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On the flux of pseudo-Anosov homeomorphisms

VINCENT COLIN

KO HONDA

FRANÇOIS LAUDENBACH

We exhibit a pseudo-Anosov homeomorphism of a surface S which acts trivially on
H1.S IZ/ and whose flux is nonzero.

57M50; 53C15

1 Introduction

Let S be a compact oriented surface with nonempty boundary, ! be an area form
on S and h be an area-preserving diffeomorphism of .S; !/. Consider the mapping
torus †.S; h/ of .S; h/, which we define as .S � Œ0; 1�/=.x; 1/ � .h.x/; 0/. Here
.x; t/ are coordinates on S � Œ0; 1�. If there is a contact form ˛ on †.S; h/ for which
d˛jS�f0g D ! and the corresponding Reeb vector field R˛ is directed by @t , then we
say h is the first return map of R˛ . In this note we investigate the following question:

Question 1.1 What is the difference between an area-preserving diffeomorphism h

of a surface .S; !/ and the first return map of a Reeb flow R˛ , defined on †.S; h/?

One easily computes that the first return map of R˛ is !–area-preserving (cf Lemma
2.1). Question 1.1 can then be rephrased as follows:

Question 1.2 Can every area-preserving h be expressed as the first return map of a
Reeb flow R˛ ?

We emphasize that we are interested in the rigid problem of realizing a given diffeo-
morphism h, instead of its realization up to isotopy. This question is of particular
importance when one tries to compute the contact homology of a contact structure
adapted to an open book decomposition; see Colin and Honda [3]. The periodic orbits
of an adapted Reeb flow that are away from the binding of the open book correspond
to periodic points of the first return map. Hence we would like to understand which
monodromy maps can be realized by first return maps of Reeb flows.
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It turns out that the answer to Question 1.2 is negative. There is an invariant of an
area-preserving diffeomorphism h, called the flux, which is an obstruction to h being
the first return map of a Reeb flow. In Section 2 we define the flux and also show that
it is easy to modify the flux of a diffeomorphism within its isotopy class.

The case of particular interest to us is when h is pseudo-Anosov. Recall that a
homeomorphism hW S

�
�!S is pseudo-Anosov if there exist � > 1 and two trans-

verse singular measured foliations—the stable measured foliation .F s; �s/ and the
unstable measured foliation .Fu; �u/—such that h.F s; �s/ D .F s; .1=�/�s/ and
h.Fu; �u/ D .Fu; ��u/. The homeomorphism h is a diffeomorphism away from
the singular points of the measured foliations. A pseudo-Anosov representative h

of a mapping class is unique in the sense that any two pseudo-Anosov homeomor-
phisms h1 , h2 in the same mapping class are conjugate via an everywhere smooth
diffeomorphism � which is isotopic to the identity. In particular, such a � sends the
stable foliation of h1 to the stable foliation of h2 and the unstable foliation of h1

to the unstable foliation of h2 . (See Fathi, Laudenbach and Poénaru [5, Exposé 12,
Théorème III and Lemma 16 for smoothness].) We define the area form ! to be given
by the product of �s and �u . The form ! is the unique h–invariant area form up to a
constant multiple and is singular in the sense that it vanishes at the singular points of
the invariant foliations. Now, the pseudo-Anosov case is of special interest since the
pseudo-Anosov homeomorphism is a rigid representative in its mapping class (hence
the flux can be seen as an invariant of the mapping class) and also since it is known that
every contact structure is carried by an open book decomposition whose monodromy
is isotopic to a pseudo-Anosov homeomorphism by Colin and Honda [4]. Hence we
ask the following question:

Question 1.3 Can every pseudo-Anosov homeomorphism h be expressed as the first
return map of a Reeb flow R˛?

The main theorem of this paper is Theorem 2.4, which states that the answer to this
question is also negative, ie, the flux is not always zero for pseudo-Anosov homeomor-
phisms.

2 The flux

The goal of this section is to give basic properties of the flux; see Calabi [1]. The
discussion will be done more generally on a compact symplectic manifold, since it
might be more transparent in that context.
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2.1 Flux

Let .S; !/ be a compact symplectic manifold and h be a symplectomorphism of
.S; !/. Let h�W H1.S IZ/!H1.S IZ/ be the map on homology induced from h and
let K be the kernel of h�� id. Also let � be a lattice of R generated by

R
† ! , where

Œ†� ranges over H2.S IZ/. Then define the map

FhW K!R=�

as follows: Let Œ
 � 2 K . Since 
 is homologous to h.
 /, one can find an oriented
singular cobordism C (mapped into S ) whose boundary consists of h.
 /� 
 . We
then define

Fh.
 /D

Z
C

!:

Two cobordisms C;C 0 with the same boundary differ by an element of H2.S IZ/;
hence the quantity is well-defined only up to � . It is straightforward to verify that
Fh.
 / also only depends on the homology class of 
 . The number Fh.Œ
 �/ 2R=� is
thus well-defined and is called the flux of h along 
 . We say the flux of h is nonzero
if the image of K is not Œ0� 2R=� .

If h1; h2 are two symplectomorphisms of .S; !/ and Œ
 �D Œh1.
 /�D Œh2.
 /�, then

Fh2ıh1
.Œ
 �/D Fh2

.Œ
 �/CFh1
.Œ
 �/:

In other words, the flux is a homomorphism, when viewed as a map from the group
Symp0.S; !/ of symplectomorphisms which act trivially on H1.S IZ/ to the group
Hom.H1.S IZ/;R=�/ D H 1.S IR=�/: We can also easily modify the flux of any
h 2 Symp0.S; !/ by composing with time–1 maps of locally Hamiltonian flows.

If in addition ! D dˇ , then the form h�ˇ �ˇ is a closed 1–form and the flux of h

along 
 can be rewritten as

Fh.Œ
 �/D

Z



h�ˇ�ˇ;

by the use of Stokes’ formula. The flux of h is nonzero if and only if Œh�ˇ�ˇ�¤ 0

on K . Moreover, � D 0.

2.2 2–forms on the mapping torus

Let †.S; h/D .S � Œ0; 1�/=.x; 1/� .h.x/; 0/ be the mapping torus of .S; !/. It fibers
over the circle with fiber S .

There is a natural closed 2–form !h on †.S; h/, which is obtained by setting !hD !

on S� Œ0; 1� and identifying via the symplectomorphism h. The 2–form !h pulls back

Algebraic & Geometric Topology, Volume 8 (2008)



2150 Vincent Colin, Ko Honda and François Laudenbach

to ! on S �ftg, t 2 Œ0; 1�, and its kernel is directed by @t , where t is the coordinate
for Œ0; 1�.

We have the following lemmas:

Lemma 2.1 Suppose ! is exact. If h is the first return map of a Reeb vector field R˛

where ˛ satisfies d˛jS�f0g D ! , then h is a symplectomorphism of .S; !/. Moreover,
d˛ D !h .

Proof Consider the contact 1–form ˛ D fdt Cˇ on S � Œ0; 1�, where f D f .x; t/
is a function and ˇ D ˇ.x; t/ is a 1–form in the S –direction. Write ˇt .x/D ˇ.x; t/.
We compute

d˛ D dSf ^ dt C dSˇt C dt ^ P̌t ;

where dS is the exterior derivative in the S –direction and P̌t D dˇt=dt . By the
condition d˛jS�f0g D ! , we have dSˇ0 D ! . Since we can normalize R˛ D g@t ,
where g D g.x; t/, it follows that iR˛d˛ D g.�dSf C P̌t /D 0 and P̌t D dSf is an
exact form on S . Hence dSˇt is independent of t and equals ! . This shows that
d˛ D dSˇt D !h . By the invariance of ˛ under the map .x; t/ 7! .h.x/; t � 1/, we
see that h preserves ! .

Lemma 2.2 Suppose ! is exact and the flux of h is nonzero. Then Œ!h� is nonzero in
H 2.†.S; h/IZ/. Hence h cannot be realized as the first return map of a Reeb vector
field R˛ .

Proof Let 
 be a curve in S such that Fh.
 / is nonzero. Then �
 and h.
 / bound
a subsurface C � S � f0g so that

R
C ! ¤ 0. We construct a closed 2–cycle C 0 in

†.S; h/ by gluing 
 � Œ0; 1� with C . Now we see that
R

C 0 !h D
R

C ! ¤ 0. Hence
Œ!h� 6D 0 in H 2.†.S; h/IZ/. By Lemma 2.1, h cannot be the first return map of a
Reeb vector field.

Conversely, when ! is exact and h is the identity near @S , we have a criterion, due
to Giroux (see Colin [2]), to realize h as the first return map of a Reeb vector field.
The condition that h D id near @S is not realized in general for pseudo-Anosov
homeomorphisms, but in practice it is possible to deform the diffeomorphism near @S
so that it is the identity, without altering the sets of periodic points too much; see Colin
and Honda [3].

Lemma 2.3 (Giroux) Let .S; ! D dˇ/ be a compact exact symplectic manifold and
h be a symplectomorphism of .S; !/, which is the identity near @S . If Œh�ˇ�ˇ�D 0 in
H 1.S IR/, then there exists a contact form ˛ on †.S; h/ and a Reeb vector field R˛

whose first return map on one fiber is h.
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Proof We have that h�ˇ�ˇD df . Note that df D 0 near @S since hD id near @S .
One can always translate f so that f is strictly positive on S and is constant near @S .
The 1–form ˛ D dt Cˇ is a contact form on S �R whose Reeb vector field is @t . It
is invariant under the diffeomorphism

H W .x; t/ 7! .h.x/; t �f .x//;

and thus induces a contact form ˛ on †.S; h/' .S �R/=..x; t/�H.x; t//.

2.3 Surface case

Let us now specialize to the case of interest: S is a compact oriented surface, ! is an
area form on S and h is an area-preserving diffeomorphism of .S; !/. Let us assume
without loss of generality that the !–area of S is 1. If @S D ∅, then � D Z since
H2.S IZ/ is generated by ŒS �. On the other hand, if @S 6D ∅, then � D 0 and the
exactness of ! is automatically satisfied.

The goal of this note is to prove the following:

Theorem 2.4 There exist a compact surface S with empty (resp. nonempty) boundary
and a pseudo-Anosov homeomorphism h of S with h� D id, whose flux with respect
to the singular h–invariant area form ! is nonzero, as viewed in R=Z (resp. R).

We now discuss a technical issue, namely the fact that h is only C 0 at the singular set
LD fp1; : : : ;pkg of the stable/unstable foliations. Let ! be the h–invariant singular
area form given by the product �u˝�s of both transverse measures. It is singular in
the sense that it is a 2–form which vanishes on L. As a measure it is equivalent to any
Lebesgue measure on S . Hence, according to a theorem of Oxtoby and Ulam [7], it is
conjugated by a homeomorphism to a smooth area form.

Instead of the Oxtoby–Ulam approach, our approach will be based on Moser’s lemma.
Let D be an arbitrarily small open neighborhood of L so that each connected component
of D is a polygonal region whose boundary consists of subarcs of leaves of F s or Fu .
Then we have the following:

Lemma 2.5 There exist an everywhere smooth area form !0 on S and a diffeo-
morphism h0 , which coincide respectively with ! and h outside of D and satisfy
(i)
R

D0
! D

R
D0
!0 for each connected component D0 of D and (ii) .h0/�!0 D !0 .

Proof Let !0 be an area form which coincides with ! on S � .D \ h.D//, and
has the same area as ! on each connected component D0 of D . (By using an
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auxiliary area form on S , the construction of such an !0 becomes equivalent to the
extension of a positive smooth function with a fixed integral.) There also exists a
smooth diffeomorphism  of S which coincides with h on S �D . Note that the
germ of h along @D extends to an embedding of D into S . By the construction of !0

and  , we have  �!0 D !0 on S �D .

We now claim that Z
D0

 �!0 D

Z
D0

!0

for each component D0 of D . We haveZ
D0

!0 D

Z
D0

! D

Z
D0

h�! D

Z
h.D0/

!;

by our choice of !0 and the h–invariance of ! . On the other hand, we haveZ
D0

 �!0 D

Z
h.D0/

!0

by a change of variables. If D0
0

is the component of D that nontrivially intersects
h.D0/, then Z

D0
0
\h.D0/

! D

Z
D0

0
\h.D0/

!0;

since Z
D0

0

! D

Z
D0

0

!0

and ! D !0 on D0
0
� h.D0/. From this we deduce thatZ

h.D0/

! D

Z
h.D0/

!0:

The claimed equality follows.

Finally, Moser’s lemma applies on D to the pair of area forms !0 and  �!0 . It yields a
diffeomorphism ' of D which is the identity near the boundary (hence extends to S by
the identity of S 0 ) such that '�. �!0/D!0 . We set h0D ı' . This diffeomorphism
meets the required condition both on S 0 and D , hence on S .

If we choose 
 so that both 
 and h0.
 / avoid the small neighborhood D of the
singular locus L (after isotopy), then we see that Fh.
 /D Fh0.
 /. Since the flux only
depends on the curve up to isotopy, it follows that Fh D Fh0 .
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Remark When F s and Fu are orientable, the transverse measures define 1–forms
that are closed but not exact. They are eigenvectors for h� with eigenvalues � and
1=�. Thus if h� D id, then the foliations are not orientable.

3 Proof of Theorem 2.4

Let SDSg be a closed oriented surface of genus g and ˛ and ˇ be two 1–dimensional
submanifolds of S , ie, the union of disjoint simple closed curves.

We recall that ˛ and ˇ fill S if ˛ and ˇ intersect transversely and minimally and if
each region of S�.˛[ˇ/ is a 2n–gon with n> 1. Such a system of curves allows one
to define two systems of flat charts, the ˛– and the ˇ–charts, in the following way: The
set ˛[ˇ gives a cell decomposition of S . Consider its dual cell decomposition. (By
this we mean we place a vertex vPi

in the interior of each component Pi of S�.˛[ˇ/.
If Pi and Pj share an edge of ˛[ˇ , then take an edge from vPi

to vPj which passes
through the common edge of ˛[ˇ exactly once.) Let Eˇ be the union of edges of
the dual cellular decomposition that meet ˇ . Then Eˇ cuts S into annuli whose cores
are the components of ˛ that we call the ˛–charts. The ˇ–charts are defined similarly.

˛ ˛

˛

ˇ

Figure 1: Dual cell decomposition meeting the ˇ curves, together with flat
geodesics parallel to ˛

Note that there is one chart for each curve and hence each chart can be viewed as a
thickening of an appropriate ˛– or ˇ–curve. These charts are equipped with a singular
flat metric g which is standard on each little square, corresponding to intersections
of ˛– and ˇ–charts, as explained in [5, Exposé 13, Section III]. (In particular, the
˛–metric and the ˇ–metric coincide on the squares.)

We will construct our example on a surface S5 of genus 5.

Algebraic & Geometric Topology, Volume 8 (2008)
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Lemma 3.1 There exist two multicurves ˛D ˛1[˛2 and ˇD ˇ1[ˇ2 on S5 where:

� ˛ and ˇ fill S5 ;

� ˛1 and ˇ1 are disjoint and form a bounding pair;

� ˛2 and ˇ2 are separating curves;

� #.˛1\ˇ2/D #.˛2\ˇ1/D 2;

� #.˛2\ˇ2/D 16.

Proof We start with a genus 2 surface S 0
2

, together with simple closed curves ˛0
2

and ˇ0
2

which are both nullhomologous in S 0
2

, fill S 0
2

and intersect 8 times. See
Figure 2. (To see that ˇ0

2
separates, take the algebraic intersection number with a

suitable basis for H2.S
0
2
IZ/.) Now, two regions H 0

1
and H 0

2
of S 0

2
n .˛0

2
[ ˇ0

2
/ are

8–gons. For i D 1; 2, pick a disk D0i � Int.H 0i /.

˛02 ˇ02

Figure 2: The genus 2 surface S 0
2

We now take a second copy .S 00
2
; ˛00

2
; ˇ00

2
;D00

1
;D00

2
/ of .S 0

2
; ˛0

2
; ˇ0

2
;D0

1
;D0

2
/ and glue

S 0
2
n .D0

1
[D0

2
/ to S 00

2
n .D00

1
[D00

2
/ by identifying @D0i and @D00i , i D 1; 2. We call

S5 the resulting surface. See Figure 3. Let ˛1 D @D
0
1
D @D00

1
and ˇ1 D @D

0
2
D @D00

2
.

Next, take one connected component of ˇ0
2
\ @H 0

1
and one connected component of

ˇ00
2
\ @H 00

1
, and make the connected sum of these two components along an arc which

crosses ˛1 exactly once and stays inside .H 0
1
n Int.D0

1
//[ .H 00

1
n Int.D00

1
//. We call

ˇ2 the result of this sum of ˇ0
2

and ˇ00
2

. By construction, #.˛1\ˇ2/D 2. Now do the
same operation with components of ˛0

2
and ˛00

2
in @H 0

2
and @H 00

2
, so that the resulting

curve ˛2 satisfies #.˛2\ˇ1/D 2.

By construction, we see that #.˛2\ˇ2/D 8C 8D 16. The families ˛ D ˛1[˛2 and
ˇ D ˇ1[ˇ2 fill S5 . Since ˛0

2
and ˛00

2
were nullhomologous, the same also holds for

˛2 . Finally it is clear that ˛1 and ˇ1 are disjoint and cobordant in S5 .
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˛1 ˇ1

ˇ2

˛2

Figure 3: The genus 5 surface S5

The system ˛D ˛1[˛2 , provided by Lemma 3.1, comes with two (oriented) ˛–charts
U1�˛1 and U2�˛2 , where UiD Œ0; ni ��Œ0; 1�=.0;y/� .ni ;y/, ni denotes #.˛i\ˇ/,
namely n1D 2, n2D 18 and ˛i D Œ0; ni ��f1=2g=�. Similarly, there are two ˇ–charts
V1 and V2 , of the form Œ0; 1�� Œ0;mi �=.x; 0/ � .x;mi/, where mi D #.ˇi \ ˛/, ie,
m1 D 2, m2 D 18, and ˇi D f1=2g � Œ0;mi �=�. In what follows, we equip S5 with
the flat metric associated to the system ˛ and ˇ and compute areas using this metric,
normalized so that the total area of S is 1.

We will denote Œ��� the mapping class of a positive Dehn twist about the closed curve �.
The class Œ�˛i

� admits an affine representative �˛i
which is given on Ui by the matrix

�
1 ni

0 1

�
;

and is the identity on Uj for j ¤ i .
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Similarly, Œ��1
ˇi
� admits an affine representative ��1

ˇi
which is given on Vi by the matrix�

1 0

mi 1

�
;

and is the identity on Vj for j ¤ i .

Lemma 3.2 The map hD �˛2
ı �9
˛1
ı ��9
ˇ1
ı ��1
ˇ2

is a pseudo-Anosov homeomorphism
which acts by the identity on H1.S IZ/.

Proof On both U1 and U2 , the composition �˛2
ı �9
˛1

is given by the matrix�
1 18

0 1

�
and thus is a smooth representative of its mapping class outside the singular points of
the flat structure. Similarly, on both V1 and V2 , the composition ��9

ˇ1
ı ��1
ˇ2

is given
by the matrix �

1 0

18 1

�
:

As a result, the homeomorphism h is given away from the singular points of the flat
structure by the matrix �

325 18

18 1

�
:

Since the trace of the matrix is > 2, h is pseudo-Anosov. It preserves the area coming
from the singular flat metric on the charts.

Since ˛2 and ˇ2 are homologous to zero and ˛1 and ˇ1 form a bounding pair, h

induces the identity on homology.

Lemma 3.3 The flux of h is nonzero, when viewed in R=Z. More precisely, if 
 is
a curve so that ��1

ˇ2
.
 / has geometric intersection one with each of ˛1 and ˇ1 , then

Fh.Œ
 �/¤ 0.

Proof Let ı be a closed geodesic with respect to the singular flat metric which
corresponds to the singular flat coordinate system. In other words, ı is a piecewise
affine curve, with corners at singularities of the affine structure.

First we claim that ��1
ˇ2

has zero flux, ie, the area between ı and ��1
ˇ2
.ı/ is zero for

all ı . (Note that ��1
ˇ2
.ı/ is not necessarily a flat geodesic even if ı is.) Indeed, since

��1
ˇ2

is the identity on V1 , we only have to look on V2 . The curve ı intersects V2 along
a finite union of affine arcs a1; : : : ; an . For any such ai , the concatenation xai of �ai
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and ��1
ˇ2
.ai/ divides V2 into two components with the same area. This means that the

area between xai and ˇ2 D f1=2g� Œ0; 18�=� is zero. Thus, xai bounds a subsurface in
S with the same area as the surface bounded by ˇ2 D f1=2g � Œ0; 18�= �. The sign
of this area depends on the sign of the intersection of ai with ˇ2 . Now observe that
��1
ˇ2
.ı/� ı D

S
1�i�n xai . Since ˇ2 is homologous to zero, it has as many positive

intersections with ı as negative intersections. Thus the total signed area between ı and
��1
ˇ2
.ı/ is the total signed area bounded by

S
1�i�n xai , which in turn is zero. Similarly,

we see that �˛2
has zero flux.

Next suppose the geodesic ı has geometric intersection one with each of ˛1 and ˇ1 .
We claim that the area between ı and �˛1

ı ��1
ˇ1
.ı/ equals the area A bounded by

˛1[ˇ1 in S . Since ˛1\ˇ1D∅, it follows that Int.U1/\ Int.V1/D∅ and the affine
representatives �˛1

and ��1
ˇ1

commute. The curve ı intersects V1 along a connected
affine arc b and U1 along a connected affine arc a. The concatenation of �b and
��1
ˇ1
.b/ is a closed curve xb which cuts V1 into two components of the same area.

Similarly, xa, obtained as the concatenation of �a and �˛1
.a/, divides U1 into two

components of the same area. Then �˛1
ı��1
ˇ1
.ı/�ı equals xa[xb , and ı and �˛1

ı��1
ˇ1
.ı/

cobound a subsurface in S5 of area A. By the commutativity of �˛1
and ��1

ˇ1
, we have

�9
˛1
ı ��9
ˇ1
D .�˛1

ı ��1
ˇ1
/9 . Hence the area between ı and �9

˛1
ı ��9
ˇ1
.ı/ is 9A.

We now claim that AD .1=2/Area.S/D 1=2. This is due to the symmetry of the ˛–
and ˇ–charts: The chart U1 is decomposed by ˛1 D Œ0; 2��f1=2g=� into two pieces
with the same area. On the other hand, U2 is decomposed by ˇ1 into two rectangles
R1 and R2 . On each Ri , the number of intersections between ˛2 and ˇ2 is 8. Hence
Area.R1/ D Area.R2/. We conclude that the area between ı and �9

˛1
ı ��9
ˇ1
.ı/ is

9AD 9=2� 1=2 2R=Z.

By putting together the above calculations and observing that Fh.Œ
 �/ only depends on
the isotopy class of 
 , we see that Fh.Œ
 �/DAD 1=2.

This completes the proof of Theorem 2.4 when @S D∅.

To treat the case with boundary, we notice that the homeomorphism we have constructed
fixes the singular points of the invariant foliations. We pick one of them and blow up the
surface at this point. The homeomorphism h lifts to a pseudo-Anosov homeomorphism
on the blown-up surface xS which fixes the blown-up foliations. It also induces id� on
H1. xS IZ/ and has nonzero flux.

On the other hand, it is easy to construct pseudo-Anosov homeomorphisms with
vanishing flux that act trivially on H1.S IZ/. Let ˛1 , ˇ1 be simple closed curves
which fill S and are both nullhomologous. As explained in [5, Exposé 13, Section III],
if we compose twists along these curves (positive Dehn twists along ˛1 represented
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by �˛1
and negative Dehn twists along ˇ1 represented by ��1

ˇ1
, where we use at least

one �˛1
and at least one ��1

ˇ1
), we obtain a pseudo-Anosov homeomorphism. The

argument developed in the proof of Lemma 3.3 tells us that the flux is always zero.
More precisely, consider the singular flat metric compatible with ˛1 and ˇ1 , and let ı
be a closed curve represented by a flat geodesic. As in the second paragraph of the
proof of Lemma 3.3, the area between ı and �˛1

.ı/ is zero for all ı , since ˛1 is
separating. Similarly, the area between ı and ��1

ˇ1
.ı/ is zero for all ı . Hence, if h is

any composition of �˛1
and ��1

ˇ1
(both with zero flux), then it also has zero flux. This

justifies the fact that, in the proof of Theorem 2.4, we have to look at more elaborate
examples to find nonzero flux.

Another case when h can be realized as the first return map of a Reeb flow is when
h� � id is invertible and @S ¤ ∅. We learned the following lemma from Yasha
Eliashberg.

Lemma 3.4 Let h be a diffeomorphism of a surface S with nonempty boundary
which preserves an area form ! . If 1 is not an eigenvalue of h� , then ! admits a
primitive ˇ such that Œh�ˇ�ˇ�D 0 in H 1.S IR/.

Proof Pick any primitive ˇ0 of ! . By hypothesis, the map h�� id is surjective. Thus,
one can find Œ� � 2H 1.S IR/ such that Œh�ˇ0�ˇ0�D .h

�� id/Œ� �. Now we have that
ˇ D ˇ0� � is a primitive of ! and that Œh�ˇ�ˇ�D 0 in H 1.S IR/.

Now, by applying Lemma 2.3, h can be realized as the first return map of a Reeb vector
field.

We end this section with the following questions:

Question 3.5 Is it possible to find a pseudo-Anosov homeomorphism of a surface S

which acts trivially on H1.S IZ/ and takes some noncontractible curve 
 to a curve
h.
 / that can be isotoped away from 
 ?1

If yes, the flux of such a pseudo-Anosov homeomorphism would automatically be
nonzero.

Question 3.6 Let g and h be two pseudo-Anosov homeomorphisms acting trivially
on H1.S IZ/ such that the composition g ıh is isotopic to a pseudo-Anosov homeo-
morphism f . Suppose the flux of g is zero and the flux of h is nonzero. Is the flux of
f nonzero?

If yes, this procedure would allow us to produce many pseudo-Anosov homeomorphisms
with nonzero flux.

1Dan Margalit has informed us of an example of a pseudo-Anosov homeomorphism on a genus 3

surface with this property. His example would therefore also have nonzero flux.
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4 A question

There is an invariant of an isotopy class of surface diffeomorphisms Œh� which is defined
in a manner much like the flux. We thank Ian Agol for bringing this to the authors’
attention. Let S be a hyperbolic surface with geodesic boundary. If Œ
 � 2 K , ie,
Œh.
 /�
 �D 0, then represent h.
 / and 
 by geodesics, and compute the area bounded
by the two geodesics. By the Gauss–Bonnet theorem, this area equals �2��.A/,
where A is a surface between the two geodesics. Here the Euler characteristic �.A/ is
more precisely an Euler measure, ie, it is computed with signs: if �A denotes A with
reversed orientation, then one has �.�A/D��.A/. This gives rise to a map

GŒh�W K!R=�;

where � D 2��.S/Z when S is closed and � D 0 when S has boundary. When
restricted to the Torelli group T .S/, we have a homomorphism:

GW T .S/!H 1.S IR=�/' Hom.H1.S IZ/;R=�/;

Œh� 7!GŒh�:

Since the pseudo-Anosov representative of a mapping class is basically unique, we ask:

Question 4.1 Is Fh D GŒh� for h pseudo-Anosov and in T .S/, up to an overall
constant factor?

Finally, we briefly discuss the relationship to the monotonicity condition for an area-
preserving diffeomorphism h, described by Seidel [8]. Suppose that �.S/ < 0. On
†.S; h/ consider the tangent bundle W to the fibers and let c1.W / be its first Chern
class. The monotonicity condition requires that Œ!h�D�c1.W / for some real number �.
Using the notation from Lemma 2.2, one can verify that hc1.W /;C 0i D �.C / for
homology classes of type C 0 . Here C is the surface with @C D h.
 /�
 . This means
that monotonicity holds if and only if Fh and GŒh� are proportional. (A similar, but
slightly more complicated, monotonicity condition also appears in the definition of
periodic Floer homology of h. See Hutchings and Sullivan [6].)
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