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On the homotopy type of
the Deligne–Mumford compactification

JOHANNES EBERT

JEFFREY GIANSIRACUSA

An old theorem of Charney and Lee says that the classifying space of the category of
stable nodal topological surfaces and isotopy classes of degenerations has the same
rational homology as the Deligne–Mumford compactification. We give an integral
refinement: the classifying space of the Charney–Lee category actually has the same
homotopy type as the moduli stack of stable curves, and the étale homotopy type of
the moduli stack is equivalent to the profinite completion of the classifying space of
the Charney–Lee category.

32G15; 30F60, 14A20, 14D22

1 Introduction

The purpose of this note is to give an integral refinement of a relatively old theorem of
Charney and Lee [6] giving a model for the rational homology of the Deligne–Mumford
compactification of the moduli space of curves in terms of a category made of mapping
class groups.

Let Mg;n denote the moduli stack of proper smooth algebraic curves of genus g

with n ordered marked points, and let SMg;n denote the moduli stack of stable curves
(the Deligne–Mumford compactification of Mg;n ). They are both smooth Deligne–
Mumford algebraic stacks defined over spec Z. These algebraic stacks have associated
complex analytic stacks (orbifolds), Man

g;n and SMan
g;n . It is well known that the coarse

moduli space of Man
g;n has the same rational homology as the classifying space of the

mapping class group MCGg;n of a surface of genus g with n marked points.

Charney and Lee defined a category CLg;n in which:
� objects are stable nodal surfaces of genus g with n ordered distinct marked

points in the smooth part,
� morphisms are isotopy classes of orientation-preserving diffeomorphisms and

degenerations (a degeneration is a map which collapses some circles to nodes
and is a diffeomorphism on the complement of these circles) that respect the
marked points.
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The mapping class group MCGg;n sits inside CLg;n as the automorphism group of a
smooth surface; automorphism groups of other objects are mapping class groups of
singular surfaces appearing in the boundary of the Deligne–Mumford compactification.
Note that the moduli stack SMg;n and the category CLg;n both have stratifications by
“dual graphs”.

Charney and Lee proved [6, Theorem 6.1.1] that (for nD 0) the classifying space of
CLg has the same rational homology as the coarse moduli space of Man

g . The moduli
stack and the coarse moduli space have the same rational homology, but integrally
they differ! The mod p homology of the open moduli stack has been computed in
the Harer–Ivanov stable range by Galatius [14] (using the theorem of Madsen and
Weiss [18]); it contains much more than just reductions of nontorsion classes. The mod
p homology of the Deligne–Mumford compactified stack has been studied by Galatius
and Eliashberg [15] and the authors [10], but it remains largely unknown.

An analytic stack (or more generally a topological stack) X has a homotopy type which
can be defined by choosing a covering X ! X by a space X and then taking the
geometric realization of the simplicial space which in degree n is the .nC1/–fold fiber-
product X �X � � � �X X . That is, take the classifying space of a topological groupoid
presenting the orbifold; see Moerdijk [19], Noohi [20], Ebert–Giansiracusa [10] and
Ebert [9] for more details. The integral singular homology and fundamental group of
the analytic stack agree with those of the homotopy type. As an example of homotopy
types, it is well know that the homotopy type of the stack Man

g;n is BMCGg;n

We prove the following integral refinement of Charney and Lee’s theorem.

Theorem 1.1 The classifying space of CLg;n is homotopy equivalent to the homotopy
type of the stack SMan

g;n , so in particular, H�. SMan
g;nIZ/ŠH�.BCLg;nIZ/. Further-

more, this homotopy equivalence is compatible with the stratifications of CLg;n and
SMan

g;n

By Artin–Mazur [1], Oda [21] and Frediani–Neumann [12], a Deligne–Mumford
algebraic stack has an étale homotopy type (living in the category of pro-objects in the
homotopy category of simplicial sets). By the Comparison Theorem of étale homotopy
theory in Friedlander [13, Theorem 8.4], the étale homotopy type of a stack over xQ
is weakly equivalent to the Artin–Mazur profinite completion of the homotopy type
of the associated analytic stack. Let Mg;n ˝

xQ denote the extension of scalars of
Mg;n to xQ (ie the restriction of the moduli functor to schemes over xQ). As explained
in [21], the étale homotopy type of Mg;n˝

xQ is the Artin–Mazur profinite completion
.BMCGg;n/

^ . Similarly, Frediani–Neumann [12] describes the étale homotopy type
of the moduli stack of curves with an action of a finite group G �MCGg;n . In this
vein, the Comparison Theorem plus Theorem 1.1 yields:
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Corollary 1.2 The étale homotopy type of SMg;n˝
xQ is weakly equivalent to the Artin–

Mazur profinite completion .BCLg;n/
^ , and this equivalence respects the respective

stratifications.

(Recall that a weak equivalence of pro-objects is a morphism of pro-objects which
induces an isomorphism on their homotopy pro-groups.)

The original Charney–Lee proof could probably easily be adapted to handle surfaces
with marked points and to show that the rational homology equivalence is compatible
with the stratifications. However, our proof is significantly more direct than theirs, while
also giving the integral refinement. Our proof is based on existence of a particularly nice
atlas, first constructed by Bers [3; 2; 4; 5], which is well-adapted to the combinatorial
structure of the stratification of SMg;n . Roughly speaking, the Bers atlas generalizes
the Teichmüller space in the same way that the Charney–Lee category generalizes the
mapping class group.
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Mathematical Institute of the University of Oxford. The second author thanks C-
F Bödigheimer for an invitation to visit Universität Bonn in April 2006, where this
project was begun. The project was completed during the second author’s stay at the
IHES during 2006/2007, and he thanks both institutions for their hospitality.

2 The Charney–Lee category

Before proceeding with the principal content of this note, we collect here some remarks
about the Charney–Lee category. We will not need either of these remarks, so we only
sketch them briefly, but the reader might nevertheless find these comments illuminating.

Firstly, there is a topological version CLtop
g;n ; is has the same objects as CLg;n , while

the space of morphisms CLtop
g;n.S;T / is the space of degeneration maps S ! T (ie

maps which collapse circles to nodes and which are orientation-preserving diffeomor-
phisms outside these collapsed circles). The topology of the morphism spaces is the
Whitney C1–topology. We can clearly identify �0.CL

top
g;n/ with CLg;n . Moreover,

the obvious functor CLtop
g;n! CLg;n is a homotopy equivalence of categories; in other

words, the components of the morphism spaces in CLtop
g;n are all contractible. This

is a generalization of the well-known theorem [7; 8; 16] that the diffeomorphism
groups of oriented smooth surfaces with boundary (with negative Euler number) have
contractible components. The space of degenerations CLtop

g;n.S;T / fibers over the space
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of unparametrized 1–dimensional submanifolds in S by taking the union of all curves
which are collapsed. This map is a Serre fibration and the fibers are homeomorphic
to diffeomorphism groups of surfaces with negative Euler characteristic, hence the
components of the fibers are contractible. It follows from [11; 16] that the components
of the base are also contractible.

A second remark is that CLg;n can be described as an orbit category. The orbit
category of MCGg;n is the category whose objects are orbits MCGg;n=H and whose
morphisms are the MCGg;n –equivariant maps. The category CLg;n is equivalent to
the full subcategory of the orbit category containing precisely those orbits for which
the isotropy subgroup H is a free abelian group generated by a collection of disjoint
Dehn twists. To see this, fix a smooth surface S of genus g with n marked points,
and for each object T 2 CLg;n choose a degeneration p.T /W S ! T . The Dehn
twists on S around the inverse images of the nodes of T determine a free abelian
subgroup of MCGg;n and hence an orbit O.T /. Given a degeneration ˛W T ! T 0 ,
there exists z̨ 2MCGg;n such that ˛ ıp.T /D p.T 0/ ı z̨ — this z̨ is only unique up
to certain Dehn twists, but it induces a well-defined morphism O.T /!O.T 0/ in the
orbit category.

3 The Bers atlas for SMan
g;n

Bers [3; 2; 4; 5] has constructed an atlas D, which we shall call the Bers atlas, for
the differentiable stack SMan

g;n . (To avoid notational clutter we leave g and n implicit).
This atlas is an extension of the atlas for the uncompactified moduli stack Man

g;n given
by Teichmüller space.

The Bers atlas is defined as follows. Let S be a fixed stable nodal topological surface
of genus g with n marked points. An S –marked Riemann surface is a stable nodal
Riemann surface F with n marked points lying in the smooth part, together with a
degeneration F ! S which respects the marked points. Two S –marked Riemann
surfaces f W F ! S and f 0W F 0 ! S are defined to be equivalent if there exists a
biholomorphic map gW F

Š
�!F 0 (respecting the marked points) such that the diagram

F F 0

S
��?

??
?

f

//g

����
��
f 0

commutes up to a homotopy that is constant on the marked points.
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Let D.S/ denote the set of all equivalence classes of S –marked Riemann surfaces. In
[2; 5] Bers defined a topology on D.S/ making it into a contractible manifold, and
such that when S is smooth then D.S/ is the usual Teichmüller space of S .

In fact, the Fenchel–Nielsen coordinates give a homeomorphism between D.S/ and
an open ball as follows. Let N denote the set of nodes of S and choose a complete
cutsystem C on S (ie a collection of disjoint simple closed curves in the smooth part
of S such that the complement of C tN is a disjoint union of pairs of pants. Given a
point Œf W F ! S � 2D.S/, there is a unique compatible hyperbolic metric on F . The
free homotopy class of each curve of f �1.C / has a minimal geodesic length and a
twist; these numbers determine a point in .RC �R/C ŠHC . For a node n 2 N , if
f �1.n/ is a simple closed curve then this free homotopy class has a length and a twist
in RC �R=ZŠC� , and the coordinates converge to the origin as the inverse image
of n in F collapses to a node. Hence the Fenchel–Nielsen coordinates give a map

D.S/!HC
�CN ;

which one can show is a homeomorphism. A particularly nice exposition for smooth
surfaces can be found in Hubbard’s book [17, p 320 ff].

Bers also endowed D.S/ with the structure of a complex manifold which embeds as a
bounded domain in C3g�3Cn , generalizing the Maskit coordinates, but we shall not
need this fact.

The Bers atlas is given by a
S

D.S/! SMan
g;n;

where the disjoint union runs over each diffeomorphism class of stable nodal surfaces S

having genus g and n marked points; the map to the moduli space is given informally
by forgetting the markings, sending a marked Riemann surface ŒF ! S � to F . More
precisely, there is a tautological family over D.S/ whose fiber over ŒF ! S � is F ,
and the map to SMan

g;n is given by classifying this tautological family.

Theorem 3.1 The morphism
`

S D.S/! SMan
g;n defines a proper étale atlas for SMan

g;n

as a differentiable (or even complex analytic) stack.

Proof This is essentially contained in the work of Bers; it follows from Theorems 6
and 7 announced in [2].

Put differently, the representable submersion
`

S D.S/! SMan
g;n determines a Lie

groupoid which is proper and étale (ie an orbifold groupoid, though not always effective),

D WD

��a
S

D.S/

�
� SMan

g;n

�a
S

D.S/

�
�
�a

S

D.S/

��
:
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We call this the Bers groupoid. An object of this groupoid is the equivalence class of
an S –marked Riemann surface F for some S ; a morphism ŒF ! S �! ŒF 0! T � is a
biholomorphic map gW F

Š
�!F 0 respecting the marked points but completely ignoring

the maps to S and T . We call this the Bers groupoid and denote it D. Since it is a
presentation of the stack SMan

g;n , its classifying space is a model for the homotopy type
of SMan

g;n . In particular, BD has the same integral (co)homology as the stack SMan
g;n .

We now recall some facts about the Bers atlas from [2; 5]. A degeneration ˛W S ! T

induces a map ˛�W D.S/!D.T / by change-of-marking, ie

ŒF
f
���! S � 7! ŒF

˛ıf
���! T �:

The induced map ˛� is a local homeomorphism. Its image is precisely the subspace
consisting of those points ŒF ! T � for which the marking can be lifted along ˛

to S ; with appropriate Fenchel–Nielsen coordinates one easily sees that this is the
complement of a collection of complex coordinate hyperplanes. The map ˛� only
depends on the isotopy class of ˛ because of the equivalence relation on degenerations
F!S used in defining the space D.S/. In particular, there is a properly discontinuous
action of the mapping class group MCG.S/ of S on D.S/ and the quotient stack
ŒD.S/=MCG.S/� is isomorphic to the image of D.S/ in SMan

g;n .

4 The Bers groupoid and the Charney–Lee category

We shall now describe a subcategory of the Bers groupoid which is more visibly related
to the Charney–Lee category. We then give a completely explicit description of the
Bers groupoid in terms of this subcategory.

The spaces D.�/ together with the change-of-marking maps described above determine
a functor �DW CLg;n!Spaces, and we may form the transport category (or Grothendieck
construction) CLg;n

R �D. Concretely, an object of the transport category is a point
Œf W F ! S � in D.S/ for some S . A morphism from Œf W F ! S � to Œf 0W F 0! T �

is represented a priori by a biholomorphic map gW F ! F 0 together with the isotopy
class of a degeneration ˛W S ! T such that the diagram

F F 0

S T

//g

��
f

��
f 0

//˛
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commutes up to homotopy. However, since the Charney–Lee category possesses the
right cancelation property,

Œ˛� ı Œ
 �D Œˇ� ı Œ
 � implies Œ˛�D Œˇ�;

the isomorphism g uniquely determines the degeneration isotopy class Œ˛�. Note that
not every isomorphism covers (up to homotopy) a degeneration. Thus a morphism
ŒF ! S �! ŒF 0! T � can be specified simply by a biholomorphic map gW F ! F 0

for which there exists degeneration isotopy class that it covers.

By comparing the definitions the following is now apparent.

Proposition 4.1 The topological category CLg;n

R �D is isomorphic to a subcategory
of the Bers groupoid D; namely, it is the subcategory with all objects of D and only
those biholomorphic maps which cover (up to isotopy) a degeneration of the markings.

Lemma 4.2 The inclusion CLg;n

R �D ,! D induces a homotopy equivalence of
classifying spaces.

We will give the proof of Lemma 4.2 in Section 6 after some preparation in Section 5.
Assuming this lemma for the moment, the proof of Theorem 1.1 is straightforward.

Proof of Theorem 1.1 The Bers atlas is an atlas for SMan
g;n , and so by definition of

the homotopy type of a stack, the classifying space BD of the Bers groupoid D is the
homotopy type of SMan

g;n . Because �D takes any S 2 CLg;n to a contractible space, the
forgetful functor CLg;n

R �D! CLg;n induces a homotopy equivalence on classifying
spaces. Therefore, by Lemma 4.2:

Ho. SMan
g;n/' BD

'
 � B

�
CLg;n

Z �D� '�! BCLg;n:

We postpone the discussion of compatibility with the stratifications until Section 7.

Remark 4.3 It is possible to show that, as abstract categories, when one formally
adjoins inverses to all arrows of CLg;n

R �D then one obtains precisely the Bers groupoid
D. In particular, an arrow Œf W F!S �! Œf 0W F 0! T � can be represented by ˛�1 ıˇ

for a pair of degenerations S
˛
 �F 0

ˇ
�!T , and this representation is unique up to

precomposition with an element of the mapping class group of F 0 .
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5 A lifting property of the Bers atlas

Let X be a space and � W X ! SMan
g;n be a map. We say that a lift z� W X !D.S/ of

� is maximal if z� does not admit a lift to D.S 0/ for any S 0 with a strict degeneration
S 0! S . Clearly, if � admits a lift to some D.T / then it lifts further to a maximal lift.

The goal of the present section is to prove the following result.

Lemma 5.1 Suppose X is simply connected and X ! SMan
g;n admits maximal lifts

�1W X !D.S/ and �2W X !D.T /. Then there exists a diffeomorphism (unique up
to isotopy) ˛W S Š T with ˛��1 D �2 .

An equivalent formulation of the above lemma is that for any pair of stable surfaces S

and T , there exists a stable surface R degenerating onto S and T such that the map
from D.R/ to any component of the universal cover of

D.S/� SMan
g;n

D.T /

is a homeomorphism. However, we do not know a more direct proof of this fact.

The main tool for the proof of Lemma 5.1 is a sheaf of sets Z on the differentiable
stack SMan

g;n . This sheaf encodes the continuity property of markings on the fibers in a
marked family of stable Riemann surfaces. The idea of the sheaf is as follows. Given a
family E! X of stable Riemann surfaces, an element of Z.X / should be thought
of as the isotopy class of a continuous subfamily C �E that restricts in each fiber to
either a node or a simple closed curve that does not meet the nodes and marked points
and does not retract to a node. If X !D.S/ is a maximal lift then one can reconstruct
the homeomorphism type of S from the sections of Z over X that restrict to a node
in some fiber: each node in each fiber determines a node of S and maximality of the
lift ensures that S has no superfluous nodes. This will show that maximal lifts are
essentially unique.

We construct the sheaf precisely by defining its stalks over the Bers groupoid, topologiz-
ing its étale space, and then showing it descends to a sheaf on the stack SMan

g;n . The stalk
ZŒS � at a point ŒS �2 SMan

g;n is defined to be the union of the set of nodes of S with the set
of isotopy classes of unoriented simple closed curves in SXfnodes and marked pointsg
which bound neither a disc nor a once-punctured disc. A degeneration ˛W T ! S

induces an injective map ˛�W ZŒS � ,! ZŒT � by taking preimages of curves and nodes.
Thus over D.S/ the markings canonically identify ZŒS � with a subset of each stalk.

As a set, the étale space Zet of Z is the disjoint union of the stalks; we topologize
it as follows. Given a point Œ˛W F ! S � 2 D.S/, there exists a neighborhood U of
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this point which lifts along the local homeomorphism ˛�W D.F /!D.S/, and so the
markings identify ZŒS � with a subset of each stalk over U . The topology is determined
by the condition that a section over U is continuous at ŒF ! S � if and only if it is
locally constant with respect to these identifications.

Next we claim that Z is a sheaf on the stack SMan
g;n . To justify this, we need to argue that

Z satisfies the appropriate descent conditions. More precisely, let d0; d1W Mor.D/!
Obj.D/ be source and target maps and let

d0; d1; d2W Mor.D/�Obj.D/ Mor.D/!Mor.D/

be the three simplicial structure maps in the nerve of D (they are left projection,
composition, and right projection respectively). A descent datum for Z is an iso-
morphism f W d�

0
Z ! d�

1
Z which makes the hexagon of sheafs and isomorphisms

on Mor.D/�Obj.D/Mor.D/ commutative (the equalities are induced from simplicial
identities):

d�
0

d�
0
Z

d�
0
f

// d�
0

d�
1
Z

IIIIIIIII

IIIIIIIII

d�
1

d�
0
Z

uuuuuuuuu

uuuuuuuuu

d�
1
f

$$IIIIIIIII
d�

2
d�

0
Z

d�
2
fzzuuuuuuuuu

d�
1

d�
1
Z d�

2
d�

1
Z

There is an obvious bijection of étale spaces d�
0
Zet Š d�

1
Zet and the topology is

designed so that this is a homeomorphism. The commutativity of the above diagram is
also clear. Thus Z is a sheaf of sets on SMan

g;n .

The following property follows immediately from the definition of the topology on the
étale space of Z .

Lemma 5.2 Let U � D.S/ be a neighborhood of the origin ŒS ! S �. There is a
canonical bijection Z.U /Š ZŒS � induced in one direction by restriction to the stalk
over ŒS ! S � and in the other direction by using the markings to identify ZŒS � with a
subset of each stalk.

A section of Z over a base X is said to be nodal if it restricts to a node in some stalk.
Lemma 5.2 implies that the nodal sections over D.S/ are precisely those which restrict
to nodes at the origin ŒS ! S �.
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Lemma 5.3 Given a point ŒF ˛
�!S � 2 D.S/, the marking ˛ collapses to nodes

precisely those curves in F which are the restrictions of nodal sections over D.S/.

Proof By Lemma 5.2, a curve in F is the preimage of a node in S if and only if it is
the restriction of a nodal section over D.S/.

Let T be a stable nodal surface and let ˛�W T ! S be a degeneration which collapses
a single curve in T to a node n 2 S . The node n determines a nodal section over
D.S/, and the maximal subset over which this section is not nodal is precisely the
image of the change-of-marking ˛�W D.T /!D.S/.

Lemma 5.4 Suppose X is simply connected and z� W X ! D.S/ is a maximal lift.
Then the map z��W Z.D.S// ,! Z.X / restricts to a bijection between nodal sections.

Proof Clearly every nodal section over X is the pullback of a nodal section over D.S/.
Conversely, if there exists a nodal section over D.S/ which pulls backs to a non-nodal
section over X then X lies in the image of a change-of-marking ˛�W D.T /!D.S/

for some T with strictly fewer nodes than S . Since X is simply connected and the
change-of-marking maps are local homeomorphisms, X lifts further, which contradicts
the maximality hypothesis.

Proof of Lemma 5.1 Choose a point x 2 X and let Fx denote the fiber over x .
Consider the commutative diagram

Z.X /

Z.D.S// ZŒFx �

� _

��, �

::tttttttt

��
1

� � //

where the vertical and horizontal arrows are induced by restriction to the stalk at x

(which is identified with the stalk at �1.x/. By Lemma 5.4, a curve in Fx is the restric-
tion of a nodal section over X if and only if it is the restriction of a nodal section over
D.S/. By Lemma 5.3, S is topologically obtained from Fx by collapsing those curves
which are the restrictions of nodal sections over D.S/ (equivalently, nodal sections
over X ). By the same reasoning, T is topologically obtained from Fx by collapsing
the same set of curves. Hence S and T are abstractly homeomorphic. Finally, since
the image of D.S/ in SMan

g;n is isomorphic to the quotient stack ŒD.S/=MCGg;n.S/�,
it follows that any two lifts to D.S/ are related by a unique change of marking.

Algebraic & Geometric Topology, Volume 8 (2008)



On the homotopy type of the Deligne–Mumford compactification 2059

6 Proof of Lemma 4.2

We shall now prove Lemma 4.2. It will follow from Lemma 5.1 together with Wald-
hausen’s Theorem A’ [22, p 165], which is a simplicial version of Quillen’s Theorem
A. We first recall Waldhausen’s Theorem A’. Suppose F W A� ! B� is a functor of
simplicial categories. Given an object � 2ObjBn of simplicial degree n, the simplicial
fiber category .F=�/� is given in degree k by

.F=�/k W D
a

uWk!n

Fk=u
��;

where the disjoint union is taken over all monotone maps from f0; : : : kg to f0 : : : ng.
The theorem states that if each of these simplicial fiber categories has contractible
classifying space then F is a homotopy equivalence of classifying spaces.

Proof of Lemma 4.2 By taking the total singular simplicial set one has an inclusion
of simplicial categories

j W S�

�
CLg;n

Z �D�! S�D:

We will apply Waldhausen’s Theorem A’ to the simplicial functor j . Fix an object
�W �n!ObjD of SnD. The image of � lands in D.S/ for some stable nodal surface
S . In simplicial degree k the simplicial fiber category .j=�/� is a disjoint union of
ordinary fiber categories of the form jk=� for various objects � of simplicial degree k .
Suppose that each of these categories is contractible. Then collapsing them to points
maps the simplicial fiber category .j=�/� by a levelwise homotopy equivalence to the
standard simplicial model for the n–simplex given in degree k by

`
uWk!n �. The

geometric realization of this map is thus a homotopy equivalence

jB.j=�/�j !�n
' �;

and so Waldhausen’s Theorem A’ yields the result.

It thus suffices to show that each category jn=� has an initial object, where � W �n!

D.S/� Obj D. Let x� W �n! SMan
g;n denote the composition of � with the projection

of D.S/ down to SMan
g;n . Explicitly, an object of the category jn=� is a lift (up to a

specified 2–morphism) of x� to some chart D.T /; ie a 2–commutative diagram

D.T /

��

�n
x�

//

�

+�

;;wwwwwwwwww
SMan

g;n:
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A morphism .�1; �1/! .�2; �2/ is an isotopy class of degenerations ˛W T1! T2 such
that the induced 2–morphism ˆ.˛/

D.T1/

�n +ˆ.˛/ SMan
g;n

D.T2/

$$JJJJ::ttttt

$$JJJJJ ::tttt

satisfies �2 ıˆ.˛/D �1 . This is equivalent to saying that ˛� ı�1D �2 . Since jn is the
inclusion of a subcategory into a groupoid, there is at most one arrow between any two
objects of jn=� . We are thus reduced to showing that there is an object .�0; �0/ which
maps to all other objects of jn=� . Every lift of x� to some D.T / lifts further to a
maximal lift, and Lemma 5.1 says that a maximal lift of x� is unique up to isomorphism.
A maximal lift therefore provides the desired initial object.

7 Stratifications

The strata of SMan
g;n are indexed by stable graphs with n external legs; equivalently the

strata are indexed by diffeomorphism types of stable nodal surfaces of genus g with
n labeled points. A stable nodal surface T corresponds to an open stratum RT

SMan
g;n

which is the locus of all stable nodal Riemann surfaces F which are topologically
diffeomorphic to T . The closure xRT

SMan
g;n is the locus of all Riemann surfaces F

for which T admits a degeneration onto F . This stratification gives a corresponding
stratification of the spaces D.S/, and so there are atlases:a

S

RT D.S/!RT
SMan

g;n;a
S

xRT D.S/! xRT
SMan

g;n

which give rise to subgroupoids of the Bers groupoid D. The Fenchel–Nielsen coordi-
nates show that xRT D.S/ is homeomorphic to a proper ball in D.S/ of codimension
equal to the number of nodes of S minus the number of nodes of T . In particular,
xRT D.S/ is contractible.

The stratification of CLg;n is as follows:

RT CLg;n D full subcategory on the object T DMCGg;n.T /

xRT CLg;n D ffull subcategory on S such that T admits a degeneration onto Sg
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The proof of Theorem 1.1 (along with the proofs of all propositions and lemmas it
employs) remains valid upon inserting xRT in front of all occurrences of the symbols
CLg;n , SMan

g;n , and D. Thus the homotopy equivalence SMan
g;n 'BCLg;n restricts to

an equivalence of each closed stratum.

To see that it restricts to a homotopy equivalence on each open stratum, one uses the
fact that each open stratum RT

SMan
g;n is the stack quotient of a finite group acting on

a product of uncompactified moduli spaces, and RT CLg;n is the homotopy quotient
of the same finite group acting on the corresponding product of classifying spaces of
mapping class groups. Thus RT

SMan
g;n 'B.RT CLg;n/ follows from the equivalence

Man
g;n'BMCGg;n discussed in the introduction, since the homotopy type of the stack

quotient is the homotopy quotient.
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