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Large scale geometry of commutator subgroups

DANNY CALEGARI

DONGPING ZHUANG

Let G be a finitely presented group, and G0 its commutator subgroup. Let C be
the Cayley graph of G0 with all commutators in G as generators. Then C is large
scale simply connected. Furthermore, if G is a torsion-free nonelementary word-
hyperbolic group, C is one-ended. Hence (in this case), the asymptotic dimension
of C is at least 2 .

20F65, 57M07

1 Introduction

Let G be a group and let G0 WD ŒG;G� denote the commutator subgroup of G . The
group G0 has a canonical generating set S , which consists precisely of the set of
commutators of pairs of elements in G . In other words,

S D
˚
Œg; h� such that g; h 2G

	
:

Let CS .G
0/ denote the Cayley graph of G0 with respect to the generating set S . This

graph can be given the structure of a (path) metric space in the usual way, where edges
have length 1 by fiat.

By now it is standard to expect that the large scale geometry of a Cayley graph will
reveal useful information about a group. However, one usually studies finitely generated
groups G and the geometry of a Cayley graph CT .G/ associated to a finite generating
set T . For typical infinite groups G , the set of commutators S will be infinite, and the
Cayley graph CS .G

0/ will not be locally compact. This is a significant complication.
Nevertheless, CS .G

0/ has several distinctive properties which invite careful study:

(1) The set of commutators of a group is characteristic (ie invariant under any
automorphism of G ), and therefore the semidirect product G0 Ì Aut.G/ acts on
CS .G

0/ by isometries.

(2) The metric on G0 inherited as a subspace of CS .G
0/ is both left- and right-

invariant (unlike the typical Cayley graph, whose metric is merely left-invariant).
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(3) Bounded cohomology in G is reflected in the geometry of G0 ; for instance, the
translation length �.g/ of an element g 2 G0 is the stable commutator length
scl.g/ of g in G .

(4) Simplicial loops in CS .G
0/ through the origin correspond to (marked) homotopy

classes of maps of closed surfaces to a K.G; 1/.

These properties are straightforward to establish; for details, see Section 2.

This paper concerns the connectivity of CS .G
0/ in the large for various groups G .

Recall that a thickening Y of a metric space X is an isometric inclusion X ! Y into a
bigger metric space, such that the Hausdorff distance in Y between X and Y is finite.
A metric space X is said to be large scale k –connected if for any thickening Y of X

there is another thickening Z of Y which is k –connected (ie �i.Z/D 0 for i � k ;
also see the definitions in Section 3). Our first main theorem, proved in Section 3,
concerns the large scale connectivity of CS .G

0/ where G is finitely presented:

Theorem A Let G be a finitely presented group. Then CS .G
0/ is large scale simply

connected.

As well as large scale connectivity, one can study connectivity at infinity. In Section 4
we specialize to word-hyperbolic G and prove our second main theorem, concerning
the connectivity of G0 at infinity:

Theorem B Let G be a torsion-free nonelementary word-hyperbolic group. Then
CS .G

0/ is one-ended; ie for any r > 0 there is an R � r such that any two points in
CS .G

0/ at distance at least R from id can be joined by a path which does not come
closer than distance r to id.

Combined with a theorem of Fujiwara–Whyte [7], Theorem A and Theorem B to-
gether imply that for G a torsion-free nonelementary word-hyperbolic group, CS .G

0/

has asymptotic dimension at least 2 (see Section 5 for the definition of asymptotic
dimension).

2 Definitions and basic properties

Throughout the rest of this paper, G will denote a group, G0 will denote its commutator
subgroup, and S will denote the set of (nonzero) commutators in G , thought of as a
generating set for G0 . Let CS .G

0/ denote the Cayley graph of G0 with respect to the
generating set S . As a graph, CS .G

0/ has one vertex for every element of G0 , and
two elements g; h 2G0 are joined by an edge if and only if g�1h 2 S . Let d denote
distance in CS .G

0/ restricted to G0 .
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Definition 2.1 Let g2G0 . The commutator length of g , denoted cl.g/, is the smallest
number of commutators in G whose product is equal to g .

From the definition, it follows that cl.g/ D d.id;g/ and d.g; h/ D cl.g�1h/ for
g; h 2G0 .

Lemma 2.2 The group G0 Ì Aut.G/ acts on CS .G
0/ by isometries.

Proof Aut.G/ acts as permutations of S , and therefore the natural action on G

extends to CS .G
0/. Further, G0 acts on CS .G

0/ by left multiplication.

Lemma 2.3 The metric on CS .G
0/ restricted to G0 is left- and right-invariant.

Proof Since the inverse of a commutator is a commutator, we have cl.g�1h/ D

cl.h�1g/. Since the conjugate of a commutator by any element is a commutator, we
have cl.h�1g/D cl.gh�1/. This completes the proof.

Definition 2.4 Given a metric space X and an isometry h of X , the translation length
of h on X , denoted �.h/, is defined by the formula

�.h/D lim
n!1

d.p; hn.p//

n

where p 2X is arbitrary.

By the triangle inequality, the limit does not depend on the choice of p .

For g 2 G0 acting on CS .G
0/ by left multiplication, we can take p D id. Then

d.id;gn.id//D cl.gn/.

Definition 2.5 Let G be a group, and g 2 G0 . The stable commutator length of g is
the limit

scl.g/D lim
n!1

cl.gn/

n
:

Hence we have the following:

Lemma 2.6 Let g 2 G0 act on CS .G
0/ by left multiplication. There is an equality

�.g/D scl.g/.

Proof This is immediate from the definitions.
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Stable commutator length is related to two-dimensional (bounded) cohomology. For
an introduction to stable commutator length, see the book by the first author [3]; for an
introduction to bounded cohomology, see Gromov [8].

If X is a metric space, and g is an isometry of X , one can obtain lower bounds on
�.g/ by constructing a Lipschitz function on X which grows linearly on the orbit of a
point under powers of g . One important class of Lipschitz functions on CS .G

0/ are
quasimorphisms:

Definition 2.7 Let G be a group. A function �W G!R is a quasimorphism if there
is a least positive real number D.�/ called the defect, such that for all g; h 2G there
is an inequality

j�.g/C�.h/��.gh/j �D.�/:

From the defining property of a quasimorphism, j�.id/j � D.�/ and therefore by
repeated application of the triangle inequality, one can estimate

j�.f Œg; h�/��.f /j � 7D.�/

for any f;g; h 2G . In other words:

Lemma 2.8 Let G be a group, and let �W G ! R be a quasimorphism with de-
fect D.�/. Then � restricted to G0 is 7D.�/–Lipschitz in the metric inherited
from CS .G

0/.

Word-hyperbolic groups admit a rich family of quasimorphisms. We will exploit this
fact in Section 4.

3 Large scale simple connectivity

The following definitions are taken from Gromov [10, pages 23–24].

Definition 3.1 A thickening Y of a metric space X is an isometric inclusion X ! Y

with the property that there is a constant C so that every point in Y is within distance C

of some point in X .

Definition 3.2 A metric space X is large scale k –connected if for every thickening
X � Y there is a thickening Y �Z which is k –connected in the usual sense; ie Z is
path-connected, and �i.Z/D 0 for i � k .
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For G a finitely generated group with generating set T , Gromov outlines a proof [10,
1.C2 ] that the Cayley graph CT .G/ is large scale 1–connected if and only if G is
finitely presented, and CT .G/ is large scale k –connected if and only if there exists
a proper simplicial action of G on a .kC1/–dimensional k –connected simplicial
complex X with compact quotient X=G .

For T an infinite generating set, large scale simple connectivity is equivalent to the
assertion that G admits a presentation G D hT j Ri where all elements in R have
uniformly bounded length as words in T ; ie all relations in G are consequences of
relations of bounded length.

To show that CS .G
0/ is large scale 1–connected, it suffices to show that there is a

constant K so that for every simplicial loop 
 in CS .G
0/ there are a sequence of loops


 D 
0; 
1; � � � ; 
n where 
n is the trivial loop, and each 
i is obtained from 
i�1 by
cutting out a subpath �i�1 � 
i�1 and replacing it by a subpath �i � 
i with the same
endpoints, so that j�i�1jC j�i j �K .

More generally, we call the operation of cutting out a subpath � and replacing it by a
subpath � 0 with the same endpoints where j� jC j� 0j �K a K–move.

Definition 3.3 Two loops 
 and 
 0 are K–equivalent if there is a finite sequence of
K–moves which begins at 
 , and ends at 
 0 .

K–equivalence is (as the name suggests) an equivalence relation. The statement
that CS .G

0/ is large scale 1–connected is equivalent to the statement that there is a
constant K such that every two loops in CS .G

0/ are K–equivalent.

First we establish large scale simple connectivity in the case of a free group.

Lemma 3.4 Let F be a finitely generated free group. Then CS .F
0/ is large scale

simply connected.

Proof Let 
 be a loop in CS .F
0/. After acting on 
 by left translation, we may

assume that 
 passes through id, so we may think of 
 as a simplicial path in CS .F
0/

which starts and ends at id. If si 2 S corresponds to the i –th segment of 
 , we obtain
an expression

s1s2 � � � sn D id

in F , where each si is a commutator. For each i , let ai ; bi 2 F be elements with
Œai ; bi � D si (note that ai ; bi with this property are not necessarily unique). Let †
be a surface of genus n, and let ˛i ; ˇi for i � n be a standard basis for �1.†/; see
Figure 1.
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Figure 1: A standard basis for �1.†/ where † has genus 4 . The ˛i curves
are in red, and the ˇi curves are in blue.

Let X be a wedge of circles corresponding to free generators for F , so that �1.X /DF .
We can construct a basepoint preserving map f W † ! X with f�.˛i/ D ai and
f�.ˇi/D bi for each i . Since X is a K.F; 1/, the homotopy class of f is uniquely
determined by the ai ; bi . Informally, we could say that loops in CS .F

0/ correspond
to based homotopy classes of maps of marked oriented surfaces into X (up to the
ambiguity indicated above).

Let � be a (basepoint preserving) self-homeomorphism of †. The map f ı�W †!X

determines a new loop in CS .F
0/ (also passing through id) which we denote ��.
 /

(despite the notation, this image does not depend only on 
 , but on the choice of
elements ai ; bi as above).

Sublemma 3.5 There is a universal constant K independent of 
 or of � (or even
of F ) so that after composing � by an inner automorphism of �1.†/ if necessary, 

and ��.
 / as above are K–equivalent.

Proof Suppose we can express � as a product of (basepoint preserving) automorphisms

� D �m ı�m�1 ı � � � ı�1

such that if ˛j
i ; ˇ

j
i denote the images of ˛i ; ˇi under �j ı�j�1 ı � � � ı�1 , then �jC1

fixes all but K consecutive pairs ˛j
i ; ˇ

j
i up to (basepoint preserving) homotopy. Let

s
j
i D Œf�˛

j
i ; f�ˇ

j
i �, and let 
 j be the loop in CS .F

0/ corresponding to the identity
s

j
1
s

j
2
� � � s

j
n D id in F .

For each j , let suppjC1 denote the support of �jC1 ; ie the set of indices i such that
�jC1.˛

j
i /¤ ˛

j
i or �jC1.ˇ

j
i /¤ ˇ

j
i . By hypothesis, suppjC1 consists of at most K

indices for each j .
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Because it is just the marking on † which has been changed and not the map f , if
k � i � kCK� 1 is a maximal consecutive string of indices in suppjC1 , then there
is an equality of products

s
j

k
s

j

kC1
� � � s

j

kCK�1
D s

jC1

k
s

jC1

kC1
� � � s

jC1

kCK�1

as elements of F . This can be seen geometrically as follows. The expression on the left
is the image under f� of an element represented by a certain embedded based loop in
†, while the expression on the right is its image under f� ı�jC1 . The automorphism
�jC1 is represented by a homeomorphism of † whose support is contained in regions
bounded by such loops. Hence the expressions are equal. It follows that 
 j and 
 jC1

are 2K–equivalent.

So to prove the sublemma it suffices to show that any automorphism of S can be
expressed (up to inner automorphism) as a product of automorphisms �i with the
property above.

The hypothesis that we may compose � by an inner automorphism means that we need
only consider the image of � in the mapping class group of †. It is well-known since
Dehn [5] that the mapping class group of a closed oriented surface † of genus g is
generated by twists in a finite standard set of curves, each of which intersects at most
two of the ˛i ; ˇi essentially; see Figure 2.

Figure 2: A standard set of 3g� 1 simple curves, in yellow. Dehn twists in
these curves generate the mapping class group of † .

So write � D �1�2 � � � �m where the �i are all standard generators. Now define

�j D �1�2 � � � �j�1�j�
�1
j�1 � � � �

�1
1 :

We have
�j�j�1 � � ��1 D �1�2 � � � �j :
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Moreover, each �j is a Dehn twist in a curve which is the image of a standard curve
under �j�1 � � ��1 , and therefore intersects ˛j�1

i and ˇj�1
i essentially for at most 2

(consecutive) indices i . This completes the proof of the sublemma (and shows, in fact,
that we can take K D 4).

We now complete the proof of the lemma. As observed by Stallings (in eg [14]),
a nontrivial map f W †! X from a closed, oriented surface to a wedge of circles
factors (up to homotopy) through a pinch in the following sense. Make f transverse
to some edge e of X , and look at the preimage � of a regular value of f in e . After
homotoping inessential loops of � off e , we may assume that for some edge e and
some regular value, the preimage � contains an embedded essential loop ı .

There are two cases to consider. In the first case, ı is nonseparating. In this case, let
� be an automorphism which takes ˛1 to the free homotopy class of ı . Then 
 and
��.
 / are K–equivalent by the sublemma. However, since f .ı/ is homotopically
trivial in X , there is an identity Œ��˛1; ��ˇ1�D id and therefore ��.
 / has length 1

shorter than 
 .

In the second case, � is separating, and we can let � be an automorphism which takes
the free homotopy class of Œ˛1; ˇ1� � � � Œ j̨ ; ǰ � to ı . Again, by the sublemma, 
 and
��.
 / are K–equivalent. But now ��.
 / contains a subarc of length j with both
endpoints at id, so we may write it as a product of two loops at id, each of length
shorter than that of 
 .

By induction, 
 is K–equivalent to the trivial loop, and we are done.

We are now in a position to prove our first main theorem.

Theorem A Let G be a finitely presented group. Then CS .G
0/ is large scale simply

connected.

Proof Let W be a smooth 4–manifold (with boundary) satisfying �1.W /D G . If
G D hT j Ri is a finite presentation, we can build W as a handlebody, with one
0–handle, one 1–handle for every generator in T , and one 2–handle for every relation
in R. If ri 2R is a relation, let Di be the cocore of the corresponding 2–handle, so
that Di is a properly embedded disk in W . Let V �W be the union of the 0–handle
and the 1–handles. Topologically, V is homotopy equivalent to a wedge of circles.
By the definition of cocores, the complement of

S
i Di in W deformation retracts

to V . See eg Kirby [12, Chapter 1] for an introduction to handle decompositions of
4–manifolds.
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Given 
 a loop in CS .G
0/, translate it by left multiplication so that it passes through

id. As before, let † be a closed oriented marked surface, and f W †! W a map
representing 
 .

Since G is finitely presented, H2.GIZ/ is finitely generated. Choose finitely many
closed oriented surfaces S1; � � � ;Sr in W which generate H2.GIZ/. Let K0 be the
supremum of the genus of the Si . We can choose a basepoint on each Si , and maps to
W which are basepoint preserving. By tubing † repeatedly to copies of the Si with
either orientation, we obtain a new surface and map f 0W †0!W representing a loop

 0 such that f 0.†0/ is null-homologous in W , and 
 0 is K0–equivalent to 
 (note
that K0 depends on G but not on 
 ).

Put f 0 in general position with respect to the Di by a homotopy. Since f 0.†0/ is
null-homologous, for each proper disk Di , the signed intersection number vanishes:
Di \ f

0.†0/D 0. Hence f 0.†/\Di D Pi is a finite, even number of points which
can be partitioned into two sets of equal size corresponding to the local intersection
number of f 0.†0/ with Di at p 2 Pi .

Let p; q 2 Pi have opposite signs, and let � be an embedded path in Di from f 0.p/

to f 0.q/. Identifying p and q implicitly with their preimages in †0 , let ˛ and ˇ be
arcs in †0 from the basepoint to .f 0/�1p and .f 0/�1q . Since � is contractible, there
is a neighborhood of � in Di on which the normal bundle is trivializable. Hence, since
f 0.†0/ and Di are transverse, we can find a neighborhood U of � in W disjoint from
the other Dj , and coordinates on U satisfying:

(1) Di \U is the plane .x;y; 0; 0/.

(2) �\U is the interval .t; 0; 0; 0/ for t 2 Œ0; 1�.

(3) f 0.†0/\U is the union of the planes .0; 0; z; w/ and .1; 0; z; w/.

Let A be the annulus consisting of points .t; 0; cos.�/; sin.�// where t 2 Œ0; 1�. Then
A is disjoint from Di and all the other Dj , and we can tube f 0.†0/ with A to
reduce the number of intersection points of f 0.†0/ with

S
i Di , at the cost of raising

the genus by 1. Technically, we remove the disks .f 0/�1.0; 0; s cos.�/; s sin.�//
and .f 0/�1.1; 0; s cos.�/; s sin.�// for s 2 Œ0; 1� from †0 , and sew in a new annulus
which we map homeomorphically to A. The result is f 00W †00!W with two fewer
intersection points with

S
i Di . This has the effect of adding a new (trivial) edge to

the start of 
 0 , which is the commutator of the elements represented by the core of
A and the loop f 0.˛/ �� � f 0.ˇ/. Let 
 00 denote this resulting loop, and observe
that 
 00 is 1–equivalent to 
 0 . After finitely many operations of this kind, we obtain
f 000W †000 ! W corresponding to a loop 
 000 which is max.1;K0/–equivalent to 
 ,
such that f 000.†000/ is disjoint from

S
i Di .

Algebraic & Geometric Topology, Volume 8 (2008)



2140 Danny Calegari and Dongping Zhuang

After composing with a deformation retraction, we may assume f 000 maps †000 into V .
Let F D �1.V /, and let �W F !G be the homomorphism induced by the inclusion
V !W . There is a loop 
F in CS .F

0/ corresponding to f 000 such that ��.
F /D 
 000

under the obvious simplicial map ��W CS .F
0/! CS .G

0/. By Lemma 3.4, the loop

F is K–equivalent to a trivial loop in CS .F

0/. Pushing forward the sequence of
intermediate loops by �� shows that 
 000 is K–equivalent to a trivial loop in CS .G

0/.
Since 
 was arbitrary, we are done.

Remark 3.6 A similar, though perhaps more combinatorial argument could be made
working directly with 2–complexes in place of 4–manifolds.

In words, Theorem A says that for G a finitely presented group, all relations amongst
the commutators of G are consequences of relations involving only boundedly many
commutators.

The next example shows that the size of this bound depends on G :

Example 3.7 Let † be a closed surface of genus g , and G D �1.†/. If 
 is a loop
in CS .G/ through the origin, and f W †0 ! † is a corresponding map of a closed
surface, then the homology class of †0 is trivial unless the genus of †0 is at least as
big as that of †. Hence the loop in CS .G/ of length g corresponding to the relation in
the “standard” presentation of �1.†/ is not K–equivalent to the trivial loop whenever
K < g .

In light of Theorem A, it is natural to ask the following question:

Question 3.8 Let G be a finitely presented group. Is CS .G
0/ large scale k –connected

for all k ?

Remark 3.9 Laurent Bartholdi has pointed out that for F a finitely generated free
group, there is a confluent, Noetherian rewriting system for F 0 , with rules of bounded
length, which puts every word in F 0 over generators S into normal form (with respect
to a “standard” free generating set for F 0 ). By results of Groves [11] this should
imply that CS .F

0/ is large scale k –connected for all k , but we have not verified this
implication carefully. In any case, it gives another more algebraic proof of Lemma 3.4.

4 Word-hyperbolic groups

In this section we specialize to the class of word-hyperbolic groups. See Gromov [9]
for more details.
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Definition 4.1 A path metric space X is ı–hyperbolic for some ı � 0 if for every
geodesic triangle abc , and every point p on the edge ab , there is q 2 ac [ bc with
dX .p; q/ � ı . In other words, the ı neighborhood of any two sides of a geodesic
triangle contains the third side.

Definition 4.2 A group G is word-hyperbolic if there is a finite generating set T for
G such that CT .G/ is ı–hyperbolic as a path metric space, for some ı .

Example 4.3 Finitely generated free groups are word-hyperbolic. The fundamental
group of a closed surface with negative Euler characteristic is word-hyperbolic. Discrete
cocompact groups of isometries of hyperbolic n–space are word-hyperbolic.

To rule out some trivial examples, one makes the following:

Definition 4.4 A word-hyperbolic group is elementary if it has a cyclic subgroup of
finite index, and nonelementary otherwise.

The main theorem we prove in this section concerns the geometry of CS .G
0/ at infinity,

where G is a nonelementary word-hyperbolic group. For the sake of brevity we
restrict attention to torsion-free G , though this restriction is not logically necessary;
see Remark 4.9.

Theorem B Let G be a torsion-free nonelementary word-hyperbolic group. Then
CS .G

0/ is one-ended; ie for any r > 0 there is an R � r such that any two points in
CS .G

0/ at distance at least R from id can be joined by a path which does not come
closer than distance r to id.

We will estimate distance to id in CS .G
0/ using quasimorphisms, as indicated in

Section 2. Hyperbolic groups admit a rich family of quasimorphisms. Of particular
interest to us are the Epstein–Fujiwara counting quasimorphisms, introduced in [6],
generalizing a construction due to Brooks [2] for free groups.

Fix a word-hyperbolic group G and a finite generating set T . Let CT .G/ denote the
Cayley graph of G with respect to T . Let � be an oriented simplicial path in CT .G/.
A copy of � is a translate g � � for some g 2G . If 
 is an oriented simplicial path in
CT .G/, let j
 j� denote the maximal number of disjoint copies of � contained in 
 .
For g 2G , define

c� .g/D d.id;g/� inf


.length.
 /� j
 j� /

where the infimum is taken over all directed paths 
 in CT .G/ from id to g , and
d. � ; � / denotes distance in CT .G/.
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Definition 4.5 (Epstein–Fujiwara) A counting quasimorphism on G is a function of
the form

h� .g/ WD c� .g/� c��1.g/

where ��1 denotes the same simplicial path as � with the opposite orientation.

Since j
 j� takes discrete values, the infimum is realized in the definition of c� . A
path 
 for which

c� .g/D d.id;g/� length.
 /Cj
 j�
is called a realizing path for g . Realizing paths exist, and satisfy the following geometric
property:

Lemma 4.6 (Epstein–Fujiwara [6, Proposition 2.2]) Any realizing path for g is a
.K; �/–quasigeodesic in CT .G/, where

K D
length.�/

length.�/� 1
and � D

2 � length.�/
length.�/� 1

:

Moreover, the following holds:

Lemma 4.7 (Epstein–Fujiwara [6, Proposition 2.13]) Let � be a path in CT .G/

of length at least 2. Then there is a constant K.ı/ (where T is such that CT .G/ is
ı–hyperbolic as a metric space) such that D.h� /�K.ı/.

Counting quasimorphisms are very versatile, as the following lemma shows:

Lemma 4.8 Let G be a torsion-free, nonelementary word-hyperbolic group. Let gi be
a finite collection of elements of G . There is a commutator s 2G0 and a quasimorphism
� on G with the following properties:

(1) j�.gi/j D 0 for all i .

(2) j�.sn/� nj �K1 for all n, where K1 is a constant which depends only on G .

(3) D.�/�K2 where K2 is a constant which depends only on G .

Proof Fix a finite generating set T so that CT .G/ is ı–hyperbolic. There is a
constant N such that for any nonzero g 2 G , the power gN fixes an axis Lg [9].
Since G is nonelementary, it contains quasigeodesically embedded copies of free
groups, of any fixed rank. So we can find a commutator s whose translation length
(in CT .G/) is as big as desired. In particular, given g1; � � � ;gj we choose s with
�.s/� �.gi/ for all i . Let L be a geodesic axis for sN , and let � be a fundamental
domain for the action of sN on L. Since j� j DN �.s/� �.gi/, Lemma 4.6 implies

Algebraic & Geometric Topology, Volume 8 (2008)



Large scale geometry of commutator subgroups 2143

that there are no copies of � or ��1 in a realizing path for any gi . Hence h� .gi/D 0

for all i . By Lemma 4.7, D.h� /�K.ı/. It remains to estimate h� .s
n/.

In fact, the argument of [4] Theorem A0 (which establishes explicitly an estimate that
is implicit in [6]) shows that for N sufficiently large (depending only on G and not
on s ) no copies of ��1 are contained in any realizing path for sn with n positive,
and therefore jh� .s

n/�bn=N cj is bounded by a constant depending only on G . The
quasimorphism � DN � h� has the desired properties.

Remark 4.9 The hypothesis that G is torsion-free is included only to ensure that s is
not conjugate to s�1 . It is possible to remove this hypothesis by taking slightly more
care in the definition of s , using the methods of the proof of Proposition 2 from [1].
We are grateful to the referee for pointing this out.

We now give the proof of Theorem B:

Proof Let g; h 2 G0 have commutator length at least R. Let g D s1s2 � � � sn and
h D t1t2 � � � tm where n;m � R are equal to the commutator lengths of g and h

respectively, and each si ; ti is a commutator in G . Let s be a commutator with the
properties described in Lemma 4.8 with respect to the elements g; h; that is, we want s

for which there is a quasimorphism � with �.g/D �.h/D 0, with j�.sn/� nj �K1

for all n, and with D.�/�K2 . Let N �R be very large. We build a path in CS .G
0/

from g to h out of four segments, none of which come too close to id.

The first segment is
g;gs;gs2;gs3; � � � ;gsN :

Since s is a commutator, d.gsi ; id/�R� i for any i . On the other hand,

�.gsi/� �.g/C�.si/�D.�/� i �K2�K1

where K1;K2 are as in Lemma 4.8 (and do not depend on g; h; s ). From Lemma 2.8
we can estimate

d.gsi ; id/�
�.gsi/

7D.�/
�

i �K2�K1

7K2

:

Hence d.gsi ; id/�R=14K2� .K1CK2/=7K2 for all i , so providing R�K1;K2 ,
the path gsi never gets too close to id.

The second segment is

gsN
D s1s2 � � � snsN ; s2 � � � snsN ; � � � ; sN :
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Note that consecutive elements in this segment are distance 1 apart in CS .G
0/, by

Lemma 2.3. Since d.gsN ; id/� .N �K2�K1/=7K2�R for N sufficiently large,
we have that for all i ,

d.si � � � snsN ; id/�R:

The third segment is

sN ; tmsN ; tm�1tmsN ; � � � ; t1t2 � � � tmsN
D hsN

and the fourth is
hsN ; hsN�1; � � � ; hs; h:

For the same reason as above, neither of these segments gets too close to id. This
completes the proof of the theorem, taking r DR=14K2� .K1CK2/=7K2 .

5 Asymptotic dimension

The main point of this section is to make the observation that G0 for G as above is not
a quasitree, and to restate this observation in terms of asymptotic dimension. We think
it is worth making this restatement explicitly. The notion of asymptotic dimension was
introduced by Gromov [10, page 32].

Definition 5.1 Let X be a metric space, and X D
S

i Ui a covering by subsets. For
given D � 0, the D–multiplicity of the covering is at most n if for any x 2 X , the
closed D–ball centered at x intersects at most n of the Ui .

A metric space X has asymptotic dimension at most n if for every D � 0 there is a
covering X D

S
i Ui for which the diameters of the Ui are uniformly bounded, and

the D–multiplicity of the covering is at most nC1. The least such n is the asymptotic
dimension of X , and we write

asdim.X /D n:

If X is a metric space, we say H1.X / is uniformly generated if there is a constant L

such that H1.X / is generated by loops of length at most L. It is clear that if X is
large scale 1–connected, then H1.X / is uniformly generated. Fujiwara–Whyte [7]
prove the following theorem:

Theorem 5.2 (Fujiwara–Whyte [7, Theorem 0.1]) Let X be a geodesic metric space
with H1.X / uniformly generated. X has asdim.X / D 1 if and only if X is quasi-
isometric to an unbounded tree.
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A group whose Cayley graph is quasi-isometric to an unbounded tree has more than
one end (see eg Manning [13], especially Sections 2.1 and 2.2). Hence Theorem A and
Theorem B together imply the following:

Corollary 5.3 Let G be a nonelementary torsion-free word-hyperbolic group. Then

asdim.CS .G
0//� 2:
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