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Topological nonrealization results via the Goodwillie tower
approach to iterated loopspace homology

NICHOLAS KUHN

We prove a strengthened version of a theorem of Lionel Schwartz [17] that says
that certain modules over the Steenrod algebra cannot be the mod 2 cohomology
of a space. What is most interesting is our method, which replaces his iterated use
of the Eilenberg–Moore spectral sequence by a single use of the spectral sequence
converging to H�.�nX IZ=2/ obtained from the Goodwillie tower for †1�nX .
Much of the paper develops basic properties of this spectral sequence.

55S10; 55T20, 55S12

1 Introduction and main results

In this article, I prove some constraints on the mod 2 cohomology of spaces in which
Steenrod squares “jump over gaps”. Said otherwise, for certain unstable A–modules M

with operations jumping over gaps, there are no spaces X having zH�.X IZ=2/'M .
Here A is the mod 2 Steenrod algebra, and a module M is unstable if Sqs x D 0 for
all x 2M and s > jxj.

In [17], Lionel Schwartz established an interesting theorem of this type. The structure
of his proof went as follows. Given M 2 U of a specified sort, one wishes to show
that no space X exists with H�.X IZ=2/'M . Assuming the existence of such an
X , he showed that there could be no unstable algebra structure compatible with the
A–module structure on H�.�nX IZ=2/, where n is a number determined by M .
Here we recall that an unstable algebra satisfies both the Cartan formula, Sqk.x[y/DP

iCjDk Sqi x[Sqj y , and the Restriction axiom, Sqjxj x D x2 .

The essence of his argument is elegant, and makes clever use of the product structure in
the Eilenberg–Moore Spectral Sequence for computing H�.�X IZ=2/, in conjunction
with the structural form of the Adem relation for Sq2k

Sq2k

. Less elegant is his n–fold
iterated use of the EMSS, necessitating inductive bookkeeping arguments.

The main point of our paper here is to give a new proof of Lionel’s theorem, keeping
the “fun” parts of his proof, but just using a single spectral sequence: the one associated
to the Goodwillie tower for the functor sending a space X to the spectrum †1�nX .
Our proof ultimately
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� yields a strengthened version of Lionel’s theorem,

� gives some geometric meaning to what is being studied (the second stage of the
tower), and

� illustrates the efficacy of using Goodwillie towers to study classical questions.

To state our main theorem we need to describe some unstable A–modules. In-
side H�.BZ=2IZ=2/ D Z=2Œt �, the A–module A � t has basis ft; t2; t4; : : : g, with
Sq2k

t2k

D t2kC1

. For k< l , let ˆ.k; l/2U be the subquotient with basis ft2k

; : : : ; t2l

g.

The modules we will be concerned with have the form M ˝ˆ.k; kC 2/, where M

is an unstable A–module concentrated in degrees between m and l . If 2k >m� l ,
then this unstable module is three copies of M , with Sq2k

sending the first copy
isomorphically to the second, and Sq2kC1

sending the second copy to the third.

In formulae, the A–module structure is described as follows: given x 2 M and
0� s�m� l , Sqs.x˝ t2i

/D Sqs.x/˝ t2i

, SqsC2k

.x˝ t2k

/D Sqs.x/˝ t2kC1

, and
SqsC2kC1

.x˝ t2kC1

/D Sqs.x/˝ t2kC2

.

In pictures, M ˝ˆ.k; kC 2/ looks like

(1–1) M0

Sq2k

� **
M1

Sq2kC1

� ++
M2

where Mi is the 2kCi –th suspension of M .

Our main theorem goes as follows.

Theorem 1.1 Let M be an unstable A–module concentrated in degrees between
l and m, such that its desuspension †�1M is not unstable. Suppose there exists a
space X such that zH�.X IZ=2/'†nM ˝ˆ.k; kC 2/.

(a) If nD 0, then 2k �m� l must hold.

(b) If n > 0, then 2k � 4m� 2l C 2n must hold. If, in addition, cup products are
trivial in zH�.X IZ=2/, then 2k � 4m� 2l C 2n� 2 must hold.

By contrast, Schwartz’ theorem [17, Theorem 0.2] just says that, for all n, 2k �

12.mC n/ must hold. If, in addition, cup products are trivial in zH�.X IZ=2/, then
2k � 12.mC n� 1/ must hold.

We note that the first statement in part (b) of the theorem (and also in Schwartz’
theorem as just presented) is implied immediately by the second statement: if X

realizes †nM ˝ˆ.k; k C 2/, then †X realizes †nC1M ˝ˆ.k; k C 2/, and cup
products will be trivial in zH�.†X IZ=2/.
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Example 1.2 The theorem appears to be reasonably delicate; we consider what it says
if M D Z=2, so that l DmD 0.

When nD 0, part (a) tells us the obvious fact that ˆ.k; kC2/ can’t be realized for all
k � 0.

When nD 1, part (b) tells us that zH�.X IZ=2/'†ˆ.k; kC2/ only if k D 0 and the
cohomology ring satisfies Poincaré duality in dimension 5. This does in fact happen,
when X D SU.3/=SO.3/.

When nD 2, part (b) tells us that zH�.X IZ=2/' †2ˆ.k; k C 2/ only if k � 1. In
Section 6, we will look a bit more carefully at the proof of part (b) in this case, and
we will show that zH�.X IZ=2/ ' †2ˆ.1; 3/ only if the cohomology ring satisfies
Poincaré duality in dimension 10. This does in fact happen: an elegant construction of a
smooth 10–dimensional manifold M with this cohomology was given by E Floyd in [8,
Section 3]. (Floyd also observes that the unoriented bordism classes of SU.3/=SO.3/

and M are the only nonzero bordism classes represented by spaces with exactly 4
cells.)

Remarks 1.3 (a) The most well-known result of “mind the gap” type is due to
J F Adams [1], and applies to spectra as well as spaces: if k � 4, x 2H d .X IZ=2/,
and H dCi.X IZ=2/ D 0 for 0 � i � 2k � 2k�2 , then Sq2k

x must be in the image
of Sq1.

(b) My interest in such questions goes back to my 1994 study [13] of spaces X having
H�.X IZ=2/ finitely generated over the mod 2 Steenrod algebra A. Using Adams’
theorem, I proved that, under the extra hypothesis that Sq1 acted trivially in high
degrees, H�.X IZ=2/ would then have to be a finite dimensional Z=2–vector space.
Furthermore, without the extra Sq1 hypothesis, the conjecture that this would still be
true was reduced to various questions about the nonrealizability of various sorts of
unstable A–modules having operations jumping over gaps. In response to my paper,
Lionel formulated and proved his theorem, as it suffices to prove my conjecture [17,
Section 1]: see Appendix B for a short discussion about how this goes.

(c) A much stronger qualitative theorem is conjecturally true. The following is a
restatement of the Local Realization Conjecture of [13].

Conjecture 1.4 Let M be an A–module concentrated in a finite number of degrees.
Then for k� 0, there is no space or spectrum X with

H�.X IZ=2/'M ˝ˆ.k; kC 1/:
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In pictures, M ˝ˆ.k; kC 1/ looks like

M0

Sq2k

� **
M1

where Mi is the 2kCi –th suspension of M .

(d) Statement (a) of the theorem admits a simple straightforward proof that avoids all
spectral sequences. Our proofs of both parts will make clear that many other modules
are ruled out for topological realization besides those explicitly appearing in the theorem.
(The same comment could be made about Schwartz’s paper.) There is also a hint, in our
discussion of realizing †2ˆ.1; 3/ in Section 6, that more systematic use of Nishida
relations might rule out new classes of modules.

(e) Schwartz’ theorem holds for all primes. Thus far, we have only worked out the
details with mod 2 coefficients, but our work here can certainly be modified for odd
primes. It similarly seems likely that our methods here will lead to streamlined proofs
of the various other related nonrealization theorems that Schwartz and his students
have proved [18; 7; 9]. By using the single Goodwillie tower spectral sequence in our
argument here, we have been able to make more delicate use of the unstable module
structure of M than does Schwartz, and the author expects that subtle questions
about how the Nilpotent and Krull filtrations of U are reflected as one passes from
H�.X IZ=p/ to H�.�nX IZ=p/ can be best approached using our techniques.

Notation 1.5 We use the following notation. H�.X / will mean H�.X IZ=2/. If
x 2M is an element of a graded vector space, then �x is the corresponding element
of the suspended vector space †M . If X is a space, we will write †�nX for the
desuspended suspension spectrum †�n†1X . As in [15], C.n; j / denotes the space
of j little n–cubes in a big n–cube. This has a free action by the j –th symmetric
group †j , and, for X a space or spectrum, we let Dn;j X D .C.n; j /C ^X^j /h†j

.
Note that D1;j X 'X^j and D1;j X 'X

^j

h†j
. By convention, Dn;0X D S0 for all

n and X .

The rest of the paper is organized as follows. For much of it – Sections 2, 3 and 4,
supported by Appendix A – we describe some of the general properties of the spectral
sequence for computing H�.�nX /. Assuming this material, the proof of Theorem 1.1
is satisfyingly short, and given in Section 5. Illustrating the methods of our proof, in
Section 6 we look more carefully at how things go when zH�.X /'†2ˆ.1; 3/.

A version of our argument here has been known by the author for nearly a decade;
indeed, I gave a talk “A simple proof of Schwartz’ nonrealization theorem” at the
Midwest Topology conference of October, 23, 1999. I apologize for the delay in
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writing this up, and plead that this project led me to become infatuated with Goodwillie
towers. (To be honest, the needed geometric details underpinning the spectral sequence
used here were only worked out later in joint work with S Ahearn [2].) I am happy to
be reunited with an earlier love: the category U .

The author would like to thank Mark Mahowald, Brayton Gray, and particularly Elmer
Rees for aid with Example 1.2. Brayton and Elmer responded to a query of mine posted
on the Algebraic topology discussion list [6]: see the messages of June 5, June 6, and
August 3, 2008. So Don Davis also deserves thanks for providing this forum.

This research was partially supported by grants from the National Science Foundation.

2 The Arone–Goodwillie tower of †1�nX

For n <1, one has a functor sending a based space X to the suspension spectrum
†1�nX . For n D 1, one similarly has a functor sending a spectrum X to the
spectrum †1�1X . In either case, T Goodwillie’s general theory of the calculus of
functors [10; 11; 12] yields natural towers of fibrations

:::

��
Pn

3
.X /

��
Pn

2
.X /

��
†1�nX

�1 //

�2

44iiiiiiiiiiiiiiiiiii

�3

99tttttttttttttttttttttttttt
Pn

1
.X /;

such that the connectivity of the maps �j increases linearly with j as long as X is
n–connected if n<1, and is 0–connected if nD1.

Using G Arone’s explicit model for this tower [3], properties of these towers were
explored in [2].

For n < 1, the spectrum Pn
1
.X / identifies with the spectrum †�nX , so that �1

corresponds to the evaluation map

†1�nX !†�nX;
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and the fiber of the map Pn
j .X /! Pn

j�1
.X / is naturally equivalent to the spectrum

Dn;j†
�nX . Similarly, when nD1, the j –th fiber is equivalent to D1;j X , and �1

corresponds to the evaluation map

†1�1X !X:

Applying H� to the towers yields 2nd quadrant spectral sequences. From what we
have said above, one can immediately conclude the following.

When n < 1, the spectral sequence converges strongly to H�.�nX / if X is an
n–connected space, and has

E
�j ;�
1
D†j H�.Dn;j†

�nX /:

When n D 1, the spectral sequence converges strongly to H�.�1X / if X is a
0–connected spectrum, and has

E
�j ;�
1
D†j H�.D1;j X /:

For all n, E
�;�
1 is the graded object associated to the filtration of H�.�nX /,

� � � � F�3H�.�nX /� F�2H�.�nX /� F�1H�.�nX /;

where F�j H�.�nX /D Imf��j W H
�.Pn

j .X //!H�.�nX /g.

The spectral sequences are compatible as n–varies. More precisely, the natural evalua-
tion maps

(2–1) †r†1�nCr X !†1�nX;

as well as the natural equivalences (with Xn D�
1†nX )

(2–2) †1�nXn
�
�!†1�1X

induce maps of towers, and then spectral sequences.

Remark 2.1 When nD 1, one recovers the classical Eilenberg–Moore spectral se-
quence with E

�j ;�
1
DH�.X /˝j . For general n <1, general Goodwillie calculus

considerations imply that the spectral sequence constructed here must necessarily agree
with the dual of the spectral sequence studied by V Smirnov in [19, Chapter 6].
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3 The mod 2 cohomology of Dn;�X

To use our spectral sequence, we need to have a useful description of the bigraded object
H�.Dn;�X /. In this section, we give this, by constructing various natural operations.
It is more traditional to describe H�.Dn;�X / using Dyer–Lashof operations, Browder
operations, and the Pontryagin product [5; 4], and our operations are easily verified to
be appropriately “dual” to these: see Proposition A.1. Because of this, we will be brief
with some verifications of properties.

To avoid problems with duals of infinite dimensional vector spaces, in the discussion
that follows we make the blanket assumption: for all spectra X , H�.X / is bounded
below and is of finite type. This is not a serious restriction, as any spectrum X

can be written as hocolimk X.k/ where X.k/ satisfies this assumption, and then
H�.Dn;�X /D limk H�.Dn;�X.k//, as profinite bigraded vector spaces.

3.1 Structure maps

Definitions 3.1 (a) Let �W †r DnCr;j X !Dn;j†
r X denote the map induced by the

evaluation map (2–1). (See Ahearn and Kuhn [2] for an explicit formula.)

(b) Let �W Dn;iX ^Dn;j X ! Dn;iCj X denote the map induced by the inclusion
†i �†j �†iCj .

(c) Let t W Dn;iCj X !Dn;iX ^Dn;j X denote the composite of the maps

.C.n; i C j /C ^X^iCj /h†iCj
! .C.n; i C j /C ^X^iCj /h†i�†j

.C.n; i C j /C ^X^iCj /h†i�†j
! .C.n; i/C ^ C.n; j /C ^X^iCj /h†i�†j

;and

where the first map is the transfer associated to †i �†j �†iCj and the second map
is induced by the †i �†j –equivariant inclusion of spaces

C.n; i C j /� C.n; i/� C.n; j /:

(d) Let wW Dn;2j X !D1;2Dn;j X denote the composite of the maps

.C.n; 2j /C ^X 2j /h†2j
! .C.n; 2j /C ^X 2j /h†2o†j

.C.n; 2j /C ^X 2j /h†2o†j
! .C.n; j /2C ^X 2j /h†2o†j

;and

where the first map is the transfer associated to the inclusion †2 o†j �†2j and the
second map is induced by the †2 o†j –equivariant inclusion of spaces

C.n; 2j /� C.n; j /2:
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3.2 Operations

Definition 3.2 For r � 0, define natural operations

yQr W H
d .Dn;j X /!H 2dCr .Dn;2j X /

as follows.

Given x2H d .X /, viewed as a map xW X!†dHZ=2, we let yQ0.x/2H 2d .D1;2X /

be the composite

D1;2X
D1;2x
�����!D1;2†

dHZ=2
u
�!†2dHZ=2;

where u represents the bottom class in H�.D1;2†
dHZ=2/.

Given x 2H d .Dn;j X /, we let yQ0.x/ 2H 2d .Dn;2j X / be the composite

Dn;2j X
w
�!D1;2Dn;j X

yQ0.x/
����!†2dHZ=2;

and then, for r > 0, we let yQr .x/ 2H 2dCr .Dn;2j X / be the composite

Dn;2j X
�
�!†�r Dn�r;2j†

r X
†�r yQ0.†

r x/
���������!†2dCr HZ=2:

Definition 3.3 Define a natural product

�W H�.Dn;iX /˝H�.Dn;j X /!H�.Dn;iCj X /

to be the map on cohomology induced by the “transfer” maps

t W Dn;iCj X !Dn;iX ^Dn;j X:

Note that, when n D 1, the �–product is the standard shuffle product on the tensor
algebra TH�.X /.

Definition 3.4 Define a natural coproduct

‰W H�.Dn;iCj X /!H�.Dn;iX /˝H�.Dn;j X /

to be the map on cohomology induced by the maps

�W Dn;iX ^Dn;j X !Dn;iCj X:
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Definition 3.5 For n<1 and d1C � � �C dj D d , define

Ln�1W H
d1.X /˝ � � �˝H dj .X /!H dC.j�1/.n�1/.Dn;j X /

to be the map on cohomology induced by the map

�W Dn;j X !†1�nD1;j†
n�1X D†.j�1/.n�1/X^j :

Note that L0 is just the usual product in the tensor algebra TH�.X /.

The following will be made precise in Appendix A. See Proposition A.1.

Proposition 3.6 In a suitable sense, the cohomology operations yQr , �, and Ln�1 are
dual to the homology operations Qr , �, and �n�1 .

3.3 Some properties of the operations

Proposition 3.7 The �–product and ‰–coproduct makes H�.Dn;�X / into a bigraded
bicommutative Hopf algebra.

Proposition 3.8 For all x 2H�.Dn;j X /, yQr .x/D 0 for r � n.

Proposition 3.9 Under ��W H�.Dn;�†X /! H��1.DnC1;�X /, the operations be-
have as follows.

(i) �� sends �–decomposables to 0: ��.x � y/ D 0 for all x 2 H�.Dn;i†X / and
y 2H�.Dn;j†X /, with i � 1 and j � 1. Similarly, the image of �� is contained in
the ‰–primitives.

(ii) �� commutes with the yQ operations: ��. yQr .�x//D yQrC1.x/.

(iii) �� commutes with the L operations: for all x1; : : : ;xk 2H�.X /,

��.Ln�1.�x1˝ � � �˝ �xk//DLn.x1˝ � � �˝xk/:

Proof Parts (ii) and (iii) are clear from the definition, and part (i) is only slightly less
so. For more detail about (i), see Example 6.7 of [2].

Proposition 3.10 For all x 2H�.X /˝k , yQn�1.Ln�1.x//DLn�1.x˝x/.

Proof By parts (ii) and (iii) of the last proposition, this reduces to the case when
nD 1, where it reads yQ0.x/D x˝x , for x 2H�.X^k/, and this is clear from the
definition of yQ0 .
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Proposition 3.11 For all x;y 2H d .Dn;j X /, the following identities hold.

(i) yQ0.xCy/D yQ0.x/C yQ0.y/Cx �y .

(ii) yQr .xCy/D yQr .x/C yQr .y/, for all r > 0.

(iii) x �x D 0.

See Appendix A for a proof.

Proposition 3.12 For all n� 2, the kernel of Ln�1W TH�.X /!H�.Dn;�X / is the
span of the shuffle product decomposables.

Proof This is dual to the well-known statement that the image of ��W H�.Dn;�X /!

TH�.X / is the vector space of primitives, which identifies as the free restricted Lie
algebra generated by H�.X /. Note that Proposition 3.9(i) implies that the kernel is at
least as big as claimed.

One has Adem relations among the yQr .

Proposition 3.13

yQr
yQs.x/D

X
j

�
j � r

2j � r � s

�
yQrC2s�2j

yQj .x/:

This follows from the homology Adem relations, using Proposition A.1. Similarly, the
calculation of H�.Dn;�X / as in [5; 4] implies the next theorem.

Theorem 3.14 Using the �–product, H�.Dn;�X / is the graded commutative algebra
generated by the elements of the form yQr1

: : : yQrl
Ln�1.x1˝ � � �˝xk/, subject to the

relations listed in Propositions 3.8, 3.11, 3.12 and 3.13.

Finally, we have Nishida relations. Compare with [16, page 40], [4, Theorem II.3.5]
and [14, Proposition 6.12].

Proposition 3.15 For all x 2H d .Dn;j X /, the following identities hold.

(i) Sqs yQ0.x/D
X

t

�
d � t

s� 2t

�
yQs�2t .Sqt x/C

X
t<s=2

Sqt x �Sqs�t x .

(ii) Sqs yQr .x/D
X

t

�
d C r � t

s� 2t

�
yQrCs�2t .Sqt x/.

See Appendix A for more about this.
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4 Some properties of the spectral sequence for H �.�nX/

Here we collect some basic properties of the spectral sequences arising from the towers
of Section 2. From [2], we learn the following.

Proposition 4.1 The spectral sequence is a spectral sequence of differential graded
Hopf algebras, with the product and coproduct structure on E1 given by the � and ‰ ,
converging to the usual Hopf algebra structure on H�.�nX /.

From the geometric construction of the spectral sequence, we deduce the next proposi-
tion.

Proposition 4.2 The spectral sequence is a spectral sequence of A–modules, with
A acting columnwise on E1 in the evident way, and converging to the usual A–
module structure on H�.�nX /. In particular, F�j H�.�nX / is a sub–A–module of
H�.�nX / for all j .

Finally we determine the differential d1 from the -2 line to the -1 line. In other words,
we determine the homomorphism

d1W †
2H�.Dn;2†

�nX /!†H�.†�nX /;

induced by the connecting map ı in the cofibration sequence

Dn;2†
�nX ! Pn

2 .X /!†�nX
ı
�!†Dn;2†

�nX:

Proposition 4.3 For x;y 2H�.X / we have the following formulae.

(i) d1.�
2Ln�1.�

�nx˝ ��ny//D �1�n.x[y/.

(ii) d1.�
2 yQr .�

�nx//D �1�n SqrCjxj�nC1.x/.

(iii) d1.x �y/D 0.

Proof Formula (iii) is clear, as d1 is a derivation.

Formula (i) reduces to the case when nD 1, where it becomes the well-known formula

d1.x˝y/D x[y

in the bar construction associated to the Eilenberg–Moore spectral sequence.

Formula (ii) reduces to the case when r D 0, and then to the case when nD1, where
we wish to show that, for X a 0-connected spectrum and x 2H d .X /,

d1.�
2 yQ0.x//D � SqdC1 x:
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As the left side of the equation is natural, there must be an element a 2AdC1 such that

d1.�
2 yQ0.x//D �ax:

To show that a must be SqdC1 , we consider the universal case: the spectral se-
quence when X D †dHZ=2. In this case, †1�1X D K.Z=2; d/, and so the
spectral sequence converges to H�.K.Z=2; d//, and †�1E

�1;�
1 will be the image of

��W H�.†dHZ=2/H�.K.Z=2; d//. This image is just the cyclic A–module gen-
erated by the fundamental class ud 2 H d .K.Z=2; d//. Since SqdC1 ud D 0 2

H�.K.Z=2; d//, � SqdC1 u2E
�1;�
1

must be a boundary, where u is the bottom class
of †dA. For connectivity reasons, the only way for this to happen is if d1.�

2 yQ0.u//D

� SqdC1 u.

Remark 4.4 The proposition should be compared to the homology formulae in [19,
6.2], in particular, Smirnov’s formula on page 124, three lines before his second
theorem.

Corollary 4.5 In the spectral sequence computing H�.�nX / with X an n–connected
space, †�1E

�1;�
2

will be the maximal unstable quotient of

†�n.H�.X /=.[–decomposables//:

Even more is true if zH�.X /'†nM with M 2 U , and has no nontrivial cup products:
then E

�1;�
3
DE

�1;�
2
DE

�1;�
1

, and E
�2;�
2
DE

�2;�
1

.

Proof The first statement follows evidently from the previous proposition. In the
situation of the second statement, the assumption then tells us that d1W E

�2;�
1
!E

�1;�
1

is identically zero. Since E
�3;�
1

is spanned by �–decomposables, the fact that d1

is a derivation allows us to conclude that d1W E
�3;�
1

! E
�2;�
1

is also identically
zero. Thus we have that both E

�2;�
2

D E
�2;�
1

and E
�1;�
2
D E

�1;�
1

. It follows that
E
�3;�
2

is again spanned by algebra decomposables, and so, as before, we conclude that
d2W E

�3;�
2
!E

�1;�
2

is identically zero.

There is a similar corollary in the nD1 case.

Corollary 4.6 In the spectral sequence computing H�.�1X / with X a 0–connected
spectrum, †�1E

�1;�
2

will be the unstable quotient of H�.X /. Even more is true if
zH�.X /'M with M 2 U : then E

�1;�
3
DE

�1;�
2
DE

�1;�
1

, and E
�2;�
2
DE

�2;�
1

.
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5 Proof of Theorem 1.1

Recall the assumptions on M in the theorem. We have numbers l � m such that
M s ¤ 0 only if l � s � m. The statement that M is not the desuspension of an
unstable module means precisely that there exists x 2M such that Sqjxj x ¤ 0. We
fix such an element and let d D jxj, so that l � d � 2d �m.

Assuming that 2k >m� l , it is easily verified that M ˝ˆ.k; kC 2/ is the module as
pictured in (1–1):

M0

Sq2k

� **
M1

Sq2kC1

� ++
M2

where Mi DM ˝ ht2kCi

i. We let a D x ˝ t2k

2M0 , b D x ˝ t2kC1

2M1 , and
cDx˝t2kC2

2M2 . Thus jajD dC2k , jbjD dC2kC1 , jcjD dC2kC2 , Sq2k

aD b ,
Sq2kC1

b D c , and Sqd c ¤ 0.

With this notation, we give the quick proof of Theorem 1.1(a). If 2k >m� l , we show
that there is no unstable algebra structure on M ˝ˆ.k; kC2/, so that there can be no
space X such that zH�.X /'M ˝ˆ.k; kC 2/.

The proof of this is simple. We begin with the calculation:

Sq2k

.a[ b/D b[ b (by the Cartan formula)

D SqdC2kC1

b (by the Restriction axiom)(5–1)

D Sqd c ¤ 0:

Here the third equality follows from the calculation in M ˝ˆ.k; kC 2/ that

SqdC2kC1

.x˝ t2kC1

/D Sqd x˝ t2kC2

D Sqd .x˝ t2kC2

/:

Thus a[ b ¤ 0. But ja[ bj D 2d C 3 � 2k , which we claim is a degree in the “gap”
between M1 and M2 , so that a[ b D 0, giving us a contradiction. In other words, we
claim that

mC 2kC1 < 2d C 3 � 2k < l C 2kC2:

The first inequality follows by adding 2kC1 to the inequalities

m< l C 2k
� 2d C 2k ;

while the second inequality follows by adding 3 � 2k to the inequalities

2d �m< l C 2k :

We now begin the longer proof of Theorem 1.1(b). So let n > 0, and suppose that
zH�.X / ' †nM ˝ˆ.k; k C 2/, and has trivial cup products. We can assume that
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X is a CW complex. For technical reasons, rather than working with X , we work
with the quotient Y DX=XdCnC2k�1 . This will be needed to ensure that � Sqd .c/ 2

E
�1;2dC2kC1
1

is not in the image of d3 : see Lemma 5.3. (Replacing X by Y would
not be needed if d � 2l .)

Since H�.Y / ! H�.X / is an isomorphism for � > d C n C 2k and is epic if
� D d CnC 2k , one easily deduces that zH�.Y /'†nN with N 2 U , still has trivial
cup products, and N is as pictured:

(5–2) N0

Sq2k

** **
M1

Sq2kC1

� ++
M2

where N0 , M1 , and M2 are nonzero only in degrees in the intervals ŒdC2k ;mC2k �,
Œl C 2kC1;mC 2kC1�, and Œl C 2kC2;mC 2kC2�.

Choosing a “new” a 2 N0 mapping onto the “old” a 2 M0 , we have as before:
jaj D d C 2k , jbj D d C 2kC1 , jcj D d C 2kC2 , Sq2k

a D b , Sq2kC1

b D c , and
Sqd c ¤ 0.

We assume the inequality

(5–3) 2k > 4m� 2l C 2n� 2;

and we show that this leads to a contradiction by showing that H�.�nY /, as computed
by our spectral sequence, can not admit an unstable algebra structure.

As a first observation, we note that Corollary 4.5 applies, so that E
�1;�
3
DE

�1;�
2
D

E
�1;�
1

, and E
�2;�
2
DE

�2;�
1

.

A picture of †�1E
�1;�
1

is given by (5–2), and is all permanent cycles. Thus there exist
˛ 2 H dC2k

.�nY /, ˇ 2 H dC2kC1

.�nY /, and  2 H dC2kC2

.�nY /, respectively
represented by a, b , and c , and we have Sq2k

˛ D ˇ , and Sq2kC1

ˇ D  .

A picture of the additive structure of †�2E
�2;�
1

in degrees less than 2l C 2kC2 is
given by

(5–4) N0 �N0 N0 �M1

where N0�N0 denotes the span of all elements of the form yQr .x/, x�y , or Ln�1.x˝y/

with x;y 2N0 , and N0 �M1 denotes the span of x�y and Ln�1.x˝y/ with x 2N0

and y 2M1 .

N0 �N0 is nonzero only in the interval Œ2dC2kC1; 2mC2kC1Cn�1�, and includes
the element yQ0.a/ in lowest degree. As E

�2;�
2
DE

�2;�
1

, this is a permanent cycle,
and so represents an element ı2H 2dC2kC1

.�nY /.
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N0 �M1 is nonzero only in the interval ŒlCdC3 �2k ; 2mC3 �2kCn�1�, and includes
the element a� b , which represents ˛[ˇ 2H 2dC3�2k

.�nY /.

Lemma 5.1 Sq2k

ı D ˛[ˇ .

Proof Our constraint (5–3) implies that 2k � 2d � n and also that 2k�1 > m. Us-
ing these inequalities, one easily checks that the formula for Sq2k

yQ0.a/ given by
Proposition 3.15 simplifies to yield

Sq2k
yQ0.a/D a�Sq2k

aD a� b:

As both Sq2k

ı and ˛ [ ˇ are represented by a � b , it follows that Sq2k

ı � ˛ [ ˇ

is represented by something in bidegree .�1; 2d C 3 � 2k C 1/. But there is nothing
nonzero in this bidegree because (5–3) implies that 2k >m� l , and this then implies
that mC 2kC1 < 2d C 3 � 2k < l C 2kC2 .

Lemma 5.2 Sq2k

.˛[ˇ/D Sqd  .

Proof Just as in (5–1), we have Sq2k

.˛[ˇ/D ˇ2 D SqdC2kC1

ˇ D Sqd  .

Lemma 5.3 Sqd  ¤ 0.

Proof The lowest degree differential with potentially nonzero image in the �1–line
would be

d3W E
�4;4dC2kC2C4
3

!E
�1;4dC2kC2C2
3

:

Thus Sqd c 2E
�1;2dC2kC2C1
3

is not a boundary.

Corollary 5.4 Sq2k

Sq2k

ı ¤ 0.

We will now use the next lemma to show that Sq2k

Sq2k

ı D 0 if our numerical
constraint (5–3) holds, and this contradiction will finish the proof of Theorem 1.1(b).

Let A.k/ be the subalgebra of A generated by Sq1; : : : ;Sq2k

.

Lemma 5.5 [17, Lemma 2.6] Sq2k

Sq2k

2A.k � 1/Sq2k A.k � 1/.

Corollary 5.6 Sq2k

Sq2k

ı D 0.
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Proof This is a calculation taking place in F�2H�.�nY /, which in the relevant
degrees has additive structure that looks like:

M1CN0 �N0 N0 �M1 M2CM1 �M1

The element ı 2M1CN0 �N0 , while Sq2k

Sq2k

ı 2M2CM1 �M1 . By the lemma,
if both of the gaps pictured span greater than 2k�1 degrees, then the corollary would
follow.

The span of the first gap equals

.the bottom degree of N0 �M1/� .the top degree of M1CN0 �N0/

D .d C l C 3 � 2k/� .2mC 2kC1
C n� 1/D 2k

C d C l � 2m� nC 1:

The span of the second gap equals

.the bottom degree of M2CM1 �M1/� .the top degree of N0 �M1/

D .l C 2kC2/� .2mC 3 � 2k
C n� 1/D 2k

C l � 2m� nC 1:

Thus both gaps have spans bigger than 2k�1 if

2k
C l � 2m� nC 1> 2k�1;

2k�1 > 2m� l C n� 1;so that

which is our constraint (5–3).

6 Realizing †2ˆ.1; 3/

Suppose that zH�.X / ' †2ˆ.1; 3/, so there exist nonzero elements a 2 H 4.X /,
b 2H 6.X /, and c 2H 10.X / such that Sq2 aD b and Sq4 b D c . Using the spectral
sequence converging to H�.�2X / as in the last section, we prove the following.

Proposition 6.1 In this case, a[ b D c must hold.

Proof Repressing some suspensions from the notation, Figure 1 shows all of E
�;�
1

in
total degree less than or equal to 8, in the spectral sequence converging to H�.�2X /.

The only possible differential here is d1.L1.a˝ b//D c which, by Proposition 4.3,
happens exactly when a[ b D c 2H�.X /. Assuming this does not happen, through
degree 8, F�2H�.�2X / would have a basis given by elements 1, ˛ , ˇ , ı , � , ˛[ˇ ,
�,  , and ! , in respective degrees 0, 2, 4, 4, 5, 6, 7, 8, and 8, and represented by 1,
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yQ0. yQ0.a// 12

b � yQ0.a/ 11

a� yQ1.a/ yQ0.b/ 10

a� yQ0.a/ L1.a˝ b/ c 9

a� b 8
yQ1.a/ 7
yQ0.a/ 6

b 5

4

a 3

2

1

1 0

�4 �3 �2 �1 0 snt

Figure 1: E
s;t
1
.�2X / when zH�.X /'†2ˆ.1; 3/

a, b , yQ0.a/, yQ1.a/, a � b , L1.a˝ b/, c , and yQ0.b/. The structure of ˆ.1; 3/
shows that  D ˇ2 D ˛4 . Furthermore, the arguments in the last section show that
Sq2 Sq2 ı D  ¤ 0.

The relation Sq2 Sq2
D Sq1 Sq2 Sq1 then implies that Sq1 ı ¤ 0. However, the

Nishida formula, Proposition 3.15, implies that Sq1 yQ0.a/D 0, and thus Sq1 ı D 0.
This contradiction implies that d1.L1.a ˝ b// D c must have been true, so that
a[ b D c 2H 10.X /, � 2H 7.�2X / doesn’t exist, and  D 0 2H 8.�2X /.

Appendix A More proofs of the properties of the operations

Proof of Proposition 3.11 Thanks to Proposition 3.9(i), formula (ii) follows from the
formula (i). Letting x D y in (i) implies (iii).

To prove (i), given x;y 2H d .Dn;j X /, yQ0.xCy/ is represented by the composite

Dn;2j X
w
�!D1;2Dn;j X

D1;2.xCy/
��������!D1;2†

dHZ=2
u
�!†2dHZ=2:

It is standard [4, Corollary II.1.6] that, given x;yW Y !Z , D1;2.xCy/ decomposes
as the sum of D1;2.x/, D1;2.y/, and the composite

D1;2Y
t
�! Y ^2 x^y

���!Z^2 �
�!D1;2Z:
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It follows that yQ0.xCy/D yQ0.x/C yQ0.y/ plus the composite

Dn;2j X

w

��

†2dHZ=2

D1;2Dn;j X
t // .Dn;j X /^2

x^y // .†dHZ=2/^2
� // D1;2†

dHZ=2:

u

OO

But this last map is just x �y , as there is a commutative diagram

Dn;2j X

w

��

t

''OOOOOOOOOOO †2dHZ=2

D1;2Dn;j X
t // .Dn;j X /^2

x^y // .†dHZ=2/^2
� //

u
66mmmmmmmmmmmmm

D1;2†
dHZ=2:

u

OO

Here the left triangle commutes due to the transitivity of the transfer with respect to
the inclusions .†j /

2 �†2 o†j �†2j .

We now make precise the “duality” proposition Proposition 3.6. In the following
proposition, given y; z 2H�.X /, Qr .y/;y � z; �n�1.y; z/ 2H�.Dn;2X / denote the
usual elements under the Dyer–Lashof operation Qr , the Pontryagin product �, and
the Browder operation �n�1 of [5, Part III].

Proposition A.1 Let hx;yi denote the cohomology/homology pairing. For n > 1,
given w;x 2H�.X / and y; z 2H�.X /, the following formulae hold.

(a) h yQr x;Qsyi D

(
hx;yi if r D s

0 otherwise:

(b) h yQr x;y � zi D

(
hx;yihx; zi if r D 0

0 otherwise:

(c) h yQr x; �n�1.y; z/i D 0:

(d) hw �x;Qsyi D

(
hw;yihx;yi if s D 0

0 otherwise:

(e) hw �x;y � zi D hw;yihx; ziC hw; zihx;yi:

(f) hw �x; �n�1.y; z/i D 0:

(g) hLn�1.w˝x/;Qsyi D 0:

(h) hLn�1.w˝x/;y � zi D 0:

(i) hLn�1.w˝x/; �n�1.y; z/i D hw;yihx; ziC hw; zihx;yi:
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Sketch proof The behavior of the homology operations under the evaluation

�W †sDnCs;2X !Dn;2†
sX

is well known [5, Theorem III.1.4]: ��.� sQnCsy/DQs.�
sy/, ��.� sy � z/D 0, and

��.�
s�nCs�1.y; z//D �n�1.�

sy; � sz/. Note in particular, that, under �W Dn;2X !

†n�1X ^X , one has ��.�n�1.y; z//D �
n�1y˝ zC z˝y .

Similarly, the behavior under t W Dn;2X !X ^X is easy to describe: t�.Qsy/D 0,
t�.y � z/D y˝ zC z˝y , and t�.�n�1.y; z//D 0.

Using this information, the various formulae are easily verified, using the naturality of
the cohomology/homology pairing.

Proof of Proposition 3.15 Proposition 3.9(i) again implies that the formula when
r > 0 follows from the formula when r D 0. Furthermore, by the construction of the
operations, we can assume that nD1 and j D 1, and so one just needs to verify (i)
for Sqs yQ0.x/ 2H 2dCs.D1;2X /.

This can be proved in various ways. One is to use the previous proposition together
with the usual Nishida relations.

Another approach goes as follows. One verifies (i) for various sorts of spectra X .

If X is a suspension spectrum, then the cohomology of D1;2X is detected by the
two maps X ^X !D1;2X and BZ=2C ^X !D1;2X , and one checks that the
elements on both sides of formula (i) map to the same elements under these detection
maps.

If X D S�c , then D1;2X D †�cRP1�c , and one can directly check the formula,
working within the A–module Z=2Œt; t�1�.

If (i) is true for x 2H�.X / and y 2H�.Y /, then it is true for x˝y 2H�.X ^Y /.
To see this, one uses the map

D1;2.X ^Y /!D1;2X ^D1;2Y

which sends yQ0.x/˝ yQ0.y/ to yQ0.x˝y/.

If (i) is true for spectra Xc and X D hocolimc Xc then (i) is true for X . This fol-
lows since then H�.D1;2X / D limc H�.D1;2Xc/ (using our standing finite type
hypothesis).

Assembling all these special cases yields the formula for general spectra X , as X '

hocolimc S�c ^†1Xc , where Xc is the c–th space of X .
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Appendix B The nonrealization conjecture of [13]

Following [13; 17], we review how Theorem 1.1 implies:

Theorem B.1 If H�.Z/ is a finitely generated A–module, then it is a finite dimen-
sional Z=2–vector space.

Sketch proof Let xT W U!U be the reduced Lannes functor, left adjoint tensoring with
zH�.BZ=2/. Let �W Spaces! Spaces be defined by �.Z/ D Map.BZ=2;Z/=Z ,

where Z embeds in Map.BZ=2;Z/ as the space of constant maps. Under good
circumstances, xT H�.Z/'H�.�.Z//.

Suppose that H�.Z/DL is infinite, but finitely generated over A. Replacing Z and
L by their suspensions if needed, we can assume that “good circumstances” will hold.
As L is a finitely generated A–module, xT iL will again be finitely generated for all i ,
and xT lLD 0 for some l . Since L is also infinite, the smallest such l will be at least 2.
Choosing this smallest l , let Y D �l�2.Z/. Then N D H�.Y / D xT l�2H�.Z/

will still be infinite and finitely generated over A, but now also xT 2N D 0. (These
reductions are made in [13].)

Now we use a structure theorem: N 2 U is finitely generated over A and satisfies
xT 2N D 0 if and only if it fits into an exact sequence in U of the form

0!A!N !M ˝ˆ.j ;1/! B! 0;

for some finite dimensional unstable modules A, B , and M , and for some j , where
ˆ.j ;1/ D A � t2j

� Z=2Œt �. Furthermore M D xT N . (A weaker version of this
appears in [13], with the full statement appearing in [17].)

It now easily follows that, given any large enough k , an appropriate “subquotient” X

of Y will satisfy H�.X /DM ˝ˆ.k; kC 2/. This contradicts Theorem 1.1.
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