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Angle-deformations in Coxeter groups

TIMOTHEE MARQUIS
BERNHARD MUHLHERR

The isomorphism problem for Coxeter groups has been reduced to its “reflection
preserving version” by B Howlett and the second author. Thus, in order to solve it, it
suffices to determine for a given Coxeter system (W, R) all Coxeter generating sets
S of W which are contained in R" , the set of reflections of (W, R). In this paper,
we provide a further reduction: it suffices to determine all Coxeter generating sets
S € RY which are sharp-angled with respect to R.

20F55; 51F15

1 Introduction

Let W be a group and let R € W. We call R a Coxeter generating set of W if
(W, R) is a Coxeter system. All Coxeter systems (W, R) considered in this paper are
assumed to have finite rank, ie R is a finite set.

Let (W, R) be a Coxeter system and let S € R" be a Coxeter generating set of W . A
subset J of S is called spherical if it generates a finite subgroup; if it is of cardinality 2,
it is called an edge of S. Let {s,7} C .S be an edge of S. By basic results on Coxeter
groups, one knows that there exist r,7’ € R and w € W such that (s,7)¥ = (r,r’).
If there exist 7,7’ € R and w € W such that {s,7}* = {r,r’}, then we call the edge
{s,t} sharp-angled with respect to R. We call S sharp-angled with respect to R if
all edges of S are sharp-angled with respect to R. The trivial example of the dihedral
groups shows that there are examples of Coxeter systems (W, R) admitting Coxeter
generating sets S € R which are not sharp-angled with respect to R.

In [11], the second author conjectured that for any Coxeter generating set S € R"
there exists an automorphism « of W such that «(S) € R” and such that «(S) is
sharp-angled [11, Conjecture 1]. This conjecture may be seen as a reduction step in
order to state the main conjecture about the solution of the isomorphism problem for
Coxeter groups, which is Conjecture 2 in [11] (see Remark 1 below).

It was mentioned without proof in [11] that Conjecture 1 is true if there is no subdi-
agram of type Hj. It turned out that this conjecture was too optimistic if there are
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H;—subdiagrams. Counterexamples have been found independently by Ratcliffe and
Tschantz [12] and by Grassi [9]. This motivates the question whether it is still true that
one can reduce the solution for the isomorphism problem to the main conjecture. The
goal of this paper is to show that this is indeed the case.

Our first result is the following.

Theorem 1 Let (W, R) be a Coxeter system. Let S € R" be a Coxeter generating
set of W having no subsystem of type H3. Then there exists an automorphism « of W
such that «(S) is sharp-angled with respect to R.

As already mentioned before, Theorem 1 was announced in [11] and it is a special case
of Theorem 2 below. Its proof is given in Section 6. We prefer to present it separately
since it is rather easy and provides at the same time a good overview on the kind of
arguments that will yield Theorem 2.

The situation becomes considerably more complicated if H3—subdiagrams are allowed.
First of all, the counterexamples to [11, Conjecture 1] show that one cannot expect
to produce sharp-angled Coxeter generating sets from S by automorphisms. So, we
have to produce the desired Coxeter generating set starting from S by a sequence of
operations which we call angle-deformations.

In order to define angle-deformations, we analyse the situation where we are given
a Coxeter system (W, R) and a Coxeter generating set S € R" such that there is
an edge J of S which is not sharp-angled with respect to R. It turns out that the
Coxeter diagram of the system (W, .S) has to satisfy several conditions with respect to
the subset J. These conditions will be deduced in Section 8. An edge satisfying these
conditions will be called a A—edge.

Let (W, S) be a Coxeter system and J = {r, s} be a A—edge of S. Then we construct
a mapping &: S — W such that §(s) = s,8(r) € (s,r) and such that S’ := {§(x) |
x € S} is a Coxeter generating set with the property that all spherical 2—subsets
{x', ¥} # {6(r).8(s)} are sharp-angled with respect to S. We call these mappings
J —deformations. In the case where there are no H3—subdiagrams, it is easy to give
the definition of these J—deformations. If there are H3—subdiagrams, the definition is
given recursively. We first define J—deformations for a class of diagrams which we
call tame. The general case will then be treated by induction on the number of “wild”
vertices.

The construction of J—deformations will enable us to prove our main result, which is
the following.
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Theorem 2 Let (W, R) be a Coxeter system and let S € R" be a Coxeter generating
set of W . Then there exists a sequence S = Sy, ..., Sy = S’ of Coxeter generating
sets S; such that S; is a J; —deformation of S;_; for some A-edge J; of S;_; for
each 1 <i <k, and such that S’ is sharp-angled with respect to R.

We remark that the proof of Theorem 2 is constructive. Hence it provides a concrete
algorithm to obtain the set S’ starting from S'. Combining the theorem above with
the fact that the isomorphism problem for Coxeter groups is reduced to its “reflection-
preserving version” (as described in [11]), we obtain the following.

Corollary 1.1 The isomorphism problem for Coxeter groups is solved as soon as the
following problem is solved.

Problem Let (W, R) be a Coxeter system. Find all Coxeter generating sets S C R"
such that S is sharp-angled with respect to R.

Remark 1 There is a conjecture about the solution of the above problem. This is
Conjecture 2 in [11] and it is a refinement of Conjecture 8.1 in Brady—McCammond—
Miihlherr—Neumann [2]. It says that if R and S are as in the problem above, one can
transform S into R by a sequence of twists introduced in [2]. The conjecture has been
proved for various classes of Coxeter systems; the reader may refer to [11] for a survey
on its status in 2005. Recently, it was shown by Ratcliffe and Tschantz in [12] that the
conjecture holds for chordal Coxeter systems as well.

Remark 2 1In [12], Ratcliffe and Tschantz obtained Theorem 2 for chordal Coxeter
systems. Their methods are quite different from ours. Their arguments rely heavily on
a very strong property of chordal Coxeter groups which is not available in the general
case.

The paper is organized as follows. In Section 2, we fix notation, recall some basic facts
on Coxeter groups and provide some preliminary results. In Section 3, we introduce
angle-deformations and make some observations about them. In Section 4, we prepare
the proof of Theorem 1. In this section we introduce ®—edges, which are special
cases of A—edges. Section 5 is devoted to introducing and investigating the notion of
a sharp-angled set of reflections in a Coxeter group. This will enable us to give the
proof of Theorem 1 in Section 6. In Section 7, we collect information about angle-
deformations of Coxeter systems with subdiagrams of type H3 and Hy. In Section 8§,
we define A—edges. Later on, these turn out to be precisely the edges of a Coxeter
system for which there are nontrivial angle-deformations. This fact is a consequence
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of Proposition 6.1 and Theorem 10.4, and it is indeed the key ingredient of the proof
of our main result. Section 9 can be seen as a preparatory section for the proof of
Theorem 10.4 which will be completed in Section 10. In Section 11, we finally give
the proof of our main result, Theorem 2.

2 Preliminaries

2.1 Graphs

For a set X, denote by P,(X) the set of all subsets of X having cardinality 2. A
graph is a pair (V, E) consisting of a set V and a set £ C P,(V). The elements of
V and E are called vertices and edges respectively.

Let I' = (V, E) be a graph. Let v,w be two vertices of I'. They are called adjacent if
{v,w} € E. In this paper, a path from v to w is a sequence v = vg, Vq,..., V0 = W,
where v;_ is adjacent to v; for all 1 <i < k and where vy,..., v, are pairwise
distinct; the number k is the length of the path. The path is minimal if it is of minimal
length. The distance between v and w (denoted by §(v, w)) is the length of a minimal
path joining them; if there is no path joining v and w, we put §(v, w) = oco.

A path v = vg,v1,...,V = w is said to be chordfree if E N Py({vg,...,vt}) =
{{vo, v1},{v1,v2}, ..., {vk_1,Vk}}. A path v =wvg,vy,..., v = w is called a circuit
if v=w and k > 2.

The relation R € V x V defined by R = {(v, w)|é(v, w) # oo} is an equivalence
relation whose equivalence classes are called the connected components of I". A graph
is said to be connected if it has only one connected component.

2.2 Coxeter systems

Let (W, S) be a pair consisting of a group W and a set S € W of involutions. For
r,s €S, denote by m,s € NU{oo} the order of the product rs in W . Note that we will
also use the notation o(rs) instead of m,g. Define E(S):={{r,s} S | 1 #m,g # o0}
to be the set of edges of S. Then I'(.S) is the graph (S, £(S)) whose edges are labelled
by the corresponding m, . Throughout this text, any graph notion (such as paths and
circuits) associated to the pair (W, S) must be understood as being in T'(S). In
particular, when we speak about the “diagram of (W, S)”, we refer to I'(S).

The Coxeter diagram associated to (W, S) is the graph (S, E’(S)) where E'(S) :=
{{r,s} C S|m,s = 3} and where the edges are labelled by the corresponding 1.
A subset K of S is said to be irreducible if the underlying Coxeter subdiagram
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(K, E'(K)) is connected. We call K spherical if it generates a finite group. Finally, K
is 2—spherical if m,s < oo forall r,s € K. If S is irreducible, spherical or 2—spherical,
we say that (W, S) is irreducible, spherical or 2—spherical, respectively. Note that
sometimes, we use the same notions for I'(S) instead of (W, S).

We say that (W, S) is a Coxeter system if S generates W and if the relations
((rs)™rs), ses form a presentation of W. We call R € W a Coxeter generating
set if (W, R) is a Coxeter system.

Let (W, R) be a Coxeter system. An element of W is called a reflection if it is
conjugate in W to an element of R; the set of all reflections is denoted by R" .

2.3 Conventions about figures

Here are some conventions about the figures appearing in the paper, which the reader
may refer back to when needed.

Throughout this text, all figures represent diagrams of the form I'(K) for some Coxeter
system (W, S) and K € S. The edges in plain have a finite label, while the edges in
strips have an infinite label. An absence of edge does not imply anything. If there is a
single edge with more than one label (say m > 1), then the figure must be understood
as m different figures, one for each of these labels. If there are two or more edges with
more than one label, then these edges will have the same number m > 1 of labels. In
that case, the figure must be understood as m different figures, the 7 —th figure being
obtained by taking the i —th label from each of these edges.

A dotted line between two vertices means that there is a path (in plain) joining these
two vertices, but the other vertices in the path were omitted. (It will be always clear
from the context what the omitted vertices are). For example, in Section 8, Figure 2
and Figure 3 contain a path {S(1), S(2),...,S(n—1),S(n)}. We denote by X this
set and we assume 7 > 2. Let X7 := X \ {S(1)} and X, := X \ {S(n)}. We assume
X has the following property:

o(S(i)S(j)) =ocforall i, j suchthatl <i < j<mand|i —j|>2.

Finally, for a vertex y ¢ X, we mean by X;y = oo that my, = oo forall x € X;.

2.4 Coxeter generating sets and automorphisms

Lemma 2.1 Let (W, S) be a Coxeter system and let Sy, S, be subsets of S such that
each edge of S is contained in Sy or S,. Put Sg: = S1NS,. Let6: S — W be a
mapping such that §(S;) is a Coxeter generating set of {S;) fori =0,1,2. Then §(S)
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is a Coxeter generating set of W . Moreover, if the restrictions of § to S; and S, extend
to automorphisms of {S1) and (S,) respectively, then § extends to an automorphism
of W.

Proof This follows immediately from the fact that W = (S7) * (s, (S2). O
The following lemma follows easily by the pigeon-hole principle.

Lemma 2.2 Let G be a finite group, let « be an automorphism of G andlet g € G .
Then o™ (g)a™ 1 (g)...a%(g)a(g)g = lg for some m > 0.

Using the previous lemma, one immediately obtains the following proposition.
Proposition 2.3 Let (W, S) be a Coxeter system and let «: W — W be an epimor-
phism. Suppose that there is a subset K of 25 such that the following holds:

(1) All elements of K are spherical.
(2) Forall K € K, the mapping oy is an automorphism of (K).

(3) Forall s € S, there exists wy € | Jg <k (K) such that a(s) = wgsw; !

Then o is an automorphism of W which is of finite order.

2.5 The geometric representation of a Coxeter system
In this subsection, we collect several basic results about the geometric representation
of a Coxeter system. The standard references are Bourbaki [1] and Humphreys [10].
Throughout this paper, 2 and ' are the following subsets of R:

Q :={cos(r/m) | me N}UJl, 00)

and Q' := Q\ {—1}. Moreover, we define a mapping C: N U {oo} — —Q by setting
C(m) := —cos(wr/m) if m € N and C(oc0) := —1.

Let V be a real vector space endowed with a symmetric bilinear form b: V x V — R.
The set of vectors v € V' with b(v,v) =1 is denoted by U(V, b) and for each such
vector, the corresponding orthogonal reflection with respect to b is denoted by py;
hence py(x) = x —2b(x,v)v foreach x e V.

Let (W, R) be a Coxeter system. Let V := R® and (e,),cg be the canonical basis
of V. Furthermore, let b: V x V — R be the symmetric bilinear form defined by

b(ey,es) = C(o(rs)).
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Theorem 2.4 The mapping r — p,, from R into O(V,b) extends to a monomor-
phism from W into O(V,b).

Thus, by the above construction, we obtain a canonical faithful linear representation of
the Coxeter group W which is called the geometric representation of (W, R). We now
identify W with its image in O(V, b) and we put &(W, R) :={w(e,) | w e W,r € R}.
We have the following:

Lemma 2.5 Forall r € R and w € W, we have py(,) = wrw™'; in particular,
RV ={py | € ®(W, R)}. Moreover, if , B € ®(W, R) are such that py = pg» then
B=aorf=—a.
The set ® := ®(W, R) is called the root system of (W, R). We put

VT :={Z,criurer | by >0 forall r € R}
and V™ := —V T furthermore, we put ®T:= VT Nd and d~:= V" N>,
Lemma26 ®=0TUd.
The elements of ®* are called the positive roots of (W, R). A subset IT of ® is called

a root-subbase of ® if T1 C ®T and if b(a, B) € —Q’ for all a # B € I1.

The following theorem is a consequence of the main result in Deodhar [6] and Dyer [7].

Theorem 2.7 Let IT be a root subbase of ® and put S :={p, |« € I1}. Then ({S), S)
is a Coxeter system. Conversely, let W' be a subgroup of W which is generated by a set
of reflections. Then there exists a root-subbase Il of ® such that W' = (p,, | a € TT').

2.6 Flexibility

Let (W, S) be a Coxeter system and J € S. We define the following notions and
notation:

e Jti={seS|VjeJ :my=2}

o Jin:={s5eS\J|mgj <oV jeJ}

o J®:i={seS\J|3TjeJ : mgsj=o0}.

o Gri=( H{a,b} S J® [ mgp <o0}).

e A J-component is a connected component of G .
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e Let L be a J—component. We shall say that j € J is L—free if m;; = oo for
all /[ e L.

e Anelement j of J is J®—free if it is L—free for every J—component L.

e The J-component L is said to be flexible if there exists j € J such that j is
L—free.

e Finally, we will say that J is flexible if all J—components are.
Here is a first observation.

Lemma 2.8 Let (W, S) be a Coxeter system and let J = {r, s} be an edge of S. Then
J is flexible if and only if there is no chordfree circuit in I'(S) of length at least 4
containing J .

Proof Suppose first J is not flexible. Then there exists a J—component L and
X,y € L such that my, <oo and mys <oo. Let x = x¢, X1, ..., X, =y be aminimal
path in L joining x to y. Define

M:=min{i | 0<i <k; my, < oo}
and m:=max {i | 0<i<M; my;, <oo}.

Then the subpath Xz, X 41, ..., Xpr from X, to xpy is still minimal, hence chordfree,
and possesses the following properties:

(1) my;s = oo forall i such that m <i < M (by definition of M).

(2) my,;, = oo for all i such that m <i < M (by definition of m).
Moreover, my,,s < oo and my,,, < oo. We then obtain a chordfree circuit 7, X,
Xm+41s--+5XM,S, I, as required. The situation is illustrated on Figure 1.

The converse is obvious. O

3 Angle-deformations

Definition 3.1 Let (W, S) be a Coxeter system, let J = {r, s} be an edge of S and
let w € (J) be such that wrw ™! and s generate (J). An (r, s, w)—deformation of S
is a mapping §: S — W satisfying the following properties:

(AD1) 8(x)e SV forall x € S.
(AD2) 8(r) =wro~! and §(s) = 5.
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Figure 1. Lemma 2.8

(AD3) 4(S) is a Coxeter generating set of W,

(AD4) There exists a bijection A from the set of edges of S onto the set of edges of
8(S) such that A(J) = {wrw~', s} and such that for each edge K # J of
S, there exists wg € W with A(K) = K¥K,

Definition 3.2 Let (W, S) be a Coxeter system and let J = {r, s} be an edge of S.
A J—deformation of S is an (r,s,w)—deformation of S for some w € (J). An
angle-deformation of S is a J—deformation for some edge J of S.

The following proposition is a consequence of Lemma 2.1.

Proposition 3.3 Let (W, S) be a Coxeter system and let Sy, S, be subsets of S such
that each edge of S is contained in S; or S, and put So :=S; N S,. Let J be an
edge contained in Sy and assume that §;: S; — (S;) are J —deformations of S; for
i =0,1,2 and that 69 = §;|s, fori =1,2. Define 6: S1 U S, — (S1 US,) by setting
8|s; :=8; fori =1,2. Then § is a J —deformation of S1 U S,.

Proposition 3.4 Let (W, S) be a Coxeter system, J := {r, s} be an edge of S and let
w € (J) be such that wro™! and s generate (J). Let K be a set of spherical subsets
of S such that each element of K contains J and let §: S — W be a mapping with
the following properties:

a) 8(r)=owrw~ ! and §(s) = .

b) (§(S))=W.
¢) For all x € S, there exists an element wy in | Jgcx(K) such that §(x) =
wxxw;l.
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d) Foreach edge E of S different from J, there exists an element wg € W such
that §(E) = EVE.

Then § is an (r, s, w)—deformation of S which extends to an automorphism of W',

Proof By the universal property of (W, S) and Property d), § extends to an endomor-
phism o of W which is in fact an epimorphism because of Property b). By Proposition
2.3, it follows now from Property c) that « is an automorphism. Hence §(S) is a
Coxeter generating set of W and the mapping E — §(FE) is a bijection as required in
Condition (AD4). As (AD1) is a consequence of Property c), and as (AD2) is precisely
Property a), the proposition is proved. a

4 Angle-deformations involving dihedral groups

Throughout this section, (W, S) is a Coxeter system and J = {r, s} is an edge of S
such that o(rs) > 3.

4.1 Condition (TWa)

Definition 4.1 Let ¢ € J. We say that J is an a—special subset of S if the following
condition (TWa) holds.

(TWa) Forall x € S\ J we have o(xa) € {2, 00}, and if o(xa) = 2 then x € J L.
The following observation is immediate.

Lemma 4.2 Leta € J be such that J is a—special. Then the following holds.

a) {J,J*®, JL} isa partition of S.

b) a is J°° —free; in particular, J is flexible.
For the remainder of this subsection, we assume that @ € J is such that J is a—special,
and w € (J) is such that wrew™! and s generate (J). We put 7 := ly if a =r

and 7 := w if a = 5. Moreover, we let §: S — W be the mapping defined by
§(r)y=wrow™ ", 8(y) =y for y e {s}UJL and §(x) := wxn ™! if x € J.

Lemma 4.3 Let E = {x, y} be an edge of S different from J . Then there exists w g
such that §(E) = EVE .
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Proof Note first that each y € J1 commutes with w and 7. Hence, if E C {s}UJ+,
then we may choose wg = ly; if E C {r}U J+, then we may choose wg = w; and
if EC J®UJL, then we may choose wg = 7.

By the previous lemma, we are left with the case where £ C JUJ . As a is J°°—free
and E # J, we are now left with the case where E = {b, x} for some x € J*° and
where b is the element of J distinct from a. If @ = r, we may choose wg = 1y and
if a = s, we may choose wg = w. |

Proposition 4.4 The mapping § is an (r, s, w)—deformation of S which extends to an
automorphism of W' .

Proof Setting K := {J}, Properties a), b) and c¢) required in Proposition 3.4 are clear
from the definition of § and Property d) is settled by the previous lemma. a

4.2 O-edges

Definition 4.5 We say that J is a ®—edge of S if J is flexible and if there is no
2—spherical and irreducible subset of S containing J properly.

Remark If J is a ®—edge, then {J, J°°, J1} is a partition of S.

For the remainder of this subsection, we suppose that J is a ®—edge of .S. Moreover,
we assume that @ € (J) is such that wro™! and s generate (J).

Let L be a J—component. We denote the set of L—free vertices in J by I1(L). It
is nonempty because J is assumed to be flexible. If r € I[T1(L), we put ay, :=r and
yr, .= lp; if this is not the case, we set ay :=s and y1 :=w. We set K1 := JULUJL.
We define 8z: K; — (K1) by 8.(r) := wro™!, 8(y) := y forall y € {s} U J+
and 6z (x) := nyyZI forall x € L.

Proposition 4.6 Let §: S — W be the unique mapping such that §|g, = §p for
every J —component L. Then § is an (r, s, w)—deformation of S which extends to an
automorphism of W .

Proof Let L be a J—component. The edge J is an ay —special subset of K; and
hence it follows by Proposition 4.4 that & is an (r, s, w)—deformation of Ky . An
obvious induction on the number of J—components using Proposition 3.3 and Lemma
2.1 yields the claim. a
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5 Sharp-angled sets of reflections

Throughout this section, (W, R) denotes a Coxeter system, where W is identified
with its image in O(V, b) by its geometric representation and ® € U(V, b) is its root
system.

Lemma 5.1 Leta,B € ®.
a) If |b(a,B)| <1, then o(pqpg) is finite and b(a, B) = —cos(pm/q) for some
integers p and q.
b) If py # pp and |b(a, B)| > 1, then pyppg has infinite order.
c) If py # pg, then o(pypp) is finite if and only if |b(a, B)| < 1.

Proof Assertion a) is Proposition 1.4 in Brink and Howlett [3], whereas Assertion b)
is an easy exercise in linear algebra. Assertion c) is an immediate consequence of a)
and b). O

Definition 5.2 Let s # ¢ € R" be such that o(st) is finite. Let «, B € ® be such that
s = pg and t = pg. Then we call the 2-set {s,?} sharp-angled if |b(c, B)| € Q2.

Remark Note that this definition does not depend on the choice of & and 8 in view
of the last statement of Lemma 2.5.

The following two lemmas are easy.

Lemma 5.3 Lets #r e R" be such that o(rs) is finite. If {r, s} is not sharp-angled,
then o(rs) > 5.

Lemma 5.4 Let s # r € R" be such that o(rs) is finite and suppose {r,s} is not
sharp-angled. Then there exists an element w € (s, r) such that the set {s, wrw ™'} is
sharp-angled. Moreover, if o(rs) = 5, we may choose w to be srs.

Definition 5.5 A set S C R" is called sharp-angled if each edge of S is sharp-angled.

The following lemma follows from the fact that W is a subgroup of O(V, b) and from
the first statement of Lemma 2.5.

Lemma 5.6 Let S be a set of reflections and let w € W . Then SV is sharp-angled if
and only if S is sharp-angled.

The following fact follows from the definition of a root-subbase:

Lemma 5.7 Let I1 be a root-subbase of ® and S := {py | « € I1}. Then S is
sharp-angled.
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5.1 Fundamental sets of reflections

Definition 5.8 A subset S of R" is called fundamental if ((S),S) is a Coxeter
system.

Theorem 5.9 Let S C RY be a fundamental set of reflections and suppose that one
of the following holds:

A) The Coxeter system ({S}, S) is 2—spherical, irreducible and nonspherical.
B) I'(S) is a chordfree circuit of length at least 4.

Then S is sharp-angled.

Proof As W’ :=(S) is generated by a set of reflections, we may apply the second
part of Theorem 2.7 to see that there is a root-subbase II of ® such that the set
S’ := {pa | @ € I} is a Coxeter generating set of W’. It is known by Caprace—
Miihlherr [4] and Charney—Davis [5] that the Coxeter system ({S),S) is strongly
reflection rigid and hence S and S’ are conjugate in W’ and the claim follows from
Lemma 5.6 and Lemma 5.7. i

6 Proof of Theorem 1

Throughout this section, (W, R) is a Coxeter system and S € R" is a fundamental
set of reflections. Moreover, we assume that S contains no subset of type H3.

Proposition 6.1 Suppose that J is an edge of S which is not sharp-angled. Then J
isa ®—edge of S.

Proof Put J = {r,s}. By Lemma 5.3, we have o(rs) > 5. Let ¢ € S be such that
o(rt) and o(st) are finite. By Theorem 5.9 and our hypothesis that there are no subsets
of type Hj, we have that ¢ € J+. Hence there is no irreducible 2—spherical subset of
S containing J properly. Furthermore, again by Theorem 5.9, there is no chordfree
circuit of length at least 4 containing J. By Lemma 2.8, it follows that J is flexible.
Hence J is indeed a ®—edge of S. O

Corollary 6.2 Suppose that J is an edge of S which is not sharp-angled. Then there

exists a J —deformation § of S such that §(J) is sharp-angled and such that § is the
restriction of an automorphism of (S).
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Proof Put J = {r,s}. By Lemma 5.4, we can find an element w € (J) such that
wro~! and s generate w € (J) and such that {wrw~!, s} is sharp-angled. By the
previous proposition, we know that J is a ®—edge of S and hence, by Proposition
4.6, we can find an (r, s, w)—deformation of S which extends to an automorphism of
(S) and we are done. a

Conclusion of the proof of Theorem 1 Let S C R" be a Coxeter generating set
which is not sharp-angled. Suppose S contains n > 1 edges which are not sharp-
angled and choose one of them. Call it J. By the previous corollary, there exists a
J —deformation § of S which extends to an automorphism of W (because (S) = W)
and such that §(J) is sharp-angled. Let J’ be an edge of S different from J. Then
5(J') is W —conjugate to J’ by Property (AD4) of §; in particular, §(J’) is sharp-
angled if and only if J’ is sharp-angled. Hence the number of edges in §(S) which
are not sharp-angled is n — 1. Thus the statement follows by an obvious induction on
the number of edges of S which are not sharp-angled. a

7 Angle-deformations involving H,

7.1 Coxeter systems of type H3

Lemma 7.1 Let (W,S) be a Coxeter system of type Hz, where S = {r,s,t} and
o(rs) =15, o(st) =3. Set w :=tsrtst, w :=trs and define §: S — W by §(r) :=
rsr,8(s) :=s and 8(t) := wtw™'. Then we have the following:

1 1 1

() wso'=s,wto ' =ara™ !, ntn= =rsr.

(2) There is an automorphism o« of W which extends §.

(3) 6 isan (r,s,srs)—deformation of (W, S).

Proof Part (1) is a straightforward calculation. Moreover, it is clear that §(S) is
contained in S* and that it generates W . It follows from (1) that {§(s), 8(¢)} = {s, £}
and {§(r), 8(¢)} = {r,t}™ . Furthermore, we have o(§(r)é(s)) = o(rsrs) = 5. By the
universal property of Coxeter systems, it follows that § extends to an endomorphism «
of W. Since §(S) generates W, « is surjective and hence an automorphism because
W is finite. This finishes (2) and shows in particular that §(.S) is a Coxeter generating
set. Assertion (3) is now a consequence of the information collected so far. O
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Corollary 7.2 Let (W, S), w, w and § be as in the previous lemma and set ¢ :=rsrs,
wy:=cw, m; :=cn and §; := y. 08, where Y, is the inner automorphism w > cwc ™!
of W . Then we have the following:

(1) wy=rsrtsrst, my =rsrsrts.

2) a)lsa)l_l =4srs, a)lta)l_l = nlrnl_l and nltnl_l =r.
(3) There is an automorphism oy of W which extends §; .
(4) 6, isan (s,r, rsr)—deformation of (W, S).

Proof Assertions (1) and (2) are straightforward calculations. Since y, is a reflection-
preserving automorphism of W, Assertions (3) and (4) follow from Assertions (2) and
(3) of the previous lemma, respectively. |

Corollary 7.3 Let (W, S) be a Coxeter system of type H3 where S = {r,s,t} and
o(rs) =5, 0(rt) =3. Set w := srstrsrt, mw := srsrstr and define §: S — W by
§(r):=rsr,8(s):=s and §(¢) := wtw™". Then we have the following:

1

() wro '=rsr,wto ' =nsa~! and ntn—! =35.

(2) There is an automorphism « of W which extends §.
(3) 6 isan (r,s,srs)—deformation of (W, S).

Proof This follows by exchanging the roles of r and s in the previous corollary. O

Remark Corollary 7.3 is obtained from Lemma 7.1 by conjugating by rsrs and then
relabelling. We refer to this technique again in Section 7.7 without giving further
details.

7.2 Coxeter systems of type H,

Throughout this subsection, (W, .S) is a Coxeter system of type Hy, where S =
{r,s,t,u} and o(rs) =5, o(st) = 3. Set J :={r, s}, w1 :=rsturstrsrstusrstrs,
Wy (= LSTSTUtSTSriSrSutsSrsr, ws := SrSrutSrsrtSrsutsrsrisr, @ (= rsrsrws,
T = wojutu, T :=trswzo- ! and define §: S — W by §(r) := rsr, §(s) := s,
§(t) :=wtw~ ! and 8(u) = u.

Lemma 7.4 We have the following:

1 1

1 1 =UuU=TuUmr .

a) mwrm~ =5, wtwo ' =xtx”! and wuw™

b) {8(r),8@)} ={r, 1}, {8(r), 8(u)} = {r,u}’™, {8(s),8(2)} = {s,2}“,
{8(s), 8(u)} = {s,u}'" and {8(¢), $(u)} = {t,u}®.

=rsr, wsw
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1

c) trsrt  =rsr, st =5 and twtw~ 't = (tsrest)t(tsrest) L.

Proof The relations in a) and c) are easily deduced from relations given in Franzsen
and Howlett [8, page 333], and b) is an immediate consequence of a). m|

Note The relations for T will only be needed in Section 10.

Proposition 7.5 § is an (r, s, srs)—deformation of S which extends to an automor-
phism of W.

Proof Clearly, rsr = (srs)r(srs) and s generate (J) and 6(S) generates W . Setting
K:={S}, it follows that § has Properties a), b) and c¢) of Proposition 3.4, while Property
d) is a consequence of the previous lemma. This proves the claim. a

7.3 Conditions (TWa)-(TWt)

Throughout this subsection, (W, S) is a Coxeter system and K is a subset of .S of type
Hj,, where k € {3,4} and where r,s,t € K are such that o(rs) = 5 and o(s?) = 3;
if k = 4, the unique element in K \ {r, s, ¢} is denoted by u. Furthermore, we put
J:={r,s}and w:=tsrtstift k=3, w:=rsrsrw, if k=4, n:=trs if k=3 and
wi=rsrsroowiutu if k =4, where w; and w, are as in Section 7.2.

Definition 7.6 Let a € J. We say that K is an a—special subset of S or that K is
a—special in S if the following two Conditions (TWa) and (TWt) hold.

(TWa) Forall x € S\ K we have o(xa) € {2, 00}, and if o(xa) = 2 then x € J L.
(TWt) If y e J1\ K is such that o(xy) < oo for some x € J® U {t}, then y € K+.
Lemma 7.7 Leta < J be such that K is a—special in S'. Then we have the following.

a) {K,J® JL\ K} isapartitionof S;ifk =3 then KNJ+ =@ andif k =4
then K N J+ = {u}.
b) If y € Jt is such that o(xy) < oo for some x € J° U {t}, then y commutes

with w and with 7.

Proof Part a) is immediate and Part b) is a consequence of (TWt) and Lemma 7.4 a). O
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7.4 Angle-deformations for a—special subsets of §
We adopt the hypotheses of the previous subsection. Furthermore, we assume that
a € J is such that K is a—special in S'.

We define the mapping §: S — W as follows. We put §(r) := rsr, 8(y) := y for
all y e {syUJL and §(¢) := wtw™'. Let x € J*. Then we put §(x) := wxw ™! if
a=rand §(x):=nxnx lifa=s.

Lemma 7.8 The mapping § has the following properties.
a) 8(r)=(srs)r(srs) and §(s) = s generate (J).
b) &(S) generates W.

¢) 6 |k is an (r,s,srs)—deformation of K which extends to an automorphism
of (K).

d) Foreach x € S, there exists an element wy € (K) such that §(x) = wxxw!.

Proof Assertion a) is obvious. Assertions b) and d) are immediate consequences of

the definition of §. Finally, Assertion c) is a consequence of Lemma 7.1 if £ = 3 and
of Proposition 7.5 if k = 4. O

Lemma 7.9 Let E be an edge of S ditferent from J. If k = 3 and a = s, suppose
in addition that E is not of the form {z,x} with z € {r,t} and x € J°°. Then there
exists an element wg € W with §(E) = EVE,

Proof Let E = {x, y} be such an edge of S.

If £ is contained in K, the assertion follows from Lemma 7.1 for kX = 3 and Lemma
7.4 for k = 4.

If E is contained in J°°, then we may choose wg = w if a =r and wg = 7 if
a=s.

If E is contained in {s}U J-, we may choose wg = ly .
If E is contained in {r} U J+, we may choose wg = s7s.

Suppose E is contained in {t}U JL. As the case E C J= is already covered by the
above, we may assume that E = {¢, y} for some y € JL. Since o(y?) is finite, it
follows from Lemma 7.7 b) that y commutes with @. Hence we may choose wg = w.

Suppose now that x € J* and y € J-. Again by Lemma 7.7 b), we know that y
commutes with @ and with 7. Hence, we may choose wg =w if a=r and wg =n
ifa=s.
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Up to renaming the elements of E, we are now left with the case where x € {r, s, ¢}
and y € J*°.

Suppose first that @ = r. Then the case x = r is not possible and hence E is contained
in {s,t} U J%. As s commutes with v (by Lemma 7.4 a)), we may thus choose
WE = .

Suppose now that a = s. Then the case x = s is not possible and by hypothesis, we
only have to consider the case k = 4. In view of the relations given in Lemma 7.4 b),
we may choose wg = 7 in this case, and we are done. a

Proposition 7.10 If (a, k) # (s, 3), then § is an (r, s, srs)—deformation of S which
is the restriction of an automorphism of W'.

Proof Setting K = {K} in Proposition 3.4, the two previous lemmas show that § has
the required properties and we are done. a

Lemma 7.11 Suppose (a,k) = (s,3) and let x € J°°. Then 6({r, x}) = {¢t, x}" and
S({t,x}) ={r,x}".

Proof This is an immediate consequence of the relations given in Lemma 7.1 and the
definition of §. o

7.5 K -Mirrors

Throughout this subsection, let (W, S) be a Coxeter system and let K = {r,s,t} € S
be of type H3 such that o(rs) =5 and o(st) = 3.

Definition 7.12 The K-mirror of (W, S) is the Coxeter system (W, S) with the
property that there exists a bijection x — X from S onto S such that o(¥ X) = o(¢x)
and 0(f X) = o(rx) if x € J*, and o(X ) = o(xy) in the remaining cases.

Remark Let (l/l_/', S) be the K —mirror of (W, S) and for each X CS,put X = {)_? |
x € X}. Then K is a subset of S of type H; and (W, .S) is the K—mirror of (W, S).

Remark Let (W, S) be the K-mirror of (W, S). Then we have an obvious bijection
between the edges of S and the edges of S which we will call the canonical bijection
and which will be denoted by 6.

The following lemma is obvious.

Lemma 7.13 Let (W, S) be the K —mirror of (W, S). Then K is s—special in S if
and only if K is s—specialin S .

Algebraic & Geometric Topology, Volume 8 (2008)



Angle-deformations in Coxeter groups 2193

7.6 The case (a, k) = (s,3)

Throughout this subsection, let (W, S) be a Coxeter system and let K = {r,s,t} S S
be of type Hj such that o(rs) =5 and o(st) = 3. We put w :=tsrtst, mw :=trs
and J := {r,s}. Moreover, (W, S) denotes the K—mirror of (W, S). We assume
furthermore that K is s—special in S. Note that this implies that K is s—special in S
We define the mapping §: S — W by §(x) :=x if x € JL U {s}, §(x) ;= nwxn~ 1 if
xeJ®, 8(r):=rsr and §(¢) := wtw™!

Lemma 7.14 Let {x, y} be an edge of S. Then 0(§(x)3(y)) = o(X ¥).
Proof This is a consequence of Lemmas 7.9 and 7.11. a

Lemma 7.15 §(S) is a Coxeter generating set of W . Moreover, there exists a bijection
A from the set of edges of S onto the set of edges of §(S) such that A(J) = {rsr,s}
and such that for each edge E # J of S, there exists wg € W with A(E) = EVE.

Proof By the universal property of (W, S) and Lemma 7.14 and Lemma 7.8, there is
an epimorphism 8: W — W : X —> §(x) with the following properties:

a) :3|(I?) is an isomorphism from (K) onto (K).

b) For each x € S, there exists an element w, € (K) such that (¥) = wyxwy .

By Lemma 7.13, K is s—special in S. Hence, by defining w, 7 € Wand§: S > W
for (W, S), we obtain also an epimorphism 8: W — W with the following properties:

a) Bl(k) is an isomorphism from (K) onto (K).

b) Foreach x € S, there exists an element Wy € (K) such that B(x) = WyX W '.

We put o := B o B and for each x € S, we set vy: = B(Wx)wy. Then a: W — W is
an epimorphism with the following properties:

a) «of(k) is an automorphism of (K).

b) Foreach x € S, we have vy € (K) and a(x) = vyxvy!.
Now, it follows from Proposition 2.3 (with K = {K }2 tEat o is an automorphism of
W . In particular, 8 is an isomorphism. As §(S) = (S), the set §(S) is a Coxeter
generating set of W.

It remains to find an appropriate A. As B is an isomorphism, we have a canonical
bijection A; from the set of edges of S onto the set of edges of §(S). Let 6 be the
canonical bijection from the set of edges of S onto the set of edges of S. It is then
readily verified, using Lemmas 7.9 and 7.11, that A := A o6 is the required bijection.
This finishes the proof of the lemma. a
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Proposition 7.16 § is an (r, s, srs)—deformation of (W, S).

Proof This is a consequence of the two previous lemmas. a

7.7 The relabeled version

Throughout this subsection, (W, S) is a Coxeter system and K is a subset of S
of type Hj, where k € {3,4} and where r,s,t € K are such that o(rs) = 5 and
o(rt) = 3; if k = 4, the unique element in K \ {r, s, ¢} is denoted by u. Define
w; for i € {1,2} by exchanging r and s in the expression of w; given in Section
7.2, where ¢t and u are as above. Also, let ¢ := rsrs and ¢ := srsr. We put
J={r,s}, o:=ctrstrt = srstrsrt if k =3, w :=csrsrsw, = rw, if k =4,
wi=ctsr =srsrstr if k =3 and 7w :=csrsrswywiutu = rwywutu if k =4. We
assume that ¢ € J is such that K is a—special in S and we define 6: S — W as
follows. We put 8(r) :=rsr, §(y) =y forall y € {s}U JL and §(¢) := wtw™'. Let
x € J*®. Then we put §(x) := wxw ! if a =5 and §(x) :=wxn ' ifa=r.

The following proposition is obtained from Proposition 7.10 and Proposition 7.16 by

relabelling.

Proposition 7.17 The mapping § is an (r, s, srs)—deformation of (W, S). Moreover,
if (k,a) # (3,r), it is the restriction of an automorphism of W .

8 A-—edges

8.1 Some particular diagrams

Throughout this subsection, we put A := 2 cos(7r/5).

Let (Wi, Ry) be a Coxeter system whose diagram is as in Figure 2 and let (W,, R,) be
a Coxeter system whose diagram is as in Figure 3. Hence, we have R; = {r,s,t} U X
and Ry, ={r,s,t,u}UX where X ={S@G@)|1=<i <n}.

For k =1, 2, we consider the geometric representation of (W}, Ry) and its root system
@y, ; in particular we identify W} with its image in O(Vy, by).

We put a1 :=rs(ey) = ey +hes, Iy :={a,e;} Ulesqy | 1 =i =n}, St = {pa |
a eIl } and w; :=rst.

We put oy :=srstrs(ey) = (A+1)e, +2heg+Aey, Iy :={as, ey fUles) | 1 <i <nj,
Sy :={pa | €lly} and w, := srstrsut.
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S(1)
S(2)
Figure 2. (DE3): n > 2 Figure 3. (DE4): n > 2
and X7 = oo and X, C and Xju = oo and X, C
{r,s}°°. {r,s,t}*° and r, s, t, u form
an Hy.

The following facts are easily verified for k =1, 2:

a) Po, = wkrwlzl.

b) Iy is a root subbase of @ ; in particular Sy is a fundamental set.
¢) I'(Sg) is a chordfree circuit.

d) a)lsa)l_l =t and a)zsa)z_l =u.

8.2 Coxeter systems containing some particular subsystems

Throughout this subsection, (W, R) is a Coxeter system and W is identified with its
image in O(V, b) via its geometric representation.

Proposition 8.1 For k = 1,2, let R, € R" be a fundamental set of reflections and
put Wi := (Ry). Suppose that (Wy, Ry) is a Coxeter system whose diagram is as in
Figure 2 if k = 1 and as in Figure 3 if k = 2. Then {r, s} is sharp-angled.

Proof For k = 1,2, we define w; € W as in the previous subsection. We put
S1 = (R \{r,s}h U {a)lra)l_l} and S, := (R \ {r,s,t}) U {a)zrwz_l}. By the
considerations above, we know that the set Sj is a fundamental set of reflections.
Moreover, I'(Sy) is a chordfree circuit. By Theorem 5.9, it follows that Sy, is sharp-
angled. Hence {a)lra)l_l ,t} and {a)zra)z_l ,u} are sharp-angled. As wy is an element
of W which conjugates {r, s} onto {a)lra)l_l,t} for £ = 1, and onto {wkra)]:l,u}
for k = 2, it follows that {r, s} is sharp-angled as well. o
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Corollary 8.2 Let S € RY be a fundamental set of reflections and let J = {r, s} be
an edge of S such that o(rs) = 5, and which is not sharp-angled. Then there is no
subset K of S as in Figure 2 or Figure 3.

8.3 Definition of A —edges

Definition 8.3 Let W be a group and S a subset of involutions of W. Let J = {r, s}
be an edge of S. We call J a A—edge of S if there is no subset K of S containing
J having one of the following properties:

(DE1) T'(K) is nonspherical, 2—spherical and irreducible.

(DE2) TI'(K) is a chordfree circuit of length at least 4.

(DE3) TI'(K) is a diagram as shown in Figure 2.

(DE4) TI'(K) is a diagram as shown in Figure 3.

Remark Note that if o(rs) # 5, then J is a A—edge if and only if (DE1) and (DE2)
hold; if o(rs) = 5, the same remains true if there is no subset of type H; containing J .

The definition of A—edges is motivated by the following proposition, which is a
consequence of Theorem 5.9 and Corollary 8.2.

Proposition 8.4 Let (W, R) be a Coxeter system, let S € R be a fundamental set
of reflections and suppose that J is an edge of S which is not sharp-angled with respect
to R. Then J isa A—edge of S.

9 A-edges of type H;

Throughout this section, (W, S) is a Coxeter system and J = {r,s} C S is a A—edge
of (W, S) with o(rs) = 5. Moreover, we define several subsets of S as follows.

o T:={teS |type({r,s,t})=H3}=T, UT,, where T, :={t €T | my; =3}

and Ty :={t € T | mss = 3}.

e Fora J—component L,put Ty :={t €T |Ix € L : my; < 00}.

e U:={ueS|3teT suchthat type({r,s,t,u}) = Hy}.

e ForteT,setU;:={ueclU|type({r,s,t,u}) = Hy}.

e ForteT and L a Jy—component, let Uy :={ucU; |Ix € L : my, < 00}.

e ForteT andue U, let J;:=JU{t} and J; :=J U{t} U {u}.

e ForueU,set T,:={teT|type({r,s,t,u}) = Hy}.

o T3:={teT|U; =0}

o TH:=T\T3.

. ForaeJandke{3,4},putTf:=TaﬂTk.
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9.1 Some preliminary observations

Lemma 9.1 J is flexible.
Proof This is Lemma 2.8. O
Lemma 9.2 There are no edges in T and for each t € T', there are no edges in Uy .

Proof This follows from (DE1). O

9.2 Flexibility of J, and consequences

Proposition 9.3 Forall t € T, the set J; is flexible.

Proof Let? e T andlet L bea J;—component. If L is also a J—component, then L
is flexible by Lemma 9.1 and we are done. So, we may assume there exists an x € L
such that x € J (thus m; = 00). Suppose by contradiction there exists y € L such
that my, < oo. Then my, = 0o or mys = 00.

Let x = xp, X1,...,X; = y be a minimal path in L joining x to y. Define
M :=min{i | 0 <i <k; my;; < oo}
and m:=max{i |0<i < M; x; € Ji"}.

Then the subpath x,,, X;,41, . .., Xps from Xx,, to xpy is still minimal, hence chordfree,
and possesses the following properties:

(1) (mx,,r.mx,,s) €{(2,2),(2,3),(3,2)} (by (DE1)).
(2) my;;s = oo for all i such that m <i < M (by definition of M).
(3) x; € J® forall i suchthat m <i < M (by definition of m).

Moreover, my,,; < co. Thus, we obtain a subgraph {r, X;;, Xp41,...,Xp, 1,5} as
pictured in Figure 4, contradicting (DE3). O

Corollary 9.4 Lett € T and let L be a J —component such that there exists z € L
with o(zt) < oco. If y € J™\ {¢} is such that there exists an x € L with o(xy) < oo,
then y € Jfin,

Proof Let L’ be the J;—component containing L. If o(yz) = oo, we get y € L’

because o(xy) < oo. But then z and y belong to L’, contradicting the fact that J; is
flexible. Hence o(yt) < oo and so y € Jfi" because y € J" by assumption. a
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Figure 4. Contradicts (DE3)

Corollary 9.5 Let L be a J —component, then |T| < 1.
Proof This follows from the previous corollary and Lemma 9.2. a

Definition 9.6 Let L be a J—component. If 77, is nonempty, then #(L) denotes its
unique element; if 77, is empty, we put ¢(L) := oco.

9.3 Flexibility of J,, and consequences

Proposition 9.7 Lett €T and u € U;. Then J;, is flexible.

Proof Let L be a J;,—component. If L is also a J;—component, then it is free by
Proposition 9.3 and we are done. So, we may assume there exists an x € L such that
X € Jtﬁn (thus my, = o0). Suppose by contradiction there exists y € L such that
My, < oo. Then y € J°.

Let x = x¢, x1,..., X, = ¥ be a minimal path in L joining x to y. Define
M :=min{i | 0 <i <k; my;, <00}
and m:=max{i |0<i < M; x,'EJtﬁn}.

Then the subpath Xz, X 41, ..., Xpr from X, to xpy is still minimal, hence chordfree,
and possesses the following properties:

(1 (mxmr,mmea mxmt) € {(2’ 2, 2)» (2a 2, 3)} (by (DEL)).
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(2) my;y = oo forall i such that m <i < M (by definition of M).
(3) xj € JX forall i suchthat m <i < M (by definition of m).

Moreover, mx,,, < oo. Thus, we obtain a subgraph {r, Xm., X;41.....Xp. U, t, 5} as
pictured in Figure 5, contradicting (DE4). a

Figure 5. Contradicts (DE4)

Corollary 9.8 Lett €T, u c U; and L be a J;—component containing an element z
with o(zu) < co. Suppose that y € Jfi" is such that there exists x € L with o(xy) < o0.
Then y € J% U{u}; in particular, if y # u, then y € J5, .

Proof Let L' be the J; ,—component containing L and suppose y # u. If o(yu) =00,
we get y € L’ since o(xy) < co. But then z and y belong to L', contradicting the
flexibility of J; ,. Hence o(yu) < oo andso y € J ,ﬁr;, because y € Jfi" by assumption.
Now, (DE1) implies that J ,ﬁ’,} = JL . so we are done. m|

fu>
Corollary 9.9 Lett e T andlet L be a J;—component. Then |Ur| < 1.

Proof This follows from the previous corollary. |

Definition 9.10 Let r € T and let L be a J;—component. If Uy, is nonempty, then
u(L) denotes its unique element; if U is empty, we put u(L) := oo.
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Remark Let ¢ # ¢ € T. By Lemma 9.2, we can talk about the “J;—component
containing ¢'” as we will do in the following proposition.

Proposition 9.11 Lett #1t €T, let L be the J; —component containing t' and put
K :=J;UUyg. Then Ji" is contained in K™ U L U Uy .

Proof Let y e Jtﬁ,“. Then we have in particular o(yt’) < co. Hence, if o(yt) = oo,
we have y € L. Thus we are left with the case where o(yt) <oo. As y € J tﬁ,“, we get
that y € Jfi. In particular, we are already done if u(L) = oo.

Let us now assume that Uy, # @ and put u := u(L). Then there exists an element
z € L such that o(uz) < oo and there exists an element x € L (namely ¢’) such that
o(xy) <o0o. As y € Jin, the claim follows from Corollary 9.8. O

9.4 Tameness

Definition 9.12 Let r € T and let K be a subset of S containing J;. Then 7 is
called rame in K if there is no subset K’ of K containing J; such that I'(K’) is as in
Figure 6. We call ¢ tame, if it is tame in S. Otherwise, we call it wild.

2 u

2 !

5

r S S 3 t i
1

2/3 |

2 !

!

P u

Figure 6. Tameness

Here are some basic observations. The first two of them are obvious whereas the third
one is a consequence of Lemma 9.2.

Lemma 9.13 Lett € T and K; € K be subsets of S containing J;. If t is tame
in K, then it is tame in K.

Lemma 9.14 Ift € T3, then t is tame.
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Lemma 9.15 If ¢ is tame, then |U;| < 1.
Let t € T be tame. Then we put K; := J; U U;.
Lemma 9.16 Lett € T be tame. Then J; = K;- and Ji"U J, = K, U K}-.

Proof We start with the first equality which is trivial if U; is empty. Suppose Uy is
nonempty and let # denote its unique element. Obviously, we have K f‘ cJ tJ- Let
now y € JtJ-. If o(yu) = 0o, we get a contradiction to the tameness of 7 (using (DE1))
and if 2 < o(yu) < oo, we get a contradiction to (DE1). Hence o(uy) = 2 and the
first equality holds.

The second equality follows now from the fact that J ,ﬁ“ =J ,J- U U; (because of (DE1)),
the definition of K; and the first equality. a

Lemma 9.17 Lett € T be tame, K := Ky, let L be a J —component with t = t(L)
and let a € J be L—free. Then K is an a—special subset of ' := K UL U J=+.

Proof Note first that S\ K C LU J L. Thus, as @ is L—free, Condition (TWa) is
obviously satisfied.

We now show that Condition (TWt) holds as well. Note first that J*° NS’ = L. Let
y € JL\ K such that o(yx) < oo for some x € (J® NS’)U{t} =L U {r}. We first
show that y € Jfi" which is obvious if x = ¢. Hence we may assume x € L. As
t =t(L), there exists z € L such that o(¢z) < co. Therefore, y € J+ € J"\ {¢} and
we can apply Corollary 9.4 to see that y € J f‘“.

Now, as ¢ is tame and y is notin K, we have y € JtJ- and we are done if U; = @.
Suppose Uy # @ and let u be the unique element of U;. If o(yu) = oo, we get a
contradiction to the tameness of ¢ and if 2 < o(yu) < oo, we get a contradiction to
(DE1). Hence o(yu) =2 and y € K+ because K = J, U {u} and y € JIJ-. o

9.5 The degree of a subset containing J

Definition 9.18 Let K be a subset of S containing J . The degree of K is the number
of elements in K N T which are wild in K. It is denoted by deg(K).

Here is a preliminary observation.

Lemma 9.19 Let J C K; C K CS. Then deg(K;) < deg(K).
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Definition 9.20 Let 7 € T. For each u € U; := U, U {o0}, we define the sets
Vu, Wy, Xy, Yy, and Z,, as follows.

* Voo:=Jsand V, :=J;, for u € Us.

o W,:=V,UV;i.

e X, is the union of all J;—components L such that u(L) = u.
e Y, =W,UX,.

e 7, =Y, UYx.

Lemma 9.21 LetteT andu € ﬁ,. Then t is tame in Y,,. In particular, if t is wild
then deg(Y,) < deg(S).

The following is a consequence of Proposition 9.11.
Lemma9.22 Lett#t' €T andu € ﬁt. If ¢’ is contained in X,,, then Jtﬁ,n CY,.

Lemma9.23 LetucU;. Then Y,NYy = J; U J,J;u and if E is an edge of Z,, then
ECY,or ECYy.

Proof The first statement follows from the definition of the sets Y, and Y.
Let £ = {x, y} be an edge of Z, and suppose that x € ¥;, and y € Y.

Suppose first that x € X;,. Then y cannot be in X, since in that case x and y would
be in different J;—components. Hence, y € J; U JtJ-. IfyeJsu thu, then p is in
Y, and we are done. Suppose by contradiction that y € J tJ- \J tL” Then we have
o(yu) = oo by (DEI1). Let L be the J;—component containing x. Then there is an
element z in L such that o(uz) is finite. Let L’ be the J; ,—component containing
L. Then x, y and z are contained in L’, contradicting the flexibility of J; .

Thus we may assume that x € J; , U JtJ’-u. If x # u, we have x € Yoo and we are done.
Suppose that x = u. Then the case y € X« is not possible, because otherwise we
would have u = u(L) for the J;—component L containing y. Thus we may assume
that y € J; U Ji-. By (DE1), we then get y € J; U J7;, and hence E C Y, in this
case. O

10 Existence of angle-deformations

Throughout this section, (W, S) is a Coxeter system and J = {r, s} C S is a A—edge
of (W, S) with o(rs) =5.

We adopt the notation of the previous section.

Algebraic & Geometric Topology, Volume 8 (2008)



Angle-deformations in Coxeter groups 2203

10.1 Conventions for tame elements and standard deformations

If t € T is tame, we fix the following notation:

e By Lemma 9.15, there exists precisely one element in U; for each ¢ € T#, which
we will denote by u;.

e Ifte Ts3, we put wy :=tsrtst and w; =1rS.
e Ifre T,3, we put w; :=srstrsrt and m; ;= SrSrstr.

e Ifre Ts4, we put w; :=rsrsrwy and mw; :=rsrsrwywitut, where u 1= u;
and w;, w, are as in Section 7.2.

e Ifre T,4, we put w; :=rw, and 7y = rwy®utu, where u :=u; and w1, 0y
are as in Section 7.7.

e ForteT3, we put K; := J; and for ¢ € T, we put K; = J; U{u,t.

e We put T:= T U{o0}, Koo =Jo :=J, Weo := lyy and meo := ST'S.

e Finally, for r € T, we put K% = K, UK.
Let t € T and if ¢ # 00, suppose it is tame. We define §,: K% — (K%f) by
§¢(r) = rsr,8:(s) = s, 8;(t) = wstw; ! (for t # 00), 8;(uy) := u; for t € T* and
8¢(x) :=x forall x € Kf-.

Proposition 10.1 &, is an (r, s, srs)—deformation of K9t

Proof This is a consequence of Lemma 7.1, Corollary 7.3 and Proposition 7.5 together
with its relabeled version. |

Definition 10.2 We call §; the standard deformation of K,

10.2 Tame angle-deformations

Definition 10.3 Let K be a subset of S containing J and let §: K — (K) be an
(r,s, srs)—deformation of K. Then we call § tame if for each t € T N K which is
tame in K, there exists an element w; € (K) such that §(x) = w8, (x)w;! for all
x € K,

The goal of this section is to prove the following result.

Theorem 10.4 There exists a tame (r, s, srs)—deformation of S'.
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10.3 The tame case

Throughout this subsection, we assume the following.
(TAME) All elements in T are tame.
Foreach 7 € T, let §;: K% — (K%} be the standard deformation.

We put J:=JUTUJL and we define §: J — (f) by §|K;ief =68, foreachre T
and 6| ;1 :=id ;1. Note that § is well-defined.

Our first goal is to prove the following proposition.
Proposition 10.5 § is a tame (r, s, srs)—deformation of ((f ), J ).

Lemma 10.6 Lett € T and y € J+ such that o(ty) < co. Then, y commutes with
wy and 1y .

Proof If r € T3 orif y # u;, then the tameness of ¢ and (DE1) imply that y € J:-,
and hence y € K tJ- by Lemma 9.16 and we are done. If y = u;, then the result follows
from Lemma 7.4 a). O

Lemma 10.7 Let E := {x, y} be an edge of J different from J . Then, there is an

element wg € | J,.7(J:) such that §(E) = EVE.

Proof If E is contained in J; for some ¢ € T', then there exists an element wg € (J;)
such that §(£) = E™E . This follows from Lemma 7.1 and Corollary 7.3.

If E is contained in J1 U {s}, then (SA(E) = E'W . Hence, the case s € E is settled
completely.

Suppose now x = r. In this case, we may assume y € J- because the case y € T
is already covered above. For all y € J+, we have ysrs = srsy and therefore
S(E)= E*'"S.

By Lemma 9.2, it remains to consider the case where x € T and y € J1. Set x =1.
As {x, y} is an edge, it follows from Lemma 10.6 that y commutes with «;. Hence
we have S(E) = E®! in this case. O

Proof of Proposition 10.5 It is readily verified that SA( J ) generates (f ) and by
Lemma 10.7 and Proposition 2.3 (with K= {J; |t € T\}), it follows that 8 extends
to an automorphism & of J ), which implies in particular that 3( J ) is a Coxeter
generating set of ( J ). Using Lemma 10.7, it is now straightforward to check that §
satisfies Properties (AD1)-(AD4). The tameness of Sisa consequence of its definition.

This concludes the proof of Proposition 10.5. a
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Let L be a J—component and define the set 77 € T as before. Since we assume that
J is a A—edge, we know by Corollary 9.5 that |77.| < 1. We define #(L) as in Section
9.2. Moreover, we put Jg, := K(r), K :=Jp U JLUL and M; ;=K UT.

Let TT(L) be the set of L—free vertices of J; since J is flexible (by Lemma 9.1), we
know that TI(L) # @.

For each J—component L, we define yy, € (Jr,) as follows.

If t(L) =00 and r € I1(L), we put yr, ;= ly.

If t(L) = oo and TI(L) = {s}, we put yr, :=srs.

Ift(L)eTs and r € II(L), we put ay, :=r and yr, := wy.

If t(L) € Ty and T1(L) = {s}, we put ay, :=s and yp := 7;.

Ift(L)e T, and s € [1(L), we put ay :=s and y1, := w;.

Ift(L)e Ty, and I1(L) = {r}, we put ar, :==r and yr, := m;.

Finally, we define §;.: Kz — (Kr) by dr|y, :=68;)ls. . 0LlyL =idy1 and 67 (x):=

YLXV[ ! for all x € L. Note that §7 is well-defined.

Lemma 10.8 Let L be a J —component with t := t(L) # oco. Then K; is an af —
special subset of Ky .

Proof This is a consequence of Lemma 9.17. a

Lemma 109 Let L be a J—component. Then §p is an (r, s, srs)—deformation
of Ky .

Proof This is a consequence of the previous lemma and Propositions 7.10, 7.16 and
7.17 applied to the Coxeter system ((Kp), K1) if (L) # oo, and of Proposition 4.4
applied to the same Coxeter system otherwise. a

Proposition 10.10 Let L be a J —component. Define SAL; Myp — (My) by §L|KL =
81, and 8L|J := 4. Then 6y, is an (r, s, srs)—deformation of My .

Proof Note first that 8L is well-defined. By the previous lemma, 8z, is an (7, s, srs)—
deformation of Ky and by Proposition 10.5, § is an (r, s, srs)—deformation of J. As
Ki\ J=Land J \ Ky =T\Ty,all edges of My are contained in at least one of the
two sets. Now, as § restricted to My N Ky =Jp UJ L isan (r, s, rsr)—deformation
of My N Ky , Proposition 3.3 finishes the proof. a
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Theorem 10.11 Let §: S — W be the mapping defined by 8|y, = SAL for each
J —component L. Then § is a tame (r, s, srs)—deformation of (W, S).

Proof Note that for two different J—components L and L’, we have My N My, =
TUJLtUJ, whichis independent of L and L’. Moreover, § restricted to 77U J Luyg
is an (r, s, rsr)—deformation of U J- U J. The claim now follows by induction on
the number of J—components using Propositions 3.3 and 10.10, the tameness being a
consequence of Proposition 10.5. a

10.4 Proof of Theorem 10.4

The theorem will be proved by induction on deg(S). If deg(S) = 0, all elements in T
are tame and we are done by Theorem 10.11. Suppose now that the degree of S is at
least 1. Then there exists a wild ¢ € T', which we fix throughout this subsection.

For each u € ﬁt, we define the sets V,, W,, X,, Y, and Z, as in Section 9.5. For
u € Uy, we put 7, := t where t is defined as in Section 7.2 and 740 := 1.

Let u € U;. By Lemma 9.21, we know that deg(Y;) < deg(S). Thus, we know by
induction that there is a tame (r, s, s¥s)—deformation 6, of Y, . Again by Lemma 9.21,
t is tame in Y, and if we define K ?"f as in Section 10.1 with respect to Y,,, we have
W, = K?ef. Hence, there is an w, € (Y,) such that Int(wy) o 6|, is the standard
deformation of W,,. We put ©, := Int(w,) o 8,. The discussion above yields the
following.

Lemma 10.12 Foreach u € ﬁt, there exists a tame (r, s, srs) deformation ®, of Y,
such that O, |w, is the standard deformation of W,.

For each u € U ¢, let ®, be as in the previous lemma and put §, := Int(t,) 0 ©,.

Lemma 10.13 For each u € U, the mapping 6,: Y, — (Y,) is a tame (r,s,srs)—
deformation of Y, . Moreover, we have §,|y,ny., = 800|YumYc>o In part1cular there
exists an (r, s, srs)—deformation 84 of Zy such that 8, ly,, = 8u and Su 1Y, = 0o

Proof The first assertion of the lemma is clear, because ®, is tame and 7, € (Y}).

The second assertion is trivial for # = 0o, so we may assume u € U;. First remark
that Y, N Yoo = J; U J L ., by Lemma 9.23. Since ®, |, is the standard deformation
and as 7, € (Jru) C ommutes with all elements in J; J- and with rsr and s (by Lemma
7.4 ¢)), it follows that ;| yu JL = Sool U T Thus, it remains only to check whether
8u(t) = 800(); but this is also a consequence of Lemma 7.4 ¢). This concludes the
proof of the second assertion.

The last assertion is a consequence of the second, Lemma 9.23 and Proposition 3.3. O
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Lemma 10.14 There exists an (r, s, srs)—deformation § of S such that 8|y, = 6, for
each u € Uy.

Proof As ¢ is assumed to be wild, we have |U;| > 1. We prove the lemma by induction
on |Uy|. If |Uy| =1 and if u denotes the unique element in Uy, then S = Z, and we
are done by the previous lemma.

Suppose now |U;| > 1 and let u € U;. Put C, := Uuaéu,eUt Z,. Note first that
Cy, N Z, = Y and that each edge in S is contained in C, or in Z,. By induction,
there exists an (7, s, srs)-deformation §;, of C;, such that 8|y, = 8,/ foreach u’ € U,
different from u. By the previous lemma, there exists an (r, s, srs)—deformation gu
of Z, such that gulya =4, for a € {u, o0}. Now Proposition 3.3 yields the existence
of §. a

Conclusion of the proof of Theorem 10.4 The previous lemma yields the existence
of an (r, s, srs)—deformation § of S such that 8|y, =6, for each u € U, . It remains
to show that § is tame. Let ¢/ € T be tame in S. Since ¢ is assumed to be wild, we
have ¢/ # t. By Lemmas 9.22 and 9.16, there is an u € ﬁ, such that K‘tj/ef is contained
in Y, . By Lemma 10.13, we know that &, is a tame (r, s, srs)—deformation. Hence
there exists an element v € (Y}) such that Int(v) o, K%' is the standard deformation
of K?,ef. As dly, = 0y, it follows that Int(v) o §| K is the standard deformation of
K‘ti,ef. Hence § is tame. a

11 Proof of Theorem 2

Let (W, R) be a Coxeter system and let S € R" be a Coxeter generating set which
is not sharp-angled. Suppose S contains k > 1 edges which are not sharp-angled and
choose one of them. Call it J. By Theorem 1, we can assume that J = {r, s} with
o(rs) = 5. By Proposition 8.4, J is a A—edge. Hence, by Theorem 10.4, there exists
a J—deformation § of S sending J onto {rsr,s}. Hence, by Lemma 5.4, §(J) is a
sharp-angled edge of §(S). Let now J' be an edge of S different from J. Then §(J”)
is W —conjugate to J’ by Property (AD4) of §; in particular, §(J’) is sharp-angled
if and only if J’ is sharp-angled. Hence the number of edges in §(S) which are not
sharp-angled is k — 1. Thus the statement follows by an obvious induction on the
number of edges of S which are not sharp-angled. a
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