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Smooth surfaces with non-simply-connected complements

HEE JUNG KIM

DANIEL RUBERMAN

We consider two constructions of surfaces in simply-connected 4–manifolds with
non simply-connected complements. One is an iteration of the twisted rim surgery
introduced by the first author [8]. We also construct, for any group G satisfying some
simple conditions, a simply-connected symplectic manifold containing a symplectic
surface whose complement has fundamental group G . In each case, we produce
infinitely many smoothly inequivalent surfaces that are equivalent up to smooth
s–cobordism and hence are topologically equivalent for good groups.

57R57; 57N13

1 Introduction

In this paper, we study surfaces embedded in simply-connected 4–manifolds whose
complements are not simply-connected. We investigate the possibilities for the funda-
mental group of the surface complement, and give constructions of smooth knottings
that do not change the fundamental group (and often, the topological type of the knot).
In the first part of the paper, we use a variation of the Fintushel–Stern rim surgery
technique [3] introduced in the first author’s thesis [8], called m–twist rim surgery.
Starting with an embedded surface †�X , and a knot K in S3 , m–twist rim surgery,
described in Section 2, produces a new surface †K .m/�X .

Twisted rim surgery construction shares with rim surgery the property that for suitable
initial pairs (SW–pairs in the terminology of [3]) the resulting surface .X; †K .m//

is smoothly knotted with respect to .X; †/. For instance, this will be the case if X

is symplectic and † symplectically embedded with † �† � 0, and the Alexander
polynomial of K is nontrivial. For some choices of the parameter m, this construction
preserves the fundamental group, while for others, it produces new knot groups of
interest. For example, for any odd number p , we construct in Theorem 5.1 infinitely
many smoothly distinct surfaces in S2 �S2 with knot group a dihedral group D2p .

If mD 1, we show that m–twist rim surgery does not change the surface knot group
�1.X �†/. This is also the case if .m; d/D 1, where H1.X �†/D Z=d . In both
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of these cases, we show that .X; †K .m// is topologically unknotted when the knot K

is chosen carefully.

Theorem 1 (Theorem 4.4) If J is a ribbon knot and its d –fold branched cover is an
integral homology 3–sphere with .m; d/D 1, and G is a good group, then .X; †/ is
pairwise homeomorphic to .X; †J .m//.

This should be compared with our earlier paper [9] which dealt with the case that
�1.X �†/ is finite cyclic. On the one hand the hypothesis on the fundamental group
is greatly loosened, but on the other hand we have restricted the knot J . These results
rely on the 5–dimensional s–cobordism theorem, which at present holds for a restricted
class of groups (Freedman–Quinn [5], Freedman–Teichner [6] and Krushkal–Quinn
[12]), normally referred to as ‘good’ groups. Without the hypothesis that G be a
good group, the conclusion of Theorem 4.4 would be that .X; †/ is equivalent to
.X; †J .m// up to s–cobordism.

In a somewhat different direction, we investigate in Section 3 the possibilities for
the knot group of a symplectic surface in a simply-connected symplectic manifold.
We show that the obvious topological necessary conditions on a group G are in fact
sufficient to show that G D �1.X �†/ where † is a symplectic surface and X is
simply-connected.

Theorem 2 (Theorem 3.1) Let G be a finitely-presented group. There is a simply-
connected symplectic 4–manifold M containing a symplectically embedded surface S

with �1.M �S/Š G if and only if H1.G/ is cyclic, and there is an element 
 2 G

such that G=h
 i D f1g.

These surfaces can be further modified by twisted rim surgery to produce infinite
families of smoothly knotted surfaces.

A brief outline of the paper: In Section 2 we discuss the twisted rim surgery construction,
in particular its effect on the fundamental group. In Section 3 we characterize the
fundamental groups that can appear as the complement of a symplectically embedded
surface in a simply-connected symplectic 4–manifold. The final two sections discuss the
topological (Section 4) and smooth (Section 5) classification of the surfaces constructed
in the first half of the paper.

We thank the referee for a number of helpful comments on the exposition.
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2 Twisted rim surgery

Let X be a simply-connected 4–manifold and † an oriented embedded surface in
X . Like the original rim surgery (Fintushel–Stern [3]), the operation of m–twist rim
surgery (Kim [8]) provides a method to modify surfaces without changing the ambient
4–manifold X . The extra twist in the construction gives rise to some interesting
surface knot groups. Let us briefly review the construction. Let K be any knot in
S3 and E.K/ be its exterior. Consider a torus T with T �T D 0, called a rim torus,
which is the preimage in @�.†/ of a closed curve ˛ in †. A new surface †K .m/

is obtained by taking out a neighborhood T �D2 of a rim torus from X and gluing
S1 �E.K/ back using an additional twist on the boundary. An equivalent description
of this construction is given in [8]. Identify the neighborhood �.˛/ of the curve ˛ in
X with S1 �B3 so that the restriction of �.˛/ to † has the form S1 � I . We now
consider a self diffeomorphism � of .S3;K/ called the ‘twist map’ along K . Let
@E.K/�I DK�@D2�I be a collar of @E.K/ in E.K/ under a suitable trivialization
with 0–framing. The map � is given by

(1) �.�; ei' ; t/D .�; ei.'C2� t/; t/ for .�; ei' ; t/ 2K � @D2
� I

and otherwise, �.y/Dy . (Here we use KŠS1ŠR=Z.) We remark, for later use, that
the map on �1 induced by � is conjugation by the meridian of K , ie ��.ˇ/D��1

K
ˇ�K

for any ˇ in �1.S
3�K/.

For any integer m, we define the m–twist rim surgery on .X; †/ by an operation
producing a new pair

(2) .X; †K .m//D .X; †/�S1
� .B3; I/[@ S1

��m .B3;KC/:

Here, we have written .S3;K/D .B3;KC/[.B
3;K�/ where .B3;K�/ is an unknot-

ted ball pair. Note that E.K/ can be viewed as a codimension–0 submanifold of the
complement CC.K/D B3�KC onto which CC.K/ deformation retracts. Hence we
can regard � as an automorphism of the pair .B3;KC/, or equally as an automorphism
of CC.K/ that is the identity near KC .

We record here some standing assumptions and notation that will be in use for the rest
of the paper. In doing any rim surgery (twisted or otherwise) we assume that ˛ �† is
an embedded curve for which there is a framing of �.†/ along ˛ such that the push-off
of ˛ into @�.†/ is null-homotopic in X �†. Also, we will denote by Y d a cyclic
d –fold cover of a space Y , and by .Y;K/d a d –fold cover of Y branched along a
submanifold K .
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2.1 Twisted rim surgery and the knot group

For a surface † carrying a non-trivial homology class in a simply-connected 4–manifold
X , the first homology group H1.X �†/ is always finite cyclic, of order that we will
usually write as d . This coincides with the multiplicity of the homology class carried
by † in H2.X /. The way in which m–twist rim surgery affects the fundamental group
of a surface knot depends to some degree on the relation between m and d .

In our previous paper [9], we considered the m–twist rim surgery in the case that
�1.X �†/D Z=d and .m; d/D 1, and showed that the group �1.X �†K .m// is
Z=d , no matter what K is. We take up two variations of this result. In this subsection,
we consider the situation in which �1.X � †/ D Z=d , but we take m D d , and
calculate the fundamental group �1.X �†K .m//. Using m–twist rim surgery along
appropriate knots, we will construct surfaces in X whose surface knot group are some
non-abelian finite groups. In the next subsection, we will work in an opposite direction,
without hypothesis on �1.X �†/. We show, in Proposition 2.4, that when .m; d/D 1

the fundamental group �1.X �†K .m// is the same as �1.X �†/.

Lemma 2.1 Suppose �1.X �†/ Š Z=d . Then �1.X �†K .d// is a semi-direct
product of �1..S

3;K/d / and Z=d , where the action of Z=d is by the covering
transformations of the branched cover.

Proof Write H D �1..S
3;K/d /. It is sufficient to show that the fundamental group

of the d –fold unbranched cover .X �†K .d//
d is H , and that the exact sequence

(3) 0!H ! �1.X �†K .d//
hurew.
�! Z=d ! 0

splits; the identification of the action of Z=d should be clear by the end of the argument.
Considering (2) and the choice of the curve ˛ , we decompose .X �†K .d// as

(4) X �†K .d/DX �†� .S1
� .B3

� I//[@ S1
��d CC.K/

with a corresponding decomposition for the d –fold cover:

(5) .X �†K .d//
d
D .X �†/d � .S1

� .B3
� I//[@ S1

�z�d CC.K/
d :

Referring to the decomposition (4), note that the inclusion of X �†� .S1� .B3�I//

into X � † induces an isomorphism on �1 , so the meridian �† has order d in
�1.X �†K .d//. It follows that the sequence (3) splits, as asserted, and that the action
of Z=d on the kernel of the Hurewicz map is given by conjugation by �† .
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Applying van Kampen’s Theorem to the decomposition (5) gives the following diagram:

�1..X �†/
d �S1 � .B3 � I//

 1

**UUUUUUUUUUUUUUUU

�1.S
1 � .@B3 �ftwo pointsg//

'1

33hhhhhhhhhhhhhhhhhhh

'2

++VVVVVVVVVVVVVVVVVV �1..X �†K .d//
d /

�1.S
1 �z�d CC.K/

d /

 2

44iiiiiiiiiiiiiiii

Note that �1..X �†/
d �S1 � .B3� I// is isomorphic to �1..X �†/

d / which is
trivial because �1..X �†//D Z=d . So, the diagram shows

(6) �1..X�†K .d//
d /Dh�1.E.K/

d ;�/ j� zK D1; ˇDz�d
� .ˇ/;8ˇ2�1.E.K/

d ;�/i

where � zK is a meridian of the lifted knot zK .

Recall that the lift z� is given in [8];

(7) z�.x/D

8̂<̂
:
�.x/ if x 2E.K/d � @E.K/d � I

.�; ei..s=d/�2�C'/; s/ if x D .�; ei' ; s/ 2 @E.K/d � I

x otherwise

where � is the canonical generator of the group Z=d of covering transformations.

We observe that the lifted map z�d is the same as a twist map � zK along the lifted knot
of K as in (1) and so in the presentation (6), we have that z�d

� .ˇ/D �
�1
zK
ˇ� zK for any

ˇ 2 �1.S
3;K;�/d . Since � zK D 1, z�d

� .ˇ/D ˇ . This implies

�1..X �†K .d//
d /D h�1.E.K/

d ;�/ j � zK D 1i D �1..S
3;K/d /DH:

Corollary 2.2 If �1.X �†/Š Z=d and �1..S
3;K/d / is finite, then so is �1.X �

†K .d//.

Since �1.X �†K .d// is a semi-direct product of H and Z=d , we denote �1.X �

†K .d// by G .

Corollary 2.2 suggests the question: what finite groups can be obtained by twisted rim
surgery, starting with a surface whose knot group is cyclic? From Perelman’s work on
geometrization (Perelman [17], Lott [10], Cao–Zhu [2] and Morgan–Tian [14; 15]) it
suffices to know which spherical space forms arise as cyclic branched covers of knots
in S3 . The possibilities for the the fundamental groups of such branched covers, as
well as the action of Z=d , were determined by Plotnick and Suciu [19, Section 5]. The
full list is a little complicated, but the following are worth noting:
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(1) Taking d D 3 and K a trefoil knot then H is a quaternion group Q8 , with
the action of Z=3 permuting the unit quaternions {; | and k . So for example,
starting with a degree–3 curve in CP2 , we obtain an embedded torus in CP2

with group G DQ.8/Ì Z=3.

(2) Taking d D 2 and K to be a 2–bridge knot Kp;q with .p; q/D 1 then H is
a cyclic group Z=p , where Z=2 acts by multiplication by �1, so that G is a
dihedral group D2p . This group can be realized as a surface knot group in CP2 ,
by taking † to be a degree-2 curve (a sphere) with a handle added to create a
torus. In the next section, we will want to perform a further twisted rim surgery
on the resulting surface †Kp;q

.2/, but .CP2; †Kp;q
.2// is not an SW–pair in

the sense of [3], and so is not a good starting point for rim surgery constructions.
One could instead choose † to be a curve in S2 �S2 of bidegree .2; 2/.

(3) The Poincare homology sphere is the p fold cover of the .q; r/ torus knot
for fp; q; rg D f2; 3; 5g, giving three different extensions G with subgroup
H D I� D �1.PHS/. For d D 3; 5 one obtains interesting surfaces in CP2 ,
while for d D 2 we would work with surfaces in S2 �S2 .

A further interesting aspect of the second family of surfaces is that the group doesn’t
depend on q , but the knots †Kp;q

.2/ and †Kp;q0
.2/ will be different if �Kp;q

.t/ ¤

�Kp;q0
.t/ and .X; †/ is an SW–pair. So we can in principle obtain many knotted

surfaces with a given dihedral knot group. However, in Section 5, we will do better
than this, and obtain infinitely many such surfaces.

2.2 Rim surgeries that preserve �1

We have constructed surfaces whose surface knot group is no longer abelian by d –twist
rim surgery, starting with a surface whose complement has �1 D Z=d . Now, we seek
to modify these surfaces using twist rim surgery without changing the fundamental
group. With the correct choice of knot K , this will produce surfaces that are smoothly
knotted but topologically standard.

Our first result is that 1–twist rim surgery always preserves the surface knot group.

Proposition 2.3 For any knot K , the surface †K .1/ obtained by 1–twist surgery
along the rim torus parallel to ˛ has �1.X �†K .1//Š �1.X �†/:
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Proof The van Kampen theorem for the decomposition X �†K .1/ shows the fol-
lowing diagram;

�1.X �†�S1 � .B3 � I//

 1

))TTTTTTTTTTTTTTT

�1.S
1 � .@B3 �ftwo pointsg//

'1

44hhhhhhhhhhhhhhhhhh

'2

**VVVVVVVVVVVVVVVVVV
�1.X �†K .1//

�1.S
1 �� .CC.K//

 2

55jjjjjjjjjjjjjjj

In the diagram, consider the generators ŒS1� and Œ�� in �1.S
1�.@B3�ftwo pointsg//.

Note that '1Œ�� is the meridian Œ�†� in �1.X �†�S1 � .B3 � I// Š �1.X �†/

and '1ŒS
1� is Œ˛� which is trivial. So, the presentation for �1.X �†K .1// is

h�1.X �†/��1.S
1
�� .CC.K/// j ŒS

1�D 1;

�† D �K ; �
�1
K ˇ�K D ˇ8ˇ 2 �1.CC.K//i;

that is isomorphic to �1.X �†/.

In Section 4.1, we will show that if K is a slice knot, then 1–twist rim surgery does
not change the s–cobordism class of the knot †, and hence the resulting surface
is topologically unknotted for good fundamental groups. In that section, we will
make use of the observation, referring to the decomposition above, that the image
of �1.S

1 �� .CC.K// in �1.X �†K .1// is the cyclic subgroup generated by the
meridian of †K .1/. In Section 5 we will use this result to get infinitely many smoothly
knotted surfaces with a given fundamental group.

More generally, one can ask when an m–twist rim surgery preserves the fundamental
group. For any integer m and knot J , consider the m–twist rim surgery along a rim
torus ˛��† . Then in certain cases, the knot group of the surface is preserved.

Proposition 2.4 Suppose that the surface † � X has H1.X �†/D Z=d , and that
the meridian �† has order d in G D �1.X �†/. If .m; d/D 1 then the knot group
of †J .m/ is isomorphic to G D �1.X �†/.

We remark that the hypothesis about the meridian of † holds for the surfaces constructed
above in Section 2.1.

Proof of Proposition 2.4 We first note that the Hurewicz homomorphism gives

�1.X �†J .m//!H1.X �†J .m//DH1.X �†/D Z=d:
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We shall show that the fundamental group of the d –fold cover .X �†J .m//
d of

X �†J .m/ is isomorphic to �1..X �†/
d /. Identifying a lift z̨ of ˛ in d –fold cover

of X branched along † as S1 , we have a decomposition similar to that in (5):

.X �†J .m//
d
D .X �†/d �S1

� .B3
� I/[@ S1

�z�m CC.J /
d :

The van Kampen Theorem for this decomposition gives the following diagram:

(8) �1..X �†/
d �S1 � .B3� I//

 1

((QQQQQQQQQQQQ

�1.S
1 � .@B3�ftwo pointsg//

'1

55jjjjjjjjjjjjjjj

'2

))TTTTTTTTTTTTTTT
�1..X �†J .m//

d /

�1.S
1 �z�m CC.J /

d /

 2

66mmmmmmmmmmmm

We claim that '1 is a trivial map. Since �1.S
1�.@B3�ftwo pointsg// is Z2 generated

by ŒS1� and Œ��, it is sufficient to check that their images under '1 are trivial. Note
that '1.Œ��/ 2 �1..X � †/

d / is the meridian Œ�z†� of the lifted surface of † and
so it projects to Œ�d

†
� 2 �1.X �†/, which is trivial. Similarly, '1.ŒS

1�/ is sent to
Œ˛� 2 �1.X �†/ and so it is also trivial.

Now, we note that

(9) �1.S
1
�z�m CC.J /

d /= im.'2/Š h�1.S
1
�z�m .S3;J /d / j ŒS1�D 1i:

In [18], Plotnick constructs a knotted 2–sphere A.J / in a homotopy 4–sphere that
depends on a knot J in S3 and 3� 3 matrix A. In many cases, the knot A.J / is
fibred and the homotopy 4–sphere is smoothly S4 . If m and d are relatively prime
then with an appropriate choice of matrix A, Plotnick’s construction yields a knotted
2–sphere A.J / in S4 whose fiber is the punctured d –fold branched cover of J and
the monodromy is z�m described in (7). For details, see [18, Theorem 5.6].

So, we observe that the presentation (9) is the knot group of A.J / in S4 with the
relation ŒS1� D 1, which is indeed the meridian of A.J / in its construction and
hence �1.S

1 �z�m CC.J /
d /= im.'2/ is trivial. This shows that �1..X �†J .m//

d /

is isomorphic to �1..X �†/
d �S1 � .B3� I//Š �1..X �†/

d /.

In order to see that �1.X �†J .m// is isomorphic to G , we consider a short exact
sequence

(10) 0!H ! �1.X �†J .m//
hurew:
! Z=d ! 0;
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where H is �1..X �†/
d /. We are assuming that the meridian of † has order d in

�1.X �†/. It is easy to check that this still holds when we remove the rim torus
˛ ��† , so that the meridian �†J .m/ has order d as well. Thus the sequence (10)
splits, and the action of Z=d is again by conjugation by �†J .m/ on H . Keeping track
of this conjugation in the isomorphism described above shows that the sequences (3)
and (10) yield the same extension.

Given a sequence K1; : : : ;Kn of knots and integers m1; : : : ;mn , and a surface †�X ,
we can do a sequence of twisted rim surgeries. The result of this iterated rim surgery
will be denoted .X; †K1;:::;Kn

.m1; : : : ;mn//. We will assume that the curves ˛i �†

that determine the rim tori are all parallel on †, and recall our standing assumption
that this curve ˛ has a pushoff that is homotopically trivial in X �†. It is easy to see
that this condition is preserved after each surgery. Using this iterated construction, we
obtain the following corollary.

Corollary 2.5 Consider a surface †�X with �1.X �†/Š Z=m1 , and a sequence
of integers m2; : : : ;mn such that .m1;mi/D 1 for all i > 1. Then the knot group of
†K1;:::;Kn

.m1; : : : ;mn/ is isomorphic to that of †K1
.m1/.

We remark that iterated twisted rim surgery can be done in a single operation, as
follows. Suppose that K1; : : : ;Kn are knots in S3 , and that integers m1; : : : ;mn are
given. Then the exterior E.K1# � � � #Kn/ is contains the exteriors E.Ki/ in a standard
way, bounded by incompressible tori. Performing the twist maps �mi along these tori
gives a diffeomorphism T of E.K1# � � � #Kn/ which gives rise to a new surface knot
.X; †K1;:::;Kn

.T // as in (2). This is the same as doing mi –twist rim surgeries along
the knots Ki in any sequence.

3 Symplectic tori with arbitrary knot group

In this section, we discuss the question of when a given finitely presented group G

is the fundamental group of X �S , where X is a simply-connected symplectic 4–
manifold, and S is a symplectic surface. Note that S being symplectic implies that ŒS �
is non-trivial in H2.X IR/, which in turn implies that H1.X �S IZ/ is finite, in fact
isomorphic to Z=d where d is the divisibility of ŒS � 2H2.X IZ/. Thus, the following
conditions are necessary for G to be isomorphic to �1.X �S/:

(Kd ) H1.G/D Z=d for some d , and 9 
 2G such that G=h
 i D f1g:

We show that these topological conditions are sufficient for the existence of a symplectic
surface. The technique is a relative version of Gompf’s construction of symplectic
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manifolds with arbitrary fundamental group. We have not made any effort to be efficient
in this construction, with regard to keeping �.M / or �.M / (or some combination
thereof) small. It seems likely that this could be achieved for specific groups, following
Baldridge–Kirk [1].

Theorem 3.1 If G satisfies conditions (Kd ), then there is a simply-connected sym-
plectic 4–manifold M containing a symplectically embedded surface S with �1.M �

S/ŠG .

Proof Take a finite presentation of G :

G D hx1; : : : ;xl j r1; : : : rmi:

Since H1.G/ Š Z=d , there are elements ai ; bi 2 G with 
 d D
Qn

i Œai ; bi �, where

 is the group element in (Kd ). Write ai and bi as words in the generators xj ,
symbolically ai D vi.x1; : : : ;xl/ and bi D wi.x1; : : : ;xl/. Similarly, write 
 as a
word w.x1; : : : ;xl/. By construction, the equation wd D

Qn
i Œvi ; wi � in the free group

generated by the fxig is a consequence of the relations frj g.

Consider a surface †1 of genus l C n with one boundary component �0 , containing
a standard symplectic basis of curves fx1;y1; : : : ;xl ;yl ; a1; b1; : : : ; an; bng. Let P

denote a d –punctured disc D2 � .ı1 [ � � � [ ıd /, with boundary @P D �
S
[i@.ıi/.

Write †d D †1 [�D�0 P , and † for †d with the disks ıi glued back in. This is
illustrated, for d D 2, in Figure 1 below.

The disks ıj should be cyclically arranged around a circle in int.D/ as shown below
in Figure 2. The boundaries of the ıj , oriented counterclockwise, together with the
indicated base paths, will be denoted 
j 2 �1.P; 1/. With the given orientations and
base paths, � D 
d � 
d�1 � � � 
1 . Consider a diffeomorphism �W D! D that is the
identity on @D , and permutes the ıj cyclically. The effect of � on �1.P; 1/ is given
by ��.
1/D 
2 , . . . , ��.
d�1/D 
d , and ��.
d /D �
1�

�1 . Extend � by the identity
on †1 so that it becomes a diffeomorphism on †d .

Form the manifold X D S1 �S1 �†, with a product symplectic structure. We will
call the first circle factor ˛ and the second one ˇ and write T D ˛ �ˇ . Note that the
surface T 2 � 0 where 0 is the center of D2 is a symplectic submanifold of X . In the
solid torus ˇ �D2 there is a braid that forms a .d; 1/ torus knot meeting D in the
centers of the disks ıj . Let Sd be the product of ˛ with this braid; it is straightforward
to check that the symplectic structure on X can be arranged so that Sd is symplectic.

The complement Xd of Sd is equal to the product of the circle ˛ with the mapping
torus S1��†d ; we will identify the circles transverse to †1 �†d with the ˇ circles.
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x1

y1

x2

y2

a1

b1

†1

†d

�

�0


1 
2

�

P

Figure 1

Another way to observe the embedding of Xd in X is to note that if � is extended over
the disks ıj , then it is actually isotopic to the identity map of †, and so the mapping
torus becomes a product manifold.

The fundamental group of Xd is generated by ˛; ˇ and

fxi ;yi ; aj ; bj ; 
kg for i D 1 : : : l; j D 1 : : : n; k D 1 : : : d;
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ı1

ı2

ı3

ı4

�

1

�

1

Figure 2

with relations that ˛ commutes with everything, ˇ commutes with xi ;yi ; aj and bj ,



ˇ

k
D 
kC1 for k D 1 : : : d � 1(11)



ˇ

d
D 


�
1
; and(12)

lY
iD1

Œxi ;yi �

nY
jD1

Œaj ; bj �D 
d � 
d�1 � � � 
1:(13)

Choose, for j � 1, immersed curves �j �†1 representing the homotopy classes (in
†1 ) of

(14) y1; : : : ;yl ; r1; : : : ; rm; and a�1
1 v1; : : : ; a

�1
n vn; b

�1
1 w1; b

�1
n wn

and a curve �0 in †d representing 
�1
1
w . Following Gompf [7], replace †d by

its connected sum with many copies of T 2 and the �j by their connected sum with
curves running over these tori so that ˛ � �j can be arranged to be embedded and
symplectic. (The collection of curves f�j g has been enlarged in this process to include
the generators �1 of each torus added on.) Note that the connected sums can all be
arranged to take place in †1 �†d , and so the diffeomorphism � extends to the new
†d .

Now do the symplectic sum of X with copies of the elliptic surface E.1/, where a
fiber F of E.1/ is identified with the each of the tori ˛��j . Do one further symplectic
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sum where F is identified with a copy of the torus ˛�ˇ . Write M for the result of
all of these fiber sums with X , with Md , the complement of Sd , being the same fiber
sums with Xd .

Since the fiber in E.1/ has simply-connected complement, van Kampen’s theorem
implies that each fiber sum kills the precisely elements of the fundamental group of
the torus in X or Xd . Let us compute the fundamental group of Xd . Note that after
relations killing the fundamental group elements ˛ , ˇ and those listed in (14) are
imposed, then only the generators f
1;x1; : : : ;xlg are needed, and the relation (13)
reduces to

nY
jD1

Œvj ; wj �D 

d
1 :

Doing the final fiber sum along ˛� �0 makes 
1 a word in the xi , with this relation
automatically satisfied. Thus �1.Md / is generated by the fxig with relations frg, and
is thus isomorphic to G . The fundamental group of M is trivial, because we kill the
element 
 D 
1 , which by hypothesis normally generates G .

There are two special properties of the surface constructed in the above proof: it is a
torus and has trivial self-intersection. It is straightforward, when d D 1, to modify the
construction to produce surfaces of arbitrary positive genus g . In that case, instead
of taking a product with a torus to form X1 , simply take the product with a surface
Fg of genus g . To kill the extra fundamental group introduced in this way, one needs
to take a symplectic sum of X1 along Fg with a symplectic manifold Y containing
a copy of Fg with simply-connected complement; such are easily found. It seems a
little more difficult to find such surfaces for d > 1.

Finding a symplectic sphere has a rather different character. The fundamental group of
a sphere with non-zero self-intersection m in a simply-connected 4–manifold satisfies
extra relations, because the element 
 in conditions (Kd ) satisfies 
m D 1. There are
certainly many groups that satisfy conditions (Kd ) but have no elements of finite order
(for example d –framed surgery on most knots in S3 ). So to get a group satisfying
conditions (Kd ) we would want the sphere to have trivial normal bundle. However,
smoothly embedded spheres with trivial normal bundles are relatively rare in symplectic
manifolds, and so we conjecture that there are some groups that simply cannot be
realized.

In general, if a surface † of genus g is embedded in a 4–manifold with self-intersection
k , note that its divisibility d must divide k . By considering a pushoff of †, one sees
that the group of † satisfies conditions (Kd ) with the extra proviso that the element 

may be chosen so that 
 k is a product of at most g commutators. In principle, this
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places some extra restriction on the group G , but this seems hard to work with because
there may be many choices for 
 .

If we do not care whether the ambient manifold is symplectic, then it is easy to find
embedded surfaces of any genus with arbitrary group satisfying conditions (Kd ).

Proposition 3.2 Let G be a finitely presented group satisfying (Kd ). Then G D

�1.X �S/ for an embedded 2–sphere S in a smooth simply-connected 4–manifold
X .

Note that by adding on handles to S , we get surfaces of arbitrary genus.

Proof Construct a handlebody Y with 1–handles and 2–handles corresponding to the
generators and relations of a presentation of G . Represent 
 by an embedded circle
in @Y , and let Z be Y together with a 2–handle attached along 
 (with arbitrary
framing). Then Z is simply-connected, and contains a properly embedded disc �
(the cocore of this handle) such that Z �� deformation retracts onto Y . In particular,
�1.Z ��/ŠG . Let X be the double of Z , and take S to be the double of the disk
�. Note that �1@Y ! �1Y is surjective, which implies that �1.X �S/ŠG .

Finally, we remark that by repeatedly crossing with S2 , Theorem 3.1 implies a similar
result for codimension–2 symplectic submanifolds in arbitrary dimensions.

Theorem 3.3 If G satisfies conditions (Kd ), then (for n � 2) there is a simply-
connected symplectic 2n–manifold M containing a symplectically embedded .2n�2/-
submanifold S with �1.M �S/ŠG .

4 Topological classification

The iterated twisted rim surgery construction of Section 2.2 and the construction of
symplectic surfaces in Section 3 (combined with 1–twist rim surgery as in Proposition
2.3) give large families of surface knots with the same knot group. This section will treat
the topological classification of these knots, with the smooth classification considered
in the next section.

First we discuss the iterated twist rim surgery construction, starting with a surface
.X; †/. We make the same hypotheses as in Section 2.2 on the group G of † and the
curve ˛ that determines the rim torus. We perform a twisted rim surgery (with twisting
m such that .m; d/D 1) to obtain a new knot .X; †J .m//, with the same group as
†. In the case that the knot groups were cyclic, we used in our earlier paper [9] a
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computation in surgery theory to show that all such knots are pairwise homeomorphic.
This relied on the vanishing of the Wall groups Lh

5
.ZŒZd �/ and Ls

5
.ZŒZd �/, which

does not hold for arbitrary fundamental groups. So we return to the method of [8], and
work under the assumption that J is a ribbon knot. To compare the surfaces † and
†J .m/ topologically in X , we will construct a relative h–cobordism between their
exteriors as in [8]; a further condition on the Alexander polynomial of J will ensure
the vanishing of the torsion. Note that for simplicity of notation, our computations in
the first 3 sections had to do with knot and surface complements; for this section we
will work with the exteriors so we can use the relative s–cobordism theorem. To this
end, we will write ı� .J / for an open tubular neighborhood of J .

Let us briefly review the construction from [8], to which we refer for further details.
If J is a ribbon knot ie .S3;J / D @.B4; �/ for some ribbon disc � in B4 then
there is a concordance A in S3 � I between J and an unknot O , such that the map
�1.S

3�J /! �1.S
3 � I �A/ is a surjection. The twist map � on .S3;J / extends

to a self diffeomorphism with the same name on .S3 � I;A/ as follows. On the collar
of @�.A/ŠA� @D2 � I ,

�.x � ei�
� t/D x � ei.�C2� t/

� t for x � ei�
� t 2A� @D2

� I

and otherwise, � is the identity. Note that the restrictions � to S3 � f0g and S3 � f1g

are the twist maps �O and �J generated by O and J .

Write S3DB3
C[B3

� and let J DJC[J� where JCDB3
C\J and J� is an unknotted

arc in B3
� . We obtain a restricted concordance between the arcs JC and OC by taking

out B3
��I from .S3�I;A/ and then denote the concordance by AC in B3

C�I . Using
� restricted to .B3

C � I;AC/, we obtain a new pair .X � I; .†� I/A.m// by taking
out the neighborhood of the curve ˛ � † in X � I and gluing back .B3

C � I;AC/

along �m . Explicitly, we write

.X � I; .†� I/A.m//DX � I �S1
� .B3

� I; I � I/[S1
��m .B3

� I;AC/:

Note that in this construction, X � 1D .X; †J .m// and X � 0D .X; †/. Consider
the exterior X � I�

ı
� ..†� I/A.m//, denoted by W , which provides a homology

cobordism between X�
ı
� .†/ and X�

ı
� .†J .m// (see the proof of [8, Proposition

4.3]). Like all of the cobordisms we will consider in this section, W is a product
along the boundary. Let M0 D X�

ı
� .†/ and M1 D X�

ı
� .†J .m//. From the

decomposition of .X � I; .†� I/A.m//, we write W as

(15) W D .X � .S1
�B3/�

ı
� .†//� I [S1

��m .B3
� I�

ı
� .AC//:
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We assert that W is an h–cobordism; the first step is to show that �1.W / D G .
Then we show, for the universal covers fW and eM1 of W and M1 respectively, that
H�.fW ;eM1 / is trivial. The Whitehead Theorem shows that the inclusion, i W M1!W

is a homotopy equivalence.

The proof that W is an h–cobordism uses an observation from [8] which we quote for
later use.

Lemma 4.1 [8, Lemma 4.2] If J is a ribbon knot whose d –fold branched cover
is an integral homology 3–sphere, then the d –fold cover .B4��/d of B4�� is a
homology circle.

Lemma 4.2 The inclusion i W M1!W induces an isomorphism of �1.W /!G .

Proof We shall show first that the d –fold covers of W and M1 have the same
fundamental group and then deduce that �1.M1/Š �1.W /.

Since the homology class of ˛ is trivial in W and M1 , we decompose the d –fold
covers W d and M d

1
from (15) as follows.

M d
1 D .X �S1

�B3
�
ı
� .†//d [S1

�z�m
J
.B3
�
ı
� .JC//

d(16)

W d
D .X �S1

�B3
�
ı
� .†//d � I [S1

�z�m .B3
� I�

ı
� .AC//

d :(17)

Applying the van Kampen theorem to these decompositions, we can compare the two
diagrams:

�1..X �S1 �B3�
ı
� .†//d /

i2

 1

))SSSSSSSSSSSSSSS

�1.S
1 � .@B3 �ftwo pointsg//

i1

��

'1

33hhhhhhhhhhhhhhhhhhhh

'2

++VVVVVVVVVVVVVVVVVVV
�1.M

d
1
/

i4

��

�1.S
1 �z�m

J
CC.J /

d /

��

i3

��

 2

55llllllllllllll

�1..X �S1 �B3�
ı
� .†//d � I/

 0
1

))SSSSSSSSSSSSSSS

�1.S
1 � .@B3 �ftwo pointsg � I//

'0
1

33gggggggggggggggggggg

'0
2

++VVVVVVVVVVVVVVVVVVV �1.W
d /

�1.S
1 �z�m

A
.B3 � I�

ı
� .AC//

d /

 0
2

55llllllllllllll
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Here, i1 , i2 , i3 and i4 are the maps induced by inclusions. Obviously, i1 and i2 are
isomorphisms. Moreover, i3 is onto since J is a ribbon knot and so the induced map i4
is onto. Recall from Proposition 2.4 that �1.M

d
1
/ is isomorphic to �1..X�S1�B3�

ı
�

.†//d /: Our claim is that �1.W
d / is isomorphic to �1..X �S1�B3�

ı
� .†//d � I/

and so it is isomorphic to �1.M
d
1
/. This will then imply that �1.W / is isomorphic to

�1.M1/.

If we consider the argument of Proposition 2.4, '1 is the zero map and the quotient
�1.S

1 �z�m
J

CC.J /
d /= im.'2/ is trivial. In the diagram of �1.W

d /, similarly '0
1

is

the zero map and the quotient �1.S
1�z�m

A
.B3� I�

ı
� .AC//

d /= im.'0
2
/ is also trivial

by the commutativity and surjectivity of i3 . This shows that �1.W
d / is isomorphic to

�1..X �S1 �B3�
ı
� .†//d � I/.

Thus, we have the following commutative diagram:

0 �! �1.M
d
1
/ �! �1.M1/ �! H1.M1/ �! 0

Š
?y ?y Š

?y
0 �! �1.W

d / �! �1.W / �! H1.W / �! 0

Note that �1.M1/ maps to �1.W / surjectively and some simple diagram-chasing
shows that it is an isomorphism.

Proposition 4.3 If J is a ribbon knot and its d –fold branched cover is an integral
homology 3–sphere with .m; d/D 1 then there exists an h–cobordism W between
M0 DX�

ı
� .†/ and M1 DX�

ı
� .†J .m// rel @.

Proof We will show that for the universal coverings of W and M1 denoted by fW
and eM1 respectively, H�.fW ;eM1 / is trivial. It follows by the Whitehead theorem
that the inclusion i W M1!W is a homotopy equivalence.

We first consider the d –fold covers of W and M1 associated to �1.W /!H1.W /D

Z=d and �1.M1/!H1.M1/DZ=d . As before, denote by H the groups �1.W
d /Š

�1.M
d
1
/. Note that the universal covers of W d and M d

1
are the universal covers of

W and M1 . We will denote the preimage, under the universal cover, of a subset S of
W d or M d

1
by SH , and refer to this as the H –cover of S . Then the universal covers

of W and M decompose into the preimages of the pieces in the decompositions (17)
and (16) of their d –fold covers W d and M d :

(18) fW D ..X �S1
�B3

�
ı
� .†//d /H � I [ .S1

�z�m .B3
� I�

ı
� .AC//

d /H

and

(19) fM 1 D ..X �S1
�B3

�
ı
� .†//d /H [ .S1

�z�m
J
.B3
�
ı
� .JC//

d /H :
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In order to describe the H –cover of S1�z�m
J
.B3�

ı
� .JC//

d , we consider the inclusion-

induced map �1.S
1�z�m

J
.B3�

ı
� .JC//

d /! �1.M
d
1
/. In the diagram (8) induced by

the van Kampen theorem to the decomposition (16) of M d
1

, the argument of Proposition
2.4 shows that  2W �1.S

1 �z�m
J
.B3�

ı
� .JC//

d /! �1.M
d
1
/ is trivial.

This means that the H –cover of S1�z�m
J
.B3�

ı
� .JC//

d is the disjoint union of copies

of S1 �z�m
J
.B3�

ı
� .JC//

d , indexed by elements of H . A similar argument shows

that the H –cover of S1 �z�m .B3 � I�
ı
� .AC//

d is the disjoint union of copies of
S1 �z�m .B3 � I�

ı
� .AC//

d indexed by elements of H as well. So, by excision, the
relative homology for the pair .fW ;eM1 / takes the following simple form:

H�.fW ;eM1 /Š
H
˚H�..B

3
� I�

ı
� .AC//

d ; .B3
�
ı
� .JC//

d //

where
H
˚ means a direct sum indexed by the elements of H .

Lemma 4.1 of [8] implies that H�.fW ;eM1 / is trivial.

The homotopy equivalence i W M1 ! W induces a well-defined Whitehead torsion
�.W;M1/2W h.G/; this is the torsion of the (based) acyclic chain complex C.fW ;eM1/

over ZŒG�. If this is zero then we would obtain an s–cobordism W between M0 D

X�
ı
� .†/ and M1 DX�

ı
� .†J .m// rel @ that is topologically trivial if G is a good

group.

Our strategy to compute �.W;M1/ is to apply the multiplicative property of torsion
(Turaev [20]) to the decomposition (15) of W . This induces a decomposition of the
.W;M1/ of the form

..X �S1
�B3

�
ı
� .†//� I;X �S1

�B3
�
ı
� .†// [

.S1
��m .B3

� I�
ı
� .AC//;S

1
��m

J
.B3
�
ı
� .JC///:

(20)

For a pair i W .U;V / ,! .W;M1/, suppose that the chain complex C�. zU ; zV / becomes
acyclic when tensored with ZŒG� via i� . Even if V is not a deformation retract of U , the
torsion of this chain complex is defined torsion, and will be denoted � i.U;V /2W h.G/.
The first pair in (20) is a product, and so its torsion � i1 vanishes. However, the
second pair need not be a product up to homotopy. With the same assumptions
as in Lemma 4.1, we will show that the chain complex for the universal cover of
.S1 ��m .B3 � I�

ı
� .AC//;S

1 ��m
J
.B3�

ı
� .JC/// is acyclic when tensored with

ZŒG� and so it has a torsion � i2 2 W h.G/. We will show that � i2 also vanishes,
implying that .W;M1/ is an s–cobordism.
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Theorem 4.4 If J is a ribbon knot and its d –fold branched cover is an integral
homology 3–sphere with .m; d/D 1, and G is a good group, then .X; †/ is pairwise
homeomorphic to .X; †J .m//.

Proof According to Proposition 4.3 and the above argument, it is sufficient to show that
the torsion �.W;M1/ is trivial. We denote by K1[K2 the union of each component
of the decomposition (15) of W , and likewise L1[L2 for M1 . Note that from (18)
and (19) in Proposition 4.3, the universal cover of W is the union of H –covers of the
d –fold covers of each component and the same form works for M1 . Extending the
notation, we write fW D eK1 [

eK2 and fM 1 D
eL1 [

eL2 , where for each ˛ D 1; 2,eK˛ is the preimage of K˛ under the universal cover of W associated to the inclusion
induced map i˛�W �1K˛! �1W DG and likewise, eL˛ for L˛ .

Then we have the Mayer–Vietoris sequence for the pair .fW ; fM 1/ D . eK1; eL1/ [

. eK2; eL2/ and . eK0; eL0/ D . eK1; eL1/ \ . eK2; eL2/. If the torsion of each compo-
nent in the decomposition of .W;M1/ associated to the inclusion induced morphism
i˛�W ZŒ�1.K˛/�! ZŒ�1.W /� is well defined then the Mayer–Vietoris sequence and
the multiplicativity of torsion shows

�.W;M1/ � �
i0.K0;L0/D �

i1.K1;L1/ � �
i2.K2;L2/:

Since the chain complexes C�. eK0; eL0/ and C�. eK1; eL1/ are obviously acyclic, their
torsion � i0.K0;L0/ and � i1.K1;L1/ are well defined and moreover they are trivial. So,
we only need to compute � i2.K2;L2/D �

i2.S1��m .B3�I�
ı
� .AC//;S

1��m
J
.B3�

ı
�

.JC/// to get �.W;M1/. In order to define the torsion � i2.K2;L2/, we need to check
if the chain complex C�. eK2; eL2/ is acyclic. In Proposition 4.3, eK2 is the disjoint
union of H –copies of S1�z�m .B3�I�

ı
� .AC//

d . Similarly, eL2 is the disjoint union
of H –copies of S1 ��m

J
.B3�

ı
� .JC//

d and so we write

. eK2; eL2/D .

Ha
S1
�z�m .B3

� I�
ı
� .AC//

d ;

Ha
S1
�z�m

J
.B3
�
ı
� .JC//

d /:

So, the chain complex is the form of

C�. eK2; eL2/Š
H
˚C�.S

1
�z�m .B3

� I�
ı
� .AC//

d ;S1
�z�m

J
.B3
�
ı
� .JC//

d /:

Since the d –fold branched cover of J is an integral homology 3–sphere, Lemma 4.1 of
[8] shows that C�. eK2; eL2/ is acyclic. Now, in the pair .K2;L2/D .S

1��m.B3�I�
ı
�

.AC//;S
1 ��m

J
.B3�

ı
� .JC///, we consider it as a relative smooth fiber bundle over
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S1 with the fiber .B3 � I�
ı
� .AC/;B

3�
ı
� .JC//:

.B3
� I�

ı
� .AC/;B

3
�
ı
� .JC// ,!

.S1
��m .B3

� I�
ı
� .AC//;S

1
��m

J
.B3
�
ı
� .JC/// �! S1:

For simplicity, we denote its relative fiber by .F;F0/ and so we write the pair of covers

. eK2; eL2/ as .
H̀

S1�z�m eF ; H̀

S1�z�m eF 0/, where .eF ; eF 0/ is the pair of the d –fold
covers associated to the inclusions. Using the same techniques as in [8, Proposition

4.4], we have the following exact sequence for .
H̀

S1 �z�m eF ; H̀

S1 �z�m eF 0/;

0 �!
H
˚.C�.eF ; eF0/˚C�.eF ; eF0//

�!
H
˚.C�.Œ0; 1=2�� eF ; Œ0; 1=2�� eF0/˚C�.Œ1=2; 1�� eF ; Œ1=2; 1�� eF0//

�!
H
˚.C�.S

1
�z�m eF ;S1

�z�m eF0// �! 0:

By the assumption that .eF ; eF 0/ is homologically trivial, it follows that if

j W ZŒ�1.F /� �! ZŒ�1.W /�

denotes the morphism induced by inclusion then the torsion �j .F;F0/ is defined.
From the above short exact sequence and the multiplicativity of the torsion we obtain
� i2.S1 ��m F;S1 ��m F0/ D 1, which implies that � i2.K2;L2/ is also trivial and
thus the torsion �.W;M1/ 2W h.G/ is trivial.

The homology condition on a knot J can be expressed in terms of its Alexander
polynomial. Fox [4] proved that

jH1..S
3;J /d /j D

d�1Y
iD0

�J .�
i/

where � is a primitive d th root of unity. So the d –fold branched cover of a knot is an
integral homology 3–sphere if and only if

Qd�1
iD0 �J .�

i/D 1. It is easy to verify this
condition for (say) the d –fold cover of a .p; q/ torus knot when d is relatively prime
to both p and q .

4.1 Topological triviality for 1–twist rim surgery

In Proposition 2.3, we showed that a 1–twist rim surgery does not change the fundamen-
tal group. In this section, we show that the surface †K .1/ produced by such a surgery
is standard up to s–cobordism. The construction is similar to that in the previous
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section, but we allow K to be slice (rather than ribbon), and impose no hypothesis on
the cyclic coverings of S3�K .

Theorem 4.5 Suppose that ˛ � † is an embedded curve that has a null-homotopic
pushoff into X �†. Then for any slice knot K , the surface †K .1/ obtained by 1–twist
rim surgery along ˛ is s–cobordant to †.

The homology computation requires a preliminary lemma. Suppose that � W zY ! Y is
an infinite cyclic cover, and that T W zY ! zY generates the group of covering translations.
Note that for any k , the quotient Y k D zY =hT ki is a k –fold cyclic cover of Y , and
that T descends to a generator of the covering translations of Y k .

Lemma 4.6 The mapping torus S1 �T
zY is homeomorphic to R � Y . Moreover,

S1 �T Y k is homeomorphic to S1 �Y .

Proof Our convention is that the mapping torus is given by R� zY , modulo the relation
.x;y/� .x � 1;Ty/. The map .x;y/ 7! �.y/ descends to an R bundle over Y , and
the same map descends to an S1 bundle S1 �T Y k ! Y . To see that these bundles
are trivial, note that the covers zY ! Y and Y k ! Y are induced from the standard
infinite and finite cyclic covers R! S1 and S1! S1 by a map f W Y ! S1 . This
implies that the R–bundle S1 �T

zY ! Y is induced from S1 �T R! S1 by the
same map, and likewise for the circle bundles.

Hence, it suffices to consider the case where Y D S1 DR=Z, with zY DR. Then the
first bundle is trivialized by the isomorphism R�S1! S1 �T R that takes .r; Œy�/
to ŒyC r;�y�, where the brackets Œ � denote equivalence classes. This trivialization
descends to a trivialization of the circle bundle as well.

Proof of Theorem 4.5 The proof uses the same technique as in Proposition 4.3 and
Theorem 4.4, so we will be brief. A concordance of K to the unknot produces a
cobordism between X�

ı
� .†/ and X�

ı
� .†K .1//, as described at the beginning of

this section. The isomorphism G D �1.X�
ı
� .†//Š �1.X�

ı
� .†K .1/// established

in Proposition 2.3 works as well to calculate that the fundamental group of W D

X �I�
ı
� ..†�I/A.m// is also G . So the remaining points are to show the vanishing

of the relative homology groups of the universal covers of .W;X�
ı
� .†//, and the

Whitehead torsion.

As observed just after the proof of Proposition 2.3, the image of �1.S
1 �� .B

3�
ı
�

.KC/// in �1.X�
ı
� .†K .1/// is the cyclic subgroup generated by the meridian of

†K .1/; the same is true for the image of �1.S
1�� .B

3�I�
ı
� .AC// in G . It follows
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that in the universal cover, the preimage of S1�� .B
3�
ı
� .KC// is a union of its finite

or infinite cyclic covers, the order of the meridian in �1.X �†K .1// determining the
order of the covering. The same is true for the preimage of B3 � I�

ı
� .AC/. Note

that these coverings are mapping tori, as in Lemma 4.6, where in place of the covering
transformation T , we have a lift of the twist map � . But the lift z� defined in (7) is
isotopic to the covering transformation, so we can apply Lemma 4.6 to compute the
homology of these covering spaces. It follows that each .B3�I�

ı
� .AC/;B

3�
ı
� .KC//

lifts to a relative homology cobordism, and hence (by the Mayer–Vietoris argument in
Proposition 4.3) that W is a relative h–cobordism.

The torsion calculation in Theorem 4.4 depends only on the vanishing of the relative
homology of .B3�I�

ı
� .AC/;B

3�
ı
� .KC//, with coefficients in the group ring ZŒG�

induced by the inclusion of these spaces into W . But the argument in the preceding
paragraph implies this vanishing, so that the torsion is trivial.

Corollary 4.7 With the hypotheses of Theorem 4.5, if the group G is good, then the
knots †K .1/ and † are topologically equivalent.

5 Smooth classification

To distinguish, in the smooth category, the knots that we have constructed, we make
use of the results of Fintushel and Stern [3]. They start with a surface † such that
† �†D 0 and .X; †/ is an SW–pair, and show that for knots K1; K2 , the equality
.X; †K1

/ Š .X; †K2
/ implies that the coefficients of �K1

coincide with those of
�K2

(including multiplicities). This result (described in the addendum to the original
paper) is proved using the gluing theory in Kronheimer–Mrowka [11]. Note that by
blowing up, one can convert a surface with positive self-intersection into one with 0

self-intersection; symplectic surfaces of negative self-intersection are treated in a recent
preprint of T Mark [13] using the Ozsváth–Szabó 4–manifold invariants [16] in place
of Seiberg-Witten invariants. Mark’s results require that † �†� 2�2g.†/ and that the
map H 1.X�

ı
� .†//!H 1.@

ı
� .†// be trivial. See [13, Remark 1.3] for a discussion

of how his work applies in our non-simply-connected setting.

The extra m–twist does not affect the gluing theorem, and so (with hypotheses as
above) the surfaces .X; †K1

.m// and .X; †K2
.m// are distinguished smoothly if the

coefficients of their Alexander polynomials form distinct sets. Here is a sample result
that one gets by combining these observations with the constructions of Section 2.2
and the topological classification results in Section 4.
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Theorem 5.1 For any odd number p , there are infinitely many topologically equivalent
but smoothly inequivalent knots in S2 � S2 with dihedral knot group D2p with
homology class .2; 2/ in the obvious basis for H2.S

2 �S2/.

Proof Let X D S2 �S2 . Choose a complex curve † in the homology class .2; 2/;
this will be a torus of square 8, and have group Z=2. For any odd p and q relatively
prime to p , the surface .X; †Kp;q

.2// has group D2p , by Lemma 2.1. Let J be any
knot with non-trivial Alexander polynomial but with determinant 1. For any positive n,
let Jn be the ribbon knot #n.J#�J /. By Theorem 4.4, the knots .X; †Kp;q ;Jn

.2; 3//

are all topologically equivalent. On the other hand, these surfaces are all distinguished
smoothly because the coefficient lists for the Alexander polynomials of the Jn are
distinct.

In a different direction, the construction of symplectic surfaces also gives rise to families
of smoothly distinct surfaces.

Theorem 5.2 Let G be a group satisfying condition (Kd ). Then there is a simply-
connected symplectic 4–manifold M containing a symplectically embedded surface
S , and infinitely many smoothly embedded surfaces Sn in the same homology class
with �1.M �Sn/Š G . If G is a good group then these surfaces can be taken to be
topologically equivalent.

Proof Start with the symplectic surface S with group G provided by Theorem 3.1;
note that since S is symplectic and has 0 self-intersection, .M;S/ is an SW–pair. In
the construction of the surface S , we performed fiber sums multiple times, including
a fiber sum to kill the generators ˛ and ˇ of the fundamental group of the torus T .
It follows readily that ˛ , pushed into the complement of S , is null-homotopic in the
complement of S . Choose a sequence of knots Jn as in the previous theorem, and do
1–twist rim surgeries to create new surfaces .M;SJn

.1//, all of which have group G .
These are smoothly distinct, as before.

By Theorem 4.5, since the knots Jn are slice, the knots .M;SJn
.1// are all s–cobordant.

If the group G is good, then the knots are topologically equivalent.
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application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10 (2006)
165–492 MR2233789 Correction at: The Asian Journal of Mathematics, 10, 2006 pp
663

[3] R Fintushel, R J Stern, Surfaces in 4–manifolds, Math. Res. Lett. 4 (1997) 907–914
MR1492129 Addendum at arXiv:math.GT/0511707

[4] R H Fox, Free differential calculus. III. Subgroups, Ann. of Math. .2/ 64 (1956)
407–419 MR0095876

[5] M H Freedman, F Quinn, Topology of 4–manifolds, Princeton Mathematical Series
39, Princeton University Press, Princeton, NJ (1990) MR1201584

[6] M H Freedman, P Teichner, 4–manifold topology. I. Subexponential groups, Invent.
Math. 122 (1995) 509–529 MR1359602

[7] R E Gompf, A new construction of symplectic manifolds, Ann. of Math. .2/ 142 (1995)
527–595 MR1356781

[8] H J Kim, Modifying surfaces in 4–manifolds by twist spinning, Geom. Topol. 10 (2006)
27–56 MR2207789

[9] H J Kim, D Ruberman, Topological triviality of smoothly knotted surfaces in 4–
manifolds, Trans. Amer. Math. Soc. 360 (2008) 5869–5881 MR2425695

[10] B Kleiner, J Lott, Notes on Perelman’s papers (2008) arXiv:math/0605667v3

[11] P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Mathematical Mono-
graphs 10, Cambridge University Press, Cambridge (2007) MR2388043

[12] V S Krushkal, F Quinn, Subexponential groups in 4–manifold topology, Geom. Topol.
4 (2000) 407–430 MR1796498

[13] T E M Mark, Knotted surfaces in 4–manifolds (2008) arXiv:0801.4367

[14] J Morgan, G Tian, Ricci flow and the Poincaré conjecture, volume 3 of Clay Mathemat-
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