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All exceptional surgeries on alternating knots
are integral surgeries

KAZUHIRO ICHIHARA

We show that all non-trivial exceptional surgeries on hyperbolic alternating knots in
the 3–sphere are integral surgeries.

57M50

1 Introduction

By a Dehn surgery on a knot (ie, an embedded circle in a 3–manifold), we mean the
following operation to create a new 3–manifold from a given one and a given knot;
remove an open tubular neighborhood of the knot, and glue a solid torus back. Here
and hereafter in this paper, all 3–manifolds are assumed to be orientable.

The well-known Hyperbolic Dehn Surgery Theorem due to Thurston [31, Theorem
5.8.2] says that, each hyperbolic knot (ie, a knot with hyperbolic complement) admits
only finitely many Dehn surgeries yielding non-hyperbolic manifolds. In view of this,
such finitely many exceptions are called exceptional surgeries.

In this paper, we consider exceptional surgery on hyperbolic alternating knots in the 3–
sphere S3 . A knot in S3 is called alternating if it admits a diagram with alternatively
arranged over-crossings and under-crossings running along it. Note that Menasco
showed in [22] that an alternating knot in S3 is hyperbolic unless it is a .2;p/–torus
knot; that is, the knot isotoped to the .2;p/–curve on the standard embedded torus in
S3 .

Here let us recall fundamental terminologies about Dehn surgery. See Rolfsen [28] in
details for example. As usual, by a slope, we mean the isotopy class of a non-trivial
unoriented simple closed curve on a torus. Consider the slope on the peripheral torus of
a knot K which is represented by the curve identified with the meridian of the attached
solid torus via the surgery. Then we can see that Dehn surgery on K is characterized
by the slope, which we call the surgery slope. When K is a knot in S3 , by using the
standard meridian-longitude system, slopes on the peripheral torus are parametrized by
rational numbers with 1=0. For example, the meridian of K corresponds to 1=0 and
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the longitude to 0. By the trivial Dehn surgery on K in S3 , we mean the Dehn surgery
on K along the meridional slope 1=0. Thus it yields S3 again, which is obviously
exceptional, when K is hyperbolic. We say that a Dehn surgery on K in S3 is integral
if it is along an integral slope. This means that the curve representing the surgery slope
runs longitudinally once.

Then our main theorem is as follows.

Theorem 1.1 On a hyperbolic alternating knot in the 3–sphere, all non-trivial excep-
tional surgeries are integral.

In general, it is conjectured that, on a hyperbolic knot in S3 , all non-trivial exceptional
surgeries are integral or half-integral. See Kirby [18, Problem 1.77, (A) Conjecture (3)].
Only known example of hyperbolic knots in S3 admitting non-integral exceptional surg-
eries are the knots given by Eudave–Muñoz in [9]. Also see Section 3.2. Thus Theorem
1.1 implies that the knots given by Eudave–Muñoz in [9] are all non-alternating.

Also, as an immediate corollary, we have the following.

Corollary 1.2 A hyperbolic alternating knot in the 3–sphere admits at most 10 excep-
tional surgeries.

Proof Let K be a hyperbolic alternating knot in the 3–sphere. Then, by Theorem 1.1,
all non-trivial exceptional surgeries are integral. On the other hand, as an immediate
corollary to Ichihara [16, Theorem 1.1], it is shown that; on any hyperbolic knot in
S3 , there are at most 9 integral exceptional surgeries. Thus, together with the trivial
surgery, K admits at most 10 exceptional surgeries.

This concerns the famous Gordon conjecture; there exist at most 10 exceptional surgeries
on each hyperbolic knot. See [18, Problem 1.77]. Previously, the sharpest known bound
was 12, which is obtained as a corollary of the so-called “6–theorem” given by Agol
[1, Theorem 8.1] and Lackenby [19] independently. Recently, in [2], Agol announced
that there are at most finitely many hyperbolic knots which admit more than eight
exceptional surgeries. And, very recently, in [20], Lackenby and Meyerhoff announced
the affirmative answer to this conjecture by a combination of new geometric techniques
and a rigorous computer-assisted calculation. It should be mentioned that Corollary 1.2
is worth little after Lackenby and Meyerhoff [20], but they do not show the integrality
of non-trivial exceptional surgeries.
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2 Proof of Theorem 1.1

We start with recalling a classification of exceptional surgeries. As a consequence of the
famous Geometrization Conjecture, raised by Thurston [32, Section 6, Question 1], and
established by recent Perelman’s works [25; 26; 27], all closed orientable 3–manifolds
are classified as; reducible (ie, containing 2–spheres not bounding 3–balls), toroidal (ie,
containing incompressible tori), Seifert fibered (ie, foliated by circles), or hyperbolic
(ie, admitting a complete Riemannian metric with constant sectional curvature �1).
See Scott [29] for a survey. Thus exceptional surgeries are also divided into three types;
reducible (ie, yielding a reducible manifold), toroidal (ie, yielding a toroidal manifold),
or Seifert fibered (ie, yielding a Seifert fibered manifold).

We first show the following lemma.

Lemma 2.1 If a hyperbolic alternating knot K has a connected prime alternating
diagram D satisfying t.D/ > 4, then all non-trivial exceptional surgeries are integral.

The proof of this lemma heavily depends upon the result obtained by Lackenby in [19].
Thus we prepare some terminologies defined and used there. Actually the following
are simplified versions of the original definitions. See [19] for full details. Let D

be a connected alternating diagram of a knot in S3 , which we view as a 4–regular
graph embedded in S2 , equipped with “under-over” crossing information. Then D

is called prime if each simple closed curve in S2 intersecting D transversely in two
points divides S2 into two discs, one of which contains no crossings of D . The twist
number of the diagram D , denoted by t.D/, is defined as the number of twists, which
are either; maximal connected collections of bigon regions in D arranged in a row or
isolated crossings adjacent to no bigon regions.

Proof of Lemma 2.1 Suppose that a hyperbolic alternating knot K has a connected
prime alternating diagram D . Then the exterior of K can be given the canonical
angled spine arising from D . See [19, Section 4] for the definition of the angled
spine, and see [19, Section 5] for the construction of the canonical angled spine arising
from D . From such an angled spine structure, the combinatorial length of a slope on
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(the peripheral torus of) K can be defined. See [19, Section 4] for its definition. Then
it follows from [19, Theorem 4.9] that the combinatorial length of the slope p=q on
K is at least jqj � t.D/ ��=4.

On the other hand, also in [19], Lackenby established a combinatorial analogue of the
so-called “2� –theorem” as [19, Theorem 5.4]. The following is a simplified version
of his theorem, together with the affirmative answer to the Geometrization conjecture:
Let K be a hyperbolic knot in a closed orientable 3–manifold, and r a slope with
combinatorial length more than 2� with respect to some angled spine in the exterior
of K . Then Dehn surgery on K along r must yield a closed hyperbolic 3–manifold.

Therefore, on a hyperbolic alternating knot K with a connected prime alternating
diagram D satisfying t.D/ > 4, Dehn surgery along a non-integral slope (ie, slope
p=q with jqj � 2) must yield a closed hyperbolic 3–manifold, that is, such a surgery
cannot be exceptional.

In the case where t.D/� 4, we have the following lemma.

Lemma 2.2 If a hyperbolic alternating knot K in S3 has a connected prime alternating
diagram D satisfying t.D/� 4, then K must be an arborescent knot.

We can actually determine all the possible prime alternating diagrams.

Here we recall definitions of an arborescent knot and its type. See Wu [33] for full
details. By a tangle, we mean a pair with a 3–ball and properly embedded arcs. From
two arcs of rational slope drawn on the boundary of a pillowcase-shaped 3–ball, one can
obtain a tangle, which is called a rational tangle. A tangle obtained by putting rational
tangles together in a horizontal way is called a Montesinos tangle. An arborescent
tangle is then defined as a tangle that can be obtained by summing several Montesinos
tangles together in an arbitrary order.

Suppose that a knot K in S3 is obtained by closing a tangle T . If T is a Montesinos
tangle, then we call K a Montesinos knot, and if T is an arborescent tangle, then we call
K an arborescent knot. For a Montesinos knot, the number of rational tangles forming
the corresponding Montesinos tangle is called the length of the Montesinos knot. We
denote by M.r1; r2; : : : ; rn/ a Montesinos knot constructed from rational tangles cor-
responding to rational numbers r1; r2; : : : ; rn . In particular, M.1=q1; 1=q2; : : : ; 1=qn/

with integers q1; q2; : : : ; qn is called a pretzel knot of n–strands.

In [33], Wu divides all arborescent knots into three types: By the type I knots, we
mean two-bridge knots or Montesinos knots of length 3. A bridge index of a knot in
S3 is defined as the minimal number of local maxima (or local minima) up to ambient
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isotopy. Thus a knot with bridge index 2 is called a two-bridge knot. As remarked
before, Menasco showed in [22] that a two-bridge knot is hyperbolic unless it is a
.2;p/–torus knot. A knot of type II is defined as the union of two Montesinos tangles,
each of which is formed by two rational tangles corresponding to 1=2 and a non-integer.
All the other arborescent knots are called of type III.

Proof of Lemma 2.2 Suppose that a hyperbolic alternating knot K in S3 has a
connected prime alternating diagram D satisfying t.D/� 4. By regarding twists in
D (ie, maximal connected collections of bigon regions in D or isolated crossings
adjacent to no bigon regions) as fat vertices, we have a planar embedding of a 4–regular
graph with at most four vertices. Note that when t.D/ > 1, such a graph has no loops
otherwise the graph D would be non-prime.

Then we can tabulate all planar embeddings of such graphs as illustrated in Figure 1
(the case of t.D/ � 3) and Figure 2 (the case of t.D/ D 4). This is done by using
elementary diagrammatic arguments, and so, we omit the details. In the figures, we
denote the vertices by small white boxes and the edges by thick lines.

Figure 1

By substituting suitable vertical or horizontal sequences of crossings into the white
boxes, we can reconstruct the diagram D . Thus it suffices to show that all the prime
connected diagrams obtained from the graphs in Figure 1 and Figure 2 represent
arborescent knots.

We first consider the graphs in Figure 1. Those three graphs are corresponding to the
cases t.D/D 1, 2, 3, respectively. In the case where t.D/D 1 (left in Figure 1), it
is clear that the resulting diagrams represent the unknot or .2;p/–torus knots, which
are two-bridge knots. In the case where t.D/D 2 (center in Figure 1), by substituting
both vertical or both horizontal sequences of crossings into the two white boxes, we
have the diagrams representing .2;p/–torus knots. On the other hand, if we substitute
one vertical and one horizontal sequences of crossings into the two white boxes, we
have the diagrams representing two-bridge knots. In the case where t.D/D 3 (right in
Figure 1), if we substitute three vertical sequences of crossings into all the three white
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(a) (b)

(c)

Figure 2

boxes, then it represents a 3–strand pretzel knot. Otherwise, we see that the diagrams
so obtained all represent two-bridge knots (possibly .2;p/–torus knots).

We next consider the graphs in Figure 2. Those three graphs are corresponding to the
case t.D/D 4. Note that, from the graph (c), we only have non-prime diagrams by
substituting sequences of crossings. Thus we can ignore it.

In the graph (a), there are four boxes; left two and right two. If we substitute both
horizontal sequences of crossings into the left two boxes, or both vertical sequences
of crossings into the right two boxes, then the diagrams so obtained have the twist
number at most three, and so we can ignore these cases. If we substitute vertical
and horizontal sequences of crossings into the left two and the right two white boxes
simultaneously, we have the diagrams representing the unions of two rational tangles.
Such diagrams actually represent two-bridge knots. Now suppose that we substitute two
vertical sequences of crossings into the left two white boxes. If we further substitute
vertical and horizontal sequences of crossings into the right two boxes, then we obtain a
diagram of a Montesinos knot of length three. After taking a mirror image if necessary,
it is denoted by M.1=q1; 1=q2; 1=.q3C 1=q4// with qi > 1 for 1� i � 4. Finally, if
we further substitute two horizontal sequences of crossings into the right two white
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boxes, then we obtain a diagram of an arborescent knot of type II or III. In fact, if each
one of the two sequences of crossings in the left and right white boxes is a full twist
(ie, a pair of crossings), then the knot so obtained is of type II. Otherwise all the knots
so obtained are of type III.

In the graph (b), there are four boxes arranged in line. If we substitute two horizontal
sequences of crossings into the adjacent two boxes, then the diagrams so obtained have
the twist number at most three, and so we can ignore these cases. If we substitute
vertical and horizontal sequences of crossings alternatively into the four white boxes,
then we have the diagrams representing the unions of two rational tangles. Such
diagrams actually represent two-bridge knots. If we substitute four vertical sequences
of crossings into the boxes, then we obtain a diagram representing a 4–strand pretzel
knot. Finally, it we substitute one horizontal sequences of crossings and three vertical
sequences of crossings into the four boxes, then we have a diagram of a Montesinos
knot of length three. Actually, after taking a mirror image, we have a Montesinos knot
M.1=p; 1=q; nC 1=r/ with positive integers p; q; r; n.

Consequently we have seen that all the prime connected diagrams obtained from the
graphs in Figure 1 and Figure 2 represent arborescent knots. This completes the proof
of Lemma 2.2.

Thus we can divide the remaining arguments into three cases as follows.

Lemma 2.3 On a hyperbolic two-bridge knot in S3 , all non-trivial exceptional surg-
eries are integral.

Proof In fact, in [5], Brittenham and Wu gave a complete classification of the excep-
tional surgeries on hyperbolic two-bridge knots. From this, we can verify that; on a
hyperbolic two-bridge knot, all non-trivial exceptional surgeries are integral. In fact,
they showed that among two-bridge knots, only the twist knots (ie, the knots with
the corresponding partial fraction decomposition of length two) can admit non-trivial
exceptional surgeries, which are actually all integral.

Lemma 2.4 On a hyperbolic alternating Montesinos knot of length 3 in S3 , all
non-trivial exceptional surgeries are integral.

The key ingredient in the proof of this lemma is using essential laminations in 3–
manifolds, defined by Gabai and Oertel in [11] as follows: We say a lamination � (ie,
a co-dimension one foliation of a closed subset of the ambient manifold) is an essential
lamination in a 3–manifold M if it satisfies the following conditions.
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(1) The inclusion of leaves of � into M induces an injection between their funda-
mental groups.

(2) The complement of � is irreducible.

(3) The lamination � has no sphere leaves.

(4) The lamination � is end-incompressible.

More about essential laminations, see Gabai [10] for example.

Proof of Lemma 2.4 In an unpublished preprint [7], Delman gave a construction
of essential lamination in a Montesinos knot exterior. See Delman–Roberts [8] for a
part of his construction. Actually if the Montesinos knot we consider has the form
M.1=p; r1; r2/ with p and all the denominators of the ri are odd, then the construction
given in [8] can be applied in our case. Also see Delman [6] for prototype of the
construction in [7]. Further detailed explanations of his construction for alternating
Montesinos knots will be appeared in Ichihara–Jong–Mizushima [17].

In particular, Delman showed in [7] that all the Montesinos knots, not of the form
M.x; 1=p; 1=q/ where x 2 f�1=2n;�1˙ 1=2n;�2C 1=2ng and p; q , and n are
positive integers, admit essential laminations in their exteriors, which survive after all
non-trivial Dehn surgeries. By the claim given in Thistlethwaite [30, Section 4, 2nd
paragraph], we see that these exceptions are all non-alternating knots. Precisely he
claimed that a Montesinos knot is alternating if and only if its reduced Montesinos
diagram, introduced in [21], is alternating. And actually the reduced Montesinos
diagrams of the Montesinos knots above are all non-alternating. See [30] and [21] for
detail.

Thus, all the alternating Montesinos knots have such essential laminations in the
exteriors. By examining his construction, we can verify that each essential lamination
so constructed admits at least two disjoint, nonparallel annuli properly embedded in the
complement of the lamination having the following property: One boundary component
is the meridian of the knot and the other lies in some leaf of the lamination. Having been
shown in Brittenham [4, Section 2], the existence of such a pair of annuli guarantees
that non-trivial non-integral Dehn surgery on the knot cannot be exceptional. Also see
Wu [34, Section 3] about this arguments.

Lemma 2.5 On a hyperbolic arborescent knot of type II or III in S3 , all non-trivial
exceptional surgeries are integral.

Proof In [33, Theorem 4.4], Wu showed that; all non-trivial non-integral surgeries on
arborescent knots of type II give hyperbolic manifolds. Equivalently, an arborescent
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knot of type II has only integral non-trivial exceptional surgeries. Also, in [33, Theorem
3.6], Wu showed that; all non-trivial surgeries on arborescent knots of type III give
hyperbolic manifolds. Equivalently, an arborescent knot of type III has no non-trivial
exceptional surgeries.

Proof of Theorem 1.1 Let K be a hyperbolic alternating knot in the 3–sphere. By
Lemma 2.1, if K has a connected prime alternating diagram D satisfying t.D/>4, then
all non-trivial non-integral surgeries on K give hyperbolic manifolds. Otherwise, by
Lemma 2.2, K must be an arborescent knot. Following Wu [33], we divide arborescent
knots into of type I, II, or III, and furthermore, divide type I knots into two-bridge knots
or Montesinos knots of length three. Then we obtain that; all non-trivial exceptional
surgeries are integral on a hyperbolic two-bridge knot by Lemma 2.3, on a Montesinos
knot of length three by Lemma 2.4, and on an arborescent knot of type II or III by
Lemma 2.5, respectively. This completes the proof.

3 Remarks

In this section, we collect some known facts about reducible/toroidal surgeries on
alternating knots. As far as the author knows, there are no explicit studies on Seifert
surgeries on alternating knots.

3.1 Reducible surgeries

We begin by considering reducible surgeries on alternating knots.

In fact, it is shown by Menasco and Thistlethwaite in [23, Corollary 1.1] that no Dehn
surgeries on a hyperbolic alternating knot in S3 yield reducible manifolds. We here
include an outline of their arguments for completeness. They studied essential surfaces
(ie, incompressible and boundary-incompressible) properly embedded in alternating
knot exteriors, and established that the following holds for an essential surface F ;

(1) ��.F /�
1

8
bˇ.nC 2/;

where b denotes the denominator of the boundary slope of F , ˇ the number of
boundary components of F , and n the twist-crossing number of the standard diagram

of the knot. Thus if F is of genus 0, then ˇ � 2 �
1

8
bˇ.nC 2/. From ˇ � 1 and

b � 1, this implies that n� 5. However, in [23], they determined alternating knots with
twist-crossing number up to five ([23, Figure 1.2]), and they are in fact all two-bridge
knots. For two-bridge knots, it is shown by Hatcher and Thurston in [15, Theorem 2(a)]
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that all non-trivial two-bridge knots other than .2;p/–torus knots have no reducible
surgery.

In general, F Gonzàlez–Acuña and H Short conjectured in [12] that the only way to
get a reducible 3–manifold by surgery on a knot in S3 is to surger on a cable knot
along the slope determined by the cabling annulus. This is now called the Cabling
Conjecture, and still remaining open. See [18, Problem 1.79].

3.2 Toroidal surgeries

We next consider toroidal surgeries on alternating knots. Such surgeries are actually
completely classified as follows.

In [24], based on the result obtained in [23], Patton claimed that if an alternating knot
admits a toroidal surgery, then it is either a 2–bridge knot or a 3–strand pretzel knot.
This is also achieved as [3, Lemmas 3.1 and 3.3]. We here include an outline of Patton’s
argument for completeness. Note that if a hyperbolic knot in S3 yields a toroidal
surgery, then the surgery slope actually becomes a boundary slope of an essential
punctured torus. Then, from (1), we see that the denominator b of the boundary slope
of the punctured torus is at most 2. However, if b D 2, then the twist-crossing number
must be at most 2. Then we see that such knots are only .2;p/–torus knots, which
are non-hyperbolic. If b D 1, from (1), we see that the twist-crossing number of a
hyperbolic alternating knot admitting toroidal surgery is at most 6. In [24, Section 1],
Patton asserts that a hyperbolic alternating knot with twist-crossing number at most 6
must be a two-bridge knot or a Montesinos knot of length 3. In the former case, in
[24, Section 2], by using the machinery developed in [15], he showed that the 2–bridge
knots have Conway forms of length two, ie, each of the knots is either of genus one,
or bounds a once punctured Klein bottle. Also see Brittenham–Wu [5]. In the latter
case, he studied in detail in [24, Section 3]. He used the machinery developed in
Hatcher–Oertel [14], and showed that the Montesinos knots must be 3–strand pretzel
knots. Again, each of such knots is either of genus one, or bounds a once punctured
Klein bottle.

On general Montesinos knots, in [35] together with his previous results, Wu gave a
complete classification of toroidal surgeries. Furthermore, he also gave a complete
classification of toroidal surgeries on large arborescent knots, in [36].

Also remark that Gordon and Luecke proved in [13] that if a hyperbolic knot in
S3 admits a non-integral toroidal surgery, then the knot is one explicitly given by
Eudave–Muñoz in [9].
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