; idTP /� ı j kfi and sW D

j.cT W ; idT .P�Œ0;1�//�? ı j kC. Then we have that

c
n
Gn
˚"1

Gn
ı .cTNi

˚ .cNi
� idR//D cT W jTNi ˚ "

1
Ni
;

c
�W
sW
jNi
D b.y
 /.�;�?/ ı c

�Ni
sNi

:

Let aW W S
nC`� Œ0; 1�! T .�W / be the Pontrjagin–Thom construction for eW . Under

the identifications

�?.T W;T .P � Œ0; 1�//D�?.T W;TP ˚ "1
P /� Œ0; 1�;

�?.

nC1
GnC1

;T .P � Œ0; 1�//D�?.

nC1
GnC1

;TP ˚ "1
P /� Œ0; 1�;

the composite T .c
�W
sW
/ıaW gives a homotopy between T .b.y
 /.�;�?//ıT .c

�N0
sN0

/ıaN0

and T .b.y
 /.�;�?// ıT .c
�N1
sN1

/ ı aN1
: This proves !.Œf0�/D !.Œf1�/.

4 Proof of Theorem 1.1

We prove Theorem 1.1 in this section. Let �.n;p/ and �?.nC 1;pC 1/ be the open
subsets given in Theorem 1.1.

Proof of Theorem 1.1 We use the notation in the proof of Lemma 3.1. We first prove
that ! is injective. For this, take two �–regular maps fi W Ni!P .i D 0; 1/ such that
!.Œf0�/D !.Œf1�/. Recall the map T .b.y
 /.�;�?// ıT .c

�Ni
sNi

/ ı aNi
which represents

!.Œfi �/. There is a homotopy H W SnC`� Œ0; 1�! T .y
 `
�?
/ such that if � is sufficiently

small, then we have, for i D 0; 1,

(i) H jSnC` � I.i; �/D T .b.y
 /.�;�?// ıT .c
�Ni
sNi

/ ıaNi
ı .�SnC` jSnC` � I.i; �//;

(ii) H is smooth around H�1.�?/ and is transverse to �? .

We set W DH�1.�?/. Then we have

(iii) W \ .SnC` � I.i; �//DNi � I.i; �/,

(iv) H jNi � I.i; �/D�.�;�?/ ı sNi
ı .�Ni

j.Ni � I.i; �//,
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(v) T W jNi�I.i;�/ D T .Ni � I.i; �//D .TNi ˚ "
1
Ni
/� I.i; �/,

(vi) �W jNi�I.i;�/ D �Ni
� I.i; �/.

By (ii) we have the bundle map c�W
Ï W �W ! y


`
�?

covering H jW W W !�? such that

(vii) c�W
Ï jNi�I.i;�/ D b.y
 /.�;�?/ ı c

�Ni
sNi
ı .��Ni

j�Ni
� I.i; �// by (i) and (iv).

By [4, Proposition 3.3] we obtain a bundle map of T W ˚ "3
W

to

.�k
GnC1

/�.
 nC1
GnC1

˚ "3
GnC1

/j�?

with a required property concerning the trivialization. By this property and the dimen-
sional reason, we obtain a bundle map

cT W
Ï W T W ! .�k

GnC1
/�.
 nC1

GnC1
/j�?

covering H jW W W !�? induced from the above bundle map such that t�?
ı.cT W

Ï ˚

c�W
Ï / ı t�1

W
is homotopic to .H jW /� idRnC`C1 . Since 
 nC1

GnC1
is the universal bundle

.`� n/, cT W
Ï is regarded as cT W

H jW
. Let

b.
 ˚ "1/.�;�?/W .�k
Gn
/�.
 n

Gn
˚ "1

Gn
/j�! .�k

GnC1
/�.
 nC1

GnC1
/j�?

covering �.�;�?/ be the bundle map induced from c
n
Gn
˚"1

Gn
in the proof of Lemma

3.1. Then we may assume by (iv), (v) and (vi) that

(viii) cT W
Ï j.Ni�I.i;�// is equal to

b.
 ˚ "1/.�;�?/ ı .cTNi
sNi
˚ .csNi

� idR// ı�TNi˚"Ni
j..TNi ˚ "Ni

/� I.i; �//:

Hence, cW is homotopic to �k
GnC1

ıH jW relative to .N0 � Œ0; ��/[ .N1 � Œ1� �; 1�/.
Let �TP˚"1

P
W T .P � Œ0; 1�/D .TP˚"1

P
/� Œ0; 1�! TP˚"1

P
be the canonical bundle

map covering the canonical projection �P W P � Œ0; 1�! P . Then we have the bundle
map

j.cT W ; �TP˚"1
P
/�? W �?.T W;T .P � Œ0; 1�//D�?.T W;TP ˚ "1

P /� Œ0; 1�

�!�? D�?.

nC1
GnC1

;TP ˚ "1
P /

covering cW ��P . Therefore, since Œ0; 1� is contractible, there is a section sW W W !

�?.T W;T .P � Œ0; 1�// such that

�k
P�Œ0;1� ı sW jNi � I.i; �/D fi � idI.i;�/;

�P ı�
k
P�Œ0;1� ı sW D �

k
P ı .H jW /;
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and that j.cT W ; �TP˚"1
P
/�? ı sW is homotopic to H jW relative to .N0 � Œ0; ��/[

.N1 � Œ1� �; 1�/.

Since �?.T W;T .P � Œ0; 1�// satisfies the relative h-principle on the existence level,
there exists an �?–regular map CW W ! P � Œ0; 1� such that C.x; t/D f0.x/� t for
0 5 t 5 � , C.x; t/ D f1.x/� t for 1� � 5 t 5 1 and that j kC is homotopic to sW

relative to .N0� Œ0; �=2�/[ .N1� Œ1� �=2; 1�/. This implies that the �–regular maps
f0 and f1 are �?–cobordant. This proves that ! is injective.

We next prove that ! is surjective. Let an element z̨ of Im
�
T .b.y
 /.�;�?//

�
be

represented by a map ˛W SnC`! T .y
 `
�
/ such that .T .b.y
 /.�;�?///�.Œ˛�/D z̨ . We

may suppose that ˛ is smooth around ˛�1.�/ and is transverse to �. We set N D

˛�1.�/. If N D ∅, then Œ˛� must be a null element, although we can deform ˛ so
that N ¤ ∅ even in this case. Since ˛ is transverse to �, we have the bundle map
c�N

Ï W �N ! y

`
�

covering ˛jN . It follows from [4, Proposition 3.3] that there exists a
bundle map

cTN˚"3
N

Ï W TN ˚ "3
N ! .�k

Gn
/�.
 n

Gn
˚ "3

Gn
/j�

covering ˛jN W N !� such that the composite

.t�˚ id"3
�
/ ı .id.�k

Gn
/�.
n

Gn
/˚kv

Gn
/

ı .cTN˚"3
N

Ï ˚ c�N
Ï / ı .idTN ˚kv

N / ı .t
�1
N ˚ id"3

N
/

is homotopic to .˛jN /�idRnC`C3 , where kv
Gn
W "3

Gn
˚y
 `

Gn
! y
 `

Gn
˚"3

Gn
and kv

N
W �N˚

"3
N
! "3

N
˚�N are the maps interchanging the components respectively. Since 
 n

Gn
is

the universal bundle .`� n/, cTN˚"3
N

Ï is homotopic to cTN
˛jN
˚ ..˛jN /� idR3/, and

t� ı .c
TN
˛jN
˚ c�N

Ï / ı t�1
N

is homotopic to .˛jN /� idRnC` . Hence, cN is homotopic to
�k

Gn
ı ˛jN . By [4, Proposition 3.3] again, c�N

Ï and c
�N

˛jN
are homotopic as bundle

maps �N ! y

`
�

. Since we have the bundle map

j.cTN ; idTP /�W �.TN;TP / �!�D�.
 n
Gn
;TP /

covering cN � idP , there is a section sN W N ! �.TN;TP / such that �k
P
ı sN D

�k
P
ı˛jN and j.cTN ; idTP /� ı sN is homotopic to ˛jN: Since �.TN;TP / satisfies

the h-principle, there exists an �–regular map f W N !P such that j kf is homotopic
to sN . This implies that j.cTN ; idTP /� ı j kf and ˛jN are homotopic. This proves
that

!.Œf �/D ŒT .b.y
 /.�;�?// ıT .c
�N

˛jN
/ ı aN �

D ŒT .b.y
 /.�;�?// ıT .c�N
Ï / ı aN �

D ŒT .b.y
 /.�;�?// ı˛�
D z̨:
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This is what we want.

Under the assumption of Theorem 1.1 C.n;P I�;�?/ inherits the structure of an
abelian group from the stable homotopy groups. The null element is defined to be
represented by an �–regular map f W N ! P , which has an �?–cobordism

CW .W; @W /! .P � Œ0; 1�;P � 0/

with @W DN such that CjN D f under the identification P � 0D P .

5 Examples of K–invariant open subsets

In this section n< p is not necessarily assumed. As an important example of ��.nC
1;pC 1/ for �.n;p/ we recall �1

K D�K.nC 1;pC 1/, which is the set consisting
of all K–orbits K.iC1.z// for k –jets z 2�.n;p/. Let Cm denote the ring of smooth
function germs .Rm; 0/!R and let mm denote its maximal ideal.

Lemma 5.1 Let i be a nonnegative integer smaller than nC 1. Then any k –jet
w 2†i.nC 1;pC 1/ has a k –jet z 2†i.n;p/ such that w lies in K.iC1.z//.

Proof We consider the usual coordinates x D .x1;x2; � � � ;xnC1/ of RnC1 and y D

.y1;y2; � � � ;ypC1/ of RpC1 . Under suitable respective coordinates

x0 D .x01;x
0
2; � � � ;x

0
nC1/ and y0 D .y01;y

0
2; � � � ;y

0
pC1/

of RnC1 and RpC1 , w is represented as w D j k
0 g with

.y01 ıg.x0/; � � � ;y0pC1 ıg.x0//D .x01; � � � ;x
0
n�i ;g

n�iC1.x0/; � � � ;gp.x0/;x0nC1/;

where gj 2m2
nC1

. Let xgW RnC1!RpC1 be the map germ defined by

.y1 ı xg.x/; � � � ;ypC1 ı xg.x//D .x1; � � � ;xn�i ;g
n�iC1.x/; � � � ;gp.x/;xnC1/:

It is evident that j k
0 xg 2K.w/. Let

ı
xD .x1; � � � ;xn; 0/. Define the map germ f W RnD

Rn � 0!Rp by

f .
ı
x/D

(
.x1; � � � ;xn�i ;g

n�iC1.
ı
x/;gn�iC2.

ı
x/; � � � ;gp.

ı
x// for i < n;

.g1.
ı
x/;g2.

ı
x/; � � � ;gp.

ı
x// for i D n:

Q.j k
0 xg/D CnC1=.xg

�.mpC1/CmkC1
nC1

/Then we have

� Cn=.f
�.mp/CmkC1

n /

DQ.j k
0 f /:
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Setting z D j k
0 f , we have w 2K.iC1.z//.

Lemma 5.2 Let �.n;p/ be a K–invariant open subset of J k.n;p/. Then the set �m
K

is open in J k.nCm;pCm/ for m> 0.

Proof It is enough to prove the case mD 1. Suppose to the contrary that �1
K is not

open. Then there exists a k –jet w 2�1
K and k –jets wj …�

1
K such that limj!1wj D

w . By definition, there exists a k –jet z 2 �.n;p/ such that w 2 K.iC1.z//. Let
i D n � rank z . Then we may assume without loss of generality that w D iC1.z/,
w D j k

0 g , wj D j k
0 gj and limj!1wj D w with

.y1 ıg.x/; � � � ;ypC1 ıg.x//D .x1; � � � ;xn�i ;g
n�iC1.x/; � � � ;gp.x/;xnC1/;

.y1 ıgj .x/; � � � ;ypC1 ıgj .x//D .g
1
j .x/; � � � ;g

n�i
j .x/;gn�iC1

j .x/; � � � ;g
pC1
j .x//;

where gt 2m2
n for n� i C 1 5 t 5 p . Since limj!1wj D iC1.z/, we set

h1
j .x1; � � � ;xnC1/D .x1; � � � ;xn�i ;g

n�iC1
j .x/; � � � ;g

p
j .x/;xnC1/;

h2
j .x1; � � � ;xnC1/D .x1; � � � ;xn�i ;g

n�iC1
j .

ı
x/; � � � ;g

p
j .
ı
x/;xnC1/:

Since the map germ defined by

.x1; � � � ;xnC1/ 7�! .g1
j .x/; � � � ;g

n�i
j .x/;xn�iC1; � � � ;xn;g

pC1
j .x//

is a local diffeomorphism for sufficiently large numbers j , we have

Qk.wj /�Qk.j
k
0 h1

j /�Qk.j
k
0 h2

j /:

Let us define

fj .x1; � � � ;xn/D

(
.x1; � � � ;xn�i ;g

n�iC1
j .

ı
x/; � � � ;g

p
j .
ı
x// for i < n;

.g1
j .
ı
x/; � � � ;g

p
j .
ı
x// for i D n:

Then we have that limj!1 j k
0 h1

j D w D iC1.z/ and iC1.j
k
0 fj /D j k

0 h2
j , and hence,

Qk.wj / � Qk.j
k
0 fj /. Since limj!1 j k

0 fj D z , we have that j k
0 fj 2 �.n;p/ for

sufficiently large numbers j . By definition, we have j k
0 h2

j 2�
1
K for sufficiently large

numbers j . Since Qk.wj / � Qk.j
k
0 h2

j /, it follows from [38, Theorem 2.1] that
wj 2�

1
K for sufficiently large numbers j . This is a contradiction.

Lemma 5.3 If two map germs f1 , f2W .R
m; 0/! .Rq; 0/ are K–equivalent, then

the Boardman symbols of j k
0
f1 and j k

0 f2 are the same. Consequently, the Boardman
manifold †I .m; q/ is invariant with respect to the action of K .
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Proof By [36] there exist a germ of a diffeomorphism hW .Rm; 0/! .Rm; 0/ and
a smooth map germ M W .Rm; 0/! GL.q/ such that M.x/f1.h.x// D f2.x/. Let
fi.x/D .f

i
1
.x/; � � � ; f i

q .x// with f i
j 2 Cm=m

kC1
m (i D 1; 2). Let I.fi/ denote the

ideal of Cm=m
kC1
m generated by f i

1
; � � � ; f i

q . Let h�W Cm=m
kC1
m ! Cm=m

kC1
m be the

isomorphism defined by h�.�/ D � ı h. Then we have h�.I.f1// D I.f2/. The
Boardman symbols of j k

0 fi (i D 1; 2) are determined by I.fi/ and are the same by
[39]. This proves the assertion.

Lemma 5.4 If I is a Boardman symbol such that �I .n;p/ is nonempty, then �I .nC

1;pC 1/ is the union of all K–orbits K.iC1.z// for z 2�I .n;p/.

Proof Let I D .i1; i2; � � � /. Since �I .n;p/ is nonempty, we have i1 5 n. Let
w 2 �I .nC 1;p C 1/, whose Boardman symbol is J 5 I . Since j1 5 i1 5 n, it
follows from Lemma 5.1 that there exists a z 2�I .n;p/ such that w 2K.iC1.z//.

Conversely, let z 2 �I .n;p/ with Boardman symbol K 5 I . Since the Boardman
symbol of iC1.z/ is obviously equal to K , we have iC1.z/ 2�

I .nC 1;pC 1/. This
shows the assertion.

6 Preliminaries for Theorem 1.2

We prepare lemmas and propositions for the proof of Theorem 1.2.

Let eiD .0; � � � ; 0; 1; 0; � � � ; 0/ with 1 being the i –th component. Let prpC1W R
pC1!

R be the projection mapping .x1; � � � ;xpC1/ to xpC1 . Let �k
1
W J k.n;p/! J 1.n;p/

be the canonical forgetting projection.

Let K be a finite simplicial complex and L be its subcomplex such that KnL is a
manifold and dim L< dim K .

Lemma 6.1 Let �.n;p/ be a K–invariant open subset of J k.n;p/. Let .K;L/
be given as above and dim K < p . Let  W .K;L/ ! .�1

K; iC1.�.n;p/// be a
map such that  j.KnL/ is smooth. Then there exists a homotopy  �W .K;L/ !
.�1

K; iC1.�.n;p/// such that

(i)  0 D  ;

(ii)  �jLD  jL;

(iii) prpC1.�
k
1
ı 1.u/.x1; � � � ;xnC1//D xnC1 for any u 2K:
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Proof Let us define eW K ! RpC1 by e.u/ D .�k
1
ı .u//.enC1/. Since  .L/ �

iC1.�.n;p//, we have that, for any u 2 L, e.u/D epC1 . Consider the fiber bundle
dRpC1 W J k.nC 1;p C 1/ ! RpC1 defined by dRpC1.j k

0 f / D j 1
0 f .enC1/. Since

dim K < p , KnL is a manifold,  j.KnL/ is smooth and since �1
K is an open subset,

it follows from the transversality theorem and the covering homotopy property of
dRpC1 that there exists a homotopy '�W K ! J k.nC 1;pC 1/ relative to L with
'0 D  such that

(1) the deformation u� D dRpC1 ı '� of e with u0 D e satisfies that u1 does not
take the value of any nonpositive multiple of epC1 ,

(2) '�.K/��
1
K for any �.

In the following an element of GL.m/ is regarded as a linear isomorphism of Rm

and Em is the unit matrix of degree m. Let h1
�
W .K;L/! .GL.pC 1/;EpC1/ be

the homotopy defined by h1
�
.u/D ..1� �/C �=ku1.u/k/EpC1 . It follows from (1)

that h1
1
.u/.u1.u// 2 Sp and h1

1
.u/.u1.u//¤�epC1 for any u 2K . By considering

the rotation which is the identity on all points orthogonal to both u1.u/ and epC1 and
rotates the great circle through u1.u/ and epC1 so as to carry u1.u/ to epC1 along
the shorter way (when u1.u/ D epC1 , we consider EpC1 ), we have the homotopy
h2
�
W .K;L/! .SO.pC1/;EpC1/ relative to L such that h2

0
.u/DEpC1 and h2

1
.u/ı

h1
1
.u/.u1.u//D epC1 for any u 2K . Let h�W .K;L/! .GL.pC 1/;EpC1/ be the

homotopy defined by h�D h1
2�

for 0 5 �5 1=2 and h�D h2
2��1
ıh1

1
for 1=2 5 �5 1.

Define �pC1W K! J 1.nC 1; 1/ by

�pC1.u/D prpC1 ı�
k
1 .j

k.h1.u// ı'1.u//:

Since �pC1.u/ is of rank 1 for any u 2K , we have the unique vector V .u/ 2RnC1

of length 1 such that V .u/ is perpendicular to Ker.�pC1.u// and �pC1.u/.V .u// is
positive. Namely, h1.u/ı�

k
1
.'1.u//.V .u// is directed to the same orientation of epC1 .

Since �pC1.u/.enC1/D 1, V .u/ cannot be equal to �enC1 .

We set v.u/D �pC1.u/.V .u// > 0. By considering the rotation which is the identity
on all points orthogonal to both V .u/ and enC1 and rotates the great circle through
V .u/ and enC1 so as to carry enC1 to V .u/ along the shorter way, we again have the
homotopy H 1

�
W .K;L/! .SO.nC1/;EnC1/ relative to L such that H 1

0
.u/DEnC1

and H 1
1
.u/.enC1/ D V .u/ for any u 2 K . Let H 2

�
W .K;L/! .GL.nC 1/;EnC1/

be the homotopy relative to L defined by H 2
�
.u/ D ..1� �/C �=v.u//EnC1 . Let

H�W .K;L/! .GL.nC1/;EnC1/ be the homotopy defined by H�.u/DH 1
2�
.u/ for

0 5 � 5 1=2 and H�.u/DH 2
2��1

.u/ ıH 1
1
.u/ for 1=2 5 � 5 1. Then we have that
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for any u 2K ,

�pC1.u/ ıH1.u/.enC1/D �pC1.u/ ıH 2
1 .u/ ıH 1

1 .u/.enC1/

D �pC1.u/ ıH 2
1 .u/.V .u//

D �pC1.u/.V .u//=v.u/

D 1:

Since H 1
1
.u/ 2 SO.nC 1/ and ei is orthogonal to enC1 (i < nC 1), H 1

1
.u/.ei/

is orthogonal to H 1
1
.u/.enC1/ D V .u/. Namely, H1.u/.ei/ lies in Ker.�pC1.u//.

Hence, we have
�pC1.u/ ıH1.u/.ei/D 0 for i < nC 1:

Define the homotopy  �W .K;L/! .�1
K; iC1.�.n;p// relative to L by

 �.u/D

8<:
'3�.u/ for 0 5 �5 1=3;

h3��1.u/ ı'1.u/ for 1=3 5 �5 2=3;

h1.u/ ı'1.u/ ıH3��2.u/ for 2=3 5 �5 1:

By the definition we have

prpC1 ı�
k
1 . 1.u//.ei/D

�
0 for i < nC 1;

1 for i D nC 1:

This is what we want.

Proposition 6.2 Under the same assumption of Lemma 6.1, we have a homotopy
‰�W .K;L/! .�1

K; iC1.�.n;p/// such that

(i) ‰0 D  ;

(ii) ‰�jLD  jL;

(iii) ‰1.K/� iC1.�.n;p//:

Proof Let  � be the homotopy given in Lemma 6.1. Let us express  �.u/ D
.f 1
�
.u/; f 2

�
.u/; � � � ; f

pC1

�
.u// using the coordinates of RpC1 , where f i

�
.u/ is re-

garded as a polynomial of degree at most k with constant 0. We note that

f
pC1

1
.u/.x1; � � � ;xnC1/D xnC1C higher term:

Let Diff.RnC1; 0/ be the space of all germs of local diffeomorphisms of .RnC1; 0/.
Let us define a homotopy of maps ˆ�W .K;L/! .Diff.RnC1; 0/; id.RnC1;0// by

ˆ�.u/.x1; � � � ;xnC1/D .x1; � � � ;xnC1C�.f
pC1

1
.u/�xnC1//:
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It is obvious that ˆ�.u/ is a germ of a diffeomorphism of .RnC1; 0/. Then we have
the inverse ˆ�.u/�1 such that

(6–1) prpC1 ı 1.u/ ıˆ1.u/
�1.x1; � � � ;xnC1/D xnC1.

We now define ��W .K;L/! .�1
K; iC1.�.n;p/// by

��.u/D  1 ı j k
0 .ˆ�.u/

�1/:

In order to exclude the terms containing xnC1 from yj ı �1 (1 5 j 5 p ) we define
the homotopy ��W .K;L/! .J k.nC 1;pC 1/; iC1.J

k.n;p/// by

��.u/.x/D .1��/�1.u/.x1; � � � ;xnC1/

C�.�1.u/.x1; � � � ;xn; 0/C .0; � � � ; 0;xnC1//:(6–2)

It is obvious that �1.K/ � iC1.�.n;p// and that ��jLD  jL: It remains to prove
that �� is a homotopy to �1

K . It follows from (6–1) and (6–2) that

prpC1 ı��.u/.x/D .1��/.xnC1/C�xnC1 D xnC1:

Let us express ��.u/D .g1
�
.u/;g2

�
.u/; � � � ;g

pC1

�
.u//, where gi

�
.u/ is regarded as a

polynomial of degree at most k with constant 0. Consider the ideal I�.u/ generated
by g1

�
.u/;g2

�
.u/; � � � ;g

pC1

�
.u/ in mnC1=m

kC1
nC1 . Then I�.u/ is constantly equal to

I0.u/, and hence Q.��.u//�Q. 1.u//. Since  1.u/ 2�
1
K , we have ��.u/ 2�1

K
by [38]. Then the required homotopy ‰� is defined by ‰� D  3� (0 5 � 5 1=3),
‰� D �3��1 (1=3 5 �5 2=3) and ‰� D �3��2 (2=3 5 �5 1).

Proposition 6.3 Let �.n;p/ be a K–invariant open subset of J k.n;p/. Then

iC1W �.n;p/!�1
K

is a homotopy .p� 1/–equivalence.

Proof Let �n denote a jet of �.n;p/ and �nC1 D iC1.�n/. We first prove that
.iC1/�W �i.�.n;p//!�i.�

1
K/ is surjective for 0 5 i 5 p�1. Indeed, let Œa�2�i.�

1
K/

be represented by aW .S i ; e1/! .�1
K; �nC1/. Then by Proposition 6.2 we have a

homotopy '�W .S i ; e1/! .�1
K; �nC1/ such that '1.S

i/� iC1.�.n;p//.

Next let 0 5 i < p � 1. Let Œb� 2 �i.�.n;p// be represented by bW .S i ; e1/ !

.�.n;p/; �n/ such that .iC1/�.Œb�/D 0. Then we have a homotopy z'W S i � Œ0; 1�!

.�1
K; �nC1/ such that z'jS i � 0 D iC1 ı b under the identification S i D S i � 0 and

z'.e1�Œ0; 1�[S i�1/D �nC1 . It follows from Proposition 6.2 that since iC1<p , there
exists a homotopy ˆ�W .S i� Œ0; 1�;S i�0[e1� Œ0; 1�[S i�1/! .�1

K; iC1.�.n;p///
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relative to S i �0[ e1� Œ0; 1�[S i �1 such that ˆ1.S
i � Œ0; 1�/� iC1.�.n;p//. This

proves the injectivity of .iC1/�W �i.�.n;p//! �i.�
1
K/.

7 Proof of Theorem 1.2

Let Am;q express Gm;q or zGm;q . Let iAmCr
W Am;q ! AmCr;q denote the injection

mapping an m–plane a to the .mC r/–plane including a and the canonical vectors
eqCmC1; � � � ; eqCmCr in RqCmCr . We use the notation

�m
K D�K.


nCm
GnCm

;TP ˚ "m
P /:

Lemma 7.1 The map iAmCr
W Am;q!AmCr;q is a homotopy m–equivalence.

Proof We only prove the unoriented case. The proof in the oriented case is similar.
Let us consider the diagram with the canonical maps as described

Am;q
�0 //

iAmCr

��

O.qCmC r/=O.q/�O.m/�Er

�1

��

�2

ttjjjjjjjjjjjjjjjjj

AmCr;q O.qCmC r/=O.qCm/�Er

where �0 is induced from the inclusion RqCmDRqCm�0!RqCmCr and �1 and �2

are induced from the inclusions O.q/�O.m/!O.qCm/ and O.m/�Er!O.mCr/

respectively. Since Am;q is a fiber of the fiber bundle �1 , �0 is a homotopy .qCm�1/–
equivalence. Since �2 is a homotopy m–equivalence, iAmCr

is also a homotopy m–
equivalence.

In the following lemma p is not necessarily larger than n.

Lemma 7.2 Let �.n;p/ be a K–invariant open subset of J k.n;p/. Then the fiber
map �.�;�K/W �!�1

K is a homotopy minfn;p� 1g–equivalence.

Proof Consider the commutative diagram

// �i.�.n;p//
@

//

��

�i.�/ //

��

�i.Gn;` �P / //

��
// �i.�

1
K/ @

// �i.�
1
K/

// �i.GnC1;` �P / //

which is induced from the homomorphisms .�.�;�K//� of the exact sequence of the
homotopy groups for the fiber bundle � over Gn;`�P to that for the fiber bundle �1

K
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over GnC1;`�P . Then it follows from Lemma 7.1 for .iG/� and Proposition 6.3 that if
0 5 i <minfn;p�1g, then .�.�;�K//�W �i.�/! �i.�

1
K/ is an isomorphism by the

five lemma and if i Dminfn;p�1g, then it is an epimorphism by [15, Lemma 3.2].

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 We only prove the unoriented case. In the oriented case we
only need the Thom Isomorphism Theorem under the coefficient group Z. It follows
from Lemma 7.2 and the Whitehead theorem [53, Section 5, 9 Theorem] that

.�.�;�K//�W Hi.�/!Hi.�
1
K/

is an isomorphism for 0 5 i < n and an epimorphism for i D n.

Let `� n;p . By virtue of the Thom Isomorphism Theorem, we have that

T .b.y
 /.�;�K//�W HiC`

�
T .y
 `�/IZ=.2/

�
�!HiC`

�
T .y
 `

�1
K
/IZ=.2/

�
is an isomorphism for �`5 i < n and an epimorphism for i D n.

Let C denote the Serre class of finite groups of orders prime to two. Then it follows
from [50, Proposition 2, page 277] that

T .b.y
 /.�;�K//�W HiC`

�
T .y
 `�/IZ

�
�!HiC`

�
T .y
 `

�1
K
/IZ

�
is a C–isomorphism for �`5 i < n and a C–epimorphism for i D n. By the Whitehead
theorem modulo C [50, Theorem 3, page 276],

(7–1) T .b.y
 /.�;�K//�W �iC`

�
T .y
 `�/

�
�! �iC`

�
T .y
 `

�1
K
/
�

is a C–isomorphism for �`5 i < n and a C–epimorphism for i D n.

Let Ni.�/ (respectively Ni.�1
K/) denote the cobordism group of smooth maps s of

closed i –manifolds M to � (respectively �1
K ) under the corresponding cobordism of

smooth maps such that there exists a bundle map of the stable `–dimensional normal
bundle �M to y
 `

�
(respectively y
 `�1

K
) covering s . It follows from the standard argument

in the cobordism theory (see, for example, Stong [55]) that

Ni.�/� �iC`

�
T .y
 `�/

�
and Ni.�1

K/� �iC`

�
T .y
 `

�1
K
/
�
:

Consequently, any element of �iC`

�
T .y
 `

�
/
�

and �iC`

�
T .y
 `

�1
K
/
�

is of order two. This
together with (7–1) proves Theorem 1.2.

By Lemmas 5.2 and 5.4 it will be easy to see inductively that �K.nCm;pCm/ is
the subset of J k.nCm;pCm/ which consists of all K–orbits K.iC1.z// for k –jets
z 2�K.nCm�1;pCm�1/ for m> 1 and that if �.n;p/D�I .n;p/¤∅, then we
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have �I .nCm;pCm/D�K.nCm;pCm/. By using the map J k.nCm;pCm/!

J k.nCmCq;pCmCq/ sending a jet j k
0 f to j k

0 .f � idRq /, we have the canonical
map �.�

m
K ;�

mCq
K /W �m

K !�
mCq
K . This induces the canonical bundle map

b.y
 /.�
m
K ;�

mCq
K /
W y
 `

�m
K
! y
 `

�
mCq
K

and the associated map

T .b.y
 /.�
m
K ;�

mCq
K //W T .
 `

�m
K
/! T .y
 `

�
mCq
K

/:

Let � denote an integer such that � D 1 when n<p and � DnC2�p when n = p = 2.

Proposition 7.3 Let � be the integer as above. Then the homomorphism

lim
`!1

�nC`

�
T .y
 `

��
K
/
�
�! lim

`!1
�nC`

�
T .y
 `

�
�Cq
K

/
�

induced from the above map T .b.y
 /.��K;�
�Cq
K // is an isomorphism for q = 0.

Proof We only prove the unoriented case. The proof proceeds as in the Proof of
Theorem 1.2. By the iterated use of Lemma 7.2, we have that T .b.y
 /.��K;�

�Cq
K // is

a homotopy minfnC �;p C � � 1g–equivalence, and hence, a homotopy .nC 1/–
equivalence. Therefore,

.�.�
�
K;�

�Cq
K //�W Hi.�

�
K/ �!Hi.�

�Cq
K /

is an isomorphism for 0 5 i 5 n and an epimorphism for i D nC 1. By the argument
similar to that in the proof of Theorem 1.2, we have that

(7–2) .T .b.y
 /.�
�
K;�

�Cq
K ///�W �iC`

�
T .y
 `

��
K
/
�
�! �iC`

�
T .y
 `

�
�Cq
K

/
�

is a C–isomorphism for �`5 i 5 n and a C–epimorphism for i D nC 1. Since any
element of the groups in (7–2) is of order two, we obtain the proposition.

8 Classifying space

In this section we will induce the classifying space BO in Theorem 1.3. We assume
that P is oriented in the oriented case.

Consider the vector bundle J k.
 nCm
GnCm

;RpCm/ with the projection �k
GnCm

onto

GnCm WDGnCm � fa pointg

and the open subbundle �K.
 nCm
GnCm

;RpCm/ of J k.
 nCm
GnCm

;RpCm/ associated to �m
K ,

where RpCm is regarded as a vector bundle over a point. As in Section 3, the spaces
fT ..�k

GnCm
/�.y
 `

GnCm
/j�m

K
/g` constitute a spectrum.
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Let ~ denote any integer with ~ = p C 3. Let ` � n;p; ~ . We set GnC�C~ D

AnC�C~;`Cp . Let P be embedded in RpC~ . Let x 2 GnC� , y 2 P and .�P /y be
the orthogonal complement of TyP in RpC~ . Let cW GnC� �P !GnC�C~ denote
the map such that c.x;y/ is the .nC � C ~/–subspace x˚ .�P /y in RnC�C~C`Cp .
Let cW ��

GnC�
.
 nC�

GnC�
/˚��

P
.�P /! 
 nC�C~

GnC�C~
be the bundle map which is canonically

induced to cover the classifying map c .

Let Jk.
 nC� ˚ �;TP ˚ "�
P
˚ �P / denote

Hom
� kM

iD1

S i.��GnC�
.
 nC�

GnC�
/˚��P .�P //; �

�
P .TP ˚ "�P ˚ �P /

�
and define the fiber map

(8–1) J k.
 nC�
GnC�

;TP ˚ "�P / �! Jk.
 nC�
˚ �;TP ˚ "�P ˚ �P /

over GnC� �P by mapping j k
x ˛ 2 J k

x;y.

nC�
GnC�

;TP˚"�
P
/ to j k

.x;y/
.˛� id.�P /y /. We

also obtain the bundle map

(8–2) Jk.
 nC�
˚ �;TP ˚ "�P ˚ �P / �! J k.
 nC�C~

GnC�C~
;TP ˚ "�P ˚ �P /

covering .c; �P /W GnC� �P !GnC�C~ �P which is canonically induced from the
bundle map c and idTP˚"�

P
˚�P

. It follows from Lemma 7.1 that .c; �P / is a homotopy
.nC �/–equivalence. The composite of the maps in (8–1) and (8–2) on the fibers over
.x;y/ and .c.x;y/;y/ induces a map

�K..

nC�
GnC�

/x;TyP ˚ "�y/ �!�K..

nC�C~
GnC�C~

/c.x;y/;TyP ˚ "�y ˚ .�P /y/;

which is a homotopy .n C 1/–equivalence by the iterated use of Proposition 6.3
and GnC� �P !GnC�C~ �P is a homotopy .nC �/–equivalence by Lemma 7.1.
Consequently, we obtain the fiber map

(8–3) j�K W �K.

nC�
GnC�

;TP ˚ "�P / �!�K.

nC�C~
GnC�C~

;TP ˚ "�P ˚ �P /

covering .c; �P /, which is also a homotopy .nC 1/–equivalence.

Trivialization TP ˚ �P ! "
pC~
P

induces the bundle isomorphism

J k.
 nC�C~
GnC�C~

;TP ˚ "�P ˚ �P / �! J k.
 nC�C~
GnC�C~

;RpC�C~/�P

over GnC�C~�P , where RpC�C~ is regarded as the trivial vector bundle over a point.
Let �K.
 nC�C~

GnC�C~
;RpC�C~/ be the open subbundle associated to ��C~K . Then we

have the bundle map

(8–4) k�K W �K.

nC�C~
GnC�C~

;TP ˚ "�P ˚ �P / �!�K.

nC�C~
GnC�C~

;RpC�C~/�P
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over GnC�C~ �P . In the following we identify the two spaces in (8–4). Thus we have
the following lemma.

Lemma 8.1 The fiber map k�K ı j�K covering .c; �P / is a homotopy .n C 1/–
equivalence.

Let

�k
GnC�C~

W J k.
 nC�C~
GnC�C~

;RpC�C~/!GnC�C~

be the canonical projection. Let B.y

`Cp
GnC�C~

; �P /�K�P denote the vector bundle over
�K.


nC�C~
GnC�C~

;RpC�C~/�P defined by

B.y

`Cp
GnC�C~

; �P /�K�P D .�
k
GnC�C~

/�.y

`Cp
GnC�C~

/j�K.

nC�C~
GnC�C~

;RpC�C~/ � �P :

This satisfies

T .B.y

`Cp
GnC�C~

; �P /�K�P /

D T ..�k
GnC�C~

/�.y

`Cp
GnC�C~

/j�K.

nC�C~
GnC�C~

;RpC�C~//^T .�P /:

Let

.�k
GnC�

/�.y
 `GnC�
/˚ .�k

P /
�.TP /j�K.
nC�

GnC�
;TP˚"�

P
/

�! ..�k
GnC�C~

/�.y

`Cp
GnC�C~

/j�K.

nC�C~
GnC�C~

;RpC�C~//�P

be the bundle map covering k�K ı j�K mapping

.
 nC�
GnC�

/?x ˚TyP to ..
 nC�
GnC�

/x˚ .�P /y/
?;

where ? denotes the orthogonal complement. This induces a bundle map

BW ..�k
GnC�

/�.y
 `GnC�
/˚ .�k

P /
�.TP ˚ �P //j�K.


nC�
GnC�

;TP˚"�
P
/

�! B.y

`Cp
GnC�C~

; �P /�K�P

covering

k�K ı j�K W �K.

nC�
GnC�

;TP ˚ "�P /!�K.

nC�C~
GnC�C~

;RpC�C~/�P;

which is a bundle map over P and is a homotopy .nC 1/–equivalence.

Let X and Y be connected polyhedra with base points respectively. Let fX IY g denote
the set of S –homotopy classes of S –maps. Let GnC�C~ DAnC�C~;` as in Section 1.
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Proposition 8.2 Let �.n;p/ denote a nonempty K–invariant open subset. Let P be
oriented in the oriented case. Then there exists an isomorphism

lim
`!1

�nC`

�
T .y
 `�K.
nC�

GnC�
;TP˚"�

P
//
�
�!

lim
`!1

�nC`C~

�
T ..�k

GnC�C~
/�.y
 `GnC�C~

/j�K.

nC�C~
GnC�C~

;RpC�C~//^T .�P /
�
:

Proof Setting ��
K D�K.


nC�
GnC�

;TP ˚ "�
P
/, we have that

�nC`

�
T .y
 `

��
K
/
�
� fSnC`

IT .y
 `
��
K
/g(8–5)

� fSnC`CpC~
IT .y
 `

��
K
/^SpC~

g

� fSnC`CpC~
IT .y
 `

��
K
˚ "

pC~

�K� /g

� fSnC`CpC~
IT .y
 `

��
K
˚ .�k

P /
�.TP ˚ �P /j��

K
/g:

By Lemma 8.1 and an argument as in the proof of Theorem 1.2 using the Thom
isomorphism Theorem, the associated map T .B/ induces the isomorphism between
the last group in (8–5) and fSnC`CpC~ IT .B.y


`Cp
GnC�C~

; �P /�K�P /g. Furthermore,
we have that

fSnC`CpC~
IT .B.y


`Cp
GnC�C~

; �P /�K�P /g(8–6)

� fSnC`CpC~T ..�k
GnC�C~

/�.y

`Cp
GnC�C~

/j�K.

nC�C~
GnC�C~

;RpC�C~//^T .�P /g

� fSnC`C~
IT ..�k

GnC�C~
/�.y
 `GnC�C~

/j�K.

nC�C~
GnC�C~

;RpC�C~//^T .�P /g:

This proves the proposition.

In the rest of this section we assume that P should be closed and connected. Let P0

be the union of P and the base point. Consider the duality map T .�P /^S t .P0/!

SpC~Ct in [52] and [12]. Then the last group in (8–6) is isomorphic to

(8–7)
fSnC`C~

^ S t .P0/IT ..�k
GnC�C~

/�.y
 `GnC�C~
/j�K.


nC�C~
GnC�C~

;RpC�C~// ^ SpC~Ct
g:

Take a representative map ˛ in a homotopy class in (8–7) and consider the correspon-
dence of a point y in P to a map ˛j.SnC`C~Ct ^fy;base pointg/. It is not difficult
to see that the set of S –homotopy classes in (8–7) is bijective to the following sets of
homotopy classes

ŒP;C 0.SnC`C~Ct ;T ..�k
GnC�C~

/�.y
 `GnC�C~
/j�K.


nC�C~
GnC�C~

;RpC�C~//^SpC~Ct /�

� ŒP;C 0.S`Cn�p;T ..�k
GnC�C~

/�.y
 `GnC�C~
/j�K.


nC�C~
GnC�C~

;RpC�C~///�:
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2014 Yoshifumi Ando

Setting

B~C D lim
`!1

C 0.S`Cn�p;T ..�k
GnC�C~

/�.y
 `GnC�C~
/j�K.


nC�C~
GnC�C~

;RpC�C~///;

we define the classifying space BC D lim~!1B~C as in Section 1. We have the
following proposition.

Proposition 8.3 Let �.n;p/ be as in Proposition 8.2. Let P be a closed and con-
nected p–dimensional manifold such that P is oriented in addition in the oriented case.
Then there exists an isomorphism

lim
~;`!1

�nC`C~

�
T ..�k

GnC�C~
/�.y
 `GnC�C~

/j�K.

nC�C~
GnC�C~

;RpC�C~//^T .�P

�
/

�! ŒP;BC�;

9 Proof of Theorem 1.3

The development of the h-principles was described in detail by Gromov [24]. We
only refer to the Smale–Hirsch Immersion Theorem [51; 25], the Feit k –mersion
Theorem [21] and the general theorems due to Gromov [22] and du Plessis [41; 42;
43]. In particular, du Plessis has proposed a nice condition called “extensibility” under
which the h-principle holds for �I –regular maps or smooth maps with only K–simple
singularities. However, this extensibility condition is not so effective in the dimensions
n = p . On the other hand, Eliashberg [18; 19] proved the famous h-principle on the
1–jet level for sections sW N !�1.N;P / which have a given fold map f0 defined
around s�1.†1.N;P // such that .j 2f0/

�1.†1;0.N;P //D s�1.†1.N;P // and the
fold singularities of any semi-index of f0 are not empty.

In order to prove Theorem 1.3 by applying Theorems 1.1 and 1.2 we have to show that
the assumption concerning h-principles is satisfied in the situation of Theorem 1.3. We
proved the h-principle in (h-P) for fold-maps in [3] and [6]. Recently we introduced a
very effective condition for the h-principle in (h-P) in [10]. As an application we can
prove the following theorem by using [10] (see a proof in [1]). Let k � n;p , as in
Section 1.

Theorem 9.1 Let n < p or n = p = 2. Let �.n;p/ denote a K–invariant open
subspace in J k.n;p/ such that when n = p = 2, �.n;p/ contains †n�pC1;0.n;p/

at least. Then the h-principle in (h-P) holds for �.n;p/:

In particular, we show the following examples of �.n;p/:

Algebraic & Geometric Topology, Volume 8 (2008)



Cobordisms of maps with singularities of given class 2015

(i) �I .n;p/ such that when n = p = 2, I = .n�pC 1; 0/ (see Ando [9]),

(ii) an open subspace consisting of all regular k –jets and a finite number of K–orbits
of K–simple singularities such that when n = p = 2, it contains all fold jets in
addition (see Ando [10]).

If �?.nC1;pC1/D�1
K , then we write C.n;P I�/ simply in place of C.n;P I�;�K/

in the following. We have the following corollary of Theorems 1.1, 1.2 and 9.1 and
Proposition 7.3.

Corollary 9.2 Let n<p . Let �.n;p/ and �1
K be the K–invariant open subsets given

in Theorem 1.2. Let P be a p–dimensional manifold. Then the homomorphism

!W C.n;P I�/ �! lim
`!1

�nC`

�
T .y
 `

�1
K
/
�
� lim
`!1

�nC`

�
T .y
 `

�m
K
/
�

is an isomorphism.

If we apply Theorem 9.1 to [45, Theorem 9.2], then under the same assumption of
Theorem 1.3, there exists an isomorphism

(9–1) C.n;P I�/ �! lim
`!1

�nC`

�
T .y
 `

�m
K
/
�

for a sufficiently large integer m also in the dimensions n = p = 2 as well as n<p . We
note that in [45, Theorem 9.2] everything is unoriented, but it works in the oriented case
as well. This isomorphism is nothing but the composite of ! and the homomorphism

(9–2) lim
`!1

�nC`

�
T .y
 `

�1
K
/
�
�! lim

`!1
�nC`

�
T .y
 `

�m
K
/
�

which is induced by T .b.y
 /.�1
K;�

m
K //.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 If n< p , then we have

C.n;P I�/� lim
`!1

�nC`

�
T .y
 `

�1
K
/
�

by Corollary 9.2. If n = p = 2, then the homomorphisms

.T .b.y
 /.�
�C~
K ;�

�C~Cq
K ///�W �nC`

�
T .y
 `�K�C~

/
�
�! �nC`

�
T .y
 `

�
�C~Cq
K

/
�

are isomorphisms for integers q = 0 by Proposition 7.3. By Propositions 8.2 and 8.3
and (9–1) C.n;P I�/ is isomorphic to ŒP;BC�. This completes the proof.

The following corollary should be compared with [56, Proposition 88].
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Corollary 9.3 Under the same assumption of Theorem 1.3, O.n;P I�/˝Q is isomor-
phic to Hn.�K.


nC�C~
zGnC�C~;`

;RpC�C~/�P IQ/ in the dimensions n<p and n = p = 2,
where `� n;p .

Here, let us see a relationship between the space BO , the Thom–Atiyah duality in
bordism and cobordism, and the spaces introduced by Kazarian [31; 32]. The unoriented
case is not argued but is similar. Let us recall the n–dimensional oriented bordism
group �n.P / of maps to P and the Thom–Atiyah duality, �nC`.MSO.`/^P0/�

ŒP; �`MSO.`Cp� n/� (see Atiyah [11] and Conner and Floyd [17, Chapter I, 12]),
where MSO denotes the Thom space of the universal bundle 
 over BSO and �`X
denotes the `–th iterated loop space. Setting

�1
K D�K.


nC1
zGnC1;`

;TP ˚ "1
P / and ��C~

K j� D�K.

nC�C~
zGnC�C~;`Cp

;RpC�C~/;

we have the following commutative diagram (`� n;p ), although we do not give a
proof of the commutativity:

(9–3) O.n;P I�/ //

�

��

�n.P /

�

��

ImO
�
T .b.y
 /.�;�K//

�
.� �nC`

�
T .y
 `

�1
K
/
�
/

�

��
�nC`CpCm.T .y


`Cp

�
�C~
K j�

/

^Sm.P0//
//

�

��

�nC`CpCm.MSO.`Cp/

^Sm.P0//

�

��
ŒP;BO� // ŒP; �`Cn�pMSO.`/�:

Let us explain the homomorphisms in this diagram.

(1) For the left vertical maps, the first vertical map is n.�;�K/ . We have the bundle
map

bW .�k
GnC�

/�.y
 `GnC�C~
/j

��
K
˚ "

pCm

��
K
�! ..�k

GnC�C~
/�.y


`Cp
GnC�C~

/j
�
�C~
K j�

/� "m
P
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covering the composite of the .nC 1/–homotopy equivalent canonical maps GnC� !

GnC�C~ and GnC�C~ !GnC�C~ . It induces the isomorphism

�nC`.T ..�
k
GnC�

/�.y
 `GnC�
/j

��
K
//

� �nC`CpCm.T ..�
k
GnC�

/�.y
 `GnC�
/j

��
K
/^SpCm/

T .b/�
����! �nC`CpCm.T ..�

k
GnC�C~

/�.y

`Cp
GnC�C~

/j
�
�C~
K j�

/^Sm.P0//:

The second vertical map is obtained by composing T .b.y
 /.�1
K;�

�
K//� for fixed ` as

in (9–2) and this isomorphism. The third vertical map is obtained by inserting this
isomorphism in the middle of the isomorphism in Proposition 8.2 together with the
isomorphism in Proposition 8.3.

(2) The second and the bottom horizontal homomorphisms are induced from the
canonical projections

��C~
K j� � J k.
 nC�C~

zGnC�C~;`Cp

;RpC�C~/ �! zGnC�C~;`Cp � BSO.`Cp/:

(3) The left vertical map is an isomorphism by Theorems 1.1, 1.2, (9–1), Propositions
8.2 and 8.3 for n< p and n = p = 2.

According to [31] and [32, 2.18 Corollary and 2.8 Example], let us consider the
subspace �`Cn�pMSO.`/�.n;p/ in �`Cn�pMSO.`/ which consists of all maps
aW S`Cn�p!MSO.`/ where a is smooth around a�1.BSO.`// and for any point
x 2 a�1.BSO.`// with a.x/D y , the k –jet of the composite of aW .S`Cn�p;x/!

.MSO.`/;y/ and a projection germ of .MSO.`/;y/ to the fiber .
y ;y/ lies in
�K.S

`Cn�p; 
y/ associated to �.n;p/. Then the cobordism class represented by
an �–regular map is mapped to the homotopy class represented by a map P !

�`Cn�pMSO.`/�.n;p/ in (9–3), whose corresponding map S`Cn�p�P!MSO.`/

is transverse to BSO.`/.

10 Fold-maps

Let m = q . Let V row
m;q denote the Stiefel manifold .Eq �O.m� q//ŸO.m/ under

the canonical bases of Rm and Rq , whose element is regarded as an epimorphism
Rm! Rq or a regular q �m–matrix in the following. Let E ! X and F ! Y be
vector bundles of dimensions m and q with metrics respectively. Let V .E ;F/ denote
the subbundle of Hom.E ;F/ associated to V row

m;q .

We have the actions of O.q/�O.m/ on V row
mC1;q

from the left-hand side through O.q/

and from the right-hand side through O.m/� 1 respectively. The group O.q/�O.m/
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also naturally acts on �m�qC1;0.m; q/. In [5, Theorem 2.6] we described the homotopy
type of �m�qC1;0.m; q/ in terms of orthogonal groups and Stiefel manifolds, and
have given a topological embedding

iV;� D i
m;q
V;�
W V row

mC1;q!�
m�qC1;0.m; q/;

which is equivariant with respect to the actions of O.q/ �O.m/. Furthermore, if
m� qC 1 is odd, then there exists an equivariant map

R�;V DR
m;q
�;V
W �m�qC1;0.m; q/!V row

mC1;q

such that R�;V ı iV;� is the identity of V row
mC1;q

. In particular, we note that if mD q ,
then iV;� ıR�;V is a deformation retraction of �m�qC1;0.m; q/. We note that the
image of i

m;q
V;�

is a deformation retract of the open subspace consisting of all regular
jets and all definite fold jets in �m�qC1;0.m; q/.

If iC1.j
2
0
f / were defined by iC1.j

2
0
f /D j 2

0
.idR �f /, then the following technical

modification of iV;� and R�;V followed by Lemma 10.1 is unnecessary. Let ht W Rt!

Rt be the map reversing the order of coordinates as

ht .x1;x2; � � � ;xt�1;xt /D .xt ;xt�1; � � � ;x2;x1/:

Define

iV;� D i
m;q
V;�
W V row

mC1;q!�
m�qC1;0.m; q/

R�;V DR
m;q
�;V
W �m�qC1;0.m; q/!V row

mC1;qand

by i
m;q
V;�

.A/D i
m;q
V;�

.AhmC1/ � hm and R
m;q
�;V

.j 2
0 f /DR

m;q
�;V

.j 2
0 .f ı hm//hmC1:

It will be easy to see
R

m;q
�;V
ı i

m;q
V;�
D idV row

mC1;q
:

Let iC1W J k.m; q/ ! J k.mC 1; q C 1/ denote the map defined by iC1.j k
0 f / D

j k
0 .idR �f /. Let

jC1; jC1W V
row

mC1;q! V row
mC2;qC1

denote the map defined by jC1.A/ D .1/u A and jC1.A/ D A u .1/, where u
denotes the direct sum of matrices. We consider another action of O.m/ on V row

mC1;q
,

distinguished as O.m/� , by T �ADA..1/u T �1/ for A 2 V row
mC1;q

and T 2O.m/.

Lemma 10.1 (i) i
m;q
V;�

and R
m;q
�;V

are equivariant with respect to the actions of
O.q/�O.m/ on J 2.m; q/ and of O.q/�O.m/� on V row

mC1;q
.

(ii) jC1W V
row

mC1;q
! V row

mC2;qC1
is equivariant with respect to the actions of O.q/�

O.m/� on V row
mC1;q

and on V row
mC2;qC1

through .O.q/� 1/� .O.m/� 1/� .
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(iii) The following formulas hold:

R
mC1;qC1
�;V

.iC1.j
2
0 .f ///D jC1.R

m;q
�;V

.j 2
0 f //

i
mC1;qC1
V;�

.jC1.A//D iC1.i
m;q
V;�

.A//

Proof Let A 2 V row
mC1;q

, S 2O.q/ and T 2O.m/.

(i) We have that

i
m;q
V;�

..S;T �1/ �A/D i
m;q
V;�

.SA..1/u T //

D i
m;q
V;�

.SA..1/u T /hmC1/ � hm

D S � i
m;q
V;�

.AhmC1hmC1..1/u T /hmC1/ � hm

D S � i
m;q
V;�

.AhmC1.hmT hm u .1/// � hm

D S � i
m;q
V;�

.AhmC1/ � .hmT hmhm/

D S � .i
m;q
V;�

.AhmC1/ � hm/ �T

D .S;T �1/ � i
m;q
V;�

.A/;

R
m;q
�;V

..S;T �1/ � .j 2
0 f //DR

m;q
�;V

.S � .j 2
0 f / �T /

DR
m;q
�;V

.S � .j 2
0 .f / �T / � hm/hmC1

D SR
m;q
�;V

.j 2
0 .f / � .hmhm/T � hm/hmC1

D SR
m;q
�;V

.j 2
0 .f / � hm � .hmT hm//hmC1

D SR
m;q
�;V

.j 2
0 .f ı hm//.hmT hm u .1//hmC1

D SR
m;q
�;V

.j 2
0 .f ı hm//hmC1hmC1.hmT hm u .1//hmC1

D SR
m;q
�;V

.j 2
0 .f ı hm//hmC1..1/u T /

D .S;T �1/ �R
m;q
�;V

.j 2
0 f /:

(ii) We have that

jC1..S;T
�1/ �A/D SA..1/u T /u .1/

D .S u .1//.A u .1//..1/u T u .1//

D ..S u .1//; .T �1 u .1/// � .A u .1//:
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(iii) By the definition of iV;� and R�;V we have that

R
mC1;qC1
�;V

.j 2
0 .idR �f //D jC1.R

m;q
�;V

.j 2
0 f //;

i
mC1;qC1
V;�

.jC1.A//D iC1.i
m;q
V;�

.A//:

Therefore, we have that

R
mC1;qC1
�;V

.iC1.j
2
0 .f ///DR

mC1;qC1
�;V

.hqC1hqC1 � j
2
0 ..f � idR/ � hmC1//hmC2

DR
mC1;qC1
�;V

.hqC1 � j
2
0 .idR �.hq ıf ı hm///hmC2

D hqC1jC1R
m;q
�;V

.j 2
0 .hq ıf ı hm//hmC2

D .hqR
m;q
�;V

.j 2
0 .hq ıf ı hm//hmC1/u .1/

D .R
m;q
�;V

.j 2
0 .f ı hm//hmC1/u .1/

D jC1.R
m;q
�;V

.j 2
0 .f //

and the other formula is similarly proved.

Let �D�m�qC1;0.
m
Gm
;F/. Let

iV ;�.

m
Gm
;F/W V ."1

Gm
˚ 
m

Gm
;F/!�;

R�;V .

m
Gm
;F/W �! V ."1

Gm
˚ 
m

Gm
;F/

be the fiber maps associated to iV;� and R�;V respectively. Then

(a) the fiber map iV ;�.

m
Gm
;F/ is a topological embedding,

(b) if m � q C 1 is odd, then R�;V .

m
Gm
;F/ ı iV ;�.


m
Gm
;F/ is the identity of

V ."1
Gm
˚ 
m

Gm
;F/.

Let y
 `
V

denote the vector bundle induced from y
 `
Gm

over

V ."1
Gm
˚ 
m

Gm
;F/:

We note y
 `
�
D .R�;V .


m
Gm
;F//�y
 `

V
. Then we have the bundle maps

bRW y

`
�! y


`
V and biW y


`
V ! y


`
�

covering R�;V .

m
Gm
;F/ and iV ;�.


m
Gm
;F/ respectively. The associated maps T .bR/

and T .bi/ between the Thom spaces satisfy that T .bR/ıT .bi/ is equal to the identity
of T .y
 `

V
/.
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We set

� D�n�pC1;0.
 n
Gn
;TP /;

�˚ D�n�pC1;0.
 n
Gn
˚ "1

Gn
;TP ˚ "1

P
/;

�K D�
n�pC1;0.
 nC1

GnC1
;TP ˚ "1

P
/;

VnC1 D V ."1
Gn
˚ 
 n

Gn
;TP /;

V ˚
nC1
D V ."1

Gn
˚ 
 n

Gn
˚ "1

Gn
;TP ˚ "1

P
/;

VnC2 D V ."1
GnC1

˚ 
 nC1
GnC1

;TP ˚ "1
P
/:

Let �˚W � ! �˚ and vC1W VnC1! V ˚
nC1

denote the fiber maps associated to
iCj�

n�pC1;0.n;p/ and the map j
n;p
C1
W V row

nC1;p
! V row

nC2;pC1
sending A to A u .1/

respectively. The canonical bundle map


 n
Gn
˚ "1

Gn
! 
 nC1

GnC1

covering iG W Gn! GnC1 induces the fiber maps j�W �˚!�K and jV W V
˚

nC1
!

VnC2 covering iG � idP . Note that �.�;�K/ D j� ı�˚ . Let n�pC 1 be odd. By
Lemma 10.1 we have the commutative diagram:

�
R

n;p

�;V
.
n

Gn
;TP/

//

�˚

��

VnC1

vC1

��

�˚
R

nC1;pC1

�;V
.
n

Gn
˚"1

Gn
;TP˚"1

P
/

//

j�
��

V ˚
nC1

jV

��
�K

R
nC1;pC1

�;V
.


nC1
GnC1

;TP˚"1
P
/

// VnC2:

Since j
n;p
C1

and iG � idP are homotopy n–equivalences, we have the following lemma.

Lemma 10.2 Let n � p C 1 be odd. The fiber maps vC1 and jV are homotopy
n–equivalences.

We have the bundle map bV W y

`
VnC1

! y
 `
VnC2

covering jV ı vC1 and its associated
map T .bV/ between the Thom spaces. Recalling the map

T .b.y
 /.�;�K//W T .y
 `�/ �! T .y
 `�K
/
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we obtain the following commutative diagram

(10–1)

�nC`

�
T .y
 `

�
/
� T .b.y
/.�;�K//� //

��

�nC`

�
T .y
 `

�K
/
�

��
�nC`

�
T .y
 `

VnC1
/
� T .bV /� // �nC`

�
T .y
 `

VnC2
/
�
;

where the left vertical map and the right vertical map are T .bR/� for .n;p/ and
.nC 1;pC 1/ respectively.

Proposition 10.3 Let n = p = 2 and `� n;p . Let n� p C 1 be odd. Let � D

�n�pC1;0.
 n
Gn
;TP / and �KD�

n�pC1;0.
 nC1
GnC1

;TP˚"1
P
/ be as above. Then there

exist homomorphisms

!V W C.n;P I�
n�pC1;0/ �! �nC`

�
T .y
 `VnC2

/
�
;

�V W �nC`

�
T .y
 `VnC2

/
�
�! C.n;P I�n�pC1;0/

such that !V ı �V is the identity of �nC`

�
T .y
 `

VnC2
/
�
. In particular, if nD p , then !V

is an isomorphism.

Proof In the diagram (10–1) it follows from the similar argument as in proof of
Theorem 1.2 that T .bV /� is an epimorphism. It follows from (a) and (b) that T .bR/�
in the diagram (10–1) for .n;p/ and .nC 1;pC 1/ are epimorphisms. By Theorem
1.1 we obtain the required homomorphisms !V and �V .

Here, we prove the following refinement of [5, Theorem 0.3]. This theorem should be
compared with the results of Kalmár [27; 28].

Theorem 10.4 Under the assumption of Proposition 10.3 there exists a splitting epi-
morphism

C.n;P I�n�pC1;0/! lim
~!1

�
lim
`!1

�nC`C~

�
T .y
 `Gn�pC1

/^T .�P /
��
;

where P is oriented in the oriented case. In particular, if n D p , then this is an
isomorphism.

Proof The proof proceeds similarly as in the proof of Propositions 8.2 and 8.3 by
replacing spaces �K.�;F/ by V .�;F/. The canonical projections are denoted by
�V

X
W V .E ;F/!X and �V

Y
W V .E ;F/! Y respectively. We only prove the unoriented

case. Define the fiber map

(10–2) VnC2 �! V 0."1
GnC1

˚ 
 nC1
GnC1

˚ �P ;TP ˚ "1
P ˚ �P /;
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where the last space is the subbundle of

Hom.��GnC1
."1

GnC1
˚ 
 nC1

GnC1
/˚��P .�P /;TP ˚ "1

P ˚ �P /

associated to VnC2C~;pC1C~ over GnC1 �P and the map sends A 2 .VnC2/.x;y/ to
A˚ id.�P /y . Let GnC2C~ DAnC2C~;` as above. We have a bundle map

(10–3) ��GnC1
."1

GnC1
˚ 
 nC1

GnC1
/˚��P .�P / �! 
 nC2C~

GnC2C~

covering a classifying map cCW GnC1�P!GnC2C~ (we may need to replace ` with
a bigger integer). We note that .cC; �P /W GnC1 �P ! GnC2C~ �P is a homotopy
.nC 1/–equivalence. By (10–2) and (10–3) we obtain a homotopy .nC 1/–equivalent
fiber map

VnC2 �! V .
 nC2C~
GnC2C~

;TP ˚ "1
P ˚ �P /

covering .cC; �P /. The trivialization TP ˚ �P ! "
pC~
P

induces the bundle map

(10–4) V .
 nC2C~
GnC2C~

;TP ˚ "1
P ˚ �P / �! V .
 nC2C~

GnC2C~
;RpC1C~/�P

over GnC2C~ �P .

We denote, by Vn�pC1;pC1C~;` , the space which consists of all triples .a; b; c/ where
a, b and c are mutually perpendicular subspaces in RnC`C~C2 of dimensions n�pC1,
pC1C~ and ` respectively with a˚b˚cDRnC`C~C2 . Let 
pC1C~

V
be the canonical

vector bundle over Vn�pC1;pC1C~;` of dimension pC 1C ~ .

We denote an element of V .
 nC2C~
GnC2C~

;RpC1C~/ by .˛; h/, where ˛ 2 GnC2C~ and
h 2 V ..
 nC2C~

GnC2C~
/˛;RpC1C~/, which is regarded as an epimorphism. Then .˛; h/

defines .Ker.h/;Ker.h/?; ˛?/ in Vn�pC1;pC1C~;` , which is the triple of the kernel of
h, the orthogonal complement of Ker.h/ in ˛ and the orthogonal complement ˛? . Let
V .


pC1C~
V

;RpC1C~/ denote the principal bundle with fiber O.pC1C~/ associated
to Hom.
pC1C~

V
;RpC1C~/. We have the canonical homeomorphism

V .
 nC2C~
GnC2C~

;RpC1C~/! V .

pC1C~
V

;RpC1C~/

which maps .˛; h/ to hjKer.h/?W Ker.h/?! RpC1C~ over .Ker.h/;Ker.h/?; ˛?/.
Let � denote the map

�W V .
 nC2C~
GnC2C~

;RpC1C~/D V .

pC1C~
V

;RpC1C~/ �! Vn�pC1;pC1C~;`

defined by �..˛; h//D .Ker.h/;Ker.h/?; ˛?/. Let

�W Vn�pC1;pC1C~;`!Gn�pC1;`CpC1C~

be the map defined by �.a; b; c/ D a. Then � ı � gives a fiber bundle. Since
��1.Rn�pC1�0/ is GpC1C~;` for 0�R`CpC1C~ , we have that .�ı�/�1.Rn�pC1�
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0/ is V`CpC1C~;pC1C~ , namely O.`CpC1C~/=O.`/. Hence, �ı� is a homotopy
`–equivalence. We note that

(10–5) .� ı�/�.y

`CpC1C~
Gn�pC1;`CpC1C~

/� y
 `
V .


nC2C~
GnC2C~

;RpC1C~/
˚ "

pC1C~

V .

nC2C~
GnC2C~

;RpC1C~/
:

Now �nC`

�
T .y
 `

VnC2
/
�

is isomorphic to �nC`CpC~

�
T .y
 `

VnC2
˚ "

pC~
VnC2

/
�
. This is iso-

morphic to

�nC`CpC~

�
T ..y
 `VnC2

˚ .�V
P /
�.TP ˚ �P //jV .
nC2C~

GnC2C~
;TP˚"1

P
˚�P //

�
.

Since setting G DGnC2C~;`Cp , we have the bundle map

y
 `VnC2
˚ .�V

P /
�.TP ˚ �P / �! .�V

G /
�.y


`Cp
G

/jV .
nC2C~
G

;RpC1C~/ � �P

covering the canonical homotopy .nC 1C ~/–equivalent map

V .
 nC2C~
GnC2C~

;TP ˚ "1
P ˚ �P / �! V .
 nC2C~

G
;RpC1C~/�P;

by (10–4), the last group is isomorphic to

�nC`CpC~

�
T ..�V

G /
�
y

`Cp
G
jV .
nC2C~

G
;RpC1C~//^T .�P /

�
.

This is isomorphic to

�nC`CpC1C2~

�
T ..�V

G /
�.y


`Cp
G
˚ "1C~

G
/jV .
nC2C~

G
;RpC1C~//^T .�P /

�
:

Since we have the bundle map of y
 `
GnC2C~

˚ "
pC1C~
GnC2C~

to y
 `Cp
G
˚ "1C~

G
covering the

canonical map GnC2C~ !G again, this is isomorphic to

�nC`CpC1C2~

�
T ..�V

GnC2C~
/�.y
 `GnC2C~

˚ "
pC1C~
GnC2C~

/jV .
nC2C~
GnC2C~

;RpC1C~//^T .�P /
�
.

Since � ı� is a homotopy `–equivalence, it follows from (10–5) that the last group is
isomorphic to

�nC`CpC1C2~

�
T .y


`CpC1C~
Gn�pC1;`CpC1C~

/^T .�P /
�
,

which is isomorphic to

(10–6) �nC`C~

�
T .y
 `Gn�pC1

/^T .�P /
�
� fSnC`C~

IT .y
 `Gn�pC1
/^T .�P /g:

Since ` is sufficiently large and ~ is any integer with ~ = pC 3, we have proved the
assertion.

Now we define
BV D lim

`!1
C 0.Sn�pC`;T .y
 `Gn�pC1

//:
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By the duality map T .�P /^S t .P0/! SpC~Ct , the last group in (10–6) is isomor-
phic to

fSnC`C~
^S t .P0/IT .y
 `Gn�pC1

/^SpC~Ct
g � fSn�pC`

^P0
IT .y
 `Gn�pC1

/g:

Then we have the following proposition.

Proposition 10.5 Let P be a closed and connected p–dimensional manifold such
that P is oriented in addition in the oriented case. Then we have the isomorphism

lim
`!1

�nC`

�
T .y
 `VnC2

/
�
�! ŒP;BV �;

where VnC2 D V ."1
GnC1

˚ 
 nC1
GnC1

;TP ˚ "1
P
/.

Furthermore, let nD p and F be the space defined in Section 1. It was proved in [5,
Proposition 4.1 and Remark 4.3] and [3] by applying Theorem 10.4 that if P is closed,
connected and oriented, then there exists an isomorphism

(10–7) O.n;P I�1;0/� ŒP;F �:

In particular, the homotopy group �n.F;�/ of the F ’s connected component of maps
of degree 0 is isomorphic to the n–th stable homotopy group �s

n by [3, Theorem 1
and Corollary 2].

Chess [16, 1.3 Corollary] proved, in our notation, that O.n;RnI�1;0/ is isomorphic
to �s

n . We can prove this fact from (10–7). In fact, let O.n;SnI�1;0I 0/ denote the
subset of O.n;SnI�1;0/ which consists of all cobordism classes Œf � such that the
degree of f is 0. By applying the h-principles in (h-P) for fold-maps to Rn and Sn

in [6] we can prove that the inclusion Rn D Snnf.0; � � � ; 0; 1/g ! Sn canonically
induces an isomorphism

O.n;Rn
I�1;0/!O.n;Sn

I�1;0
I 0/:

The detail is left to the reader.

The author proposes a problem: Let i�W �
s
n�O.n;SnI�1;0I 0/!O.n;SnI�/ denote

the homomorphism induced from the inclusion �1;0.n; n/!�.n; n/. For an element
a¤ 0 in �s

n , we define a K–invariant open subset U.a/ in J k.n; n/ as the union of all
K–invariant open sets �.n; n/ such that i�.a/¤0. Study how the singularities in U.a/

are related to a. By the definition of iV;� , Propositions 10.3 and 10.5, Theorem 10.4
and [5, Remark 4.3], the homomorphism O.n;SnI�1;0/!O.n;SnI�/ corresponds
to

(10–8) ŒSn;F � �! ŒSn;BO� induced from F �! BO;
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which is constructed from the inclusion of a point to the space

�K.

nCm
zGnCm;`

;RpCm/:

The spaces BO ’s for O.n;SnI�/ will be useful. This should be compared with the
theme and the problem studied in [8].
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Helv. 28 (1954) 17–86 MR0061823

Department of Mathematical Sciences, Faculty of Science, Yamaguchi University
Yamaguchi 753-8512, Japan

andoy@yamaguchi-u.ac.jp

Received: 6 June 2006 Revised: 18 August 2008

Algebraic & Geometric Topology, Volume 8 (2008)

http://www.ams.org/mathscinet-getitem?mr=1626540
http://dx.doi.org/10.2307/1969789
http://www.ams.org/mathscinet-getitem?mr=0059548
http://dx.doi.org/10.2307/1970186
http://www.ams.org/mathscinet-getitem?mr=0105117
http://dx.doi.org/10.2307/1970107
http://www.ams.org/mathscinet-getitem?mr=0107862
http://www.ams.org/mathscinet-getitem?mr=0210112
http://www.ams.org/mathscinet-getitem?mr=0039258
http://www.ams.org/mathscinet-getitem?mr=0248858
http://dx.doi.org/10.2140/gt.2008.12.2379
http://dx.doi.org/10.1007/BF02566923
http://www.ams.org/mathscinet-getitem?mr=0061823
mailto:andoy@yamaguchi-u.ac.jp

	1. Introduction
	2. Preliminaries
	3. Homomorphisms in 1.1
	4. Proof of Theorem 1.1
	5. Examples of K-invariant open subsets
	6. Preliminaries for Theorem 1.2
	7. Proof of Theorem 1.2
	8. Classifying space
	9. Proof of Theorem 1.3
	10. Fold-maps
	References

